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Abstract

Human annotations play a crucial role in evaluating the performance of GenAI
models. Two common challenges in practice, however, are missing annotations
(the response variable of interest) and cluster dependence among human-AI inter-
actions (e.g., questions asked by the same user may be highly correlated). Reliable
inference must address both issues to achieve unbiased estimation and appropri-
ately quantify uncertainty when estimating average scores from human annotations.
In this paper, we analyze the doubly robust estimator, a widely used method in
missing data analysis and causal inference, applied to this setting and establish
novel theoretical properties under cluster dependence. We further illustrate our
findings through simulations and a real-world conversation quality dataset. Our
theoretical and empirical results underscore the importance of incorporating cluster
dependence in missing response problems to perform valid statistical inference.

1 Introduction

Missing response/outcome variables are common in empirical research and present many challenges
to data analysis and interpretation. Such missingness can occur for various reasons, including
nonresponse in surveys (Hansen and Hurwitz, 1946; Chen and Haziza, 2019), dropout in longitudinal
studies (Hogan et al., 2004), or data entry errors (Bound et al., 2001; Schennach, 2016). If not
properly addressed, missingness can lead to biased estimates, reduced statistical power, and invalid
conclusions. Researchers have developed methods that leverage observed data to estimate missing
values under assumptions about the missingness mechanism, typically assuming i.i.d sampling.
Examples common in causal inference include outcome modeling, re-weighting, and combinations
of the two (Robins et al., 1994; Little and Rubin, 2019).

Clustered data, commonly encountered in fields such as education (Lüdtke et al., 2011), healthcare
(Austin and Merlo, 2017), and the social sciences (McNeish and Stapleton, 2016), refers to data
in which observations are naturally grouped into clusters or hierarchies. Typical examples include
students nested within schools or patients nested within hospitals, where clusters (e.g., schools or
hospitals) are sampled first, followed by individuals within those clusters. Another form of clustered
sampling arises in settings with repeated measurements on the same individuals. For instance, in
the evaluation of large language models (LLMs), users often provide multi-turn feedback, with
user-system interactions generated sequentially for each user. In this context, different users can
be treated as separate clusters. This clustering introduces within-cluster correlation, violating the
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assumption of independence commonly required by standard statistical methods. Researchers often
account for such clustering using specialized techniques such as multilevel modeling (Raudenbush
and Bryk, 2002), generalized estimating equations (Zorn, 2001), and cluster-robust inference (Hansen
and Lee, 2019). These methods provide valid inference by incorporating within-cluster variability
and appropriately accounting for the hierarchical structure of the data.

Analyzing clustered data while addressing missing responses and conducting causal inference with
individual-level treatments introduces additional complexities. Yang (2018) proposed a calibration
technique that balances both observed individual-level confounders and unobserved cluster-level
confounders. Suk et al. (2021); Suk and Kang (2022) adapted modern machine learning methods,
such as causal forests (Wager and Athey, 2018), to multilevel observational data. Park and Kang
(2021) introduced a refined method that models the conditional propensity score and the outcome
covariance structure to account for within-cluster correlations in the estimation procedures. For a
comprehensive review and comparison of propensity weighting approaches in multilevel data, see
Fuentes et al. (2022); Chang and Stuart (2022).

In this work, we study the properties of the widely used doubly robust estimator for handling missing
outcomes in clustered data. In the i.i.d. setting, this estimator is consistent for the average outcome
when either the outcome regression or the propensity score is correctly specified, and it achieves
parametric convergence rates even when nuisance functions are estimated at slower, nonparametric
rates. However, its behavior under cluster dependence is less well understood. Extending recent
work from Park and Kang (2021), we first establish a novel form of asymptotic normality for the
doubly robust estimator in the presence of clustered data by leveraging recent central limit theorems
designed for such settings. We show that the convergence rate depends on both the within-cluster
correlation of individual influence functions and the error in estimating nuisance functions. Notably,
the estimator can achieve faster rates than the conventional

√
G-rate (G is the number of clusters)

when cluster sizes are large and within-cluster dependence is weak. We then conduct extensive
simulation studies, which highlight the importance of accounting for within-cluster correlation and
using a cluster-robust variance estimator to obtain valid inference. Our results provide theoretical
justification for using doubly robust estimators in the analysis of clustered data, especially when the
cluster sizes are unbounded. The proposed methods, such as incorporating summaries of historical
information into the estimation procedure, have important applications in multi-turn LLM evaluation
with missing human annotations, as demonstrated in our real-data example.

The remainder of this paper is organized as follows: Section 2 introduces the problem setup and
notation. Section 3 examines the properties of the doubly robust estimator under homogeneous
sampling for clustered data. Our results extend the theoretical analysis in Park and Kang (2021) by
allowing for unbounded cluster sizes and rates adaptive to cluster dependence. Section 4 presents a
method for incorporating temporal dependence within each cluster into estimation with interesting
applications in LLM evaluations. Numerical experiments and a real-world example that illustrate our
results are provided in Section 5–6. Finally, we conclude with additional discussion in Section 7. All
proofs, additional discussion on related work and details of numerical experiments are included in
the Appendix.

2 Setup and Notation

Let g ∈ [G] denote the index of G clusters and i ∈ [ng] index ng individuals in the g-th cluster.
For each individual i in the g-th cluster, let Wgi represent the individual-level covariates and Xg

represent the cluster-level covariates. For example, in educational assessment studies, clusters
typically correspond to different schools, with individuals being the students within those schools.
Cluster-level covariates might include the type and location of the school, while individual-level
covariates could encompass factors such as age, test scores, and prior educational experience of
students. In the context of LLM evaluation, one user (associated with user-level covariates Xg)
typically asks multiple questions and provides feedback. Different questions and their corresponding
answers (i.e., the individual-level covariates Wgi) generated by the LLM are often correlated. Instead
of treating all question-answer pairs as independent data, it may be more appropriate to consider
questions and answers associated with the same user as a cluster, where data from different clusters
are independent, but dependencies within clusters exist.
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Let Ygi denote the outcome of interest for i-th individual in g-th cluster. In education assessment, Ygi
may represent the score of a student’s academic performance or psychological well-being. In LLM
evaluations, Ygi is the score provided by the user and we are interested in estimating the average
score to understand the performance of the LLM system/platform. In real applications, the surveyed
outcome Ygi may not be observed for all data points. For instance, in the aforementioned examples,
some students or users may choose not to provide their scores, resulting in missing response data.
Let Rgi denote the missing indicator, where Rgi = 1 if Ygi is observed and Rgi = 0 otherwise. With
this notation, the observed data of each individual is Ogi = (Xg,Wgi, Rgi, RgiYgi).

3 Clustered Missing Data under Homogeneous Sampling

In this section, we begin by considering a simplified setting where the observed data {Ogi, 1 ≤ i ≤
ng, 1 ≤ g ≤ G} are assumed to be identically distributed, and the missingness of each individual’s
outcome is solely dependent on their own covariates. The analysis in this homogeneous sampling
setting extends naturally from the i.i.d. case. To identify the average outcome in the missing data
setting, we impose the Missing at Random (MAR) assumption on the data-generating process.
Assumption 1 (Missing at random). Rgi ⊥⊥ Ygi | Xg,Wgi and π(Xg,Wgi) := P(Rgi = 1 |
Xg,Wgi) > 0 almost surely.

Assumption 1 requires that the cluster-level covariates and individual-level covariates together fully
explain the missingness mechanism. When unobserved confounders may influence the missingness
mechanism, the MAR assumption may no longer hold. To assess the sensitivity of our results to
such violations, we can follow the framework of Cinelli and Hazlett (2020), which extends classical
omitted variable bias analysis. This approach quantifies the strength that an unobserved confounder
would need to exhibit—measured by its partial R2 with both the treatment or missingness indicator
and the outcome—to reduce the estimated effect to zero or render it statistically insignificant. The
robustness value (RV) summarizes this threshold and can be benchmarked against observed covariates
for interpretation.

