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Abstract

Natural language processing has made progress001
in incorporating human context into its mod-002
els, but whether it is more effective to use003
group-wise attributes (e.g., over-45-year-olds)004
or model individuals remains open. Group at-005
tributes are technically easier but coarse: not all006
45-year-olds write the same way. In contrast,007
modeling individuals captures the complexity008
of each person’s identity. It allows for a more009
personalized representation, but we may have010
to model an infinite number of users and re-011
quire data that may be impossible to get. We012
compare modeling human context via group013
attributes, individual users, and combined ap-014
proaches. Combining group and individual fea-015
tures significantly benefits user-level regres-016
sion tasks like age estimation or personality017
assessment from a user’s documents. Model-018
ing individual users significantly improves the019
performance of single document-level classifi-020
cation tasks like stance and topic detection. We021
also find that individual-user modeling does022
well even without user’s historical data.023

1 Introduction024

Language varies between people. Two strands of025

human-centered NLP work have modeled the hu-026

mans behind the language. The first focuses on the027

group context, building on the sociolinguistic no-028

tion of specific socio-demographic attributes influ-029

encing the language of a particular group. These at-030

tributes include socio-demographics like age, gen-031

der (Volkova et al., 2013; Hovy, 2015), location032

(Kulkarni et al., 2016; Garimella et al., 2017), per-033

sonality (Schwartz et al., 2013; Lynn et al., 2017),034

and more. The second strand focuses on building035

personalized language models (PLMs) that target036

individualistic contexts (King and Cook, 2020; De-037

lasalles et al., 2019), and latent attributes inferred038

from an individual’s historical language (Matero039

et al., 2021; Soni et al., 2022) to better model the040

user.041

While these two strands have advanced human- 042

centered NLP, their relative strengths, complemen- 043

tarity, and impact over different tasks are poorly 044

understood. People are not defined by their group 045

membership alone (Orlikowski et al., 2023), but 046

individual traits might not generalize. This paper 047

compares the two approaches and their combina- 048

tion in the same framework and tasks in pre-trained 049

large language models. We use the monolingual 050

socio-demographically adapted model from Hung 051

et al. (2023) and the HaRT model from Soni et al. 052

(2022) for the first two types. We use a multi-task 053

learning setup to create GRIT, a PLM based on 054

HaRT, trained with both individual and group hu- 055

man context in two variants: GRITage is adapted to 056

the authors’ age, and GRITope to their inferred per- 057

sonality trait (openness). We test all systems on five 058

user- and document-level tasks. Note that because 059

we focus on conceptually comparing group and in- 060

dividual traits, we cannot compare to GPT4, which 061

does not support stratification to either attribute. 062

PLMs trained on individuals and groups enhance 063

user-level regression tasks like age estimation and 064

personality assessment from user’s multiple docu- 065

ments. Such user-level tasks focus on individual 066

person, and our findings show that these people 067

are best modeled as a combination of their groups 068

and individual traits conforming with the notion 069

that a person is a mix of their group attributes and 070

unique characteristics. Document-level categoriza- 071

tion tasks, like stance detection, are more personal. 072

A PLM taught within an individual human con- 073

text alone improves our considered document-level 074

classification tasks. 075

By their very nature, models of this kind touch 076

upon sensitive user information. For this reason, 077

we take a responsible release strategy, making only 078

the code for the comparisons publicly available 079

and the exact splits of the TrustPilot and Stance 080

datasets used. We build on top of the publicly 081

available code for HaRT and Hung et al. (2023). 082
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We acquired the model and data in a secure manner083

