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Abstract
Federated Learning (FL) enables collaborative
training on decentralized data. Differential Pri-
vacy (DP) is crucial for FL, but current private
methods often rely on unrealistic assumptions
(e.g., bounded gradients or heterogeneity), hin-
dering practical application. Existing works that
relax these assumptions typically neglect prac-
tical FL mainstays like partial client participa-
tion or multiple local updates. We introduce
Fed-α-NormEC, the first differentially private FL
framework providing provable convergence and
DP guarantees under standard assumptions while
fully supporting these practical elements. Fed-α-
NormEC integrates local updates (full and incre-
mental gradient steps), separate server and client
stepsizes, and, crucially, partial client participa-
tion—essential for real-world deployment and vi-
tal for privacy amplification. Our theoretical guar-
antees are corroborated by experiments on private
deep learning tasks.

1. Introduction
Federated Learning (FL) [44; 33] has emerged as a widely
adopted framework for collaboratively training machine
learning models across multiple devices or organizations
without centralized data collection. Despite its advantages,
FL poses several unique challenges. One major issue is the
communication bottleneck caused by unreliable and com-
paratively slow network connections between the server and
the clients [6]. Another significant challenge is partial client
participation, which arises from the practical infeasibility of
involving all clients in every communication round. This
is due to both the large scale of the client population and
the intermittent availability of individual clients [8]. Fur-
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thermore, FL systems must address data heterogeneity, as
local datasets across clients are typically diverse and not
identically distributed [26; 50]. The increasing interest in
FL has led to the development of specialized distributed op-
timization algorithms designed to improve communication
efficiency, accommodate partial client participation, and
address data heterogeneity [63; 25].

Although FL methods avoid the exchange of raw data by
keeping it decentralized, this design alone does not guaran-
tee complete privacy. Despite preventing direct data sharing,
FL remains vulnerable to a range of privacy threats. Prior
studies [4; 47] have demonstrated that sensitive information
can be inferred from the shared model parameters, either
by an untrusted central server or by adversaries performing
inference attacks.

To ensure privacy and mitigate emerging risks, Differential
Privacy (DP) [13] has become a standard framework for
providing formal privacy guarantees in machine learning.
It offers a principled way to limit the influence of any in-
dividual data on the model, thereby reducing the risk of
information leakage during training and inference. Differ-
ential Privacy mechanisms are integrated into FL methods
to provide formal privacy guarantees while supporting ef-
fective training in decentralized settings.

To mitigate the risk of information leakage, FL can be ex-
tended to ensure theoretical privacy guarantees via differen-
tial privacy (DP) [13]. DP is often enforced by a clipping
operator that bounds gradient sensitivity, with DP noise
added to the updates before communication. Gradient clip-
ping assists with Differential Privacy, as in Differentially
Private Stochastic Gradient Descent (DP-SGD) (Abadi et
al., 2016), but it also introduces bias that can even prevent
convergence [9; 32]. For instance, FedAvg with model
clipping does not converge to the global optimal solution
for solving a convex quadratic problem [67].

Convergence guarantees for distributed DP methods with
clipping are often established under restrictive assumptions,
such as bounded gradient norms [66; 37; 39] and/or bounded
heterogeneity [51; 35], which may not hold in realistic,
highly heterogeneous FL settings. These assumptions effec-
tively downplay the impact of clipping bias, and to the best
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of our knowledge, convergence guarantees remain unclear
when this bias is not explicitly addressed.

To eliminate the bias caused by the clipping operator
and enable convergence, Error Compensation (EC) [17],
also known as the Error Feedback (EF, EF21) mecha-
nism [61; 54], has been applied to methods that use gradient
clipping [29]. This technique works by keeping track of the
error and adding it back in future updates. While it helps
ensure convergence of methods with clipping in the non-
private setting, it does not provide convergence guarantees
when DP noise is added in the private setting.

Recent works—such as Shulgin et al. [60] and Islamov et al.
[24]—proposed the first methods that successfully combine
sharp convergence rates with differential privacy guarantees.
The former employs EF alongside local momentum, while
the latter uses smoothed normalization techniques [65; 5],
which serve as alternatives to gradient clipping for control-
ling sensitivity. Notably, smoothed normalization has been
shown to be more robust to parameter choices compared to
standard clipping with a tuned threshold.

Both methods leverage the EF mechanism to reduce bias and
achieve strong convergence and privacy guarantees under
standard assumptions, without requiring bounded gradients
or restricted data heterogeneity. However, they are limited
to the distributed optimization setting and do not support
key Federated Learning features such as partial client partic-
ipation or multiple local training steps – components that are
essential in real-world FL applications. Overall, a formal
theoretical analysis of private FL algorithms that include
practical elements like partial participation and local train-
ing under standard assumptions remains largely unexplored.

Contributions. We describe our contributions below.

• A practical method private Federated Learning. We
introduce Fed-α-NormEC —a federated learning algorithm
that integrates smoothed normalization and the error feed-
back mechanism EF21 into clients’ local updates. Unlike
previous approaches, Fed-α-NormEC enables partial client
participation and local training through multiple gradient-
type steps. It also leverages separate server and local step
sizes, offering flexibility in managing the effects of local
updates and global aggregation. To reduce the need for full
gradient computations, the algorithm incorporates a cyclic
incremental gradient method.

• Convergence guarantees for non-convex, smooth prob-
lems under standard assumptions We establish the con-
vergence of Fed-α-NormEC for minimizing non-convex,
smooth objectives without relying on commonly imposed
but restrictive assumptions such as bounded gradients or
bounded heterogeneity. Our analysis encompasses both
local gradient descent and incremental gradient updates.

Notably, in the special case of full client participation with
a single local gradient step, we recover the convergence
guarantees of α-NormEC. For the more practical scenario
involving multiple local steps, we provide— to the best of
our knowledge—the first convergence analysis of differen-
tially private federated learning methods incorporating local
training. Furthermore, by introducing a server-side step size,
we are able to disentangle the effects of data heterogeneity
and server aggregation, leading to a clearer characterization
of their individual contributions to the optimization error.

• Differential privacy guarantees with amplification via
partial participation. We provide a privacy analysis of the
proposed method for both single and multiple local update
steps. Specifically, we consider an independent client sam-
pling scheme, where each client participates in each round
with probability p, independently of others. Our analysis
shows that this partial participation setup enables significant
reduction in differential privacy (DP) noise variance via
privacy amplification through subsampling.

• Empirical validations of Fed-α-NormEC on image clas-
sification. We demonstrate the effectiveness of Fed-α-
NormEC by applying it to the image classification task on
the CIFAR-10 dataset using the ResNet20 architecture. Ex-
periments highlight the impact of key algorithm parameters
and client participation levels, corroborating our theoretical
insights on convergence and privacy trade-offs. Notably,
we show that partial participation, by leveraging privacy
amplification, can achieve target accuracy with significantly
improved communication efficiency compared to full partic-
ipation, showcasing Fed-α-NormEC’s utility for real-world
private deep learning.

2. Related Works
Clipping. Two popular clipping operators for FL algo-
rithms are per-sample clipping and per-update clipping. Per-
sample clipping [38] bounds the norm of the local gradient
being used to update the local model parameters on each
client, and ensures example-level privacy [1]. Per-update
clipping [16] limits the bound of the local model update,
and preserves user-level privacy [67; 16], which provides
stronger privacy guarantee than example-level privacy. The
convergence of FL algorithms, such as FedAvg [44] and
SCAFFOLD [26], with per-sample and/or per-update clip-
ping was analyzed by [67; 51; 35; 38; 64]. In this paper,
we leverage per-update smoothed normalization, introduced
by Bu et al. [5] as an alternative to clipping, to design FL
algorithms that accommodate local training and differential
privacy.

Federated learning with clipping and privacy. A simple
yet popular FL algorithm, FedAvg [44], has been adapted to
provide differential privacy (DP) by clipping model updates
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and injecting random noise [45; 16; 62]. These DP-FedAvg
algorithms were outperformed by DP-SCAFFOLD [51],
a DP version of SCAFFOLD [26]. However, these ex-
isting results require restrictive assumptions that do not
hold in practice, especially in deep neural network train-
ing, such as uniformly bounded stochastic noise [38; 11],
bounded gradients [67; 37; 39; 66] (which effectively ig-
nores the impact of clipping bias), and/or bounded hetero-
geneity [51; 35]. To the best of our knowledge, there has
been a recent work by Das et al. [12] that provides con-
vergence guarantees for DP-FedAvg without these restric-
tive assumptions, but their results are limited to convex,
smooth problems and require a stepsize to depend on an in-
accessible constant ∆i := fi(x

⋆)−minx∈Rd fi(x), where
x⋆ = argminx∈Rd f(x). In this paper, we provide conver-
gence guarantees for private FL algorithms with smoothed
normalization and error feedback. In particular, our guar-
antees do not rely on the restrictive assumptions commonly
found in prior work, and our theoretical stepsizes can be
implemented in practice.

Communcation efficiency. The most common and natu-
ral way to reduce communication is by skipping rounds
through the use of local updates, which has become a stan-
dard approach in federated learning. This strategy has been
extensively studied [28; 40; 30; 18; 52]

Another common biased estimator, besides clipping and
normalization, is compression, which improves commu-
nication efficiency by reducing message size. The con-
vergence of FL algorithms with compression—such as Fe-
dAvg [20], local gradient descent [27; 59], and fixed-point
methods [10]—has been studied, but typically under the
assumption of unbiased compression. While biased com-
pression of local updates has been explored [19], it often
requires integration with other techniques for effective gra-
dient tracking. To our knowledge, no FL method to date
uses biased compression to both address data heterogeneity
and enhance communication efficiency.

Server and local stepsizes. The use of separate server and
local stepsizes has been shown to be crucial in federated
learning [7; 53; 42]. This separation provides greater flexi-
bility in optimization. The local stepsize helps mitigate the
impact of data heterogeneity and controls the variance from
local updates [43], while the global (server-side) stepsize
manages the aggregation process and stabilizes extrapola-
tion during model updates [36].

Random reshuffling. Random reshuffling, a without-
replacement sampling strategy, is widely used in SGD and
often outperforms sampling with replacement. Its conver-
gence properties have been extensively studied [48; 21; 57;
65], including in FL settings [49; 55; 41]. Other without-
replacement strategies include Shuffle-Once [56] and In-
cremental Gradient methods [3; 31]. In this work, Fed-α-

NormEC can be extended to support Incremental Gradient
updates, partial participation, and differential privacy with
provable convergence guarantees.

Error feedback. Error feedback, also known as error com-
pensation, has proven effective in enhancing the conver-
gence of distributed gradient algorithms with compressed
communication, leading to faster convergence and improved
solution accuracy. Popular error feedback mechanisms
include EF14 [58], EF21 [54], EF21-SGDM [14], ECon-
trol [15], and EFSkip [2]. Beyond compression, error feed-
back has been adapted by substituting compression with
other operators. For instance, EF21 has inspired the develop-
ment of Clip21 [29] (using clipping instead of compression)
and α-NormEC [60] (employing smoothed normalization).
In this paper, we contribute by adapting α-NormEC to the
FL setting, resulting in Fed-α-NormEC.