Assumption 1 also requires the missingness mechanism to be single-level and homogeneous across
clusters. In scenarios where the missingness mechanism is known to be heterogeneous and the mean
outcome within each cluster is of interest (i.e., E[Ygi | G = g]), researchers can build cluster-specific
propensity score models (e.g., random fixed-effects logistic models) to achieve better balance within
clusters (Li et al., 2013; Thoemmes and West, 2011; Arpino and Mealli, 2011). The trade-off is that
such an approach requires sufficiently large cluster sizes to reliably estimate propensity scores for
each cluster. In our approach, propensity scores estimated from single-level models can be effectively
used to balance observed covariates across clusters and to estimate the average outcome over all
individuals (Suk et al., 2021; Park and Kang, 2021).

Consider the following data-generating process: First, sample G i.i.d. cluster-level covariates
X1, . . . ,XG ∼ PX. Within each cluster, ng identically distributed (but typically not independent due
to within-cluster dependency) individual-level covariates Wg1, . . . ,Wgng

∼ PW|Xg
are sampled.

For each individual, the missing indicator Rgi is then generated from Bernoulli(π(Xg,Wgi)),
followed by sampling Ygi from PY |Xg,Wgi,Rgi=1 with conditional mean µ(Xg,Wgi). Note that we
assume the regression function E[RgiYgi | Xg,Wgi, Rgi = 1] = µ(Xg,Wgi), implying it is also not
cluster-specific. Under this sampling scheme, the observations {Ogi = (Xg,Wgi, Rgi, RgiYgi), 1 ≤
i ≤ ng, 1 ≤ g ≤ G} are identically distributed and {Ogi, 1 ≤ i ≤ ng} are independent of
{Ohj , 1 ≤ j ≤ nh} for g ̸= h (i.e., the clusters are independent). However within the cluster,
the dependency among {Wgi, 1 ≤ i ≤ ng} is arbitrary. The likelihood function of {Ogi =
(Xg,Wgi, Rgi, RgiYgi), 1 ≤ i ≤ ng, 1 ≤ g ≤ G} is

G∏
g=1

{
fx(Xg)fw(Wg1, . . . ,Wgng | Xg)

×
ng∏
i=1

[fy(Ygi | Xg,Wgi, Rgi = 1)π(Xg,Wgi)]
Rgi (1− π(Xg,Wgi))

1−Rgi

}
.

When Xg fully explains the dependence among W1, . . . ,Wng
, we can express their joint distri-

bution as fw(W1, . . . ,Wng
| Xg) =

∏ng

i=1 fw(Wi | Xg), i.e., the individual-level covariates
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W1, . . . ,Wng are conditionally independent given the cluster-level covariates Xg . However, we do
not impose this assumption on the data-generating process for generality. In the extreme case, it is
possible that Og1 = · · · = Ogng , meaning all observations within the g-th cluster are identical. Let
n =

∑G
g=1 ng denote the total sample size. In this work, we allow ng → ∞ as n→ ∞.

In this section, we are interested in estimating the average outcome θ = E[Ygi] across all individuals,
where each individual is given equal weight. Under Assumption 1, E[Ygi] is identified as

θ = E[Ygi] = E[E(RgiYgi | Xg,Wgi, Rgi = 1)] = E[µ(Xg,Wgi)]. (1)

Since the distribution of (Xg,Wgi) is consistent across all g and i, θ is independent of both g and i,
ensuring that it is well-defined.

3.1 Doubly Robust Estimation

Given expression (1) and an estimator of µ as µ̂, a natural plug-in-style estimator is

θ̂OR =
1

n

G∑
g=1

ng∑
i=1

µ̂(Xg,Wgi).

This estimator corresponds to regression-based imputation and is consistent (under mild conditions)
when µ̂ is consistent. However, the plug-in-style estimator usually suffers from first-order bias and is
not robust to model misspecification (Bang and Robins, 2005; Funk et al., 2011). To address these
issues, we consider the following doubly robust estimator that leverages both the estimated outcome
model µ̂ and propensity score π̂ (Robins et al., 1994; Scharfstein et al., 1999; Kennedy, 2024):

θ̂DR =
1

n

G∑
g=1

ng∑
i=1

[
Rgi(Ygi − µ̂(Xg,Wgi))

π̂(Xg,Wgi)
+ µ̂(Xg,Wgi)

]
. (2)

In the classic i.i.d. setting, the doubly robust estimator remains consistent as long as either µ̂ or π̂
is consistent, with conditional bias depending on the product of nuisance estimation errors. The
following theorem characterizes its similar theoretical guarantees in the clustered setting.

Theorem 1. Let φ(Ogi) =
Rgi(Ygi−µ(Xg,Wgi))

π(Xg,Wgi)
+ µ(Xg,Wgi) be the individual influence function.

Under Assumption 1, assume there exist some constant C, c > 0 such that

1. For some r ≥ 2, we have

E [|φ(Ogi)|r] <∞,

(∑G
g=1 n

r
g

)2/r
n

≤ C <∞, max
g≤G

n2g
n

→ 0. (3)

2. Ωn = 1
n

∑G
g=1 Var

(∑ng

i=1 φ(Ogi)
)
≥ c > 0.

3. π̂, µ̂ are estimated from a separate independent sample D satisfying π̂ ≥ c > 0 .

Then we have

θ̂DR − θ =
1

n

G∑
g=1

ng∑
i=1

(φ(Ogi)− θ) +R1 +R2,

R1 = OP (∥µ̂− µ∥∥π̂ − π∥) , R2 = OP


√∑G

g=1 Var
(∑ng

i=1 φ̂(Ogi)− φ(Ogi) | D
)

n

 ,

where for a (potentially random) function f of the observation, ∥f∥ =
√∫

f2(o)dP(o). Assuming

R1 +R2 = oP

(√
Ωn/n

)
, we have√

n

Ωn
(θ̂DR − θ)

d→ N(0, 1).
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By deriving a bound on the conditional variance term under the worst-case scenario of perfect
within-cluster dependence, we have the following corollary.

Corollary 1. Under the conditions in Theorem 1, the conditional variance can be bounded as√∑G
g=1 Var

(∑ng

i=1 φ̂(Ogi)− φ(Ogi) | D
)

n
≤

√∑G
g=1 n

2
g∥φ̂− φ∥2

n
.

Consequently, under the following rate conditions

∥µ̂− µ∥∥π̂ − π∥ = oP

(√
Ωn

n

)
, ∥φ̂− φ∥ = oP

(√
nΩn∑G
g=1 n

2
g

)
,

the asymptotic normality in Theorem 1 holds.

In practice, the individual influence function φ is often bounded, which implies E [|φ(Ogi)|r] <∞.
As we note above, Park and Kang (2021) also establishes the asymptotic normality of the DR
estimator under clustered sampling, but require bounded cluster sizes ng ≤M <∞. We generalize
the results in Park and Kang (2021) and allow each cluster size ng to diverge as n→ ∞, provided
that (3) is satisfied. The second inequality in (3) is less restrictive for large r since(∑G

g=1 n
r
g

)2/r
n

→ max
g≤G

n2g
n

as r → ∞ and condition
(∑G

g=1 n
r
g

)2/r
/n ≤ C is reduced to maxg≤G n

2
g/n ≤ C, which is implied

by the last inequality in (3). We also note that when (3) holds, the number of clusters G→ ∞ since

1 =

∑G
g=1 ng

n
≤ G max

1≤g≤G

ng
n

≤ G max
1≤g≤G

n2g
n
.