from the authors of Soni et al. (2022) and TrustPilot084

data splits from the authors of Hung et al. (2023).085

For more information about the model and data,086

see Sections 3 and 4. For a discussion of the ethical087

implications of the model and data, see Section 7.088

Contributions. Our contributions are: (1) We089

provide an analysis with a comparison of mod-090

eling individual users, group socio-demographic091

features, and both group and individual traits in092

PLMs. (2) We evaluate the three modeling strat-093

egoies on five downstream tasks: two user-level094

(personality-openness evaluation and age estima-095

tion) and three document-level classification tasks096

(stance detection, topic detection, and age category097

prediction). (3) We find that user-level regression098

tasks like estimating age and assessing personality099

from user’s multiple documents perform better with100

mixed individual and group human context (GRIT)101

and document-level tasks like stance detection and102

topic detection perform better with individual con-103

text alone (HaRT).104

2 Integrating Human Context in PLMs105

For our comparative study, we use three systems106

representing the paradigms of human context mod-107

eling to tease apart the contributions of 1) grouping108

people, 2) modeling individual users, and 3) mod-109

eling both group and individual human contexts.110

Training with group context. We build on Hung111

et al. (2023)’s work to explore demographic adap-112

tation in transformer-based PLMs. They use bidi-113

rectional auto-encoder-based PLMs to inject demo-114

graphic knowledge in a multi-task learning setup115

where they also train masked language modeling116

(MLM) and classify the gender or age of an au-117

thor. They use the multilingual reviews dataset118

with demographic labels from Trustpilot1 (Hovy,119

2015). They evaluate multiple text classification120

tasks, including demographic attribute classifica-121

tion, sentiment analysis, and topic detection. In122

our study, we use the US-English subset of the123

Trustpilot data for topic detection (TD) under the124

age categories and for age attribute classification125

(AC) (more details in section 4). We use the results126

from Hung et al. (2023) with the monolingual PLM127

model BERT on a US-based English dataset with128

out-of-domain demographic (age) specialization129

for our comparison study. Out-of-domain data is130

the Blogs authorship corpus (Schler et al., 2006),131

1https://www.trustpilot.com/

and in-domain means Trustpilot corpus. To be con- 132

sistent and fair in comparing with other human 133

context training paradigms, we choose the mono- 134

lingual model and eliminate the confounds from 135

domain specialization. 136

Training with individual human context. Soni 137

et al. (2022) introduced human language modeling 138

(HuLM), i.e., training a regular language model- 139

ing task but including a dynamic individual human 140

context vector derived from the authors’ texts. This 141

vector captures the human states in which the text 142

is generated to induce coherence between different 143

texts generated by the same author. Soni et al. also 144

view this vector as representing the text-derived 145

human factors. They introduce a Human-aware 146

Recurrent Transformer (HaRT), a unidirectional 147

autoregressive PLM that trains for the HuLM task. 148

They evaluate the effect of individual human con- 149

text on language modeling and multiple user-level 150

and document-level downstream tasks. We use the 151

results from HaRT on the user-level tasks, age esti- 152

mation and personality (openness) assessment, and 153

on a document-level task, stance detection, for our 154

comparisons study. 155

Training with both group and individual hu- 156

man context. We train a PLM that can integrate 157

the author’s individual and group human context 158

knowledge when training for language modeling. 159

We extend Soni et al.’s HaRT model by training for 160

HuLM and predicting a human group attribute in a 161

dynamic muti-task learning setup as used by Hung 162

et al.. We want to induce the individual human con- 163

text through the author’s language and inject the 164

group context by predicting a group attribute of the 165

author. Predicting group attributes during training 166

can also be viewed as a regularizer for the model, 167

as it constrains the possible output. We discuss 168

the model in detail in section 3. We compare two 169

user-level tasks and a document-level task, as in 170

Soni et al. (2022), and on topic detection and age 171

prediction tasks, as in Hung et al. (2023). 172

3 Models 173

This section describes the models we compare to 174

represent group and individual human contexts. 175

3.1 Modeling individual human context 176

HaRT. Soni et al. (2022) introduced HaRT to 177

incorporate individual human context into PLMs. 178

They use a 12-layered autoregressive GPT-2 based 179

architecture with a modified self-attention compu- 180
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tation at layer 2. This modification to the query181

