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As a robot, how can you 
open this beverage can if it's 
placed upside down?

Is the bed in this room 
tightly against the wardrobe 
behind it?

No, the bed is not 
tightly against the wardrobe 
behind it. There is a gap 
between the back of the bed 
and the wardrobe.

Can a robot vacuum 
pass behind the sofa?

Yes, a robot 
vacuum can pass behind 
the orange sofa. There‘s 
enough space between 
the sofa and the white 
and wood cabinets.

Step 1: Grip the can by 
its sides. Step 2: Rotate it 180 
degrees to position it upright 
with the tab facing up. Step 
3: Locate the pull tab on top
and then lift the tab upward. 
Step 4: Pull the tab in an arc 
motion until the can opens.

If this potted plant 
were to fall on the ground, 
what would happen?

The pot could break. 
The plant could be damaged 
with leaves or stems 
breaking. The soil or potting 
mix inside the pot would 
spill out, making a mess.

Universal 3D Understanding
LEMON

Figure 1: Universal 3D understanding with Lemon. Lemon demonstrates comprehensive 3D spatial
reasoning capabilities across diverse tasks.

ABSTRACT

Scaling large multimodal models (LMMs) to 3D understanding poses unique chal-
lenges: point cloud data is sparse and irregular, existing models rely on fragmented
architectures with modality-specific encoders, and training pipelines often suffer
from instability and poor scalability. We introduce Lemon, a unified transformer
architecture that addresses these challenges by jointly processing 3D point cloud
patches and language tokens as a single sequence. Unlike prior work that relies
on modality-specific encoders and cross-modal alignment modules, this design
enables early spatial-linguistic fusion, eliminates redundant encoders, improves
parameter efficiency, and supports more effective model scaling. To handle the
complexity of 3D data, we develop a structured patchification and tokenization
scheme that preserves spatial context, and a three-stage training curriculum that
progressively builds capabilities from object-level recognition to scene-level spatial
reasoning. Lemon establishes new state-of-the-art performance across comprehen-
sive 3D understanding and reasoning tasks, from object recognition and captioning
to spatial reasoning in 3D scenes, while demonstrating robust scaling properties as
model size and training data increase. Our work provides a unified foundation for
advancing 3D spatial intelligence in real-world applications.

1 INTRODUCTION

Understanding 3D environments is fundamental for embodied agents, enabling interaction, ma-
nipulation, and navigation in the physical world. While large multimodal models (LMMs) have
achieved impressive progress in 2D vision-language domains — demonstrated by models such as
Flamingo (Alayrac et al., 2022), GPT-4V (OpenAI, 2023) and many open-sourced ones (Chen et al.,
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2023; Liu et al., 2024; Zhang et al., 2021; Bai et al., 2025; Peng et al., 2023; Xiong et al., 2024; Yang
et al., 2025a; Wang et al., 2025) —scaling such capabilities to 3D data remains an open challenge.
The irregular structure, sparsity, and high-dimensional nature of point clouds make 3D learning
inherently difficult. Yet, robust 3D understanding is crucial for robotics (Fang et al., 2023; Zhu et al.,
2024; Qi et al., 2025), AR/VR systems, and spatial AI (Chen et al., 2024a; Cheng et al., 2024; Zheng
et al., 2024a; Yang et al., 2024b; Cao et al., 2024). Despite the emergence of 3D foundation models
such as Point-BERT (Yu et al., 2022a) and ULIP (Xue et al., 2022), current efforts fall short of scaling
to general-purpose 3D understanding and reasoning tasks in a manner analogous to 2D LMMs.

Most existing 3D LMMs adopt modular designs that employ separate encoders for 3D geometry
and language, typically using pretrained 3D encoders such as PointNet++ followed by cross-modal
alignment mechanisms (Liu et al., 2023b; Zhou et al., 2023). However, this approach faces several
fundamental challenges: (1) 3D encoders are typically pretrained on limited datasets with narrow
training objectives, limiting their adaptability to diverse spatial reasoning tasks required by LLMs;
(2) unlike the 2D domain where billions of images are available, 3D data remains significantly more
constrained in scale, further limiting 3D representation quality; and (3) the architectural imbalance
between smaller 3D encoders and large language models creates a representational bottleneck where
spatial understanding becomes a performance limitation. Furthermore, reliance on frozen pretrained
modality-specific encoders prevents end-to-end optimization and generalization to novel 3D structures,
impeding progress toward scalable 3D multimodal learning.

We propose Lemon, a unified transformer architecture that directly embeds both 3D geometry and
natural language into a shared token space. Rather than relying on separate encoders, Lemon treats
3D point cloud patches and language tokens as a unified sequence for joint processing. Each 3D
patch is mapped to the language embedding space via a learnable linear projector, and structured
using modality-specific and spatial separator tokens. This design allows the model to process spatial
and linguistic information cohesively, while eliminating the need for modality-specific encoders and
cross-modal alignment mechanisms, improving the scalability of 3D multimodal models. To our
knowledge, Lemon is the first architecture that unifies point cloud and language processing at the
token level within a single transformer for general-purpose 3D reasoning.

To address the challenges of sparse and irregular 3D data, we introduce a dynamic patchification and
tokenization strategy. Point clouds are partitioned into patches via a recursive 3D spatial scheme,
ensuring uniform patch sizes while preserving geometric structure. Specialized separator tokens
encode spatial hierarchy, allowing transformers to operate over structured sequences. To ensure
effective learning, we design a three-stage training curriculum: (1) object recognition using large-
scale 3D object data extracted from diverse object and scene datasets; (2) object-level captioning
and grounding with Cap3D Luo et al. (2023) and GAPartNet (Geng et al., 2023); and (3) scene-
level spatial question answering with 3D-GRAND (Yang et al., 2024a). This curriculum supports
progressive scaling, transitioning from object-level to complex scene reasoning.

We evaluate Lemon across a suite of 3D multimodal tasks, including generative object classification,
caption generation, embodied interaction QA, and spatial scene understanding. Our model consis-
tently outperforms prior state-of-the-art baselines in each domain, while exhibiting more favorable
scaling behavior as model and data size increase. Lemon’s unified architecture reduces parameter
redundancy, simplifies the training pipeline, and enables joint spatial-linguistic reasoning, paving the
way toward general-purpose 3D multimodal systems for embodied AI, robotics, and beyond.