In Condition 2 of Theorem 1, Ωn is the asymptotic variance of
√
nθ̂DR, which determines the final

convergence rate. Condition 2 rules out degenerate cases where Var(
√
nθ̂DR) vanishes. Condition 3

imposes requirements on the convergence rate of nuisance functions estimation. Different from the
i.i.d. setting where the estimator achieves a

√
n-rate, Ωn may diverge with n when the within-cluster

correlation is strong, resulting in a slower convergence rate. Consequently, compared with the rate
condition ∥µ̂− µ∥∥π̂− π∥ = oP (1/

√
n) in the i.i.d. setting, the nuisance functions can be estimated

at a slower rate in our clustered setting since the final target rate may also be slower.

In contrast to most existing work (Chen and Zhou, 2011; Yang, 2018; Alene et al., 2025), our
results accommodate fully nonparametric and flexible modeling of the nuisance functions. In the
literature, many results exist on regression function estimation for dependent observations, including
GLM modeling (Daskalakis et al., 2019), wavelet-based methods (Yogendra P. Chaubey and Shirazi,
2013), kernel regression (Shimizu, 2024), random forests (Young and Bühlmann, 2025) and neural
networks (Kohler and Krzyżak, 2023). The dependency structure among observations can be spatial,
temporal, or induced by a social network (Kandiros et al., 2021). Notably, i.i.d.-based nonparametric
and machine learning methods are commonly employed to study treatment effects in multilevel
settings (Carvalho et al., 2019), despite the presence of within-cluster dependency, likely due to
their simplicity (Park and Kang, 2021). While nonparametric machine learning methods in nuisance
estimation help avoid model misspecification, their theoretical guarantees require further investigation
depending on the specific dependence structure of the data.

As established in Theorem 1, the convergence rate of θ̂DR is
√
n/Ωn, which adapts to the degree of

within-cluster dependence among the influence functions {φ(Ogi) : 1 ≤ i ≤ ng}. This behavior
differs from most existing work on missing data or causal inference in clustered settings (e.g., Park
and Kang, 2021), which often imposes bounded cluster sizes and can only achieve a

√
G-rate,

corresponding to perfect within-cluster dependence. When within-cluster dependence is weak, θ̂DR

can converge at a faster rate than
√
G. Additional examples in Appendix B further illustrate these

conditions and convergence rates under various dependence structures.
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To estimate the variance in this homogeneous sampling setting, denote φ̃(Og) =
∑ng

i=1 φ(Ogi). We
can re-write Ωn = 1

n

∑G
g=1 E[φ̃2(Og)]− 1

n

∑G
g=1 n

2
gθ

2. A natural estimator for Ωn is then given by

Ω̂n =
1

n

G∑
g=1

(
ng∑
i=1

φ̂(Ogi)

)2

− 1

n

G∑
g=1

n2g θ̂
2
DR. (4)

Under the conditions of Theorem 1, we can show that Ω̂n is a consistent estimator of Ωn in the
sense that Ω̂n/Ωn

P→ 1. Therefore, Ω̂n/n can be used as a cluster-robust variance estimator for θ̂DR
to perform statistical inference. A more robust—though computationally intensive—approach to
variance estimation involves bootstrapping at the cluster level (Field and Welsh, 2007). Depending
on the data-generating process, one may choose to resample both clusters and individuals (i.e., a
two-stage bootstrap) or to resample clusters only. An alternative is the cluster wild bootstrap, which
is well-suited for settings with heteroskedasticity, few clusters, or varying cluster sizes (MacKinnon
and Webb, 2017). For a comprehensive discussion of resampling methods for clustered data, see
Leeden et al. (2008).

4 Clustered Missing Data under Sequential Sampling

In this section, we relax the homogeneous sampling assumption and study the estimation problem
in the presence of temporal dependency within each cluster. For example, in the context of LLM
evaluation, each user may ask questions in a sequential manner. In this sequential setting, the
missingness mechanism of the outcome Ygt at time t may depend on the history (i.e., information
before time t).

For cluster g with cluster-level covariates Xg , let Wgt = (Wg1, . . . ,Wgt),Rgt = (Rg1, . . . , Rgt),
RYgt = (Rg1Yg1, . . . , RgtYgt) denote the individual-level covariates, missing indicators and out-
comes up to time t, respectively. The observations within the same cluster {Og1, . . . ,Ogng} are
assumed to be generated sequentially. Let Hgt =

(
Wgt,Rg,t−1,RYg,t−1

)
denote the past history

just prior to observing Rgt, RgtYgt at time t. The following sequential missing at random assumption
is imposed on the data-generating process.

Assumption 2 (Sequential missing at random). Rgt ⊥⊥ Ygt | Xg,Hgt.

Assumption 2 implies that the missingness at time t only depends on the history Hgt and cluster-
level covariates Xg. Denote πgt(Xg,Hgt) = P(Rgt = 1 | Xg,Hgt) and µgt(Xg,Hgt) =
E[RgtYgt | Xg,Hgt, Rgt = 1]. The data-generating process is as follows: First sample G
i.i.d. cluster-level covariates X1, . . . ,XG ∼ PX. For the t-th observation in the g-th cluster,
we generate Wgt conditioned on the history up to time t: Wg,t−1,Rg,t−1,RYg,t−1. The miss-
ing indicator Rgi is then generated from Bernoulli(πgt(Xg,Hgt)), following which Ygt is sam-
pled from PYgt|Xg,Hgt,Rgt=1 with conditional mean µgt(Xg,Hgt). The likelihood function of
{Ogt = (Xg,Wgt, Rgt, RgtYgt), 1 ≤ t ≤ ng, 1 ≤ g ≤ G} is

G∏
g=1

fx(Xg)

ng∏
t=1

{
fwgt

(Wgt | Xg,Hg,t−1, Rg,t−1, Rg,t−1Yg,t−1)

×
[
πgt(Xg,Hgt)fygt

(Ygt | Xg,Hgt, Rgt = 1)
]Rgt

(1− πgt(Xg,Hgt))
1−Rgt

}
.

Under Assumption 2, the average outcome that we are interested in is

ψn =
1

n

G∑
g=1

ng∑
t=1

E[Ygt] =
1

n

G∑
g=1

ng∑
t=1

E[µgt(Xg,Hgt)].

Note that the variables (Xg,Hgt) no longer share the same distribution across different times and
clusters. The regression function and propensity score are both cluster- and time-specific. Hence,
several challenges arise in estimating ψn by leveraging the nuisance functions:

1. Some clusters are small and do not support the modeling of cluster-level nuisance functions.
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2. Different clusters have varying time steps depending on their size (e.g., some users may ask
more questions than others). When only a small number of users ask more than t questions
(for large t), estimating the nuisance functions µgt and πgt becomes challenging.

3. The dimension of Hgt increases over time (i.e., the dimension of the arguments for these
nuisance functions grows), which is important to note if one aims to simplify the modeling
procedure by constructing unified models that are not cluster- or time-specific.

Given these challenges, we propose the following assumption to simplify estimation.
Assumption 3. There exists an observed variable Sgt ∈ σ(Xg,Hgt) and functions π, µ : X×S → R
such that

πgt(Xg,Hgt) = π(Xg,Sgt), µgt(Xg,Hgt) = µ(Xg,Sgt).

The variable Sgt can be viewed as a sufficient summary of the historical information up to time
t. In practice, the choice of Sgt often requires domain knowledge. Common choices include
average or cumulative measures of past information. For example, in mobile health studies, a
user wears a fitness tracker that collects data daily. The device may fail to record data at time t
due to battery depletion, which depends on historical usage; in this case, Sgt could represent the
cumulative device usage over the past few days. In educational testing or tutoring systems, whether a
student attempts a question at time t may depend on cumulative difficulty or frustration from earlier
interactions. Here, Sgt might be defined as the number of incorrect attempts or a difficulty-adjusted
score accumulated up to time t. In the LLM evaluation setting, whether users provide feedback
may depend on their prior interactions with the system. Accordingly, Sgt can be constructed as
the embedding of the concatenated conversation history Wgt up to time t, or from the most recent
d conversations Wg,t−d+1, . . . ,Wgt. These embeddings remain of fixed length regardless of the
length of the conversation history.