vector now includes the individual human context182

via a dynamic user-state vector.183

Q IN
i = W T

q [H
(IN−1 )
i ;Ui−1 ]184

where IN is the insert layer (layer 2), Qi is the185

query vector under computation, Hi is the hidden186

states vector, and Ui−1 is the user-state vector de-187

rived from the previous block of language seen188

from the user. All the text from a user is processed189

in the same forward pass with recurrent processing190

of blocks of fixed-length (1024) tokens chunked191

after temporally ordering the social media posts by192

created time. The user state is recurrently updated193

using the hidden states from layer 11 and computed194

as follows:195

Ui = tanh(WUUi−1 +WHH(E))196

where, E is the extract layer (layer 11), Ui is the197

updated user-state vector, Ui−1 is the user-state vec-198

tor from the previous block, and HE is the hidden199

states vector from layer 11. This formulation of200

updating the user-state vector extends the previ-201

ous user-state vector information with the current202

language block’s information.203

HULM pre-training task. HaRT is pre-trained204

for the human language modeling (HULM) task205

defined as predicting the next token given the pre-206

vious tokens while conditioning on previous user207

state U1:t−1 (Soni et al., 2022) .208

Pr(Wt|Ut−1) =
n∏

i=1

Pr(wt,i|wt,1:i−1,U1:t−1)209

This is translated into a pre-training objective to210

maximize:211

∏
a∈Users

|Ba|∏
t=1

|B(a)
t |∏

i=1

Pr(wt,i|wt,1:i−1, B
(a)
1:t−1)212

where, wt,i is the ith token in the tth block (B(a)
t )213

for user a. The tokens from the previous blocks214

are represented using HaRT’s recurrently updated215

user-state vector.216

3.2 Modeling group human context217

BERTDS and BERTage-MLM. Hung et al. (2023)218

explore socio-demographic adapted BERT models219

to inject group human context into PLMs. We use220

the names BERTDS and BERTage-MLM to denote their221

demographic (age) specialization using the multi-222

task learning setup and demographic adaptation223

with masked language modeling respectively.224

Multi-Task Learning. Hung et al. (2023) train 225

for domain adaptation using the masked language 226

modeling (Lmlm) loss and for classifying demo- 227

graphic category using the binary cross-entropy 228

loss (Ldem). To account for the homoscedastic 229

uncertainty (Kendall et al., 2018) of losses, they 230

adopt a dynamic MTL objective for training with 231

group human context. Kendall et al. interpret ho- 232

moscedastic uncertainty as task-dependent weight- 233

ing and derive a multi-task loss function that can 234

optimally learn the weights to balance the impact 235

of multiple loss functions. This approach accounts 236

for the different scales across multiple losses. 237

L̃t =
1

2σ2
mse

Lt + log σt 238

Hung et al. minimize the sum of both the uncer- 239

tainty adjusted losses: ˜Lmlm + ˜Ldem. 240

3.3 Modeling both individual and group 241

human context 242

GRIT. GRIT incorporates both individual and 243

group human contexts using a multi-task learn- 244

ing setup with HaRT that also predicts a socio- 245

demographic attribute of the author in each forward 246

pass using the average of user-state vectors from 247

each non-padded block of the user’s temporally 248

ordered text. 249

Multi-Task Learning. GRIT is pre-trained 250

for the HuLM task and a (continuous) socio- 251

demographic attribute prediction regression task 252

in a multi-task learning setup. The PLM uses the 253

user-state vectors to predict the socio-demographic 254

attribute of the user. 255

Pr(attribute|U) 256

Because of compute limitations, we chunk a 257

user’s language history into blocks and process 258

them in a single forward pass. Each block of text 259

from a user results in a user-state vector. We use 260

the average of the user-state vectors from each non- 261

padded block of texts from an author to compute 262

their final user-state representation. This repre- 263

sentation is layer-normed and linearly transformed 264

before making a continuous-valued prediction for 265

the specific attribute. 266

We train one model for the attribute age 267

(GRITage) and one for the attribute personality type 268

openness (GRITope), respectively. The models train 269

on a regression loss for the attribute prediction re- 270

gression tasks using mean squared error (Lmse), 271
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and a classification loss for the HULM task using272