3. Preliminaries
Federated optimization problem. Consider an FL setting
with the server being connected with M clients over the
network. Each client i ∈ [1,M ] has a private dataset. The
objective is to determine the vector of model parameters
x ∈ Rd that solves the following optimization problem:

min
x∈Rd

f(x) =
1

M

M∑
i=1

fi(x), fi(x) :=
1

N

N∑
j=1

fi,j(x). (1)

Here, fi,j(x) is the loss of the model parameterized by x
on training data j ∈ [1, N ] of client i ∈ [1,M ]. Also, we
assume that the objective functions f , fi, and fi,j satisfy
the following conditions.

Assumption 1. Consider Problem (1). Assume that each
individual function fi,j(x) is L-smooth and bounded below
by f inf

i,j > −∞; that each local function fi(x) is bounded
below by f inf

i > −∞; and that the global objective f(x) is
bounded below by f inf > −∞.

DP-FedAvg. The simplest FL algorithm for solving Prob-
lem (1) is DP-FedAvg [46]. The algorithm contains two
steps: local model updating on each client and model ag-
gregation on the server. The server updates the next global
model vector xk+1 via:

xk+1 = xk − η

B

∑
i∈Sk

Ψ(xk − Ti(xk)) + zki

 ,

where Sk is the subset of [1,M ] with size B ≤ M , Ψ(·)
is a bounding operation such as clipping or normalization,
Ti(xk) is the local update performed by client i based on
the current global model xk and its private data associated
with the local function fi(·), and zki ∈ Rd is the DP noise.
Since Ψ(·) constrains the magnitude of the model update
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Ti(xk)−xk, we can calibrate the variance of the DP noise zki
proportionally to this bound to achieve the desired privacy
guarantees. Moreover, the fact that only a subset of B
clients communicate with the server in each round leads to
a significant reduction in the required noise variance due to
the privacy amplification effect of subsampling.

Bias from Clipping or Normalization. Clipping and nor-
malization inherently introduce bias, causing DP-FedAvg
to generally not converge, even without the addition of
DP noise. For instance, Zhang et al. [67] demonstrates
that FedAvg with model clipping fails to converge to the
global optimum when solving a convex quadratic prob-
lem. Existing analyses of DP-FedAvg often circumvent
the impact of this clipping bias by assuming bounded gra-
dients [67; 37; 39; 66]. Acknowledging this limitation, a
recent work by [12] attempts to analyze the convergence
of DP-FedAvg without relying on the bounded gradient
assumption. However, their findings are restricted to con-
vex and smooth problems and necessitate a step size that
depends on the inaccessible constant.

4. Fed-α-NormEC
Now, we describe Fed-α-NormEC for solving federated op-
timization under privacy and communication constraints.
The method operates in communication rounds indexed by
k = 0, 1, . . . ,K. At each round, the server broadcasts the
current global model xk to a subset of participating clients.
Each selected client then performs a local update based
on the received model using a designated operator Ti(xk),
which may involve gradient descent or other iterative re-
finement procedures. In addition, each client computes its
local memory vector vki , which captures information from
previous updates and enables the use of error feedback tech-
niques. This vector is then used to construct the local update
that the client sends back to the server. The memory vector
is updated according to the following rule:

vk+1
i = vki + βNormα

(
xt−Ti(x

k)
γ − vki

)
,

where β > 0 controls the update of error compensation
and γ > 0 is a local stepsize associated with local update
operator Ti(x). Note that smoothed normalization operator
is defined as Normα(g) :=

1
α+∥g∥g, for some α ≥ 0. This

operator ensures bounded sensitivity of the client update as
∥Normα(g)∥ ≤ 1 for any g ∈ R.
Each client sends its update ∆̂k

i to the server
with a fixed probability p, independently across
clients. The update ∆̂k

i from the ith client is de-

fined as ∆̂k
i := qki Normα

(
xt−Ti(x

k)
γ − vki

)
in

the case of non-private training, or as ∆̂k
i :=

qki

(
Normα

(
xt−Ti(x

k)
γ − vki

)
+ zki

)
in the private

setting. Here, qki is equal to 1/p with probability p, and 0

Algorithm 1 (DP-)Fed-α-NormEC

1: Input: Tuning parameters γ > 0, β > 0, and
η ∈ (0, 1); normalization parameter α > 0; initial-
ized vectors x0, v0i ∈ Rd for i ∈ [1,M ] and v̂0 =
1
M

∑M
i=1 v

0
i ; local fixed-point operators Ti(·); probabil-

ity of transmitting the client’s local vector to the server
p ∈ [0, 1]; Gaussian noise with zero mean and σ2

DP-
variance zki ∈ Rd.

2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . ,M in parallel do
4: Compute local updating Ti(xk)

5: Compute ∆k
i = Normα

(
xk−Ti(x

k)
γ − vki

)
6: Update vk+1

i = vki + β∆k
i

7: Choose qki = 1/p with prob. p and 0 otherwise
8: Non-private setting: Transmit ∆̂k

i = qki ∆
k
i

9: Private setting: Transmit ∆̂k
i = qki (∆

k
i + zki )

10: end for
11: Server computes v̂k+1 = v̂k + β

M

∑M
i=1 ∆̂

k
i

12: Server updates xk+1 = xk − η
∥v̂k+1∥

(
v̂k+1

)
13: end for
14: Output: xK+1

otherwise, modeling partial client participation. The noise
vector zki , to ensure differential privacy, is sampled from a
Gaussian distribution with zero mean and variance σ2

DP.

Next, the server aggregates the normalized local update
vectors received from the clients and computes the global
memory vector v̂k and the server updates the global model
xk+1 using the normalized step as follows:

v̂k+1 = v̂k + β
M

∑M
i=1 ∆̂

k
i , xk+1 = xk − η

∥v̂k+1∥ v̂
k+1,

where η > 0 is the server-side stepsize. The full description
is presented in Algorithm 1.

Now, we provide the convergence result for Fed-α-NormEC
that incorporates multiple local gradient descent (GD) steps
and partial participation in a differentially private setting.
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Theorem 1 (Fed-α-NormEC with local GD steps). Con-
sider Fed-α-NormEC for solving Problem (1) where As-
sumption 1 holds. Let Ti(xk) = xk − γ

T

∑T−1
j=0 ∇fi(x

k,j
i ),

where the sequence {xk,j
i } is generated by xk,j+1

i =

xk,j
i − γ

T ∇fi(x
k,j
i ), for j = 0, 1, . . . , T − 1, given that

xk,0
i = xk. Furthermore, let β, α > 0 be chosen such

that β
α+R < 1 with R = maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥. If

ηγ ≤ 1
K+1

∆inf

4L
√
2L

, 0 < η ≤ γ
2

βR
α+R , and 0 < γ ≤ 1

2L , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3
K+1

f(x0)−f inf

η + 2R

+ 2
√

β2B
M (K + 1) + γ · IT ̸=1

[
8L

√
2L

√
∆inf

]
+ η · L

2 ,

for B = 2 (p−1)2

p +2
σ2
DP

p , ∆inf = f inf − 1
M

∑M
i=1 f

inf
i > 0.

From Theorem 1, Fed-α-NormEC with multiple local GD
steps achieves sub-linear convergence, with additive con-
stants arising from smoothed normalization R, partial par-
ticipation and private noise B = 2 (p−1)2

p +
2σ2

DP

p , and data
heterogeneity ∆inf . Our result applies under partial par-
ticipation, unlike Shulgin et al. [60], which is limited to
full participation. Moreover, it accommodates local steps
without requiring bounded heterogeneity assumptions, un-
like Noble et al. [51]; Li et al. [35].

Fed-α-NormEC with One Local Step. From Theorem 1,
we analyze Fed-α-NormEC with a single local step, i.e. with
Ti(x) = x − γ∇fi(x), for i ∈ [1,M ], to investigate the
impact of smoothed normalization, partial participation, and
privacy noise on the convergence.

Full participation and non-private setting. In a full partic-
ipation and non-private setting, Fed-α-NormEC achieves
the convergence according to Theorem 1 with T =
1, p = 1, and σDP = 0, thus yielding two con-
stant terms, IT ̸=1

[
8L

√
2L

√
∆inf

]
and B, vanish. There-

fore, the convergence bound consists of only three terms:
3

K+1
f(x0)−f inf

η +2R+ ηL
2 . Under this scenario, the conver-

gence bound of Fed-α-NormEC recovers that of α-NormEC
as its special case. Similarly to Corollary 1 of Shulgin
et al. [60] for α-NormEC, the convergence rate of Fed-
α-NormEC with properly tuned hyperparameters η, β,R
almost matches that of standard gradient descent at the
O
(

1√
K+1

)
in the gradient norm.

Partial participation and private setting. In a partial
participation and private setting, Fed-α-NormEC attains the
convergence according to Theorem 1 with T = 1. If σDP

is a constant, then proper choices of hyperparameters η, β
must be fine-tuned to ensure the convergence of Fed-α-
NormEC, as shown below:

Corollary 1. Consider Fed-α-NormEC for solving Prob-
lem (1) under the same setting as Theorem 1. Let T = 1
and N = 0 (one local GD step). If v0i ∈ Rd is chosen such

that γ = 1
2L , maxi∈[1,M ]

∥∥∥x0−Ti(x
0)

γ − v0i

∥∥∥ = D1

(K+1)1/6

with D1 > 0, and β = D2

(K+1)2/3
with D2 > 0, and

η ≤ LD1D2

2(α+D1)(K+1)5/6
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ A1

(K+1)1/6
+ A2

(K+1)5/6
,

where A1 = f(x0)−f inf

η0
+2D1+2D2

√
2p(1−1/p)2

M +
2σ2

DP

p ,

A2 = Lη0

2 , and η0 = LD1D2

2(α+D1)
.

Corollary 1 establishes the convergence of Fed-α-NormEC
in a partial participation and private setting, where the
variance σDP is a constant. In contrast to α-NormEC,
the convergence bound for Fed-α-NormEC contains an ex-
tra term due to client sampling from partial participation
B = 2 (p−1)2

p + 2σ2
DP/p. Reducing p decreases bandwidth

of participating clients to communicate at each round at the
price of a larger error term B. In practice, p is not typically
fixed but varying according to the availability of clients at
each round. Furthermore, if we assume full client partici-
pationg, i.e. p = 1, then Fed-α-NormEC achieves the same
O
(

1
(K+1)1/6

)
convergence rate as α-NormEC in the full

participation and private setting, where σDP is a constant.