Assumption 3 also simplifies the data-generating process by assuming the missingness mechanism and
the regression function of Ygt depend on the cluster-level covariates Xg and summarized information
at time t, Sgt, in the same way (i.e., they are not cluster- or time-specific). The doubly robust
estimator of ψn is then given by

ψ̂DR =
1

n

G∑
g=1

ng∑
t=1

[
Rgt(Ygt − µ̂(Xg,Sgt))

π̂(Xg,Sgt)
+ µ̂(Xg,Sgt)

]
, (5)

where we slightly abuse the notation and still denote the influence function as φ(Zgi) =
Rgt(Ygt−µ(Xg,Sgt))

π(Xg,Sgt)
+ µ(Xg,Sgt) with Zgi = (Xg,Sgi, Rgt, RgtYgt) including both the observation

and the summarized information Sgt at time t. While the idea of using summary statistics to simplify
nuisance function modeling has been mentioned in Park and Kang (2021), our work formalizes this as
an explicit assumption and establishes corresponding theoretical guarantees in the following theorem.
Theorem 2. Under Assumption 2–3, further assume

1. For some r ≥ 2, {|φ(Zgt)|r, 1 ≤ t ≤ ng, 1 ≤ g ≤ G} are uniformly integrable, i.e.,

lim
M→∞

sup
g,t

E [|φ(Zgt)|r I (|φ(Zgt)| > M)] = 0.

The cluster sizes and total sample size satisfy(∑G
g=1 n

r
g

)2/r
n

≤ C <∞, max
g≤G

n2g
n

→ 0. (6)

2. Ωn = 1
n

∑G
g=1 Var

(∑ng

t=1 φ(Zgt)
)
≥ c > 0.

3. π̂, µ̂ are estimated from a separate independent sample D satisfying π̂ ≥ ϵ > 0 .

Then we have

ψ̂DR − ψn =
1

n

G∑
g=1

ng∑
t=1

(φ(Zgt)− E[φ(Zgt)]) + T1 + T2,
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T1 = OP


√∑G

g=1 Var
(∑ng

i=1 φ̂(Zgt)− φ(Zgt) | D
)

n

 ,

T2 = OP

(
1

n

G∑
g=1

ng∑
t=1

∥π̂(Xg,Sgt)− π(Xg,Sgt)∥∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥

)
.

Assuming T1 + T2 = oP

(√
Ωn/n

)
, we have√
n

Ωn
(ψ̂DR − ψn)

d→ N(0, 1).

Theorem 2 establishes the asymptotic normality of the doubly robust estimator when the obser-
vations Zgt may follow heterogeneous distributions. In this setting, a uniform integrability con-
dition—analogous to Lindeberg’s condition when r = 2—is required to ensure no single term
dominates the sum (Hansen and Lee, 2019). The conditional bias term T2 depends on the average
nuisance estimation error across all n observations. We further provide a worst-case bound on both
the empirical process and bias terms in the following corollary, similar to the result in Corollary 1.

Corollary 2. Under the conditions in Theorem 2, we have the following bound on the error terms:√∑G
g=1 Var

(∑ng

i=1 φ̂(Zgt)− φ(Zgt) | D
)

n
= OP

 1

n

√√√√ G∑
g=1

n2g sup
z

ED [(φ̂(z)− φ(z))2]

 ,

1

n

G∑
g=1

ng∑
t=1

∥π̂(Xg,Sgt)− π(Xg,Sgt)∥∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥

=OP

(√
sup
x,s

ED [(π̂(x, s)− π(x, s))2] sup
x,s

[ED(µ̂(x, s)− µ(x, s))2]

)
,

where the supremum is taken over the support of the corresponding variables. Consequently, if we
further assume √

sup
z

ED [(φ̂(z)− φ(z))2] = o

(√
nΩn∑G
g=1 n

2
g

)
,

√
sup
x,s

ED[(µ̂(x, s)− µ(x, s))2] sup
x,s

ED[(π̂(x, s)− π(x, s))2] = o

(√
Ωn

n

)
,

the asymptotic normality in Theorem 2 holds.

Finally, our approach of using a summary to simplify the modeling of within-cluster dependence
can be extended to other settings. For instance, when clusters are defined by a network model,
characteristics of an individual’s neighbors (e.g., degree or sum of edge weights) can be instrumental
and serve as the summary information in modeling the missingness mechanism. Similar asymptotic
normality results can be derived by leveraging the central limit theorem for clustered data.

5 Simulation Study

This section presents simulation studies to illustrate our theoretical results; full details are provided
in Appendix C. In the first study, we compare confidence intervals using i.i.d.-based and cluster-
robust variance estimators. Figure 1(a) shows that only the cluster-robust approach achieves nominal
95% coverage, underscoring the importance of accounting for cluster dependence. In the second
study, we evaluate the impact of incorporating historical information when modeling missingness
in sequential data. As shown in Figure 1(b), modeling the missingness mechanism with relevant
historical summaries improves performance compared to using only current information or ignoring
missingness, highlighting the importance of leveraging past interactions in sequential settings.
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Figure 1: Simulation results.

6 Real Data Analysis

The alignment of AI systems with human preferences is a critical area of research. A key challenge for
prominent methods such as Preference Flow Matching (Kim et al., 2025) and Reinforcement Learning
from Human Feedback (RLHF) (Bai et al., 2022; Casper et al., 2023) is that human annotations
for evaluating alignment are often costly and incomplete. In this context, we illustrate our methods
using the OpenAssistant Conversations dataset (Köpf et al., 2023), a human-annotated conversation
corpus structured as trees, with each tree representing a conversation cluster and its messages as
individual observations. The cleaned dataset includes 9,808 trees and 81,937 messages, with message-
level covariates such as content and role, and tree-level covariates such as language. We focus
on annotations for quality, creativity, humor, and toxicity, and consider two missingness
mechanisms: (i) missingness depends only on observed covariates (Assumption 1), or (ii) missingness
depends on the conversation history (Assumption 2) leading up to the message node, i.e., the path
from the root to the message within the conversation tree. The individual-level covariates Wgi are
message embeddings and role, and the cluster-level covariate Xg is language; missingness
is simulated via a logistic model. We estimate average annotation scores using three methods: (1)
naive i.i.d.-based confidence intervals only using data with annotations observed, (2) doubly robust
estimation assuming independence, and (3) doubly robust estimation with cluster-robust variance
estimation as in Eq. (4). More details about the dataset, missingness and estimation can be found in
Appendix D. Figure 2 shows the resulting confidence intervals for each annotation type, compared to
the ground truth average 1

n

∑G
g=1

∑ng

i=1 Ygi.

Figure 2 shows that unadjusted estimates, which ignore observations with missing annotations, are
biased and yield confidence intervals that fail to cover the true average. This bias arises because
covariates Wgi and Xg influence both the missingness and the outcome, acting as confounders. The
doubly robust adjusted estimates correct for this bias and are closer to the ground truth. Among the
adjusted methods, confidence intervals assuming independence are narrower but may undercover
due to within-cluster dependence. For example, in Figure 2(c), the interval for humor under the
i.i.d. assumption fails to cover the true value, while the cluster-robust interval does. These results
underscore the need to account for cluster dependence when constructing valid confidence intervals.

7 Discussion

This paper studies mean estimation with missing responses under cluster dependence, focusing on the
widely used doubly robust estimator and establishing its theoretical guarantees in clustered settings.
We mainly consider two primary scenarios—homogeneous sampling and sequential dependence—but
our methods extend to more general structures like network dependence. Our theoretical and
empirical results highlight the importance of properly accounting for cluster dependence, with
valuable implications for applications such as LLM evaluation using limited human annotations.