cross-entropy loss (Lce). To account for the ho-273

moscedastic uncertainty (Kendall et al., 2018) of274

losses, we adopt a dynamic MTL objective as Hung275

et al. (2023). We use the joint loss for a continu-276

ous and discrete output as derived in Kendall et al.277

(2018) and compute our joint objective as follows:278

1

σ2
ce

Lce +
1

2σ2
mse

Lmse + log σce + log σmse279

where, σce and σmse are the variances of the task-280

specific losses.281

In practice, we use log variance for numerical282

stability and use the adjusted loss calculation as283

follows:284

exp−ηce Lce + ηce +
1

2
(exp−ηmse Lmse + ηmse)285

where ηx = log σ2
x. We let σce and σmse be learn-286

able parameters for the model. We do not halve the287

log-term of the cross-entropy loss since we found288

it to perform better with our multi-task learning289

experiments.290

Pre-training data. We use a subset of the pre-291

training data for HaRT, consisting of the demo-292

graphics and personality information. This subset293

contains the Facebook posts from Park et al. (2015)294

as used by Soni et al.. Our dataset is consistent with295

the inclusion criteria for HaRT to ensure moderate296

language history for each user: we include English297

posts from users with at least 50 total posts and at298

least 1000 words. This dataset consists of just over299

63,000 unique users, which we split into a training300

dataset consisting of messages from 56,930 users,301

a development dataset that consists of messages302

from 1836 users that were not part of the training303

set, and a test set of messages from a separate set304

of 4438 users that are neither in training nor the305

development set. To evaluate the human attribute306

prediction in GRITope, we use a subset of the test307

set consisting of messages from 1745 users to ac-308

commodate for questionnaire reliability. We use309

the Facebook posts for the HULM task and the310

demographic and personality scores of consenting311

Facebook users (Kosinski et al., 2013) for the hu-312

man attribute prediction task.313

Training. We use HaRT’s pre-trained weights as314

the base weights for GRIT and randomly initialize315

the newly introduced weights for human attribute316

prediction. GRIT is trained on our pre-training317

dataset using the 5e-5 learning rate after experi-318

menting with a few learning rates, including that319

used for HaRT’s pre-training. Following HaRT, 320

and due to computing limitations, each training in- 321

stance is capped to 8 blocks of 1024 tokens each, 322

with train batch size as 1 per device and evalua- 323

tion batch size as 20 per device, trained over 2 324

GPUs for eight epochs. We explored multiple joint 325

losses before resorting to the homoscedastic loss 326

computation. Since HaRT caps to 4 train blocks 327

for user-level downstream tasks, we also pre-train 328

GRITage and GRITope with four training blocks. 329

3.4 Transfer Learning 330

To assess the efficiency of GRIT to transfer learning 331

from predicting one group human attribute to an- 332

other, we experiment with continuing pre-training 333

for each group attribute. To this end, we pre-train 334

GRITage capped to 4 training blocks and use this pre- 335

trained model to continue MTL with the HULM 336

task and predict personality (openness). We do the 337

same for GRITope and continued MTL with predict- 338

ing age. 339

3.5 Fine-Tuning 340

We fine-tune GRIT and HaRT for downstream 341

document-level tasks. Each downstream task has 342

a separate fine-tuned model that is initialized with 343

the respective model’s pre-trained parameters and 344

trained using the respective downstream task labels 345

and an appropriate loss function. We also use the 346

historical language of a user where available for 347

any of the downstream tasks. We use the last pre- 348

dicted token’s representation to predict the label 349

in document-level classification tasks. We experi- 350

mented with fine-tuning GRIT for user-level regres- 351

sion tasks in multiple ways, including 1) similar 352

to HaRT, by using the averaged user-state vectors 353

from GRIT, 2) same as previous but fine-tuning 354

only the history module, attribute prediction mod- 355

ule, and the downstream task head, 3) freezing all 356

the parameters of GRIT and fine-tuning the human 357

attribute prediction module alone. However, we 358

found continued training as described in section 359

3.4 to perform best. 360

We used the Optuna framework (Akiba et al., 361

2019) for hyperparameter search, closely following 362

the experimental settings in Soni et al.. 363

4 Experiments 364

We compare the performance of PLMs adapted 365

to socio-demographic group factors, individual 366

human contexts, and both individual and group 367

contexts. We use the socio-demographic adapted 368
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BERT models: BERTage-MLM and BERTDS from369