We summarize our main contributions as follows:

• We propose Lemon, the first unified transformer-based 3D LMM that processes point cloud
patches and language tokens in a single unified sequence, eliminating the need for modality-
specific encoders.

• A dynamic 3D partitioning and tokenization scheme transforms irregular point clouds into struc-
tured token sequences, augmented with spatial separator tokens to preserve geometric relationships.

• Our three-stage progressive training curriculum enables stable and scalable 3D LMM learning,
advancing from object recognition to captioning and finally to scene-level spatial reasoning with
stage-specific optimization strategies.

• Extensive experiments across diverse 3D understanding and reasoning tasks demonstrate consistent
improvements over existing 3D LMMs and favorable scaling behavior with model size and data.
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Text 
embeddings

Text tokenizer

System Prompt and 
Task Instructions

Large 3D Multimodal Model

Text 
tokens

...<SEP> ... <SEP>

Row sep 
tokens

Linear Projector

Layer sep 
tokens

Point patch 
tokens

3D patch
 embeddings

Point cloud patches

Point clouds

FPS Sampling

Universal 3D 
Understanding

Scene-Level

Spatial Awareness 
QA on 3D Scenes

Object Recognition
3D Captioning

Embodied Interaction QA

You are an AI assistant specialized in 
understanding 3D point cloud data with 

6 dimensions: coordinates (x, y, z) and 
colors (r, g, b). 

What do you see in this point cloud?

Object-Level

Figure 2: Method overview. Lemon processes point clouds using FPS sampling and dynamic
patchification, feeding point patch tokens (representing projected 3D patch embeddings) and text
tokens into a unified Large 3D Multimodal Model to handle both object-level (e.g., recognition,
captioning and embodied interaction QA) and scene-level (e.g., spatial QA) tasks. Unlike existing
methods, Lemon leverages a single framework to enhance cross-modal alignment and multi-scale
adaptability.

2 LEMON: LEARNING A UNIFIED AND SCALABLE 3D MULTIMODAL MODEL

We present Lemon, which integrates the 3D modality and language in a unified transformer to process
point cloud patches and language tokens. Lemon enables more effective scaling laws, allowing 3D
representation capabilities to grow naturally with increasing training data. To achieve stable training
for this unified architecture, we design a comprehensive training pipeline with carefully orchestrated
strategies for progressive scaling and balanced multi-modality training.

2.1 MODEL ARCHITECTURE

As illustrated in Figure 2, Lemon employs a unified transformer architecture that fundamentally
differs from traditional multimodal models by directly processing 3D spatial information within the
language model framework. Rather than utilizing separate 3D encoders followed by cross-modal
alignment modules, Lemon integrates point cloud patch processing and language understanding in a
single transformer.

The architecture processes point cloud patches through a learnable linear projector that maps each
patch to continuous embeddings compatible with the language model’s embedding space. We intro-
duce specialized tokens for 3D modality encoding: <pointcloud> and </pointcloud> mark
the boundaries of point cloud sequences, while <point_patch> denotes individual point cloud
patches. Additional separator tokens <layer_sep>, <row_sep> are employed to maintain
spatial structure within the point cloud sequences.

The integration strategy concatenates 3D patch embeddings with text token embeddings, creating a
unified sequence that flows through a single transformer. This design facilitates seamless integration
of spatial and linguistic information, allowing unified processing of both modalities within a shared
representational space. This unified design simplifies the overall architecture by eliminating separate
modality encoders commonly used in heterogeneous approaches.

Hierarchical Spatial Partitioning. Our patchification process operates through a hierarchical three-
dimensional partitioning scheme that divides point clouds along Z→Y→X axes in sequence. Given a
point cloud P = {pi ∈ R3}Ni=1, we define M as the target number of points per patch and K as the
maximum number of splits per axis.

The number of splits for each axis is determined adaptively based on point distribution:

splitsaxis = min

(
K,

⌊
Ntotal

Ntarget

⌋)
(1)
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where Ntotal is the total number of points and Ntarget decreases hierarchically: Ntarget = M ×K2 for
Z-layers, Ntarget = M ×K for Y-rows, and Ntarget = M for X-patches.

Once the number of splits is determined for each axis, we divide the coordinate range into equal
intervals to create spatial regions:

P(zk,yj ,xl) = {pi ∈ P|zk ≤ pzi < zk+1, yj ≤ pyi < yj+1, xl ≤ pxi < xl+1}, (2)

where (zk, yj , xl) represents the coordinate indices with k ∈ [0, splitsz), j ∈ [0, splitsy), and
l ∈ [0, splitsx), and the boundary values are computed by equally dividing each axis range by the
corresponding number of splits.

Patch Standardization. We enforce uniform patch size |P(zk,yj ,xl)| = M through strategic point
replication for insufficient patches and Farthest Point Sampling (FPS) for oversized patches. FPS
iteratively selects the next point pnext that maximizes the minimum distance to all previously selected
points:

pnext = arg max
p∈P(zk,yj,xl)\S

min
q∈S

∥p− q∥2 (3)

where S denotes the set of already selected points.
Spatial Token Organization. To preserve 3D spatial relationships, patches are sorted by (z, y, x)
coordinates with separator tokens: <layer_sep> for Z-coordinate changes, <row_sep> for Y-
coordinate changes within layers, and <point_patch> for individual patch positions. A concrete
example is provided in Appendix D.1.

Based on empirical analysis of typical point cloud datasets and compatibility requirements, we
set M = 512 and K = 5. These parameters accommodate the majority of point cloud data
distributions while ensuring patch embeddings align with standard transformer dimensions (M × 6 =
3072 dimensions, compatible with 2D VLM architectures). We validate these choices through
comprehensive ablation studies in our experiments.

2.2 TRAINING PARADIGM

We present a three-stage training curriculum designed to progressively develop 3D spatial understand-
ing capabilities while maintaining language comprehension.

Stage 1: Object Recognition. The initial stage focuses on establishing fundamental 3D object
recognition capabilities through large-scale classification tasks. We train Lemon to predict object
category labels conditioned on 3D patches, enabling the model to learn the semantic meaning of
our specialized tokens. This stage utilizes diverse 3D object datasets, including Objaverse (Deitke
et al., 2023) and objects extracted from various synthetic and real-world scene datasets, providing
comprehensive exposure to geometric variations and object categories. Similar to the alignment
training for 2D LMMs, this stage proves crucial for developing meaningful 3D representations
that are aligned with language models and serve as the foundation for subsequent training phases.