There are several directions for future research. First, the doubly robust estimator can be unstable
when propensity scores are near zero; using balancing weights may offer a more stable alternative
(Ben-Michael et al., 2024), and its performance under cluster or sequential dependence requires
further study. Second, estimating means in target populations with only covariate information—such
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Figure 2: Confidence intervals for average human annotations on quality, creativity, humor, and
toxicity under homogeneous sampling. The red dashed line is the ground truth average.

as evaluating a different language model without human annotations—is related to covariate shift
(Sugiyama and Kawanabe, 2012) and generalization/transportation (Dahabreh et al., 2020; Zeng
et al., 2023). Investigating these extensions is also a promising direction for future work. Another
interesting and important direction is to develop theory and methods for flexible regression and
propensity score estimation under clustered settings, to enable more reliable ATE estimation using
nonparametric doubly robust methods.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset used in this paper is publicly available, and we do not release any
new models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors cite the original papers that produced the code package or dataset
under proper licenses.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide codes with explanations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper’s contributions are mainly theoretical and methodological. It does
not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper’s contributions are mainly theoretical and methodological. It does
not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used to improve the writing and phrasing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

In the i.i.d. setting, it is well-established that estimating the average treatment effect under the
exchangeability assumption is equivalent to estimating the mean in a missing data problem under
missing at random (MAR), with the treatment assignment analogous to a missingness indicator
(Tsiatis, 2006). However, when cluster dependence is present, the problem setup, estimands of
interest, and analytical techniques diverge substantially.

In the literature on cluster-randomized trials (Balzer et al., 2019; Wang et al., 2021; Schochet, 2022),
treatments are assigned at the cluster level, so all individuals within a cluster receive the same
treatment. In contrast, our setting involves individual-level missingness indicators within clusters,
allowing each individual to have their own observed or missing outcome.

Other works in causal inference consider individual-level treatments within clusters but focus on
interference—where one individual’s outcome depends on the treatment assignments of others in
the same cluster (Liu et al., 2019; Vazquez-Bare, 2023). Under interference, even a single unit’s
treatment status can affect the observability of potential outcomes for the entire cluster, which differs
fundamentally from our MAR-based framework. In our setting, missingness is modeled directly via
Rgi, and each individual’s outcome may be observed or unobserved regardless of others in the same
cluster.

While some doubly robust methods for clustered data exist in the causal inference and missing
data literature (Chen and Zhou, 2011; Yang, 2018; Alene et al., 2025), these approaches often
rely on parametric assumptions for nuisance functions π and µ. In contrast, our approach is fully
nonparametric and accommodates modern machine learning techniques for nuisance estimation.

Finally, most existing analyses do not leverage recent central limit theorems (CLTs) for clustered
data (Hansen and Lee, 2019), which limits their applicability to settings with equal or bounded
cluster sizes and often leads to overly conservative

√
G-rate results. For instance, in the Appendix of

Park and Kang (2021); Alene et al. (2025), theoretical guarantees for the doubly robust estimator
in multilevel observational studies are established, but they require bounded cluster sizes and only
achieve a

√
G-rate. In contrast, our analysis accommodates diverging cluster sizes and achieves a

convergence rate of
√
n/Ωn, which can be faster than the

√
G-rate when within-cluster dependence

is weak.

B Illustrative Examples of Convergence Rates

Consider a setting where all clusters are of equal size ng = nα for some α ∈ (0, 1), and the total
number of clusters is G = n1−α. Under this setup, condition (3) simplifies to α ≤ (r − 2)/(2r − 2).

We first provide two examples under the homogeneous sampling setting as in Section 3.
Example 1 (i.i.d. sampling). Consider a special case where individual influence functions
{φ(Ogi), 1 ≤ i ≤ ng} are independent within clusters This scenario could arise when π and
µ are functions only of W and {Wgi, 1 ≤ i ≤ ng} are independent. In this case, we have

Ωn = Var(φ(Ogi)),

which is a constant and we assume it is positive. The conditions on nuisance estimation to achieve√
n-rate in Theorem 1 are

∥µ̂− µ∥∥π̂ − π∥ = oP
(
1/
√
n
)
, ∥φ̂− φ∥ = oP (1) ,

which are the same as conditions for the doubly robust estimator to be
√
n-consistent in the i.i.d.

setting. However, Corollary 1 requires the stronger conditions:

∥µ̂− µ∥∥π̂ − π∥ = oP
(
1/
√
n
)
, ∥φ̂− φ∥ = oP

(
1/
√
nα
)
.

The need for these stronger conditions in Corollary 1 arises from our worst-case analysis of the
variance when bounding the empirical process term, which may not be tight when independence also
holds within clusters.
Example 2 (Perfect correlation within cluster). Consider another special case where, for each cluster
g, the individual influence functions and their estimates are all equal (i.e., φ(Og1) = · · · = φ(Ogng

)
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and φ̂(Og1) = · · · = φ̂(Ogng )), so within-cluster dependency is perfect. We have

Ωn = nα Var(φ(Ogi)),

and the convergence rate is
√

Ωn/n ≍ n−(1−α)/2 = G−1/2. Intuitively, the effective sample size is
G since we effectively only have repeated measures within each cluster. The conditions on nuisance
estimation required to achieve the

√
G-rate in Theorem 1 are

∥µ̂− µ∥∥π̂ − π∥ = oP

(
1√
G

)
, ∥φ̂− φ∥ = oP(1).

We provide another example where the influence functions of different observations have weak
stationary dependence in the temporal setting (Section 4).
Example 3 (Weak stationary dependence). Consider the case where within each cluster, the sequence
of individual influence functions satisfies the following weak stationary condition:

Var(φ(Zgt)) = 1, Cov (φ(Zgt), φ(Zgs)) = 1/|t− s|, 1 ≤ s, t ≤ ng, s ̸= t.

Recall that in all examples we assume ng = nα, G = n1−α. Simple calculations yield

Ωn =
1

n
G

[
2nα

nα−1∑
t=1

1

t
− nα + 2

]
≍ log n

and the convergence rate of ψ̂ is
√
log n/n. The rate condition on nuisance function estimation is√

sup
z

ED [(φ̂(z)− φ(z))2] = o

(√
log n

nα

)
,

√
sup
x,s

ED[(µ̂(x, s)− µ(x, s))2] sup
x,s

ED[(π̂(x, s)− π(x, s))2] = o

(√
log n

n

)
.

Finally, we provide an example that illustrates the impact of heterogeneous cluster sizes.
Example 4 (Heterogeneous cluster sizes). Consider a setting with two types of cluster sizes: size 1
and size nα. There are n/2 clusters of the first type and n1−α/2 clusters of the second type, so the
total number of clusters is

G =
n

2
+
n1−α

2
≍ n.

Within each cluster, assume the individual influence functions and their estimates are all identical
with unit variance. Then

Ωn =
n+ n2α · n1−α

2n
≍ nα,

and the resulting convergence rate is √
Ωn

n
≍ n−(1−α)/2,

which is slower than both
√
n and

√
G, since G ≍ n. The corresponding rate condition for nuisance

estimation is
∥µ̂− µ∥∥π̂ − π∥ = oP

(
n−(1−α)/2

)
, ∥φ̂− φ∥ = oP(1).

This example highlights the importance of accounting for heterogeneous cluster sizes. Although the
total number of clusters G is large and of the same order as n, the convergence rate is driven by the
relatively small number of large clusters, within which the correlation is perfect.