Hung et al. (2023), HaRT (Soni et al., 2022), and370

GRIT models, respectively. We use GPT-2HLC from371

Soni et al. (2022) as a PLM adapted to the social372

media domain but devoid of human context. We373

evaluate performances on two user-level regression374

tasks: predicting age and a personality score (open-375

ness), and on three document-level tasks: stance376

detection, topic detection, and age classification.377

4.1 User Level Regression Tasks378

We compare GRIT, HaRT, and GPT-2HLC on age379

estimation and personality (openness) assessment.380

These tasks require continuous outcomes derived381

from multiple documents written by a user. We382

use a subset of the data from consenting Facebook383

users who shared their demographic and personal-384

ity scores (Kosinski et al., 2012; Park et al., 2015)385

along with their Facebook posts. This data is essen-386

tially the same as GRIT’s pre-training data. How-387

ever, the test set is from Park et al. (2015) on which388

HaRT and GPT-2HLC are evaluated.389

GRIT is pre-trained on a multi-task learning390

setup, including predicting a continuous socio-391

demographic group attribute. GRITage is trained to392

predict age, and GRITope is trained to predict open-393

ness. We use the pre-trained GRITage and GRITope394

directly to evaluate on the test sets for age esti-395

mation and personality assessment, respectively.396

We further evaluate these models on the test sets397

for personality assessment and age estimation after398

continuing training for these tasks, as described in399

section 3.4.400

We use the results from Soni et al. (2022) for401

HaRT and GPT-2HLC which are directly comparable402

to GRIT models trained on the same data splits403

and metrics. Soni et al. fine-tuned the recurrence404

module of the pre-trained HaRT model for the tasks405

of age estimation and personality assessment using406

the average of user-states from non-padded blocks407

of texts from an author, resulting in two fine-tuned408

models. Similarly, they fine-tune the last two layers409

of the pre-trained GPT-2HLC model for these tasks.410

Since GPT-2HLC can not handle all text from a user411

in one pass, they average the predictions across all412

user messages corresponding to the same label for413

each message.414

Age Estimation The training and development415

datasets are identical to the pre-training data for416

GRIT. Age was self-reported and limited to users417

under 65. We compare the performance of the418

models on a test set of 5000 users from Park et al. 419

(2015) and report Pearson correlation (r). 420

Personality Assessment As for age estimation, 421

the training and development datasets are the same 422

as the pre-training data for GRIT. We compare 423

the performance of the models to predict openness 424

(one’s tendency to be open to new ideas) on a test 425

set of 1943 users and report disattenuated Pearson 426

correlation (rdis) metric to account for question- 427

naire reliability as in Soni et al. (2022). 428

4.2 Document-Level Classification Tasks 429

We compare different models for stance detection 430

vs. topic detection and age classification. These 431

tasks classify a single input document (tweet mes- 432

sage or a review) a user writes into label categories. 433

For stance detection, we also use the historical 434

messages of a user where available, as in Soni et al. 435

(2022). We do not have the user information or any 436

user historical language available for the other two 437

tasks, so we evaluate on the single document input. 438

All models process the input document(s) and 439

feed the layer-normed last non-padded token repre- 440

sentation to the classification layer to classify the 441

document into label categories. Only GRIT and 442

HaRT incorporate user information and the histor- 443

ical language (where available). The other two 444

models can only use the input document without a 445

hierarchical structure to make the predictions. We 446

compare with the results from Soni et al. (2022) 447

and Hung et al. (2023) wherever applicable and 448

fine-tune all the parameters of the respective pre- 449

trained models and the classification heads for other 450

task-model combinations using the standard cross- 451

entropy loss. 452

Stance Detection Given a single annotated tweet, 453

this task predicts a user’s stance as in favor of, 454

against, or neutral towards one of the five targets: 455

atheism, climate change as a real concern, femi- 456

nism, Hillary Clinton, and legalization of abortion. 457

We fine-tune the models under comparison for each 458

target separately. We report average of weighted 459

F1 scores with three labels across all five targets. 460

We use Soni et al. (2022)’s train/dev/test split over 461

SemEval 2016 dataset (Mohammad et al., 2016). 462

HaRT and GRIT models maintain the temporal 463

accuracy by using only the messages posted ear- 464

lier than the labeled messages from the extended 465

dataset (Lynn et al., 2019) as a user’s historical 466

language. We compare the results of fine-tuned 467

GPT-2HLC, HaRT (Soni et al., 2022), and fine-tuned 468
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GRITage and GRITope.469

Topic Detection We use the US subset of the470

TrustPilot reviews dataset (Hovy, 2015) from two471

age groups: below 35 or above 45 2. Given a472

single review, this task predicts the review top-473

ics from five categories: Flights, Online market-474

place, Fitness & Nutrition, Electronics, and Hotels.475

We use the same train, development, and test set476

splits as Hung et al. (2023) to eliminate any skew477

in the demographically-conditioned label distribu-478

tion. We report and compare macro-F1 scores from479

BERTage-MLM and BERTDS (Hung et al., 2023) with480

fine-tuned GPT-2HLC, HaRT, GRITage and GRITope.481

Demographic Attribute Classification We use482

the same subset of the TrustPilot dataset as for topic483

detection and the same train, development, and test484

splits from Hung et al. (2023). Given a single re-485

view, this task predicts the age group binary la-486

bel. Age categories are equally represented in each487

set. We report and compare macro-F1 scores from488

BERTage-MLM and BERTDS (Hung et al., 2023) with489

fine-tuned GPT-2HLC, HaRT, GRITage and GRITope.490

4.3 Human Language Modeling491

To compare the effects of individual and group fac-492

tors on language modeling performance, we evalu-493

ate on the test set from the pre-trained data splits.494

We report and compare perplexity scores from the495

pre-trained GPT-2 (GPT-2frozen), GPT-2HLC, HaRT,496

GRITage and GRITope for the human language mod-497

eling task.498

5 Results and Discussion499

We report results for all the tasks here, discussing500

their respective impacts on adapting PLMs to in-501

dividual human context, group context, and both502

individual and group context.503

5.1 Comparisons Study504

User-Level Tasks. Table 1 shows the two user-505

level task results. For computational reasons, both506

HaRT and GRIT use just 4 blocks of training data507

for these tasks. We find that the pre-trained GRIT508

models for each task perform better than the fine-509

tuned HaRT model, i.e., pre-trained GRITage better510

estimates age, and GRITope better assesses personal-511

ity. In addition, GRIT performs better on the other512

user-level task using transfer learning and contin-513

ued training than by fine-tuning it on the averaged514

2As suggested by Hovy (2015), this split of the age
ranges results in roughly equally-sized data sets and is non-
contiguous, avoiding fuzzy boundaries.