DP utility bound with privacy amplification. Fed-α-
NormEC satisfies (ϵ, δ)-DP and achieves the utility guar-
antee by setting the standard deviation of the DP noise
according to Abadi et al. [1]. We set σDP = c ·
p
√
(K + 1) log(1/δ)ϵ−1 for some constant c > 0 and

0 < p ≤ 1. Notably, σDP exhibits a reduced dependency
on p thanks to the amplification effect of subsampling in the
local privacy setting. The utility guarantee is given below:

Corollary 2. Consider Fed-α-NormEC for solving Prob-
lem (1) under the same setting as Theorem 1. Let T = 1
(one local GD step), let σDP = cp

√
(K + 1) log(1/δ)/ϵ

with c > 0, and let p = B̂
M for B̂ ∈ [1,M ]. If β = β̂

K+1

with β̂ =
√

3(f(x0)−f inf )
γ

4

√
M
B2

, γ < ∆inf (α+R)√
2Lβ̂R

α = R =

O
(

4
√
d

√
f(x0)−f inf

√
γ

4

√
B2

M

)
with B2 = 2c2 B̂

M
log(1/δ)

ϵ2 , and

η = 1
K+1

γ
2

β̂R
α+R , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O
(
∆

4

√
dB̂
M2

log(1/δ)
ϵ2

)
,

where ∆ = max(α, 2)
√
L
√

f(x0)− f inf .

Corollary 2 establishes the utility bound of Fed-α-NormEC

5



First Provable Guarantees for Practical Private FL: Beyond Restrictive Assumptions

in the partial participation and private setting. By setting
p = B̂/M , where B̂ ∈ [1,M ] denotes the number of
clients sampled at each round, Fed-α-NormEC achieves

a utility bound of O
(
∆ 4

√
d · B

M2 · log(1/δ)
ϵ2

)
, which im-

proves upon the O
(
∆ 4

√
d · 1

M · log(1/δ)
ϵ2

)
utility bound of

α-NormEC. This improvement arises due to privacy ampli-
fication via subsampling induced by partial participation.
Finally, when p = 1 (i.e., under full participation), Fed-α-
NormEC recovers the same utility bound as α-NormEC.

Extension to Fed-α-NormEC with multiple local steps. We
can extend our findings for Fed-α-NormEC to incorporate
both local gradient descent (GD) steps and local incremental
gradient (IG) method steps. Detailed information is avail-
able in Appendix C.

5. Experiments
We evaluate the performance of Fed-α-NormEC on solving
a non-convex optimization task involving deep neural net-
work training. Following the experimental setup from prior
work [60] common for DP training, we use the CIFAR-10
dataset [34] and the ResNet20 architecture [22]. Detailed
settings and additional results are provided in the Appendix.
We analyze the performance of Fed-α-NormEC in the dif-
ferentially private setting by setting the variance of added
noise at pβ

√
K log(1/δ)ϵ−1 for ϵ = 8, δ = 10−5 and vary

β to simulate different privacy levels. The step size γ is
tuned for every combination of parameters p and β. The
behavior of test accuracy is shown in Figures 1 and 2, with
the corresponding training loss depicted in Figure 5.

The convergence behavior of Fed-α-NormEC as a function
of communication rounds is depicted in Figure 1. The plots
illustrate performance for Full (p = 1.0, solid lines) and
Partial client participation (p = 0.25, dotted lines) across
three settings for the hyperparameter β. The choice of β
markedly influences performance. Empirically, β = 0.01
(orange lines) consistently delivers the best results, achiev-
ing the lowest training loss and highest test accuracy for
both full and partial participation. For instance, with full
participation, β = 0.01 leads to approximately 70% test
accuracy, while β = 0.1 (green lines) results in the poorest
performance (around 55-60% accuracy). Our theory (Theo-
rem 1) supports this sensitivity, as β influences both error
feedback and the DP noise term (since σDP ∝ pβ). The
convergence bound includes a term

√
β2B(K + 1)/M , im-

plying an optimal β balances error compensation and noise.

Per communication round, Full participation (p = 1.0) out-
performs Partial participation (p = 0.25) for a fixed β. This
is consistent with Theorem 1: the client sampling variance
component of B ((p− 1)2/p) is zero for p = 1 but positive
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Figure 1: Convergence of Fed-α-NormEC under Full [solid]
and Partial participation [dotted] for p = 0.25.
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Figure 2: Fed-α-NormEC under varying participation rates;
x-axis shows total client-to-server transmissions.

for p = 0.25. Although the DP noise contribution to B
(σ2

DP/p ∝ pβ2) is smaller for p = 0.25, the client sampling
variance appears more dominant in round-wise performance.
These results underscore the trade-offs in selecting β and the
impact of client participation on round-wise performance.

Figure 2 further analyzes Fed-α-NormEC’s performance
against the total number of client-server communications
(i.e., k × p×M ). This visualization offers direct insights
into communication efficiency. Notably, configurations with
smaller client participation probabilities (p = 0.25 and
p = 0.5) achieve target performance levels with signifi-
cantly fewer total client-server transmissions compared to
full participation (p = 1.0). For instance, to reach approxi-
mately 65% test accuracy, p = 0.25 (blue circles) requires
about 1200 total communications, whereas p = 1.0 (green
line) needs nearly 4500.
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A. Conclusion
This paper presented Fed-α-NormEC, the first differentially private federated learning algorithm to offer provable convergence
for nonconvex, smooth problems without resorting to unrealistic assumptions such as bounded gradients or heterogeneity.
Fed-α-NormEC uniquely combines smoothed normalization and error compensation with essential practical FL components:
local updates, distinct server/client learning rates, partial client participation (vital for privacy amplification), and DP noise.
Our contributions pave the way for more reliable and deployable private FL systems. Finally, we verify the effectiveness of
Fed-α-NormEC by experiments on private deep neural network training.
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B. Notations
We use [a, b] for the set {a, a+ 1, . . . , b} for integers a, b such that a ≤ b, E [u] for the expectation of a random variable u,
and f(x) = O(g(x)) if f(x) ≤ Ag(x) for some A > 0 for functions f, g : Rd → R. Finally, for vectors x, y ∈ Rd, ⟨x, y⟩
denotes their inner product, and ∥x∥ denotes the Euclidean norm of x.

C. Fed-α-NormEC with Multiple Local Steps
In this section, we present the convergence of Fed-α-NormEC with multiple local steps in a partial participation and private
setting.

Local GD steps. We obtain the convergence of Fed-α-NormEC with local GD steps in Theorem 1. The convergence
bound comprises an error term due to data heterogeneity IT ̸=1

[
8L

√
2L ·

√
∆inf

]
where ∆inf = f inf − 1

M

∑M
i=1 f

inf
i . Our

theorem does not assume bounded heterogeneity that is imposed by Noble et al. [51]; Li et al. [35]. Notably, if all clients
share the same infimum, i.e., f inf

1 = f inf
2 = . . . = f inf

M , this data heterogeneity error term vanishes. Furthermore, this
error term is proportional to the local step size γ, due to the presence of a separate server update and distinct server- and
client-side step sizes. These theoretical results highlight that the less heterogeneous the client data is, the more effective
Fed-α-NormEC becomes.

Local IG steps. To avoid full gradient computations in the clients, we also introduce a variant of Fed-α-NormEC that
uses cyclic incremental gradient (IG) steps. In particular, for each client, local updates are performed using gradient
steps of the individual loss functions fi,j for each client, applied in a cyclic manner over the local dataset. The local
fixed-point operators Ti(·) are defined as Ti(xk) = xk − γ · 1

N

∑N−1
j=0 ∇fi,j(x

k,j
i ). Here, we focus on the deterministic

version of the algorithm, avoiding high-probability analyses that are typically required for methods involving clipping or
normalization. Generalization to random reshuffling and arbitrary numbers of epochs is left for future work. Further note

that using cyclic incremental gradient updates introduces an additional error term of γ · 4L
√
2L ·

√
1
M

∑M
i=1 ∆

inf
i , where

∆inf
i = f inf − 1

N

∑N
j=1 f

inf
i,j . This error vanishes if all functions fi,j share the same infimum f inf

i , in which case we recover
the previous result for the local GD setting.

A more detailed discussion of convergence and privacy for the method with local steps, along with formal statements of the
theorems, is presented in the supplementary materials.

D. Additional experiments and details
Additional details. All methods are run using a constant learning rate, without auxiliary techniques such as learning rate
schedules, warm-up phases, or weight decay. The CIFAR-10 dataset is partitioned into 90% for training and 10% for testing.
Training samples are randomly shuffled and evenly distributed across n = 20 workers, each using a local batch size of 32.
We use a fixed random seed (42) to ensure reproducibility. Our implementation builds upon the publicly available GitHub
repository of Idelbayev [23], and all experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU.

We use a fixed smoothed normalization parameter α = 0.01, as it was shown to have an insignificant effect on conver-
gence [60]. Server normalization (Line 12 in Algorithm 1) is not used, as omitting it empirically improves final perfor-
mance [60]. All methods are evaluated across the following hyperparameter combinations: step size γ ∈ {0.001, 0.01, 0.1}
and sensitivity threshold β ∈ {0.001, 0.01, 0.1}. We analyze the performance of Fed-α-NormEC in the differentially private
setting by training the model for 300 communication rounds.

D.1. Fed-α-NormEC vs FedAvg

We compare the performance of our Algorithm 1 (Fed-α-NormEC) with the standard FedAvg approach, as defined in
Section 3:

xk+1 = xk − η

B

∑
i∈Sk

Ψ(xk − Ti(xk)) + zki

 ,

where Ψ is the smoothed normalization operator, Ti(x) = x− γ∇fi(x) is the local gradient mapping, η = γ, and p = 1 in
the Differentially Private (DP) setting. We follow the same experimental setup as described in Section 5.
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Figure 3 presents the convergence of training loss and test accuracy for both methods across different values of the sensitivity
parameter β. The results demonstrate that the Error Compensation (EC) mechanism in Fed-α-NormEC consistently
accelerates convergence and improves test accuracy compared to FedAvg, across all privacy levels (i.e., all tested values of
β). Notably, Fed-α-NormEC achieves its best performance for β = 0.01, which aligns with the findings in Section 5.
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Figure 3: Error Compensation (EC) provides significant benefits across various β values.

To further analyze the effect of hyperparameters, Figure 4 shows the highest test accuracy achieved by FedAvg for each
(β, γ) pair. The optimal performance for FedAvg is observed at β = 0.1, while the best results are generally found along the
diagonal, where the product β · γ = 0.001.
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Figure 4: The highest test accuracy achieved by FedAvg for different β and γ parameters.

Importantly, prior work [29; 60] has shown that FedAvg with clipping or normalization may fail to converge in certain
settings, whereas Fed-α-NormEC remains robust and convergent. Our results further support this observation, highlighting
the effectiveness of the Error Compensation mechanism in improving both convergence speed and final accuracy, especially
in privacy-constrained federated learning scenarios.