C Simulation Details

In this section, we provide details for simulation studies that illustrate our theoretical results. In
Appendix C.1, we provide details of numerical experiments that highlight the importance of account-
ing for cluster dependence and using a cluster-robust variance estimator to ensure proper coverage
probabilities of confidence intervals. Additionally, in Appendix C.2, we present details of numerical
experiments demonstrating the critical role of historical information in adjusting for missingness in a
sequential setting.
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C.1 Homogeneous Sampling

Consider the following data-generating process: For each cluster g, the cluster-level covariate
Xg ∼ N(0, 1). Then the individual-level covariates Wg ∼ N(1ngXg, σ

2Σ) given Xg, where
Σij = ρ|i−j| for ρ = 0.8, σ2 = 4. For each individual i, the missing indicator Rgi is sampled
from a Bernoulli distribution with mean π(Xg,Wgi) = logistic(Xg + 0.5Wgi) and the outcome Ygi
is sampled from N(−Xg +Wgi + 0.5, 1). The average outcome is θ = 0.5. In this experiment,
we evaluate the necessity of considering the cluster structure in the estimation by comparing the
coverage probability of confidence intervals based on two different variance estimators. The first

variance estimator is σ̂2
1 = 1

n−1

∑G
g=1

∑ng

i=1

(
φ̂(Ogi)− θ̂DR

)2
, which is a consistent estimator of

variance if observations {Ogi, 1 ≤ i ≤ ng, 1 ≤ g ≤ G} are independent. The second estimator is
σ̂2
2 = Ω̂/n with Ω̂ given by (4) and takes the cluster structure into account. In each replication of

experiment, we generate the data with total sample size n = 10000 and cluster size ng = nα for
α ∈ {0.1, 0.15, . . . , 0.5}, compute the doubly robust estimator θ̂DR and construct Wald-confidence
intervals based on σ̂2

1 , σ̂
2
2 . We then repeat the process M = 500 times and estimate the coverage

probability of the 95% confidence intervals obtained. The results are summarized in Figure 1(a).

Figure 1(a) shows that the confidence intervals based on σ̂2
2 attain the nominal coverage probability of

0.95, as they appropriately account for the cluster dependence in the data. In contrast, the confidence
intervals based on σ̂2

1 suffer from lower coverage probabilities than the nominal level, because σ̂2
1

ignores the cluster structure and consequently underestimates the variance.

C.2 Sequential Sampling

Consider the following data-generating process: For each cluster g, the cluster-level covariate
Xg ∼ N(0, 1). The individual-level covariates are generated sequentially from an AR(2) process.
Specifically,

Wgt = A1Wg,t−1 +A2Wg,t−2 + ϵt, ϵt ∼ N(0, 4I2).

Let Sgt =
(
max1≤s≤t,1≤k≤2Wgsk,min1≤s≤t,1≤k≤2Wgsk,

1
t

∑t
s=1 Wgs

)
∈ R4 be the summary

of past information up to time t. For each time t, the missing indicator Rgt is sampled from
a Bernoulli distribution with mean π(Xg,Sgt) = logistic(Xg + (1, 0.8,−0.5, 0.3)⊤Sgt) and the
outcome Ygi is sampled from N(−Xg + (1, 1,−0.5,−0.4)⊤Sgt + 1, 1). The average outcome is
ψ = 1. In this experiment, we demonstrate the importance of adjusting for a useful summary of
past information in modeling the missingness mechanism by comparing two estimators. The first
one models the missingness mechanism π as a function of Xg,Wgt while the second fits π as a
function of Xg,Sgt. We also include the unadjusted estimator as a baseline. In each replication of the
experiment, we generate the data with total sample size n ∈ {2000, 4000, . . . , 16000} and cluster
size ng = n0.4, compute two doubly robust estimators ψ̂DR adjusting for different information
and evaluate the estimation error. We then repeat the process M = 500 times and estimate the
Rooted-Mean-Squared-Error (RMSE) as

ˆRMSE =

√√√√ 1

M

M∑
m=1

(ψ̂m
DR − ψ)2.

The results are summarized in Figure 1(b). As shown in Figure 1(b), the estimator that models the
missingness mechanism using the correct historical information outperforms the one that adjusts
only for the current information at each time t. This highlights the importance of incorporating
relevant past information when modeling missingness in a sequential setting, such as users’ sequential
interactions with the system.

D Details for the Real Data

In this section, we provide more discussion on the background, implementation details and additional
results of the real data analysis.

The alignment of AI systems with human values, intentions, and preferences is a crucial area of AI re-
search. Techniques such as Preference Flow Matching (Kim et al., 2025) and Reinforcement Learning
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from Human Feedback (RLHF) (Bai et al., 2022; Casper et al., 2023) have been developed to enhance
the performance of LLMs across various applications. However, before focusing on improvement
strategies, the first step is to assess how well an AI system aligns with human preferences based on
available annotations. Human annotations serve as valuable tools for evaluating AI performance, yet
they are often expensive and difficult to collect at scale. The purpose of Section 6 is to illustrate our
methods using a conversational dataset where human annotations are missing for some observations.

Our analysis focuses on the OpenAssistant Conversations dataset (Köpf et al., 2023), a publicly
available human-generated and human-annotated assistant-style conversation corpus 1. The dataset is
structured as conversation trees, where each tree begins with an initial prompt message (root node)
that can have multiple child messages as replies, which in turn can have their own responses. Due to
this hierarchical structure, messages within the same conversation tree are highly correlated, and we
model each conversation tree as a cluster, containing many messages as individuals within the cluster.

The cleaned dataset consists of 9,808 conversation trees with a total of 81,937 messages. Message-
level covariates include the content and role of the message, which indicates whether a message was
generated by the prompter or the assistant, while conversation-level covariates include language,
with English and Spanish being the most frequently observed languages. Each message is also
annotated with multiple labels assessing different aspects, which serve as evaluation scores. In our
analysis, we focus on annotations for quality, creativity, humor, and toxicity.

We first illustrate our methods in Section 3, where the missingness of annotations for each mes-
sage depends only on its own content and the characteristics of the conversation tree to which
it belongs directly (Assumption 1). Let the individual-level covariate Wgi represent the embed-
ding of the i-th message in the g-th conversation tree along with its role. In this work, we use
BAAI/bge-small-en-v1.5 embeddings from Hugging Face Wgi, which are fine-tuned specifically
for embedding tasks. Additionally, we incorporate the language of each conversation tree as the
cluster-level covariate Xg . The missingness indicator for human annotations, Rgi, is then simulated
from a logistic model satisfying E[Rgi | Wgi,Xg] = expit(W⊤

giβ), with β being a randomly gener-
ated coefficient vector. This process mimics how human reviewers may decide whether to provide
annotations based on message content and contextual factors. Let Ygi represent the annotations,
which are treated as missing when Rgi = 0. We construct three types of confidence intervals for the
average human annotations in our results. The first method restricts the analysis to messages with
Rgi = 1 (i.e., ignoring messages with missingness) and applies the CLT for i.i.d. data. The second
method applies the doubly robust estimator (2) to adjust for missingness but estimates variance under
the assumption of independent observations. The third method further adopts a cluster-robust variance
estimation approach as in (4). Sample splitting is used, and all nuisance functions are estimated from
half of the sample by the SuperLearner (Polley et al., 2024) incorporating a generalized linear model
and random forest. We plot these confidence intervals for annotations on quality, creativity, humor,
and toxicity in Figure 2, with the dashed horizontal line 1

n

∑
g,i Ygi serving as the ground truth.