Model Human
Context

Age
(r)

OPE
(rdis)

GPT-2HLC None 0.839 0.521
HaRT Individual 0.868 0.619
GRITage Ind + Grp 0.890† 0.658†

GRITope Ind + Grp 0.884† 0.643†

Table 1: Pearson r for age, disattenuated Pearson r for
openness. Bold = best result per column, † = p < .05
(permtuation test w.r.t HaRT).

user states. Comparing the transfer learning results 515

of GRITage for openness and GRITope for age to the 516

fine-tuned HaRT and GPT-2HLC models, we find that 517

training PLMs with individual and group human 518

context benefits such multi-document user-level re- 519

gression tasks. Consequently, we may view the 520

group attribute prediction as a regularizer for the 521

model. 522

Document-Level Tasks. Table 2 shows the re- 523

sults for stance detection. Both GRIT and HaRT 524

models were fine-tuned with historical language for 525

stance. The PLM trained with individual human 526

context (HaRT) better detects user stance. 527

Table 2 also compares performances of the mod- 528

els on topic detection (TD) and demographic at- 529

tribute classification (AC). We use GRIT models 530

pre-trained with 8 training blocks of user texts. 531

Both HaRT and GRIT models have a notion of the 532

user and treat each input as written by a different 533

user. This aspect may aid their performances even 534

for tasks where historical language is unavailable. 535

Even though this information is lacking for TD 536

and AC, fine-tuned HaRT models perform better 537

than the rest. The additional group-attribute pre- 538

training of GRIT models may be introducing noise 539

for document-level tasks, since the results are close 540

to that of fine-tuned HaRT models, yet slightly 541

lower. We can draw parallels between the perfor- 542

mance enhancements from GPT-2HLC to HaRT, i.e., 543

a PLM adapted to an out-of-domain corpus (social 544

media) to a PLM trained with individual human 545

context using the same corpus, and between the 546

performance gains from BERTage-MLM to BERTDS, 547

i.e., a PLM adapted to an out-of-domain corpus 548

(blogs) to a PLM trained with group context using 549

the same corpus. Note that Hung et al. (2023) do 550

not report results from BERTage-MLM and BERTDS 551

out-of-domain demographically specialized mod- 552

els. Our results indicate that single-document an- 553

notated classification tasks may benefit simply by 554
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Model Human
Context

Stance
(F1wtd)

TD (<35)
(F1mac)

TD (>45)
(F1mac)

AC
(F1mac)

GPT-2HLC None 68.6 69.8 65.4 63.9
BERTage-MLM Group - 68.4 64.6 61.9∗

BERTDS Group - 69.3 65.0 64.1∗

HaRT Individual 71.1† 69.8† 65.6 64.3†

GRITage Ind + Grp 70.8 69.2 64.5 62.7
GRITope Ind + Grp 70.1 66.5 64.8 61.2

Table 2: Weighted F1 for stance detection, macro-F1 for topic detection (TD), and age classification (AC) on
TrustPilot reviews. GPT-2HLC and HaRT from Soni et al. (2022), BERTage-MLM and BERTDS from Hung et al. (2023).
∗ = results from in-domain specialized models. Bold = best in column; † = statistically significant p < .05 via
permutation test w.r.t GPT-2HLC.

Model Human
Context

Test (ppl)

GPT-2frozen None 114.82
GPT-2HLC None 36.39
HaRT Individual 28.24
GRITage Ind + Grp 31.77
GRITope Ind + Grp 30.32

Table 3: Comparing perplexity on language modeling
for models trained with individual and group contexts.

training PLMs with individual human context.555

Perplexity. We also compare the language mod-556

eling capability of the various models. Table 3557

reports perplexity on the test set of 4438 users from558

the pre-training data. Multi-task learning is known559

to impact individual task performance, so we ex-560

pect a slight dip in perplexity. The results align561

with our hypothesis and the trend shown in Soni562

et al. (2022). The frozen GPT-2 performs poorly563

compared to the social media domain adapted GPT-564

2HLC, HaRT models perform best while GRIT mod-565

els result in a slightly lower perplexity than HaRT.566

5.2 Error Analysis and Disparity567

We perform a set of error analysis by comparing568

performance metrics of HaRT and GRIT models569

(pre-trained with 4 training blocks) for the user-570

level regression tasks of age and openness pre-571

diction across different groups based on a demo-572

graphic factor. The different groups are created by573

sampling the test set into the following age buckets:574

below 18, 18-21, 21-30, 30-45, and above 45. Ta-575

ble 4 shows GRITage performs better for the task of576

estimating age across all age groups i.e., exhibits577

lesser error. We also see lesser errors in GRIT mod-578

els for the openness assessment tasks (Appendix579

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.223 0.394 0.393
18-21 560 0.230 0.278 0.276
21-30 563 0.512 0.531 0.519
30-45 249 0.485 0.530 0.520
45+ 68 0.106 0.205 0.180

Table 4: Pearson r for age over five age buckets using
different types of human contexts for error analysis.
Bold indicates best in row.