13



First Provable Guarantees for Practical Private FL: Beyond Restrictive Assumptions

0 50 100 150 200 250 300
Communication round, k

100

2 × 100

Tr
ai

ni
ng

 lo
ss

Participation
Partial
Full

=0.001
=0.01
=0.1

(a) Convergence of Fed-α-NormEC under Full [solid] and
Partial participation [dotted] for p = 0.25.
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(b) Fed-α-NormEC under varying participation rates; x-axis
shows total client-to-server transmissions.

Figure 5: Training loss convergence of Fed-α-NormEC corresponding to the test accuracy plots shown in the main text.

E. Useful Lemmas
We introduce useful lemmas for our convergence analysis.

First, Lemma 1 establishes the bounds for
∥∥∥xk−Ti(x

k)
γ − vki

∥∥∥ and
∥∥∥xk−Ti(x

k)
γ − vk+1

i

∥∥∥, two quantities that will be applied
in the induction proof to establish the first convergence step of Fed-α-NormEC.

Lemma 1. Let vki ∈ Rd be governed by

vk+1
i = vki + βNormα

(
xk − Ti(xk)

γ
− vki

)
, for i ∈ [1,M ] and k ≥ 0,

and let the fixed-point operator Ti(·) satisfy

∥Ti(x)− Ti(y)∥ ≤ ρ ∥x− y∥ , for ρ > 0 and x, y ∈ Rd.

If
∥∥∥xk−Ti(x

k)
γ − vki

∥∥∥ ≤ C for some C > 0,
∥∥xk+1 − xk

∥∥ ≤ η, β
α+C < 1, and η ≤ γβC

(1+ρ)(α+C) , then∥∥∥xk+1−Ti(x
k+1)

γ − vk+1
i

∥∥∥ ≤ C and
∥∥∥xk−Ti(x

k)
γ − vk+1

i

∥∥∥ ≤ C.

Proof. From the definition of the Euclidean norm,

∥∥Pi(x
k+1)− vk+1

i

∥∥ vk+1
i=

∥∥Pi(x
k+1)− vki − βNα(Pi(x

k)− vki )
∥∥

≤
∥∥Pi(x

k+1)− Pi(x
k)
∥∥+ ∥∥Pi(x

k)− vki −Normα

(
Pi(x

k)− vki
)∥∥ ,

where Pi(x) = (x− Ti(x))/γ.

Next, by the triangle inequality and by the fact that ∥Ti(x)− Ti(y)∥ ≤ ρ ∥x− y∥ for ρ > 0 and x, y ∈ Rd, we bound the

14
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first term: ∥∥Pi(x
k+1)− Pi(x

k)
∥∥ =

∥∥∥∥xk+1 − Ti(xk+1)

γ
− xk − Ti(xk)

γ

∥∥∥∥
≤ 1

γ

(∥∥xk+1 − xk
∥∥+ ∥∥Ti(xk)− Ti(xk+1)

∥∥)
≤ 1

γ
(1 + ρ)

∥∥xk+1 − xk
∥∥ .

Therefore, ∥∥Pi(x
k+1)− vk+1

i

∥∥ ≤ 1

γ
(1 + ρ)

∥∥xk+1 − xk
∥∥+ ∥∥Pi(x

k)− vki −Normα

(
Pi(x

k)− vki
)∥∥ .

Next, from Lemma 1 of [60], we can bound the second term:

∥∥Pi(x
k)− vki −Normα

(
Pi(x

k)− vki
)∥∥ ≤

∣∣∣∣∣∣1− β

α+
∥∥∥xk−Ti(xk)

γ − vki

∥∥∥
∣∣∣∣∣∣
∥∥∥∥xk − Ti(xk)

γ
− vki

∥∥∥∥ .
If
∥∥∥xk−Ti(x

k)
γ − vki

∥∥∥ ≤ C for some C > 0, and β
α+C < 1, then

∥∥Pi(x
k)− vki −Normα

(
Pi(x

k)− vki
)∥∥ ≤

∣∣∣∣1− β

α+ C

∣∣∣∣C
≤
(
1− β

α+ C

)
C.

Hence, we obtain ∥∥Pi(x
k+1)− vk+1

i

∥∥ ≤ 1

γ
(1 + ρ)

∥∥xk+1 − xk
∥∥+ (1− β

α+ C

)
C.

If
∥∥xk+1 − xk

∥∥ ≤ η, then

∥∥Pi(x
k+1)− vk+1

i

∥∥ ≤ 1

γ
(1 + ρ)η +

(
1− β

α+ C

)
C.

If η ≤ γ
1+ρ

βC
(α+C) , then

∥∥Pi(x
k+1)− vk+1

i

∥∥ ≤ C. Furthermore, we can show that

∥∥Pi(x
k)− vk+1

i

∥∥ vk+1
i=

∥∥Pi(x
k)− vki − βNormα

(
Pi(x

k)− vki
)∥∥

Lemma 1 of [60]
≤

∣∣∣∣∣∣1− β

α+
∥∥∥xk−Ti(xk)

γ − vki

∥∥∥
∣∣∣∣∣∣
∥∥∥∥xk − Ti(xk)

γ
− vki

∥∥∥∥
β/(α+C)<1

≤
(
1− β

α+ C

)
C

≤ C.

Next, Lemma 2 bounds
∥∥ek∥∥ under the recursion of ek+1 = ek + β 1

M

∑M
i=1 z

k
i , where zki is the random vector, and by

utilizing Lemma 2, we obtain Lemma 3, which bounds
∥∥∥ 1
M

∑M
i=1 v

k
i − v̂k

∥∥∥, the quantity that will be applied to conclude
the convergence of Fed-α-NormEC.
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Lemma 2. Let ek ∈ Rd be governed by

ek+1 = ek + βzk, for 0 ≤ k ≤ K,

where zk = 1
M

∑M
i=1 z

k
i and each zki ∈ Rd is an independent random vector satisfying

E
[
zki
]
= 0, and E

[∥∥zki ∥∥2] ≤ σ2.

Then,

E
[∥∥ek+1

∥∥] ≤ E
[∥∥e0∥∥]+√β2(K + 1)σ2

M
.

Proof. By applying the recursion of ek+1 recursively,

ek+1 = e0 + β

k∑
l=0

zl.

From the definition of the Euclidean norm, and next by the triangle inequality and by taking the expectation,

E
[∥∥ek+1

∥∥] ≤ E
[∥∥e0∥∥]+ E

[∥∥∥∥∥β
k∑

l=0

zl

∥∥∥∥∥
]
.

By Jensen’s inequality,

E
[∥∥ek+1

∥∥] ≤ E
[∥∥e0∥∥]+

√√√√√E

∥∥∥∥∥β
k∑

l=0

zl

∥∥∥∥∥
2


= E
[∥∥e0∥∥]+

√√√√β2

k∑
l=0

E
[
∥zl∥2

]
+ β2

∑
i ̸=j

E [⟨zi, zj⟩].

Since zki is independent of one another, we obtain E
[〈
zi, zj

〉]
= 0 for i ̸= j, and E

[∥∥zk∥∥2] = 1
M

∑M
i=1 E

[∥∥zki ∥∥2] ≤
σ2/n. Therefore,

E
[∥∥ek+1

∥∥] ≤ E
[∥∥e0∥∥]+√β2

(K + 1)σ2

M
.

Lemma 3. Consider Fed-α-NormEC with any local updating operator Ti(·) for solving Problem (1), where Assumption 1
holds. Then,

E

[∥∥∥∥∥ 1

M

M∑
i=1

vk+1
i − v̂k+1

∥∥∥∥∥
]
≤
√

β2B

M
(K + 1),

where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p.
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Proof. Define ek := 1
M

∑M
i=1 v

k
i − v̂k. Then,

ek+1 =
1

M

M∑
i=1

vk+1
i − v̂k+1

vk+1
i ,v̂k+1

=
1

M

M∑
i=1

vki − v̂k + βnk

= ek + βnk,

where nk = 1
M

∑M
i=1 n

k
i and nk

i = (1− qki )Normα

(
xk−Ti(x

k)
γ − vki

)
− qki z

k
i .

Next, as qki and zki are independent random vectors, nk
i is also independent of one another, and satisfies E

[
nk
i

]
= 0 and

E
[∥∥nk

i

∥∥2] = E

[∥∥∥∥(1− qki )Normα

(
xk − Ti(xk)

γ
− vki

)
− qki z

k
i

∥∥∥∥2
]

≤ 2E

[
(1− qki )

2

∥∥∥∥Normα

(
xk − Ti(xk)

γ
− vki

)∥∥∥∥2
]
+ 2E

[
(qki )

2
∥∥zki ∥∥2]

∥Normα(·)∥≤1

≤ 2E
[
(1− qki )

2
]
+ 2E

[
(qki )

2
∥∥zki ∥∥2]

qki and zk
i are independent
= 2E

[
(1− qki )

2
]
+ 2E

[
(qki )

2
]
E
[∥∥zki ∥∥2]

≤ 2p(1− 1/p)2 + 2(1− p) + 2p/p2 · σ2
DP.

Therefore, from Lemma 2 with zk = nk and zki = nk
i , we obtain

E
[∥∥ek+1

∥∥] ≤ E
[∥∥e0∥∥]+√β2(K + 1) ·B

M
,

where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p. Finally, since v̂0 = 1

n

∑n
i=1 v

0
i , we obtain

∥∥e0∥∥ = 0, and complete the
proof.

Finally, Lemma 4 provides the descent inequality for f(xk)− f inf in normalized gradient descent. From these established
descent inequalities, and Lemma 5 derives the sublinear convergence up to constants.

Lemma 4. Let f : Rd → R be lower-bounded by f inf > −∞ and L-smoooth, and let xk ∈ Rd be governed by

xk+1 = xk − γ
Gk

∥Gk∥
,

where γ > 0. Then,

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
∥∥∇f(xk)−Gk

∥∥+ Lγ2

2
.

Proof. By the lower-bound and smoothess of f(·), and by the definition of xk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥Gk∥
〈
∇f(xk), Gk

〉
+

Lγ2

2

≤ f(xk)− f inf − γ

∥Gk∥
〈
Gk, Gk

〉
+

γ

∥Gk∥
〈
Gk −∇f(xk), Gk

〉
+

Lγ2

2

= f(xk)− f inf − γ
∥∥Gk

∥∥+ γ

∥Gk∥
〈
Gk −∇f(xk), Gk

〉
+

Lγ2

2
.
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By Cauchy-Scwartz inequality, i.e. ⟨x, y⟩ ≤ ∥x∥ ∥y∥ for x, y ∈ Rd,

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥Gk

∥∥+ γ
∥∥∇f(xk)−Gk

∥∥+ Lγ2

2
.

Finally, by the triangle inequality,

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
∥∥∇f(xk)−Gk

∥∥+ Lγ2

2
.

Lemma 5. Let {V k}, {W k} be non-negative sequences satisfying

V k+1 ≤ (1 + b1γ
2)V k − b2γW

k + b3γ.