We further illustrate the use of summary statistics from conversation history to adjust for missingness
in Section 4. For each message, we assume that the probability of missing annotations depends on
the conversation history up to that node in the conversation tree (i.e., the path from the root node
to the message node). Let Sgt represent the embedding of the conversation history, aggregating
conversations from all ancestor messages of the t-th message in the g-th conversation tree, along with
its role. The cluster-level covariate is language. The missingness indicator is simulated using a
logistic model E[Rgt | Sgt,Xg] = expit(S⊤

gtβ). This setup mimics how human reviewers may decide
whether to provide annotations based on prior message content and contextual factors. We construct
three types of confidence intervals for the average human annotation scores. The first method restricts
the analysis to messages with Rgt = 1 (i.e., ignoring messages with missingness) and applies the
CLT under an i.i.d. assumption. The second method applies the doubly robust estimator (5) to adjust
for missingness but estimates variance under the assumption that the influence functions φ(Zgt) are
independent. However, this confidence interval is not valid, as it ignores within-cluster dependence;
we include it only for reference. The third method adopts a bootstrap-based variance estimation
approach that accounts for the cluster structure. The bootstrap procedure takes approximately 20
hours per outcome on a 12-core CPU machine. We plot these confidence intervals for annotations
on quality, creativity, humor, and toxicity in Figure 3, with the dashed horizontal line 1

n

∑
g,t Ygt

serving as the ground truth.

1Available at https://huggingface.co/datasets/OpenAssistant/oasst1
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Figure 3: Confidence intervals for average human annotations on quality, creativity, humor, and
toxicity under the sequential structure. The red dashed line is the ground truth average.

As shown in Figure 3, the estimates that adjust for missingness are closer to the true sample average,
represented by the red dashed line, for quality, humor, and toxicity, compared to the unadjusted
estimates. This suggests that accounting for missingness effectively reduces estimation bias. Addi-
tionally, the confidence intervals that account for potential cluster dependence within conversation
trees are at least 10% wider than those constructed under the i.i.d. assumption. This indicates that
variance estimators based on the i.i.d. assumption underestimate the variation, highlighting the
importance of using a cluster-robust approach for variance estimation.

E Additional Simulation Results

In this section, we present additional simulation results for the plug-in (regression) estimator

θ̂OR =
1

n

G∑
g=1

ng∑
i=1

µ̂(Xg,Wgi),

the IPW estimator

θ̂IPW =
1

n

G∑
g=1

ng∑
i=1

RgiYgi
π̂(Xg,Wgi)

,

and the doubly robust estimator in equation (2). Our focus is on evaluating their performance under
model misspecification in the presence of clustered data.

The data-generating process follows the homogeneous sampling setup described in Appendix C, with
the regression function and propensity score given by

µ(Xg,Wgi) = −Xg +W 2
gi, π(Xg,Wgi) = logistic(Xg + 0.5W 2

gi).

The true average outcome is θ = 5. To assess estimator performance under misspecification, we
consider scenarios in which µ and/or π are misspecified by modeling the quadratic term in Wgi

as linear. We generate samples of size n ∈ {1000, 10000} with varying cluster sizes, apply each
estimator under different model specifications, and compute the mean squared error (MSE). The
results are summarized in Tables 1–3.
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Regression estimator IPW estimator DR estimator

µ correct, π correct 0.0562 0.0561 0.0563
µ correct, π wrong 0.0563 2.7023 0.0563
µ wrong, π correct 2.0356 0.0563 0.0572
µ wrong, π wrong 2.0603 2.6896 2.5765

Table 1: Mean squared error (MSE) of regression, IPW, and DR Estimators under potential nuisance
misspecification with sample size n = 10000, ng = 100.

Regression estimator IPW estimator DR estimator

µ correct, π correct 0.0230 0.0231 0.0230
µ correct, π wrong 0.0230 2.3882 0.0230
µ wrong, π correct 2.1082 0.0232 0.0233
µ wrong, π wrong 2.1075 2.3914 2.3102

Table 2: Mean squared error (MSE) of regression, IPW, and DR Estimators under potential nuisance
misspecification with sample size n = 10000, ng = 10.

The conclusions in this clustered setting are similar to those in the classical i.i.d. setting. When
the outcome model µ is misspecified, the plug-in (regression) estimator θ̂OR becomes inconsistent.
Similarly, the consistency of the IPW estimator θ̂IPW relies on correct specification of the propensity
score π. In contrast, the doubly robust estimator θ̂DR, which models both the outcome and the
missingness mechanism, remains consistent as long as either µ or π is correctly specified. This aligns
with the theoretical guarantees established in Theorem 1.

F Proof of Theorem 1

Since the observations {Ogi, 1 ≤ i ≤ ng, 1 ≤ g ≤ G} share the same distribution, we have the
following decomposition of error

θ̂DR − θ =
1

n

G∑
g=1

ng∑
i=1

(φ(Ogi)− E[φ(Ogi)])

+
1

n

G∑
g=1

ng∑
i=1

(φ̂(Ogi)− φ(Ogi)− P[φ̂(Ogi)− φ(Ogi)])

+ P[φ̂(Ogi)− φ(Ogi)],

where for a potentially random function f of O, P[f(O)] =
∫
f(o)dP(o) so only the randomness of

O is averaged over. For the first CLT term, by the central limit theorem for clustered data (Hansen
and Lee, 2019)[Theorem 2], under the assumptions in our Theorem 1 we have

√
n

Ωn

1

n

G∑
g=1

ng∑
i=1

(φ(Ogi)− E[φ(Ogi)])
d→ N(0, 1),

and thus the order is

1

n

G∑
g=1

ng∑
i=1

(φ(Ogi)− E[φ(Ogi)]) = OP

(√
Ωn

n

)
.
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Regression estimator IPW estimator DR estimator

µ correct, π correct 0.3247 0.3271 0.3248
µ correct, π wrong 0.3232 5.3693 0.3246
µ wrong, π correct 1.8736 0.3267 0.3470
µ wrong, π wrong 1.9578 5.6812 5.3977

Table 3: Mean squared error (MSE) of regression, IPW, and DR Estimators under potential nuisance
misspecification with sample size n = 1000, ng = 31.

For the second empirical process term, by Markov’s inequality, we have (conditioning on D that is
used to estimate the nuisance functions)

P

(
1

n

G∑
g=1

ng∑
i=1

(φ̂(Ogi)− φ(Ogi)− P[φ̂(Ogi)− φ(Ogi)]) > t

)

≤
Var

(∑G
g=1

∑ng

i=1(φ̂(Ogi)− φ(Ogi))
)

n2t2

=

∑G
g=1 Var

(∑ng

i=1(φ̂(Ogi)− φ(Ogi))
)

n2t2
,

where the last equation follows from the independence of observations that come from different
clusters. Set

t =
M
√∑G

g=1 Var
(∑ng

i=1(φ̂(Ogi)− φ(Ogi))
)

n
,

we have

P

(
1

n

G∑
g=1

ng∑
i=1

(φ̂(Ogi)− φ(Ogi)− P[φ̂(Ogi)− φ(Ogi)]) > t

)

≤ 1

M2
.

Thus the empirical process term can be bounded as

1

n

G∑
g=1

ng∑
i=1

(φ̂(Ogi)− φ(Ogi)− P[φ̂(Ogi)− φ(Ogi)])

=OP


√∑G

g=1 Var
(∑ng

i=1(φ̂(Ogi)− φ(Ogi))
)

n

 .

For the third bias term, by the property of conditional expectation we have

P[φ̂(Ogi)− φ(Ogi)]

=E
[
Rgi(Ygi − µ̂(Xg,Wgi))

π̂(Xg,Wgi)
+ µ̂(Xg,Wgi)− µ(Xg,Wgi)

]
=E

[
π(Xg,Wgi)(µ(Xg,Wgi)− µ̂(Xg,Wgi))

π̂(Xg,Wgi)
+ µ̂(Xg,Wgi)− µ(Xg,Wgi)

]
=E

[
(π(Xg,Wgi)− π̂(Xg,Wgi))(µ(Xg,Wgi)− µ̂(Xg,Wgi))

π̂(Xg,Wgi)

]
.