Table 6) as well as conforming results on both tasks 580

when comparing using the MSE metric (Appendix 581

Tables 7 and 8). 582

Additionally, we use the error analysis results 583

to compare the error disparity (Shah et al., 2020) 584

in GRIT models and HaRT. Error disparity can be 585

exemplified by the "Wall Street Journal Effect" – 586

a systematic difference in error as a function of 587

demographics (Hovy and Søgaard, 2015). It can 588

be calculated as the difference in the computed 589

metric across different groups based on a demo- 590

graphic factor (Shah et al., 2020). We compute the 591

mean error disparity (MED) as the sum of the dif- 592

ferences in the metric (Pearson correlation for age, 593

and disattenuated Pearson correlation for openness) 594

computed for each group averaged by the number 595

of difference pairs. 596

Table 8 reports the MED for each model-task 597

pair for HaRT, GRITage, and GRITope models, and 598

age estimation and openness assessment tasks. We 599

find GRIT models to demonstrate lower mean error 600

disparity for each metric i.e., making less error as 601

a function of the age groups. 602
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Task \Model HaRT GRITage GRITope

Age (r) 0.215 0.181 0.185
OPE (rdis) 0.075 0.090 0.072

Table 5: Mean error disparity for age over five age
buckets. Bold indicates best in column (lower is better).

6 Related Work603

People use language to communicate and convey604

meaning more than mere words. Much work in605

human-centered NLP has focused on identifying606

and evaluting including human context in our mod-607

els. Initial studies experimented with grouping peo-608

ple by socio-demographic factors like age or gender609

(Volkova et al., 2013; Hovy, 2015) and geographi-610

cal region (Bamman et al., 2014; Garimella et al.,611

2017) to capture the variation in language usage612

and meaning among different groups. These works613

improved sentiment analysis, polarity classification,614

and topic detection. Other researchers explored615

human factors like social networks (Huang et al.,616

2014; Radfar et al., 2020), occupation (Preoţiuc-617

Pietro et al., 2015), personality (Schwartz et al.,618

2013; Lynn et al., 2017), and social media attributes619

(Bamman and Smith, 2015; Lynn et al., 2019) to620

improve toxic language detection, sarcasm detec-621

tion, or stance detection.622

Some studies go beyond explicit groups and623

learning individual representations latently or via624

historical language. Jaech and Ostendorf (2018)625

learned latent user embeddings for search query626

completion. Delasalles et al. (2019) conditioned627

a language model on a recurrently updated latent628

author representation. Welch et al. (2020) motivate629

personalized word embeddings by jointly learning630

a latent representation for each user and generic631

word representations. Hofmann et al. (2021) com-632

bined learned latent representations of the social633

space with time to produce dynamic contextualized634

word embeddings. (King and Cook, 2020) created635

personalized models using the authors’ historical636

text. Lynn et al. (2020) attend to user’s past mes-637

sages to better predict user personality.638

Research on adapting pre-trained language mod-639

els to socio-demographic factors has been mini-640

mal. Guda et al. (2021) propose EMPATH-BERT,641

a demographically-aware model to predict empathy642

and distress better. Lauscher et al. (2022) probe643

PLMs to understand if their representations encode644

socio-demographic information. Hung et al. (2023)645

generalize the task-specific EMPATH-BERT to cre-646

ate a PLM injected with demographic group infor- 647

mation using a dynamic multi-task learning setup. 648

We adapt their mono-lingual BERT-based model to 649

age with out-of-domain data for our comparison. 650

Several studies (Li et al., 2021; Mireshghallah 651

et al., 2022; Zhong et al., 2021) have explored 652

adapting pre-trained Transformer-based language 653

models to individual human contexts for down- 654

stream tasks. Li et al. (2021) find benefits in adding 655

user IDs to the input to generate explanations for 656

recommender systems. Zhong et al. (2021) learned 657

a latent user-specific vector prepended to the input 658

embeddings to classify sentiment better, similar to 659

Mireshghallah et al. (2022), who use static user 660

text identifiers instead. Matero et al. (2021) per- 661

form masked language modeling on users’ past 662

messages with message-level attention, producing 663

efficient document representations for stance detec- 664

tion. Soni et al. (2022) propose human language 665

modeling, where language is modeled conditioned 666

on a dynamic user state derived from temporally 667

ordered past user utterances. We use their state- 668

of-the-art model HaRT in our comparison and as a 669

base for our pre-trained model with individual and 670

group human context. 671

7 Conclusion 672

NLP benefits from modeling group traits like so- 673

ciodemographic factors and individual users in 674

terms of latent human context. However, hu- 675

mans exhibit varying degrees of group and in- 676

dividual characteristics. Through a comparative 677

study of five user- and document-level tasks, we 678

uncover how using individual traits and group char- 679

acteristics in PLMs optimizes user-level regres- 680

sion tasks like age estimation and openness as- 681

sessment. Meanwhile, individual human context 682

training alone appears to bolster single-document 683

annotated classification tasks like stance and topic 684

detection. Despite our progress, our research re- 685

veals there are still considerable strides to be made 686

in modeling human factors in language models. 687

Our findings provide valuable insight into includ- 688

ing human context in pre-trained language models 689

to suit specific applications. 690

Limitations 691

The purpose of our study is to compare the impacts 692

of modeling sociodemographic group attributes and 693

modeling individual user traits, and we use rele- 694

vant models to represent each of the approaches. 695

There are likely to be other ways to model these 696
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approaches and the models we use are only one697