Table 1: Dataset statistics for each training stage.

Stage Dataset Sources Language
Pairs

Point
Clouds

Stage 1 Objaverse, ProcThor, ScanNet,
ShapeNet, MultiScan, Struc-
tured3D, 3RScan, ARKitScenes,
HM3D, 3D-FUTURE

1.87M 1.87M

Stage 2 Cap3D-ShapeNet, Cap3D-
Objaverse, Cap3D-ABO,
GAPartNet

140K 140K

Stage 3 3D-GRAND: Scene Spatial QA
datasets, 30% of Stage 2

142K 50K

Stage 2: Object Captioning and Ground-
ing. Building upon the recognition capabil-
ities established in Stage 1, we transition to
object-level caption generation tasks. This
stage teaches the model to articulate spatial
properties and geometric characteristics of
individual 3D objects in natural language.
The training data consists of high-quality
caption annotations from Cap3D (Luo et al.,
2023) and detailed object grounding data
from GAPartNet (Geng et al., 2023), en-
abling the model to bridge the gap between geometric understanding and language generation. This
intermediate phase prepares the model for more complex spatial reasoning tasks while preserving the
object-level understanding acquired previously.

Stage 3: Scene Spatial Question Answering. The final stage elevates the model’s capabilities from
object-level understanding to comprehensive scene-level spatial reasoning. We introduce complex
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question-answering tasks that require understanding spatial relationships, object interactions, and
scene-level context from 3D-GRAND (Yang et al., 2024a). The training data encompasses diverse
question types, from basic object localization to complex spatial relationships and scene interpretation.
To preserve object-level capabilities, we also incorporated a portion of object-level instruction data
into the Stage 3 training mixture. This stage culminates in instruction tuning that enables versatile
3D understanding across various spatial reasoning tasks, from object-level queries to sophisticated
scene analysis.

Our training curriculum is grounded in two fundamental design principles. First, we implement
a progressive learning paradigm that transitions from object-level to scene-level understanding,
ensuring the model first masters individual geometric structures before tackling intricate spatial
relationships. Second, we employ a complexity-driven approach that advances from basic recognition
tasks to spatial reasoning capabilities, enabling the model to develop universal 3D understanding
through systematic skill acquisition.

Training infrastructure. We implement Lemon using LLaMA-Factory (Zheng et al., 2024b) as
our training framework, with modifications to support 3D point cloud patch inputs and our specialized
tokenization scheme. All experiments are conducted on an 8×H100 cluster. We adopt standard
learning rate schedules with cosine decay and appropriate warm-up strategies for each training stage.
Detailed training hyperparameters and efficiency analysis are provided in Appendix C and D.8. To
foster research in 3D multimodal learning, we will release all training datasets, code, and model
weights as open-source resources.

3 EXPERIMENTS

Our extensive experiments evaluate Lemon across three key dimensions of 3D understanding:
embodied object interaction, scene-level spatial reasoning, and fundamental 3D object recognition and
captioning. These evaluations demonstrate Lemon’s spatial intelligence capabilities as a generalist
3D multimodal model.

3.1 SETUP

Model Implementations. We implement Lemon based on Qwen2.5-7B-Instruct (Bai et al., 2025).
The model maintains the original language modeling capabilities while extending to process 3D
spatial inputs through our specialized tokenization scheme and architecture modification.

3D LMMs Baselines. We compare against several state-of-the-art 3D language multimodal models,
including object-focused LLMs: PointLLM (Xu et al., 2024) and ShapeLLM (Qi et al., 2024), and
scene-oriented LLMs: 3D-LLM (Hong et al., 2023), Ll3da (Chen et al., 2024b), LEO (Huang et al.,
2023), and LSceneLLM (Zhi et al., 2024). Since object-focused models (PointLLM/ShapeLLM)
utilize 3D object datasets with substantial overlap to ours but with different training pipelines, we
fine-tune them for 2 epochs using our scene spatial QA datasets to ensure fair comparison across all
spatial reasoning tasks.

2D VLM Baselines. To assess the advantages of native 3D processing, we evaluate on strong
2D VLMs: LLaVA-1.5-13B (Liu et al., 2024), and Qwen2.5-VL-7B (Bai et al., 2025), GPT-
4V(vision) (OpenAI, 2023). For these models, we provide random single-view or multi-view
rendered images generated from the point cloud datasets as input. All open-source models undergo
fine-tuning for 2 epochs on the rendered 2D data to optimize their performance on our benchmarks.

Benchmarks. To systematically evaluate our model’s 3D understanding capabilities, we employ
a multi-level evaluation strategy. For advanced embodied interaction understanding, we conduct
zero-shot evaluation on 3D MM-Vet (Qi et al., 2024), which encompasses object-level embodied
task planning and decomposition. At the scene level, we emphasize spatial awareness evaluation
in 3D spaces, requiring models to understand spatial relationships between scene objects rather
than object recognition in scenes. We evaluate on the established 3D-GRAND (Yang et al., 2024a)
binary and non-binary spatial QA test sets, which offers greater scene diversity than previous scene
benchmarks (Ma et al., 2022; Azuma et al., 2022), and further incorporate 100 challenging embodied
3D spatial QA questions (detailed in Appendix E.1, including distance estimation (e.g., comparing
distances between multiple objects), navigability analysis (e.g., determining if a robot can pass
through a gap), and collision avoidance, for zero-shot evaluation of spatial reasoning.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In this children's room, is the flower chair closer to the  bed or to 
the pink desk?

If I am sitting on the long sofa, can I pass through the gap between 
the coffee table and the short sofa to reach the dinner desk?

Based on the image, the flower chair is 
closer to the bed. It appears to be placed almost directly 
at the foot of the bed, while the pink desk is in front of 
it, with a noticeable gap between them. 

GPT-4V:
In

p
u

t 
Im

ag
e

The flower chair is flush against the pink 
desk. Therefore, it is closer to the pink desk than to 
the bed.

LEMON:

In
p

u
t 

P
C

It seems unlikely. this gap is very narrow 
in the figure. If you wanted to get from the sofa to the 
dining table/bar, you would need to get up and walk 
around the coffee table.
 