Then,

min
k∈[0,K]

W k ≤ exp(b1γ
2(K + 1))

K + 1

V 0

b2γ
+

b3
b2
.

Proof. Define wk := wk+1

1+b1γ2 for all k ≥ 0. Then,

wkW k ≤ wk(1 + b1γ
2)V k

b2γ
− wkV k+1

b2γ
+

b3
b2

=
wk−1V k − wkV k+1

b2γ
+

b3
b2
.

By summing the inequality over k = 0, 1, . . . ,K,
K∑

k=0

wkW k ≤ w−1V 0 − wKV K+1

b2γ(K + 1)
+

b3
b2

K∑
k=0

wk

wk,V k≥0

≤ w−1V 0

b2γ(K + 1)
+

b3
b2

K∑
k=0

wk.

Therefore,

min
k∈[0,K]

W k ≤ 1∑K
k=0 w

k

K∑
k=0

wkW k

≤ w−1V 0

b2γ(K + 1)
∑K

k=0 w
k
+

b3
b2
.

Next, since
K∑

k=0

wk ≥ (K + 1) min
k∈[0,K]

wk

= (K + 1)wK+1

=
(K + 1)w−1

(1 + b1γ2)K+1
,

we get

min
k∈[0,K]

W k ≤ (1 + b1γ
2)K+1V 0

b2γ(K + 1)
+

b3
b2
.

Finally, since 1 + x ≤ exp(x), we have (1 + b1γ
2)K+1 ≤ exp(b1γ

2(K + 1)). Hence, we obtain the final result.
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F. Multiple Local GD Steps
We derive the convergence theorem of Fed-α-NormEC using multiple local gradient descent (GD) steps (Theorem 1).

F.1. Key Lemmas

We begin by introducing key lemmas for analyzing Fed-α-NormEC using multiple local GD steps. Lemma 6 bounds
1
M

∑M
i=1 ∥∇fi(x)∥, while Lemma 7 proves the properties of local GD steps.

Lemma 6. Let f be bounded from below by f inf > −∞, and each fi be bounded from below by f inf
i > −∞ and L-smooth.

Then,

1

M

M∑
i=1

∥∇fi(x)∥ ≤
√

2L

∆inf
[f(x)− f inf ] +

√
2L∆inf ,

where ∆inf = f inf − 1
M

∑M
i=1 f

inf
i > 0.

Proof. Let f be bounded from below by f inf > −∞, and each fi be bounded from below by f inf
i > −∞ and L-smooth.

Then,

∥∇fi(x)∥2 ≤ 2L[fi(x)− f inf
i ].

Therefore,

1

M

M∑
i=1

∥∇fi(x)∥2 ≤ A[f(x)− f inf ] +B,

where A = 2L, B = 2L∆inf , and ∆inf = f inf − 1
M

∑M
i=1 f

inf
i > 0. Thus, we obtain

1

M

M∑
i=1

∥∇fi(x)∥
Jensen’s inequality

≤

√√√√ 1

M

M∑
i=1

∥∇fi(x)∥2

≤
√
A[f(x)− f inf ] +B

=
A[f(x)− f inf ] +B√
A[f(x)− f inf ] +B

f(x)≥f inf

≤ A√
B
[f(x)− f inf ] +

√
B.
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Lemma 7. Let each fi be L-smooth, and let Ti(xk) = xk − γ
T

∑T−1
j=0 ∇fi(x

k,j
i ), where the sequence {xk,l

i } is generated by

xk,l+1
i = xk,l

i − γ

T
∇fi(x

k,l
i ), for l = 0, 1, . . . , T − 1,

given that xk,0
i = xk. If γ ≤ 1

2L , and
∥∥xk+1 − xk

∥∥ ≤ η with η > 0, then

1. xk,l
i = xk − γ

T

∑l−1
j=0 ∇fi(x

k,l
i ).

2. 1
T

∑T−1
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ ≤ 2η.

3. 1
T

∑T−1
j=0

∥∥∥xk − xk,j
i

∥∥∥ ≤ 2γ
∥∥∇fi(x

k)
∥∥.

4.
∥∥Ti(xk+1)− Ti(xk)

∥∥ ≤ 2η.

5.
∥∥(xk − γ∇fi(x

k))− Ti(xk)
∥∥ ≤ 2Lγ2

∥∥∇fi(x
k)
∥∥.

Proof. We prove the first statement by recursively applying the equation for xk,j+1
i for j = 0, 1, . . . , l − 1.

Next, we prove the second statement. From the definition of the Euclidean norm, by the triangle inequality, and by the
L-smoothness of fi(·),

∥∥∥xk+1,l
i − xk,l

i

∥∥∥ xk,j
i=

∥∥∥∥∥∥xk+1 − xk − γ

T

l−1∑
j=0

(∇fi(x
k+1,j
i )−∇fi(x

k,j
i ))

∥∥∥∥∥∥
≤

∥∥xk+1 − xk
∥∥+ γ

T

l−1∑
j=0

∥∥∥∇fi(x
k+1,j
i )−∇fi(x

k,j
i )
∥∥∥

≤
∥∥xk+1 − xk

∥∥+ Lγ

T

l−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ .
If
∥∥xk+1 − xk

∥∥ ≤ η with η > 0, then

∥∥∥xk+1,l
i − xk,l

i

∥∥∥ ≤ η +
Lγ

T

l−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥
l≤T

≤ η +
Lγ

T

T−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥
Therefore,

T−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ ≤ ηT + Lγ

T−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ .
If γ ≤ 1

2L , then Lγ ≤ 1/2, and

1

T

T−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ ≤ 2η.
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Next, we prove the third statement. From the definition of the Euclidean norm, and of xk,l
i from the first statement,

∥∥∥xk − xk,j
i

∥∥∥ =

∥∥∥∥∥∥ γT
l−1∑
j=0

∇fi(x
k,j
i )

∥∥∥∥∥∥
=

∥∥∥∥∥∥ γT
l−1∑
j=0

[∇fi(x
k,j
i )−∇fi(x

k) +∇fi(x
k)]

∥∥∥∥∥∥ .
By the triangle inequality, and by the L-smoothness of fi(·),∥∥∥xk − xk,j

i

∥∥∥ ≤ γ

T

l−1∑
j=0

∥∥∥∇fi(x
k,j
i )−∇fi(x

k)
∥∥∥+ γ

T

l−1∑
j=0

∥∥∇fi(x
k)
∥∥

≤ Lγ

T

l−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥+ γ

T

l−1∑
j=0

∥∥∇fi(x
k)
∥∥ .

By the fact that l ≤ T and that ∥x∥ ≥ 0 for x ∈ Rd,∥∥∥xk − xk,j
i

∥∥∥ ≤ Lγ

T

T−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥+ γ
∥∥∇fi(x

k)
∥∥ .

Therefore,

T−1∑
j=0

∥∥∥xk − xk,j
i

∥∥∥ ≤ Lγ

T−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥+ γT
∥∥∇fi(x

k)
∥∥ .

If γ ≤ 1
2L , then Lγ ≤ 1/2, and

T−1∑
j=0

∥∥∥xk − xk,j
i

∥∥∥ ≤ 2γT
∥∥∇fi(x

k)
∥∥ .

Next, we prove the fourth statement. From the definition of Ti(xk),

∥∥Ti(xk+1)− Ti(xk)
∥∥ =

∥∥∥∥∥∥xk+1 − xk − γ

T

l−1∑
j=0

[∇fi(x
k,l+1
i )−∇fi(x

k,l
i )]

∥∥∥∥∥∥ .
By the triangle inequality, and by the L-smoothness of fi(·),

∥∥Ti(xk+1)− Ti(xk)
∥∥ ≤

∥∥xk+1 − xk
∥∥+ γ

T

l−1∑
j=0

∥∥∥∇fi(x
k,l+1
i )−∇fi(x

k,l
i )
∥∥∥

≤
∥∥xk+1 − xk

∥∥+ Lγ

T

l−1∑
j=0

∥∥∥xk,l+1
i − xk,l

i

∥∥∥ .
By the fact that

∥∥xk+1 − xk
∥∥ ≤ η, that l ≤ T , and that

∑T−1
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ ≤ 2ηT ,

∥∥Ti(xk+1)− Ti(xk)
∥∥ ≤ η + Lγ · 2η

Lγ≤1/2

≤ 2η.

Finally, we prove the fifth statement. From the definition of Ti(xk),

∥∥(xk − γ∇fi(x
k))− Ti(xk)

∥∥ =

∥∥∥∥∥
(
xk − γ

T

T−1∑
l=0

∇fi(x
k)

)
−

(
xk − γ

T

T−1∑
l=0

∇fi(x
k,l
i )

)∥∥∥∥∥ .
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By the triangle inequality, the L-smoothness of fi(·), and the fact that

T∑
j=0

∥∥∥xk − xk,j
i

∥∥∥ ≤ 2γT
∥∥∇fi(x

k)
∥∥ ,

we obtain

∥∥(xk − γ∇fi(x
k))− Ti(xk)

∥∥ ≤ γ

T

T−1∑
l=0

∥∥∥∇fi(x
k)−∇fi(x

k,l
i )
∥∥∥

≤ Lγ

T

T−1∑
l=0

∥∥∥xk − xk,l
i

∥∥∥
≤ 2Lγ2

∥∥∇fi(x
k)
∥∥ .

F.2. Proof of Theorem 1

Now we are ready to prove the convergence rate of Fed-α-NormEC using multiple local GD steps.

Theorem (Fed-α-NormEC with local GD steps). Consider Fed-α-NormEC for solving Problem (1) where Assump-

tion 1 holds. Let Ti(xk) = xk − γ 1
T

T−1∑
j=0

∇fi(x
k,j
i ), where the sequence {xk,j

i } is generated by xk,j+1
i = xk,j

i −

γ
T ∇fi(x

k,j
i ), for j = 0, 1, . . . , T − 1, given that xk,0

i = xk. Furthermore, let β, α > 0 be chosen such that β
α+R < 1

with R = maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥. If ηγ ≤ 1
K+1

∆inf

4L
√
2L

, 0 < η ≤ γ
3

βR
α+R , and 0 < γ ≤ 1

2L , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2

√
β2B

M
(K + 1)

+ γ · IT ̸=1

[
8L

√
2L

√
∆inf

]
+ η · L

2
,

where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p, and ∆inf = f inf − 1

M

∑M
i=1 f

inf
i > 0.

Proof. We prove the result in the following steps.

Step 1) Bound
∥∥∥vki − xk−Ti(x

k)
γ

∥∥∥ by induction, and bound
∥∥∥vk+1

i − xk−Ti(x
k)

γ

∥∥∥. We prove that
∥∥∥vki − xk−Ti(x

k)
γ

∥∥∥ ≤

maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥ by induction. It is trivial to show the condition when k = 0. Next, suppose that∥∥∥vki − xk−Ti(x
k)

γ

∥∥∥ ≤ maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥ holds. From Lemma 7, Ti(xk) = xk − γ
T

T−1∑
j=0

∇fi(x
k,j
i ) satisfies

∥∥Ti(xk+1)− Ti(xk)
∥∥ ≤ 2η.