Since π̂ ≥ ϵ and by Cauchy Schwarz inequality, we have

|P[φ̂(Ogi)− φ(Ogi)]| ≤
1

ϵ
∥π̂ − π∥∥µ̂− µ∥,

which implies
|P[φ̂(Ogi)− φ(Ogi)]| = OP(∥π̂ − π∥∥µ̂− µ∥).

This completes the proof of the asymptotic expansion. The asymptotic normality then follows from
Slutsky’s theorem.
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G Proof of Corollary 1

The conditional variance given the training set D can be expressed as
G∑

g=1

Var

(
ng∑
i=1

(φ̂(Ogi)− φ(Ogi))

)

=

G∑
g=1

∑
i,j

Cov (φ̂(Ogi)− φ(Ogi), φ̂(Ogj)− φ(Ogj))

≤
G∑

g=1

∑
i,j

Var (φ̂(Ogi)− φ(Ogi))

=

G∑
g=1

n2g Var (φ̂(O)− φ(O))

≤
G∑

g=1

n2g∥φ̂(O)− φ(O)∥2,

where we have used Cauchy Schwarz inequality to bound the covariance with variance and the fact
that the observations {Ogi, 1 ≤ i ≤ ng, 1 ≤ g ≤ G} are identically distributed.

H Proof of Theorem 2

We have the following error decomposition

ψ̂DR − ψn =
1

n

G∑
g=1

ng∑
t=1

(φ(Zgt)− E[φ(Zgt)])

+
1

n

G∑
g=1

ng∑
t=1

(φ̂(Zgt)− φ(Zgt)− P[φ̂(Zgt)− φ(Zgt)])

+
1

n

G∑
g=1

ng∑
t=1

P[φ̂(Zgt)− φ(Zgt)],

where note that {Zgt, 1 ≤ t ≤ ng, 1 ≤ g ≤ G, } may not share the same distribution in general. The
empirical process can be bounded using the same technique as in the proof of Theorem 1:

1

n

G∑
g=1

ng∑
t=1

(φ̂(Zgt)− φ(Zgt)− P[φ̂(Zgt)− φ(Zgt)])

=OP


√∑G

g=1 Var
(∑ng

t=1 φ̂(Zgt)− φ(Zgt) | D
)

n


since independence still holds across clusters. For the conditional bias term, we have (conditioning
on the training set D)

P[φ̂(Zgt)− φ(Zgt)]

=E
[
Rgt(Ygt − µ̂(Xg,Sgt))

π̂(Xg,Sgt)
+ µ̂(Xg,Sgt)− µ(Xg,Sgt)

]
=E

[
πgt(Xg,Hgt)(µgt(Xg,Hgt)− µ̂(Xg,Sgt))

π̂(Xg,Sgt)
+ µ̂(Xg,Sgt)− µ(Xg,Sgt)

]
=E

[
π(Xg,Sgt)(µ(Xg,Sgt)− µ̂(Xg,Sgt))

π̂(Xg,Sgt)
+ µ̂(Xg,Sgt)− µ(Xg,Sgt)

]
=E

[
(π(Xg,Sgt)− π̂(Xg,Sgt))(µ(Xg,Sgt)− µ̂(Xg,Sgt))

π̂(Xg,Sgt)

]
,
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where the second equation follows from conditioning on (Xg,Hgt) and the third equation follows
from Assumption 3. Hence we have∣∣∣∣∣ 1n

G∑
g=1

ng∑
t=1

P[φ̂(Zgt)− φ(Zgt)]

∣∣∣∣∣
≤ 1

ϵn

G∑
g=1

ng∑
t=1

∥π̂(Xg,Sgt)− π(Xg,Sgt)∥∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥.

(7)

Thus the conditional bias term can be bounded as

1

n

G∑
g=1

ng∑
t=1

P[φ̂(Zgt)− φ(Zgt)])

=OP

(
1

n

G∑
g=1

ng∑
t=1

∥π̂(Xg,Sgt)− π(Xg,Sgt)∥∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥

)
.

The asymptotic expansion is then proved. The asymptotic normality then follows from Hansen and
Lee (2019)[Theorem 2] and Slutsky’s theorem.

I Proof of Corollary 2

First, to bound the empirical process term, the conditional variance given the training set D can be
expressed as

G∑
g=1

Var

(
ng∑
i=1

(φ̂(Zgi)− φ(Zgi)) | D

)

=

G∑
g=1

∑
i,j

Cov (φ̂(Zgi)− φ(Zgi), φ̂(Zgj)− φ(Zgj) | D)

≤
G∑

g=1

∑
i,j

√
Var (φ̂(Zgi)− φ(Zgi) | D)Var (φ̂(Zgj)− φ(Zgj) | D)

≤
G∑

g=1

∑
i,j

√
EZgi

[φ̂(Zgi)− φ(Zgi)2]EZgj
[φ̂(Zgj)− φ(Zgj)2]

where we have used Cauchy Schwarz inequality to bound the covariance with variance and EZgi

means the expectation is taken over Zgi. Now we have

ED

[
G∑

g=1

Var

(
ng∑
i=1

(φ̂(Zgi)− φ(Zgi)) | D

)]

≤
G∑

g=1

∑
i,j

ED

[√
EZgi

[(φ̂(Zgi)− φ(Zgi))2]EZgj
[(φ̂(Zgj)− φ(Zgj))2]

]

≤
G∑

g=1

∑
i,j

[√
ED

[
EZgi

(φ̂(Zgi)− φ(Zgi))2)
]
ED

[
EZgj

((φ̂(Zgj)− φ(Zgj))2)
]]

=

G∑
g=1

∑
i,j

[√
EZgi

[
ED (φ̂(Zgi)− φ(Zgi))

2
]
EZgj

[
ED (φ̂(Zgj)− φ(Zgj))

2
]]

≤
G∑

g=1

∑
i,j

sup
z

ED

[
(φ̂(z)− φ(z))2

]
=

G∑
g=1

n2gED

[
(φ̂(z)− φ(z))2

]
.
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Thus we have

1

n

√√√√ G∑
g=1

Var

(
ng∑
i=1

(φ̂(Zgi)− φ(Zgi)) | D

)
= OP

 1

n

√√√√ G∑
g=1

n2g sup
z

ED [φ̂(z)− φ(z)2]

 .

For the bias term, from equation (7) the proof of Theorem 2 we have

ED

[∣∣∣∣∣ 1n
G∑

g=1

ng∑
t=1

P[φ̂(Zgt)− φ(Zgt)]

∣∣∣∣∣
]

≤ 1

ϵn

G∑
g=1

ng∑
t=1

ED [∥π̂(Xg,Sgt)− π(Xg,Sgt)∥∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥]

≤ 1

ϵn

G∑
g=1

ng∑
t=1

√
ED [∥π̂(Xg,Sgt)− π(Xg,Sgt)∥2]ED [∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥2]

=
1

ϵn

G∑
g=1

ng∑
t=1

√
EXg,Sgt

[ED(π̂(Xg,Sgt)− π(Xg,Sgt))2]EXg,Sgt
[ED(µ̂(Xg,Sgt)− µ(Xg,Sgt))2]

≤ 1

ϵn

G∑
g=1

ng∑
t=1

√
sup
x,s

ED(π̂(x, s)− π(x, s))2 sup
x,s

ED(µ̂(x, s)− µ(x, s))2

=
1

ϵ

√
sup
x,s

ED(π̂(x, s)− π(x, s))2 sup
x,s

ED(µ̂(x, s)− µ(x, s))2.

Thus we conclude

1

n

G∑
g=1

ng∑
t=1

∥π̂(Xg,Sgt)− π(Xg,Sgt)∥∥µ̂(Xg,Sgt)− µ(Xg,Sgt)∥

=OP

(√
sup
x,s

ED(π̂(x, s)− π(x, s))2 sup
x,s

ED(µ̂(x, s)− µ(x, s))2

)
,
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