GPT-4V:

In
p

u
t 

Im
ag

e

Yes, you can pass between the sofa and 
the coffee table.

LEMON:

In
p

u
t 

P
C

Figure 3: Comparison of Lemon and GPT-4V on 3D scene understanding. Lemon leverages 3D
point clouds to accurately capture spatial relationships, such as the flower chair’s position and sofa
passability, outperforming GPT-4V, which struggles with 2D images by missing depth and occlusion
details. This highlights Lemon’s superior 3D scene comprehension.

Is there a bedside table in 
this second bedroom?

No, there’re no 
bedside table in this room.

LEMON:

If I wanted to pick up this 
object, how can I do it?

The object is a 
kettle. You can pick it up 
by grabbing the handle.

LEMON:

How many chairs are there 
beside the dining table in this 
living dining room?

There are 4 chairs 
around the dining table.

LEMON:

Provide a description for 
this point cloud.

These are two brown-toned 
wooden barrels with black stripe decorations. 
One is upright with water inside, and the other 
is tipped over on the ground nearby.

LEMON:

Figure 4: Examples of Lemon in diverse 3D understanding tasks. Lemon demonstrates its capability
by accurately addressing object-level tasks(e.g., object description and interaction guidance) and
scene-level tasks (e.g., spatial analysis of room elements). Its unified framework ensures versatility
across various 3D understanding tasks.

For fundamental capabilities assessment, we evaluate object recognition and detailed captioning
performance. Beyond using the widely adopted benchmark Objaverse-LVIS (Deitke et al., 2023)
for object-level evaluation, we include 2,000 unseen objects extracted from 5 various scene datasets
(detailed in Appendix E.2) to ensure comprehensive evaluation across diverse object categories and
provide more representative results.

Evaluation Protocol. To ensure reproducibility and facilitate fair comparison, we categorize our
evaluation protocols into traditional, learning-based, and LLM-as-judge metrics. For the object
recognition tasks reported in Table 3, we utilize an LLM-assisted accuracy metric. Instead of strict
string matching, we employ GPT-4 (Achiam et al., 2023) to determine semantic correctness by
verifying if the predicted class name is semantically equivalent to the ground truth label. For object
captioning, we report learning-based metrics, specifically Sentence-BERT (Reimers & Gurevych,
2019) and SimCSE (Gao et al., 2021), which compute the cosine similarity between the embeddings
of the generated and reference captions. We complement this with an LLM-as-judge evaluation,
where GPT-4 scores the comprehensive quality of the captions. For the scene-level tasks in Table 2,
we employ binary accuracy for discriminative questions and GPT-4 scores for open-ended generation.
All specific prompts used for these evaluations are detailed in the Appendix F.

3.2 MAIN RESULTS

Embodied Interaction Comprehension on 3D Objects. We evaluate Lemon’s performance on 3D
MM-Vet using GPT-4 (Achiam et al., 2023) as the evaluator, which assesses core 3D understanding
capabilities including visual recognition, knowledge reasoning, language generation, spatial aware-
ness, and embodied interaction. As shown in Table 2, Lemon-7B achieves the highest performance
among all 3D language multimodal models, significantly outperforming existing strong 3D LMM
baselines such as ShapeLLM-13B and PointLLM-13B while using only 7.63B parameters, demon-
strating superior parameter efficiency. The performance gap between Lemon and the strongest 2D

6
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Model Trainable
Params

Input Embodied Object QA Scene Spatial Awareness QA

GPT4 Binary Accuracy GPT4

LLaVA-1.5-13B 13.03B Single-view Img. 47.3 57.62 40.18
LLaVA-1.5-13B 13.03B Multi-view Img. 50.7 59.8 41.2
Qwen2.5-VL-7B 7.61B Single-view Img. 52.23 64.32 47.56
Qwen2.5-VL-7B 7.61B Multi-view Img. 55.9 69.1 49.3

GPT-4V - Single-view Img. 57.41 69.23 52.34
GPT-4V - Bird-view Img. 58.21 71.18 53.72
GPT-4V - Multi-view Img. 63.40 75.32 53.68

PointLLM-7B 7.01B 3D Point Cloud 41.20 - -
PointLLM-13B 13.01B 3D Point Cloud 46.63 - -
ShapeLLM-7B 7.04B 3D Point Cloud 47.42 58.49 41.39
ShapeLLM-13B 13.04B 3D Point Cloud 53.15 60.27 42.34

3D-LLM - 3D Point Cloud 38.36 51.25 33.43
Ll3da 1.3B 3D Point Cloud - 53.45 39.60
LEO 7.01B 3D Point Cloud 39.28 49.74 30.29

LSceneLLM 3D Point Cloud 38.54 65.46 45.79
Lemon-7B 7.63B 3D Point Cloud 57.22 74.32 53.45

Table 2: Performance comparison on Embodied Object QA and Scene Spatial Awareness QA
benchmarks across 2D vision-language models and 3D multimodal models.

vision-language model (VLM) GPT-4V is minimal, demonstrating Lemon’s solid understanding of
both the intrinsic properties and practical applications of 3D objects.

Spatial Awareness in 3D Scenes. For scene-level spatial reasoning, we evaluate Lemon on 3D-
GRAND benchmarks that focus on understanding spatial relationships between objects within 3D
environments. As demonstrated in Table 2, Lemon achieves exceptional performance in both binary
accuracy and GPT-4 evaluation on non-binary QA, substantially outperforming all existing 3D
multimodal models. Our unified architecture enables Lemon to excel in spatial reasoning tasks,
achieving notable gains of 8.9% and 7.7% in binary accuracy and non-binary QA performance
respectively over the next best 3D baseline model. This demonstrates that our model not only
understands spatial structures but also maintains superior language generation capabilities, enabling
precise spatial reasoning outputs.