Therefore, from Lemma 1 with ρ = 2, C = R = maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥, we can prove that by choosing β
α+R < 1

and η ≤ γβR
(1+ρ)(α+R) ,

∥∥∥vk+1
i − xk+1−Ti(x

k+1)
γ

∥∥∥ ≤ R. We complete the induction proof.

Next, from Lemma 1,
∥∥∥vk+1

i − xk−Ti(x
k)

γ

∥∥∥ ≤ maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥.
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Step 2) Bound f(xk)− f inf . From Lemma 4 with Gk = v̂k+1,

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2η
∥∥∇f(xk)− v̂k+1

∥∥+ Lη2

2
triangle inequality

≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2η
∥∥∇f(xk)− vk+1

∥∥
+2η

∥∥v̂k+1 − vk+1
∥∥+ Lη2

2
,

where vk+1 = 1
M

∑M
i=1 v

k+1
i . Next, since

∥∥∇f(xk)− vk+1
∥∥ =

∥∥∥∥∥∇f(xk)− 1

M

M∑
i=1

vk+1
i

∥∥∥∥∥
triangle inequality

≤ 1

M

M∑
i=1

∥∥vk+1
i −∇fi(x

k)
∥∥

triangle inequality
≤ 1

M

M∑
i=1

∥∥∥∥vk+1
i − xk − Ti(xk)

γ

∥∥∥∥
+

1

M

M∑
i=1

∥∥∥∥xk − Ti(xk)

γ
−∇fi(x

k)

∥∥∥∥ ,
where Ti(xk) = xk − γ

T

∑T−1
j=0 ∇fi(x

k,j
i ), we get

∥∥∇f(xk)− vk+1
∥∥ ≤ 1

M

M∑
i=1

∥∥∥∥vk+1
i − xk − Ti(xk)

γ

∥∥∥∥+ 1

γ

1

M

M∑
i=1

∥∥xk − Ti(xk)− γ∇fi(x
k)
∥∥ .

Plugging the upperbound for
∥∥∇f(xk)− vk+1

∥∥ into the main inequality in f(xk)− f inf , we obtain

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2η
1

M

M∑
i=1

∥∥∥∥vk+1
i − xk − Ti(xk)

γ

∥∥∥∥
+
2η

γ

1

M

M∑
i=1

∥∥(xk − γ∇fi(x
k))− Ti(xk)

∥∥+ 2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

By the fact that
∥∥∥vk+1

i − xk−Ti(x
k)

γ

∥∥∥ ≤ R from Step 1),

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2ηR

+
2η

γ

1

M

M∑
i=1

∥∥(xk − γ∇fi(x
k))− Ti(xk)

∥∥+ 2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

To complete the proof, we consider two possible cases for Ti(xk): 1) when T = 1 and 2) when T ̸= 1.

Case 1) Ti(xk) with T = 1. When Ti(xk) with T = 1,
∥∥(xk − γ∇fi(x

k))− Ti(xk)
∥∥ = 0, and

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2ηR+ 2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

Case 2) Ti(xk) with T > 1. When Ti(xk) with T > 1, from Lemma 7,

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2ηR

+4Lγη
1

M

M∑
i=1

∥∥∇fi(x
k)
∥∥+ 2η

∥∥v̂k+1 − vk+1
∥∥+ Lη2

2
.
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Therefore, from two cases, we obtain the descent inequality,

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2ηR

+4Lγη
1

M

M∑
i=1

∥∥∇fi(x
k)
∥∥+ 2η

∥∥v̂k+1 − vk+1
∥∥+ Lη2

2
.

Next, from Lemma 6,

f(xk+1)− f inf ≤

(
1 +

4L
√
2L√

∆inf
γη

)
(f(xk)− f inf)− η

∥∥∇f(xk)
∥∥+ 2ηR

+4L
√
2Lγη

√
∆inf + 2η

∥∥v̂k+1 − vk+1
∥∥+ Lη2

2
.

Since

E
[∥∥v̂k+1 − vk+1

∥∥] ≤ 1

γ
E

[∥∥∥∥∥ 1

M

M∑
i=1

vk+1
i − v̂k+1

∥∥∥∥∥
]

Lemma 3
≤ 1

γ

√
β2B

M
(K + 1),

by taking the expectation,

E
[
f(xk+1)− f inf

]
≤

(
1 +

4L
√
2L√

∆inf
γη

)
E
[
f(xk)− f inf

]
− ηE

[∥∥∇f(xk)
∥∥]+ 2ηR

+8L
√
2Lγη

√
∆inf + 2η

√
β2B

M
(K + 1) +

Lη2

2
.

By applying Lemma 5 with ηγ ≤ 1
K+1

∆inf

4L
√
2L

and using the fact (1 + ηγ 4L
√
2L

∆inf )K+1 ≤ exp(ηγ 4L
√
2L

∆inf (K + 1)) ≤
exp(1) ≤ 3 we finalize the proof.

F.3. Corollaries for Fed-α-NormEC with multiple local GD steps from Theorem 1

Corollary 3 (Convergence bound for Fed-α-NormEC with multiple local GD steps). Consider Fed-α-NormEC for solving
Problem (1) under the same setting as Theorem 1. Let T > 1 (multiple local GD steps). If γ = 1

2L(K+1)1/8
, v0i ∈ Rd

is chosen such that maxi∈[1,M ]

∥∥∥x0−Ti(x
0)

γ − v0i

∥∥∥ = D1

(K+1)1/8
with D1 > 0, and β = D2

(K+1)5/8
with D2 > 0, and

η = η̂
(K+1)7/8

with η̂ = min
(

∆inf

2
√
2L

, D1D2

4L(α+D1)

)
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ A1

(K + 1)1/8
+

A2

(K + 1)7/8
,

where A1 = 3 f(x0)−f inf

η̂ + 2D1 +
2
√
BD2√
M

+ 4
√
2L

√
∆inf and A2 = η̂L/2.

Proof. Let T > 1. Then, from Theorem 1,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2

√
β2B

M
(K + 1) + η · L

2

+ γ ·
[
8L

√
2L

√
∆inf

]
,

where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p.

Next, suppose that
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• γ = 1
2L(K+1)1/8

to guarantee that γ ≤ 1/(2L)

• v0i ∈ Rd such that maxi∈[1,M ]

∥∥∥x0−Ti(x
0)

γ − v0i

∥∥∥ = R = D1

(K+1)1/8
with D1 > 0

• β = D2

(K+1)5/8
with D2 > 0.

Then, we choose η = η̂
(K+1)7/8

with η̂ = min
(

∆inf

2
√
2L

, D1D2

4L(α+D1)

)
to ensure that ηγ ≤ 1

K+1
∆inf

4L
√
2L

and η ≤ γ
2

βR
α+R .

Therefore,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ A1

(K + 1)1/8
+

A2

(K + 1)7/8
,

where A1 = 3 f(x0)−f inf

η̂ + 2D1 +
2
√
BD2√
M

+ 4
√
2L

√
∆inf and A2 = η̂L/2.

Corollary 4 (Utility bound for Fed-α-NormEC with multiple local GD steps). Consider Fed-α-NormEC for solving

Problem (1) under the same setting as Theorem 1. Let T > 1 (multiple local GD steps), let σDP = c
p
√

(K+1) log(1/δ)

ϵ

with c > 0 (privacy with subsampling amplification), and let p = B̂
M for B̂ ∈ [1,M ] (client subsampling). If β = β̂

K+1

with β̂ =
√

3(f(x0)−f inf )
γ

4

√
M
B2

, γ < ∆inf (α+R)√
2Lβ̂R

, α = R = O
(

4
√
d

√
f(x0)−f inf

√
γ

4

√
B2

M

)
with B2 = 2c2 B̂

M
log(1/δ)

ϵ2 , and

η = 1
K+1

γ
2

β̂R
α+R , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O

∆
4

√
dB̂

M2

log(1/δ)

ϵ2
+

√
L
√
∆inf

 ,

where ∆ = max(α, 2)
√
L
√
f(x0)− f inf .

Proof. Let T > 1. Then, from Theorem 1,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2

√
β2B

M
(K + 1) + η · L

2

+ γ ·
[
8L

√
2L

√
∆inf

]
,

where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p.

Also, let σDP = c
p
√

(K+1) log(1/δ)

ϵ with c > 0, and let p = B̂
M for B̂ ∈ [1,M ] is the number of clients being sampled on

each round. Then, B = 2B̂
M

(
1− M

B̂

)2
+ 2

(
1− B̂

M

)
+ 2 c

√
K+1 log(1/δ)

ϵ , and

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2β

√
B1

M
(K + 1) + 2β

√
B2

M
(K + 1) + η · L

2

+ γ ·
[
8L

√
2L

√
∆inf

]
,

where B1 = 2B̂
M

[(
1− M

B̂

)2
+ M

B̂
− 1

]
and B2 = 2c2 B̂

M
log(1/δ)

ϵ2 .

If β = β̂
K+1 with β̂ > 0, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2β̂

√
B1

M(K + 1)
+ 2β̂

√
B2

M
+ η · L

2

+ γ ·
[
8L

√
2L

√
∆inf

]
.
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Since β = β̂
K+1 , we obtain

η ≤ 1

K + 1
min

(
∆inf

2
√
2L

,
γ

2

β̂R

α+R

)
.

If ∆inf > γ
√
2Lβ̂R

α+R , then

η ≤ 1

K + 1

γ

2

β̂R

α+R
.

If η = 1
K+1

γ
2

β̂R
α+R , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤6α(f(x0)− f inf)

γβ̂R
+

6(f(x0)− f inf)

γβ̂
+ 2R+ 2β̂

√
B2

M

+ 2β̂

√
B1

M(K + 1)
+

1

K + 1
· γLβ̂R

4(α+R)

+ γ ·
[
8L

√
2L

√
∆inf

]
.

If β̂ =
√

3(f(x0)−f inf )
γ

4

√
M
B2

, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤2
√
3α
√
f(x0)− f inf

√
γR

4

√
B2

M
+

4
√
3
√
f(x0)− f inf

√
γ

4

√
B2

M
+ 2R

+ 2β̂

√
B1

M(K + 1)
+

1

K + 1
· γLβ̂R

4(α+R)
+ γ ·

[
8L

√
2L

√
∆inf

]
.