of the ways. Additionally, these models in them-698

selves have limitations like the blocks mechanism699

to process all the text from author induces compute700

requirements resulting in a capping of the number701

of blocks used for training. While it is also unclear702

how many blocks are sufficient to capture the hu-703

man context, and if it is helpful to use the earliest704

language or the most recently used language in the705

capped number of blocks.706

Secondly, some of the datasets (TrustPilot) used do707

not have appropriate user identification or histori-708

cal language to create an individual human context.709

Lastly, as noted earlier, models and data that touch710

upon sensitive user information require an ex-711

tremely responsible usage and limit researchers712

to make them publicly available.713

Ethical Considerations714

Models that incorporate sociodemographic infor-715

mation need to be considered with special scrutiny.716

On the one hand, they have the potential to pro-717

duce fairer and more inclusive results, because they718

can account for human language variation. On719

the other hand, they risk revealing identifying or720

sensitive information, which can lead to profiling721

and stereotyping. These may present opportuni-722

ties for unintended malicious exploitations. For723

example, models that improve demographic groups724

prediction or psychological assessments could be725

used for targeting content for individuals without726

their awareness or consent. Such models may also727

risk release of private information of the research728

participant if trained on private data unchecked729

for exposing identifying information. For this rea-730

son, we take a conservative release strategy. While731

we support open research and reproducibility, data732

and privacy protection take precedence. Thus, we733

will only be releasing the code for our compari-734

son study and the data that does not contain sensi-735

tive information i.e., stance detection datasets and736

TrustPilot datasets for topic detection and attribute737

classification. This is also in accordance with the738

DUA we have received from the authors of the pa-739

pers/models that we employ in our work.740

Our comparison study aims to guide and further741

speed the growing body of human-centered AI re-742

search. The models under comparison aim to en-743

able applicability in the interdisciplinary studies744

of the human condition leading to helpful tools745

for psychological health. However, at this point746

these models are not intended for use in practice747

and should be evaluated for failures. All user-level 748

tasks presented here were reviewed and approved 749

or exempted by an academic institutional review 750

board (IRB). Our studies are limited to US-English 751

due to comparability reasons. However, similar 752

effects are likely to hold for other languages, and 753

should be evaluated in future work. 754
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Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.627 0.644 0.618
18-21 560 0.557 0.608 0.592
21-30 563 0.715 0.741 0.738
30-45 249 0.594 0.669 0.667
45+ 68 0.567 0.546 0.599

Table 6: Disattenuated pearson r for openness over five
age buckets using different types of human contexts for
error analysis. Bold indicates best in row.

Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 1113 4.07 2.52 2.82
18-21 1387 6.52 4.00 3.89
21-30 1557 17.82 12.64 13.11
30-45 695 48.59 39.79 40.43
45+ 248 114.92 121.66 134.72

Table 7: Mean squared error for age over five age
buckets using different types of human contexts for
error analysis. Bold indicates best in row (lower error is
better).
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A Appendix 986

A.1 Experimental Settings 987

We closely follow the experimental settings from 988

Soni et al. (2022) and similarly use Optuna frame- 989

work (Akiba et al., 2019) for hyperparameter 990

search. We search for learning rates between 5e-6 991

and 5e-4, and between 1e-7 and 1e-5 for different 992

tasks. We will make our best found hyperparameter 993

values publicly available with our code and results 994

in the github repository. All experiments are run on 995

NVIDIA RTX A6000 GPUs of 48GB. Pre-training 996

takes approx 14 hours for 1 epoch and fine-tuning 997

takes approx 1-4 hours depending on the task. 998
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Age
bucket

#Users HaRT
(Ind)

GRITage

(Ind+Grp)
GRITope

(Ind+Grp)
<18 503 0.423 0.410 0.429
18-21 560 0.496 0.487 0.506
21-30 563 0.429 0.380 0.381
30-45 249 0.578 0.489 0.489
45+ 68 0.584 0.501 0.467

Table 8: Mean squared error for openness over five
age buckets using different types of human contexts for
error analysis. Bold indicates best in row (lower error is
better).
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