Importantly, Lemon surpasses GPT-4V with random single-view images as inputs. s illustrated
in Figure 3, Lemon leverages 3D point clouds to accurately capture spatial relationships, such as
furniture positioning and navigational possibilities, whereas GPT-4V struggles with 2D images due
to missing depth and occlusion details. Figure 4 further demonstrates Lemon’s versatility across
diverse 3D understanding tasks, from object-level reasoning to complex scene analysis, significantly
reducing spatial hallucinations commonly observed in 2D LLMs when processing 3D environments.
This highlights how 3D inputs provide complete geometric information without viewpoint limitations
that inherently constrain 2D representations. Our method achieves comparable performance with the
closed-source model using multi-view inputs while outperforming all open-source models, which fully
demonstrates the critical importance of open-sourced 3D LMMs for advancing spatial intelligence
capabilities. As an open-source model, Lemon demonstrates substantial potential for further scaling
with the emergence of larger and more diverse 3D datasets, paving the way for even more capable 3D
LMMs that can unlock the unlimited potential of 3D spatial reasoning in real-world applications.

3D Object Generative Recognition and Captioning. As shown in Table 3, Lemon demonstrates
strong performance across both tasks. In object recognition, Lemon achieves results comparable to the
best 2D VLM GPT-4V while significantly outperforming all 3D LMMs. For object captioning, Lemon
substantially exceeds other 3D multimodal models across all metrics, showcasing its ability to generate
detailed and accurate textual descriptions. These results validate Lemon’s robust understanding of
3D object properties, establishing it as a capable foundation for both spatial recognition and linguistic
articulation while achieving performance on par with leading 2D vision-language models.

Additional experiments in the Appendix D.6 demonstrate our model’s robustness on sparse or noisy
point clouds, superior performance on 3D visual grounding tasks, and consistent advantages in
zero-shot evaluations on ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2022) benchmarks.
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Model Trainable
Params

Input Recognition
Accuracy

Object Captioning

Sentence-BERT SimCSE GPT-4

LLaVA-1.5-13B 13.03B Single-view Img. 36.04 38.89 40.54 17.20
Qwen2.5-VL-7B 7.61B Single-view Img. 58.72 52.74 54.33 52.04

GPT-4V - Single-view Img. 61.33 57.63 58.72 56.89

3D-LLM - Multi-view Img. 22.89 42.13 42.79 32.60
PointLLM-7B 7.01B 3D Point Cloud 53.49 47.33 47.93 40.78

PointLLM-13B 13.01B 3D Point Cloud 54.32 47.67 48.22 40.39
ShapeLLM-7B 7.04B 3D Point Cloud 54.09 47.63 49.35 45.81
ShapeLLM-13B 13.04B 3D Point Cloud 54.15 47.80 49.21 46.09

MiniGPT-3D 2.7B 3D Point Cloud 53.52 47.64 47.20 45.78
GreenPLM 3.8B 3D Point Cloud 54.65 48.72 48.40 42.78
Lemon-7B 7.63B 3D Point Cloud 59.20 52.23 53.59 50.76

Table 3: Evaluation results on fundamental 3D Object Recognition and Captioning tasks across 2D
vision-language models and 3D multimodal models.

(a) Scaling laws for 3D LMMs
across different training data sizes.

(b) Model performance comparison
of different training strategies.

(c) Comparing Lemon with and
without PointNet++ encoder.

Figure 5: Ablation studies on key design choices in Lemon.
3.3 ABLATION STUDIES

Scaling Laws in 3D LMMs. To our knowledge, this work presents the first systematic analysis of
scaling laws in 3D multimodal language models. We train an additional 3B model based on Qwen2.5-
3B-Instruct, conducting only the first two training stages due to resource constraints, allowing us to
evaluate scaling behavior through captioning performance. Figure 5a demonstrates how Lemon’s
performance scales with training data size from our Stage 1 pretraining, using captioning performance
as a representative metric to evaluate scaling behavior. The analysis reveals clear power-law scaling
behavior for both Lemon-7Band Lemon-3B, with consistent performance improvement across 0.5
million to 1.87 million point cloud samples. Lemon’s unified design enables straightforward scaling
analysis, avoiding the complexity of heterogeneous architectures that require additional parameter
allocation laws.

Our analysis is based on Stage 1 object classification data, and we anticipate that introducing more
diverse and richer 3D-language paired datasets could achieve further performance gains beyond
what is shown in this scaling study. Our findings suggest that coordinated scaling of model size and
training data follows predictable patterns in 3D multimodal learning, providing insights that may
inform more efficient resource allocation in future 3D LMM development.

Isolating Architectural Benefits. To strictly evaluate architectural contributions, we retrained
Lemon using the same Vicuna-7B-1.1 (Touvron et al., 2023) with LLaMA backbone and training
data as ShapeLLM-7B (Qi et al., 2024) As shown in Table 4, Lemon consistently outperforms
ShapeLLM under these identical settings (“All Same”), achieving gains of +2.4 in object captioning,
+5.9 in 3D MM-Vet, and +5.4 in Scene Spatial QA. These results confirm that our unified transformer
architecture is the primary driver of performance by eliminating the bottleneck imposed by separate
3D encoders. Furthermore, the consistent performance growth observed when utilizing our training
data demonstrates the robust data scaling capabilities of Lemon. Finally, the superior results obtained
with the Qwen2.5-7B (Bai et al., 2025) backbone indicate that stronger language models also
significantly contribute to enhancing 3D multimodal performance.

Lemon benefits from the training curriculum. To validate our three-stage training curriculum,
we conduct ablation studies comparing different training strategies on object captioning and scene
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Table 4: Controlled comparison isolating architectural benefits. We align the LLM backbone and
training data with ShapeLLM to strictly evaluate the contribution of our unified architecture. “All
Same” denotes retraining Lemon using the exact same backbone and data source as the baseline.

Model LLM Backbone Training Data Obj. Cap. Embodied QA Scene Spatial QA
(SimCSE) (3D MM-Vet) (GPT-4)

ShapeLLM-7B Vicuna-1.1 7B ShapeLLM Data 49.4 47.4 41.39

Lemon-7B (All Same) Vicuna-1.1 7B ShapeLLM Data 51.8 53.3 46.80
Lemon-7B (Same Arch.) Vicuna-1.1 7B Lemon Data 52.4 53.2 50.60
Lemon-7B (Default) Qwen2.5-7B Lemon Data 53.6 57.2 53.45

QA tasks. Figure 5b demonstrates significant impact of our progressive training approach, evaluated
using SimCSE and GPT-4 metrics. We compare three variants: training without Stage 1, mixed Stage
1 & 2 training, and our complete three-stage curriculum. The results reveal substantial performance
gaps across both tasks. Without Stage 1 initialization, the model underperforms compared to our
complete curriculum, while the mixed approach shows improvement but still falls short, suggesting
that progressive learning is more effective than joint training of different task types. Our analysis
demonstrates that Stage 1 with large-scale 3D data serves as crucial foundation, enabling the model
to learn fundamental 3D spatial representations and specialized token semantics. This progressive
curriculum allows Lemon to develop robust 3D understanding capabilities in a structured manner.