If α = R = O
(

4
√
d

√
f(x0)−f inf

√
γ

4

√
B2

M

)
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤O

(
∆

√
f(x0)− f inf

√
γ

4

√
d
B2

M

)
+O

(
1√

K + 1

)
+O

(
1

K + 1

)
+ γ ·

[
8L

√
2L

√
∆inf

]
≤O

(
∆

√
f(x0)− f inf

√
γ

4

√
d
B2

M
+ γ ·

[
8L

√
2L

√
∆inf

])

+O
(

1√
K + 1

)
+O

(
1

K + 1

)
,

where ∆ = 2
√
3max(α, 2). Finally, if γ = 1/(2L), then we complete the proof.
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F.4. Proof of Corollary 1

Corollary (Convergence bound for Fed-α-NormEC with one local GD step). Consider Fed-α-NormEC for solving Prob-
lem (1) under the same setting as Theorem 1. Let T = 1 and N = 0 (one local GD step). If γ = 1

2L , v0i ∈ Rd is chosen

such that maxi∈[1,M ]

∥∥∥x0−Ti(x
0)

γ − v0i

∥∥∥ = D1

(K+1)1/6
with D1 > 0, and β = D2

(K+1)2/3
with D2 > 0, and η = η̂

(K+1)5/6
with

η̂ = D1D2

4L(α+D1)
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ A1

(K + 1)1/6
+

A2

(K + 1)5/6
,

where A1 = 3 f(x0)−f inf

η̂ + 2D1 +
2
√
BD2√
M

and A2 = η̂L/2.

Proof. Let T = 1. Then, from Theorem 1,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2

√
β2B

M
(K + 1) + η · L

2
,

where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p.

Next, suppose that

• γ = 1
2L

• v0i ∈ Rd such that maxi∈[1,M ]

∥∥∥x0−Ti(x
0)

γ − v0i

∥∥∥ = R = D1

(K+1)1/6
with D1 > 0

• β = D2

(K+1)2/3
with D2 > 0.

Then, we choose η = η̂
(K+1)5/6

with η̂ = D1D2

4L(α+D1)
to ensure that η ≤ γ

2
βR
α+R . Therefore,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ A1

(K + 1)1/6
+

A2

(K + 1)5/6
,

where A1 = 3 f(x0)−f inf

η̂ + 2D1 +
2
√
BD2√
M

and A2 = η̂L/2.

F.5. Proof of Corollary 2

Corollary (Utility bound for Fed-α-NormEC with one local GD step). Consider Fed-α-NormEC for solving Problem (1)

under the same setting as Theorem 1. Let T = 1 (one local GD step), let σDP = c
p
√

(K+1) log(1/δ)

ϵ with c > 0 (privacy with

subsampling amplification), and let p = B̂
M for B̂ ∈ [1,M ] (client subsampling). If β = β̂

K+1 with β̂ =
√

3(f(x0)−f inf )
γ

4

√
M
B2

,

γ < ∆inf (α+R)√
2Lβ̂R

, α = R = O
(

4
√
d

√
f(x0)−f inf

√
γ

4

√
B2

M

)
with B2 = 2c2 B̂

M
log(1/δ)

ϵ2 , and η = 1
K+1

γ
2

β̂R
α+R , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O

∆
4

√
dB̂

M2

log(1/δ)

ϵ2

 ,

where ∆ = max(α, 2)
√
L
√
f(x0)− f inf .

Proof. Let T = 1. Then, from Theorem 1,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2

√
β2B

M
(K + 1) + η · L

2
,
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where B = 2p(1− 1/p)2 + 2(1− p) + 2σ2
DP/p.

Also, let σDP = c
p
√

(K+1) log(1/δ)

ϵ with c > 0, and let p = B̂
M for B̂ ∈ [1,M ] is the number of clients being sampled on

each round. Then, B = 2B̂
M

(
1− M

B̂

)2
+ 2

(
1− B̂

M

)
+ 2 c

√
K+1 log(1/δ)

ϵ , and

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2β

√
B1

M
(K + 1) + 2β

√
B2

M
(K + 1) + η · L

2
,

where B1 = 2B̂
M

[(
1− M

B̂

)2
+ M

B̂
− 1

]
and B2 = 2c2 B̂

M
log(1/δ)

ϵ2 .

If β = β̂
K+1 with β̂ > 0, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2β̂

√
B1

M(K + 1)
+ 2β̂

√
B2

M
+ η · L

2
.

Since β = β̂
K+1 , we obtain

η ≤ 1

K + 1
min

(
∆inf

2
√
2L

,
γ

2

β̂R

α+R

)
.

If ∆inf > γ
√
2Lβ̂R

α+R , then

η ≤ 1

K + 1

γ

2

β̂R

α+R
.

If η = 1
K+1

γ
2

β̂R
α+R , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤6α(f(x0)− f inf)

γβ̂R
+

6(f(x0)− f inf)

γβ̂
+ 2R+ 2β̂

√
B2

M

+ 2β̂

√
B1

M(K + 1)
+

1

K + 1
· γLβ̂R

4(α+R)
.

If β̂ =
√

3(f(x0)−f inf )
γ

4

√
M
B2

, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤2
√
3α
√
f(x0)− f inf

√
γR

4

√
B2

M
+

4
√
3
√
f(x0)− f inf

√
γ

4

√
B2

M
+ 2R

+ 2β̂

√
B1

M(K + 1)
+

1

K + 1
· γLβ̂R

4(α+R)
.

If α = R = O
(

4
√
d

√
f(x0)−f inf

√
γ

4

√
B2

M

)
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O

(
∆

√
f(x0)− f inf

√
γ

4

√
d
B2

M

)
+O

(
1√

K + 1

)
+O

(
1

K + 1

)
,

where ∆ = 2
√
3max(α, 2). Finally, if γ = 1/(2L), then we complete the proof.
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G. Multiple Local IG steps
In this section, we derive the convergence theorem of Fed-α-NormEC with multiple local steps using the Incremental
Gradient (IG) method. The IG method has the following update rule.

T IG
i (xk) = xk − γ

1

N

N−1∑
j=0

∇fi,j(x
k,j
i ), (2)

where xk,j
i is updated according to:

xk,j+1
i = xk,j

i − γ

N
∇fi,j(x

k,j
i ) for j = 0, 1, . . . , T − 1.

In the update rule of the IG method, the number of local steps is equal to the size of the local data set. This implies that
each client performs local updates T IG

i (·) using their entire local dataset. Furthermore, the IG method employs a fixed,
deterministic permutation for its cyclic updates, unlike the well-known Random Reshuffling method.

G.1. Key Lemmas

First, we introduce key lemmas for analyzing Fed-α-NormEC using multiple local IG steps. Lemma 8 bounds
1
M

∑M
i=1

1
N

∑N−1
j=0

∥∥∥xk,j
i − xk

∥∥∥ while Lemma 9 proves the properties of local IG steps.

Lemma 8. Consider the local IG method updates in (2). Let f be bounded from below by f inf > −∞, let each fi be
bounded from below by f inf

i > −∞, and let each fi,j be bounded from below by f inf
i,j and L-smooth. Then,

1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥ ≤ 2
√
2Lγ(f(xk)− f inf)√

L∆inf
+
√
2γ

√
L∆inf + 2γ

√√√√L
1

M

M∑
i=1

∆inf
i ,

where ∆inf = f inf − 1
M

∑M
i=1 f

inf
i and ∆inf

i = f inf − 1
N

∑N
j=1 f

inf
i,j

Proof. Applying Lemma 6 from [43] for the local IG method updates in (2), we have

1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥2 ≤ 4Lγ2
(
f(xk)− f inf

)
+ 2γ2L∆inf + 2γ2L

1

M

M∑
i=1

∆inf
i .

Next, by Jensen’s inequality,

1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥ ≤

√√√√ 1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥2

≤

√√√√4Lγ2 (f(xk)− f inf) + 2γ2L∆inf + 2γ2L
1

M

M∑
i=1

∆inf
i

≤
√
4Lγ2 (f(xk)− f inf) + 2γ2L∆inf +

√√√√2γ2L
1

M

M∑
i=1

∆inf
i .
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Therefore,

1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥ ≤
4Lγ2

(
f(xk)− f inf

)
+ 2γ2L∆inf√

4Lγ2 (f(xk)− f inf) + 2γ2L∆inf
+ 2γ

√√√√L
1

M

M∑
i=1

∆inf
i

≤
4Lγ2

(
f(xk)− f inf

)
+ 2γ2L∆inf√

2γ2L∆inf
+ 2γ

√√√√L
1

M

M∑
i=1

∆inf
i

≤ 2
√
2Lγ(f(xk)− f inf)√

L∆inf
+
√
2γ

√
L∆inf + 2γ

√√√√L
1

M

M∑
i=1

∆inf
i .

Lemma 9. Let each fi be L-smooth, and let Ti(xk) = xk − γ
N

∑N−1
j=0 ∇fi,j(x

k,j
i ), where the sequence {xk,l

i } is generated
by

xk,l+1
i = xk,l

i − γ

N
∇fi,j(x

k,l
i ), for l = 0, 1, . . . , N − 1,

given that xk,0
i = xk. If γ ≤ 1

2L , and
∥∥xk+1 − xk

∥∥ ≤ η with η > 0, then

1. xk,l
i = xk − γ

N

∑l−1
j=0 ∇fi,j(x

k,l
i ).

2. 1
N

∑N−1
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ ≤ 2η.

3.
∥∥Ti(xk+1)− Ti(xk)

∥∥ ≤ 2η.

4. 1
M

∑M
i=1

∥∥Ti(xk)−
(
xk − γ∇fi(x

k)
)∥∥ ≤ γL 1

M

∑M
i=1

1
N

∑N−1
j=0

∥∥∥xk,j
i − xk

∥∥∥
Proof. The first statement derives from unrolling the recursion for xk,j+1

i .

Next, we prove the second statement. Let us consider

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ =

∥∥∥∥∥xk+1 − γ
1

N

j−1∑
l=0

∇fi,l(x
k+1,l
i )−

(
xk − γ

1

N

j−1∑
l=0

∇fi,l(x
k,l
i )

)∥∥∥∥∥
≤ ∥xk+1 − xk∥+ γL

1

N

j−1∑
l=0

∥xk+1,l
i − xk,l

i ∥

≤ ∥xk+1 − xk∥+ γL
1

N

N−1∑
j=0

∥xk+1,j
i − xk,j

i ∥.

Therefore,

1

N

N−1∑
j=0

∥∥∥xk+1,j
i − xk,j

i

∥∥∥ ≤ 1

N

N−1∑
j=0

∥xk+1 − xk∥+ γ
1

N

N−1∑
j=0

∥xk+1,j
i − xk,j

i ∥


≤ ∥xk+1 − xk∥+ γL

1

N

N−1∑
j=0

∥xk+1,j
i − xk,j

i ∥.
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If γ ≤ 1
2L , then

1

N

N−1∑
j=0

∥∥xk+1
i,j − xk

i,j

∥∥ ≤ 1

1− γL
∥xk+1 − xk∥

≤ 2∥xk+1 − xk∥
= 2η.