3D encoder is not necessary in 3D LMMs. To investigate the necessity of dedicated 3D encoders,
we conduct a controlled experiment using only xyz coordinates without RGB information. Following
previous practices where PointNet++ is commonly used as the 3D encoder in existing 3D LMMs, we
modify our architecture to process point cloud patches through PointNet++(Qi et al., 2017b) before
our linear projector, freezing PointNet++ parameters while keeping other training configurations
identical. Figure 5c reveals that adding PointNet++ actually degrades performance across both tasks,
challenging the assumption that specialized 3D encoders are necessary for effective 3D-language
understanding. We attribute this performance degradation to two key factors: (1) PointNet++ is
pretrained on limited 3D object datasets for shape classification, lacking semantic alignment with
language-oriented tasks, and (2) the frozen encoder introduces a representational bottleneck that
prevents end-to-end optimization. Our unified architecture demonstrates that direct processing through
the language model framework can effectively learn task-relevant 3D representations, supporting
our design choice of eliminating separate 3D encoders in favor of fully integrated joint optimization.
Additional ablation studies are provided in the Appendix D.

4 RELATED WORKS

Multimodal Large Language Models Building upon the advances of recent large language models
(LLMs) (Touvron et al., 2023; Zhang et al., 2023; Brown et al., 2020; Bai et al., 2023), numerous
works (Chen et al., 2023; Liu et al., 2024; Li et al., 2022; Liu et al., 2023a; Wu et al., 2023; Gong
et al., 2023; Driess et al., 2023; Wang et al., 2024b;a; Yang et al., 2025a)have investigated multimodal
large language models (MLLMs) capable of understanding both visual and textual inputs. Although
MLLMs excel at numerous 2D vision-language tasks, their ability to understand complex 3D world is
still an open question. In the 2D domain, unified architectures like VisualBERT (Li et al., 2019), Fuyu-
8B (Li et al., 2023) and SOLO (Chen et al., 2024c) have demonstrated the potential of processing
image patches and language tokens within a single Transformer. However, extending such unified
approaches to 3D presents additional challenges due to the irregular structure of point clouds and the
limited availability of 3D-language paired data. Existing 3D MLLMs can be broadly categorized
into two paradigms. One line of work (Guo et al., 2023; Yang et al., 2025b; Qi et al., 2024) directly
encodes raw 3D data. However, this late-stage alignment approach struggles to capture the intricate
relationship between 3D data and language. Moreover, the scarcity of 3D data limits the encoder (Qi
et al., 2017a;b; 2023)’s representational capacity and generalization ability, leading to suboptimal
performance, particularly in complex scenarios. Lemon overcomes these limitations through a
unified Transformer architecture, early fusion, and dynamic point cloud patchification, significantly
enhancing cross-modal alignment capability, 3D representation capability, and model scalability.

3D Understanding with LLM The challenges of 3D understanding lie in identifying the semantic
meanings, physical properties and spatial relationship of objects. Existing works Qi et al. (2024);
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Guo et al. (2023); Hong et al. (2023); Chen et al. (2024b); Yu et al. (2022b) explored leveraging the
remarkable perceptual and reasoning capabilities of LLMs to enhance the understanding of 3D point
clouds. Existing models typically focus on a single scale. For object-/part-level 3D understanding
related works such as PointLLM Xu et al. (2024), ShapeLLM Qi et al. (2024) and MiniGPT-3D (Tang
et al., 2024) can identify the semantic and physical properties of individual objects, such as shape
and material. However, when faced with scene-level point clouds that include multiple objects
and complex spatial relationships, these models often struggle to capture the interactions between
objects and the overall context, leading to a decline in performance. For scene-level understanding,
previous works Zhi et al. (2024); Yang et al. (2025b); Azuma et al. (2022); Jiao et al. (2022); Ma
et al. (2022); Parelli et al. (2023); Chen et al. (2024d) excel at understanding multiple objects and
their spatial relationships, capable of handling the overall layout of scenes. Some recent approaches
explore alternative representations: Video-3D LLM Zheng et al. (2025) treats 3D scenes as 2D
video projections to leverage video-LLMs, while Inst3D-LMM Yu et al. (2025) relies on a complex
multi-stage pipeline utilizing external 3D instance segmentors. However, these projection-based or
multi-stage methods often suffer from geometric information loss or error propagation from external
modules. Moreover, scene-oriented models typically rely on large amounts of annotated scene data,
limiting their generalization ability and making it difficult to adapt to diverse application scenarios.
Lemon, through unified design, overcomes the aforementioned limitations and possesses significant
multi-scale adaptability, enabling it to efficiently handle both individual object point clouds and
scene-level point clouds.

5 CONCLUSION AND DISCUSSIONS
In this paper, we introduce Lemon, a unified transformer architecture that successfully addresses the
challenge of scaling multimodal learning to 3D spatial understanding. By processing point cloud
patches and language tokens within a single sequence, Lemon eliminates the complexity of heteroge-
neous architectures and achieves state-of-the-art performance across diverse 3D multimodal tasks,
from object recognition to complex spatial reasoning. Our comprehensive experiments demonstrate
that Lemon not only outperforms existing 3D LMMs but also exhibits favorable scaling behaviors,
providing the first systematic analysis of scaling laws in 3D multimodal learning. Future directions
include developing fine-grained 3D grounding capabilities, exploring cross-modal alignment tech-
niques, and integrating with embodied AI agents for real-world robotics applications. We believe
Lemon’s unified approach opens new possibilities for scalable 3D multimodal learning, providing a
solid foundation for future research in spatial intelligence and embodied AI.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Detailed descriptions of our
experimental setup, including model architectures, training procedures, and hyperparameter settings,
are provided in Appendix C.

LLM USAGE STATEMENT

We confirm that Large Language Models (LLMs) were exclusively utilized for minor editing, pol-
ishing, and improving the clarity and flow of the text within this paper. LLMs were not employed
for generating any core content, scientific ideas, or experimental results. All original contributions,
including concepts, methodologies, and findings, are solely the work of the authors.
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Table 5: Implementation Details for Lemon Training

Hyper-parameter Value
base model Qwen/Qwen2.5-7B-Instruct
batch size 512

learning rate 1.0e-5
num train epochs 3
lr scheduler type cosine

warmup ratio 0.1
bf16 true

A LIMITATIONS AND BROADER IMPACT

Limitations. The investigation into large-scale 3D multimodal modeling using a unified transformer
architecture remains nascent. Current limitations include substantial computational requirements
for training and inference, and dependency on limited 3D-language paired datasets compared to
2D counterparts. The point cloud patch tokenization may also introduce discretization artifacts that
affect fine-grained spatial reasoning, and the model’s performance can be sensitive to point cloud
quality and density variations. Continued advancements in unified 3D multimodal architectures, more
efficient training strategies, and larger-scale 3D datasets are anticipated to address these challenges.

Broader Impact. Although developing 3D multimodal models with strong capabilities brings
significant advancements in spatial AI and robotics applications, enabling more natural human-
robot interaction and enhanced accessibility tools, it also poses potential negative impacts. One
concern is the risk of misuse, where the model could be employed for malicious purposes, such as
generating misleading 3D content or facilitating unauthorized surveillance in physical environments.
Additionally, the model may inadvertently exacerbate biases present in the 3D training data, leading
to unfair or discriminatory outcomes in spatial reasoning tasks and embodied AI applications.

B EXTENDED BACKGROUND

3D modality and language alignment. Large language models (LLMs) have been extensively
employed in various works for 3D shape and space understanding, leveraging point clouds (Qi et al.,
2024; Chen et al., 2024b; Hong et al., 2023; Zhu et al., 2023), RGBD images (Cheng et al., 2024),
and other 3D representations (Yang et al., 2024a) as input. These 3D modalities provide crucial
geometric and structural information that enables more comprehensive scene understanding and
object manipulation in complex environments. These approaches aim to endow models with the
capability to comprehend 3D data and perform spatial reasoning, thereby addressing tasks that cannot
be effectively solved using 2D images alone. Similar to vision-language models, a fundamental
challenge in building effective 3D-language models is establishing robust cross-modality alignment
between 3D features and language features. This alignment is critical as it directly impacts the
model’s ability to connect language descriptions with corresponding 3D structures, determining
performance across 3D understanding tasks.

Scalability challenges in 3D LMMs. Current approaches to 3D-language alignment typically
employ pretrained 3D encoders, such as PointNet (Qi et al., 2017a), PointNet++(Qi et al., 2017b), or
develop specialized encoders through contrastive learning paradigms as demonstrated in ReCon++ (Qi
et al., 2024) and point embeddings(Chen et al., 2024d). These 3D encoders still exhibit significant
limitations in adapting to novel 3D data distributions and more complex spatial reasoning tasks,
primarily because they are trained on narrow data distributions with restricted training objectives.
Unlike the 2D domain where billions of images are available for training Radford et al. (2021), the
3D data landscape is significantly more constrained in scale. This data scarcity problem further limits
the representational capabilities and generalizability of 3D encoders. Additionally, the inherent scale
disparity between 3D encoders and LLMs creates a fundamental architectural imbalance, where
the spatial understanding component becomes a performance bottleneck for the entire framework.
These scalability issues collectively impede the advancement of 3D language multimodal models,
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particularly in tasks requiring fine-grained spatial understanding, generalizing to unseen object
categories, or reasoning about complex physical interactions.

C IMPLEMENTATION DETAILS

All experimental stages of Lemon are conducted on 8 Nvidia H100 GPUs. We employ a consistent
training recipe across all model variants as detailed in Table 5.

D EXPERIMENTS

D.1 CONCRETE EXAMPLE

For a point cloud partitioned into 2× 3× 3 = 18 patches, the token sequence structure becomes:

<pointcloud>
[(0,0,0), (0,0,1), (0,0,2)] <row_sep>
[(0,1,0), (0,1,1), (0,1,2)] <row_sep>
[(0,2,0), (0,2,1), (0,2,2)] <layer_sep>
[(1,0,0), (1,0,1), (1,0,2)] <row_sep>
[(1,1,0), (1,1,1), (1,1,2)] <row_sep>
[(1,2,0), (1,2,1), (1,2,2)]
<pointcloud/>

D.2 ABLATION STUDY ON 3D ENCODERS.

We investigate the impact of different 3D encoder training strategies on overall model performance.
Following common practice in 2D/3D LMMs, we compare frozen encoder weights against end-to-end
fine-tuning approaches.

Method Object Captioning (SimCSE) Scene Spatial QA
Lemon with Frozen PointBERT 40.51 38.24
Lemon with Frozen ReCon++ 45.37 41.32
Lemon with Frozen PointNet++ 41.89 32.25
Lemon with Fine-tuned ReCon++ 44.28 34.42
Lemon with Fine-tuned PointNet++ 38.73 29.58
Lemon-7B 53.59 53.45

Table 6: Ablation study on different encoder and training strategies.

As presented in Table 6, incorporating external encoders results in suboptimal performance compared
to our unified architecture. While advanced encoders like ReCon++ used by ShapeLLM (Qi et al.,
2024) provide better representations than PointNet++ (improving object captioning from 41.89 to
45.37), they still significantly lag behind Lemon. This performance gap likely stems from the limited
generalization capability of pre-trained encoders, which are typically trained on specific narrow
domains (e.g., synthetic ShapeNet objects). Furthermore, end-to-end fine-tuning of PointNet++ leads
to performance degradation, likely due to training instability when jointly training heterogeneous
modules. These results confirm that our unified transformer approach, which treats 3D patches as
native tokens, offers a more effective solution for 3D-language modeling than adapting external 3D
encoders.

D.3 ABLATION STUDY ON POINT CLOUD PATCHES

To determine the optimal point cloud patchification strategy, we conduct ablation studies on two
critical hyperparameters: the number of points per patch and the maximum number of patches and
present the results on captioning performance measured by SimCSE scores.