Next, we prove the third statement. Let us consider

∥∥Ti(xk+1)− Ti(xk)
∥∥ =

∥∥∥∥∥∥xk+1 − γ
1

N

N−1∑
j=0

∇fi,j(x
k+1,j
i )−

xk − γ
1

N

N−1∑
j=0

∇fi,j(x
k,j
i )

∥∥∥∥∥∥
≤ ∥xk+1 − xk∥+ γ

1

N

N−1∑
j=0

∥∥∥∇fi,j(x
k+1,j
i )−∇fi,j(x

k,j
i )
∥∥∥

≤ ∥xk+1 − xk∥+ γL
1

N

N−1∑
j=0

∥xk+1,j
i − xk,j

i ∥.

By the fact that
∥∥xk+1 − xk

∥∥ ≤ η and that γ ≤ 1
2L , and by the second statement,

∥∥Ti(xk+1)− Ti(xk)
∥∥ ≤ 2η.

Finally, we prove the fourth statement. Let us consider

∥∥Ti(xk)−
(
xk − γ∇fi(x

k)
)∥∥ =

∥∥∥∥∥∥xt − γ
1

N

N−1∑
j=0

∇fi,j(x
k,j
i )− (xt − γ∇fi(x

k)

∥∥∥∥∥∥
=

∥∥∥∥∥γ
(

1

N

N−1∑
i=0

∇fi,j(x
k,j
i )−∇fi(x

k)

)∥∥∥∥∥
=

∥∥∥∥∥γ
(

1

N

N−1∑
i=0

∇fi,j(x
k,j
i )− 1

N

N−1∑
i=0

∇fi,j(x
k)

)∥∥∥∥∥
= γ

1

N

N−1∑
i=0

∥∥∥∇fi,j(x
k,j
i )−∇fi,j(x

k)
∥∥∥

≤ γL
1

N

N−1∑
i=0

∥∥∥xk,j
i − xk

∥∥∥ .
Therefore,

1

M

M∑
i=1

∥∥Ti(xk)−
(
xk − γ∇fi(x

k)
)∥∥ ≤ 1

M

M∑
i=1

γL
1

N

N−1∑
i=0

∥∥∥xk,j
i − xk

∥∥∥
≤ γL

1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥ .
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G.2. Convergence Theorem for Fed-α-NormEC with local IG steps

Theorem 2 (Fed-α-NormEC with local IG steps). Consider Fed-α-NormEC for solving Problem (1) where Assump-
tion 1 holds. Let Ti(xk) = xk − γ 1

N

∑N−1
j=0 ∇fi,j(x

k,j
i ), where the sequence {xk,j

i } is generated by xk,j+1
i =

xk,j
i − γ

N∇fi,j(x
k,j
i ) for j = 0, 1, . . . , T − 1, given that xk,0

i = xk. Furthermore, let β, α > 0 be chosen such

that β
α+R < 1 with R = maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥. If ηγ ≤ 1
K+1

∆inf

4L
√
2L

, 0 < η ≤ γ
3

βR
α+R , and 0 < γ ≤ 1

2L , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 3

K + 1

f(x0)− f inf

η
+ 2R+ 2

√
β2B

M
(K + 1)

+ γ · 8L
√
2L

√
∆inf + γ · 4L

√
2L

√√√√ 1

M

M∑
i=1

∆inf
i + η · L

2
,

where B = 2p(1−1/p)2+2(1−p)+2σ2
DP/p, and ∆inf = f inf − 1

M

∑M
i=1 f

inf
i > 0, and ∆inf

i = f inf − 1
N

∑N
j=1 f

inf
i,j > 0

Proof. We prove the result in the following steps.

Step 1) Bound
∥∥∥vki − xk−Ti(x

k)
γ

∥∥∥ by induction, and bound
∥∥∥vk+1

i − xk−Ti(x
k)

γ

∥∥∥. We prove
∥∥∥vki − xk−Ti(x

k)
γ

∥∥∥ ≤

maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥ by induction. We can easily show the condition when k = 0. Next, let
∥∥∥vki − xk−Ti(x

k)
γ

∥∥∥ ≤

maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥. Then, from Lemma 9, Ti(xk) satisfies∥∥Ti(xk+1)− Ti(xk)
∥∥ ≤ 2η.

Therefore, from Lemma 1 with ρ = 2, C = R = maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥, we can prove that by choosing β
α+R < 1

and η ≤ γβR
(1+ρ)(α+R) ,

∥∥∥vk+1
i − xk+1−Ti(x

k+1)
γ

∥∥∥ ≤ R. We complete the proof.

Next, from Lemma 1,
∥∥∥vk+1

i − xk−Ti(x
k)

γ

∥∥∥ ≤ maxi∈[1,M ]

∥∥∥v0i − x0−Ti(x
0)

γ

∥∥∥.

Step 2) Bound f(xk)− f inf . From Lemma 4 with Gk = v̂k+1,

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2η
∥∥∇f(xk)− v̂k+1

∥∥+ Lη2

2
triangle inequality

≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2η
∥∥∇f(xk)− vk+1

∥∥
+2η

∥∥v̂k+1 − vk+1
∥∥+ Lη2

2
,

where vk+1 = 1
M

∑M
i=1 v

k+1
i . Next, since

∥∥∇f(xk)− vk+1
∥∥ =

∥∥∥∥∥∇f(xk)− 1

M

M∑
i=1

vk+1
i

∥∥∥∥∥
triangle inequality

≤ 1

M

M∑
i=1

∥∥vk+1
i −∇fi(x

k)
∥∥

triangle inequality
≤ 1

M

M∑
i=1

∥∥∥∥vk+1
i − xk − Ti(xk)

γ

∥∥∥∥
+

1

M

M∑
i=1

∥∥∥∥xk − Ti(xk)

γ
−∇fi(x

k)

∥∥∥∥ ,
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where Ti(xk) = xk − γ 1
N

∑N−1
j=0 ∇fi,j(x

k,j
i ), we get

∥∥∇f(xk)− vk+1
∥∥ ≤ 1

M

M∑
i=1

∥∥∥∥vk+1
i − xk − Ti(xk)

γ

∥∥∥∥+ 1

γ

1

M

M∑
i=1

∥∥xk − Ti(xk)− γ∇fi(x
k)
∥∥ .

Plugging the upperbound for
∥∥∇f(xk)− vk+1

∥∥ into the main inequality in f(xk)− f inf , we obtain

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2η
1

M

M∑
i=1

∥∥∥∥vk+1
i − xk − Ti(xk)

γ

∥∥∥∥
+
2η

γ

1

M

M∑
i=1

∥∥(xk − γ∇fi(x
k))− Ti(xk)

∥∥+ 2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

By the fact that
∥∥∥vk+1

i − xk−Ti(x
k)

γ

∥∥∥ ≤ R from Step 1),

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2ηR

+
2η

γ

1

M

M∑
i=1

∥∥(xk − γ∇fi(x
k))− Ti(xk)

∥∥+ 2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

From Lemma 9,

f(xk+1)− f inf ≤ f(xk)− f inf − η
∥∥∇f(xk)

∥∥+ 2ηR

+
2η

γ
γL

1

M

M∑
i=1

1

N

N−1∑
j=0

∥∥∥xk,j
i − xk

∥∥∥+ 2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

Next, from Lemma 8,

f(xk+1)− f inf ≤

(
1 +

4L
√
2L√

∆inf
γη

)
(f(xk)− f inf)− η

∥∥∇f(xk)
∥∥+ 2ηR

+4L
√
2Lγη

√
∆inf + 4L

√
2Lγη

√√√√ 1

M

M∑
i=1

∆inf
i

+2η
∥∥v̂k+1 − vk+1

∥∥+ Lη2

2
.

Since

E
[∥∥v̂k+1 − vk+1

∥∥] ≤ 1

γ
E

[∥∥∥∥∥ 1

M

M∑
i=1

vk+1
i − v̂k+1

∥∥∥∥∥
]

Lemma 3
≤ 1

γ

√
β2B

M
(K + 1),

by taking the expectation,

E
[
f(xk+1)− f inf

]
≤

(
1 +

4L
√
2L√

∆inf
γη

)
E
[
f(xk)− f inf

]
− ηE

[∥∥∇f(xk)
∥∥]+ 2ηR

+8L
√
2Lγη

√
∆inf + 4L

√
2Lγη

√√√√ 1

M

M∑
i=1

∆inf
i

+2η

√
β2B

M
(K + 1) +

Lη2

2
.
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By applying Lemma 5 with ηγ ≤ 1
K+1

∆inf

4L
√
2L

and using the fact (1 + ηγ 4L
√
2L

∆inf )K+1 ≤ exp(ηγ 4L
√
2L

∆inf (K + 1)) ≤
exp(1) ≤ 3 we finalize the proof.

G.3. Corollaries for Fed-α-NormEC with multiple local IG steps from Theorem 2

Corollary 5 (Convergence bound for Fed-α-NormEC with multiple local IG steps). Consider Fed-α-NormEC for solving
Problem (1) under the same setting as Theorem 2. Let T > 1 (multiple local GD steps). If γ = 1

2L(K+1)1/8
, v0i ∈ Rd

is chosen such that maxi∈[1,M ]

∥∥∥x0−Ti(x
0)

γ − v0i

∥∥∥ = D1

(K+1)1/8
with D1 > 0, and β = D2

(K+1)5/8
with D2 > 0, and

η = η̂
(K+1)7/8

with η̂ = min
(

∆inf

2
√
2L

, D1D2

4L(α+D1)

)
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ A1

(K + 1)1/8
+

A2

(K + 1)7/8
,

where A1 = 3 f(x0)−f inf

η̂ + 2D1 +
2
√
BD2√
M

+ 8
√
2L

√
∆inf + 4

√
2L

√
1
M

M∑
m=1

∆inf
i and A2 = η̂L/2.

Proof. The proof is analogous to the proof of Corollary 3.

Corollary 6 (Utility bound for Fed-α-NormEC with multiple local IG steps). Consider Fed-α-NormEC for solving

Problem (1) under the same setting as Theorem 2. Let T > 1 (multiple local GD steps), let σDP = c
p
√

(K+1) log(1/δ)

ϵ

with c > 0 (privacy with subsampling amplification), and let p = B̂
M for B̂ ∈ [1,M ] (client subsampling). If β = β̂

K+1

with β̂ =
√

3(f(x0)−f inf )
γ

4

√
M
B2

, γ < ∆inf (α+R)√
2Lβ̂R

, α = R = O
(

4
√
d

√
f(x0)−f inf

√
γ

4

√
B2

M

)
with B2 = 2c2 B̂

M
log(1/δ)

ϵ2 , and

η = 1
K+1

γ
2

β̂R
α+R , then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O

∆
4

√
dB̂

M2

log(1/δ)

ϵ2
+
√
L
√
∆inf +

√
L

√√√√ 1

M

M∑
i=1

∆inf
i

 ,

where ∆ = max(α, 2)
√
L
√
f(x0)− f inf .

Proof. The proof is analogous to the proof of Corollary 4.
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