Point Counts Per Patch Analysis. As shown in Figure 6a, we evaluate different point counts per
patch. The results demonstrate a consistent performance improvement as the point count increases,
with higher point density achieving the best captioning performance. This trend indicates that
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(a) Effect of Point Counts Per Patch. (b) Effect of Maximum Patch Number.

denser point representation within each patch provides richer spatial information, enabling better
understanding of local geometric structures and subsequently improving language generation quality.

Maximum Patch Number Analysis. Figure 6b explores the effect of varying the maximum number
of patches. The performance initially increases with more patches and reaches an optimal point, with
performance remaining relatively stable at higher patch numbers. This suggests an optimal balance
between spatial coverage and sequence length efficiency—too few patches result in insufficient spatial
detail, while beyond a certain threshold, additional patches provide diminishing returns in terms of
performance gains.

Based on these ablation results, we adopt our final configuration for Lemon, which provides the
optimal trade-off between spatial representation quality and computational efficiency.

D.4 IMPACT OF TOKENIZATION AND SPATIAL ORDERING

We investigate the effectiveness of our tokenization strategy by comparing it against alternative
mechanisms. We evaluate two major categories: (1) FPS-based Sampling (PointBERT-style), which
generates spatially discontinuous tokens; and (2) Space-Filling Curves (Hilbert/Z-order), which
preserve mathematical locality but introduce complex traversal paths.

Table 7: Ablation study on tokenization strategies. Our Z→Y→X strategy achieves the best perfor-
mance.

Tokenization Strategy Spatial Ordering Object Captioning Scene Spatial QA
(SimCSE) (Accuracy)

FPS-based Sampling (PointBERT-style) Discontinuous (FPS) 43.15 35.20

Dynamic Patchification (Hilbert SFC) Structured (Curve) 47.10 49.50
Dynamic Patchification (Z-order SFC) Structured (Curve) 48.80 48.20
Dynamic Patchification (Ours) Structured (Z→Y→X) 53.59 53.45

As shown in Table 7, our structured Z→Y→X ordering achieves superior performance. The FPS-
based baseline suffers significantly (dropping to 35.20% in Spatial QA), confirming that spatially
discontinuous sequences disrupt the autoregressive modeling capability of LLMs. Furthermore,
while Space-Filling Curves (SFCs) preserve mathematical locality, our simple Z→Y→X ordering
outperforms them. This is likely because our strategy aligns with the gravitational and semantic
hierarchy of indoor scenes (e.g., floor → table → object), offering a logical flow consistent with
human descriptions. Additionally, this approach is similar to the grid-based patch flattening strategy
widely adopted in 2D LMMs (e.g., LLaVA-NEXT (Liu et al., 2023a)), producing a structured
sequence that is easier for the LLM to interpret compared to the convoluted traversal paths of Hilbert
curves.

D.5 ABLATION STUDY ON SPATIAL SEPARATOR TOKENS.

Our patchification strategy relies on specialized separator tokens (<layer_sep>, <row_sep>) to
preserve the hierarchical 3D spatial structure (Z→Y→X) within the flattened 1D token sequence. To
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quantify their contribution, we conducted an ablation study by removing these special tokens and
training the model using only the raw sequence of point patch embeddings.

Table 8 presents the comparison results. The removal of spatial separator tokens leads to significant
performance degradation across all tasks. Notably, the decline is most pronounced in Scene Spatial
QA, compared to Object Captioning. This disparity indicates that while the model can still recognize
object features from local patches, the explicit spatial structure provided by separator tokens is
indispensable for complex spatial reasoning tasks, such as understanding relative positions and scene
layouts.

Table 8: Ablation on Spatial Separator Tokens. The results demonstrate that explicit spatial
separators are critical for preserving geometric hierarchy, especially for complex scene-level spatial
reasoning.

Model Variant Object Captioning Scene Spatial QA
(SimCSE) (GPT-4)

Lemon w/o Spatial Tokens 45.84 40.23
Lemon (Full) 53.59 53.45

D.6 ADDITIONAL RESULTS

Evaluation on Standard Captioning Metrics. To address potential concerns regarding evaluation
bias and ensure comprehensive assessment, we additionally report standard lexical metrics including
BLEU-1 and ROUGE-L. However, consistent with findings in PointLLM (Xu et al., 2024) and
ShapeLLM (Qi et al., 2024), we observe that these n-gram-based metrics are often unreliable for
open-ended 3D object captioning, as they tend to penalize semantically correct but structurally diverse
descriptions.

Table 9: Comparison on standard lexical metrics. Lemon achieves competitive performance on
traditional n-gram metrics while maintaining a significant lead in semantic evaluation (GPT-4).

Model BLEU-1 ROUGE-L GPT-4 Score
PointLLM 17.09 20.99 44.27
3D-LLM 16.91 19.48 33.42
Lemon (Ours) 17.34 20.86 50.83

As shown in Table 9, Lemon achieves competitive results on lexical metrics (ranking first on BLEU-1
and comparable on ROUGE-L) while significantly outperforming baselines on the GPT-4 score. This
indicates that while Lemon generates diverse textual descriptions that may slightly deviate from
ground-truth n-grams, it captures the semantic essence of 3D objects more accurately than existing
methods.

Evaluation on other spatial benchmarks. We further conduct zero-shot evaluations on established
spatial reasoning benchmarks, including MSQA (Linghu et al., 2024) and Beacon3D (Huang et al.,
2025), while performing fine-tuned evaluations on ScanQA (Azuma et al., 2022) and SQA3D (Ma
et al., 2022) for 2 epochs. As shown in Table 10, Lemon achieves superior performance across most
metrics among point-cloud-based methods. Specifically, Lemon establishes new state-of-the-art
results on ScanQA and SQA3D, outperforming recent strong baselines such as Inst3D-LMM and Chat-
Scene. Furthermore, on fine-grained diagnosis benchmarks like MSQA and Beacon3D, our model
maintains robust performance, demonstrating its exceptional generalization capacity in handling
diverse spatial understanding tasks without requiring task-specific architectural modifications.

The results demonstrate consistent performance advantages across multiple established benchmarks,
validating the effectiveness and generalization capability of our approach.

Performance under Challenging Conditions. We evaluate our model’s robustness on sparse
and noisy point cloud benchmarks to assess practical applicability. Lemon maintains consistent
performance even under challenging conditions, benefiting from our large-scale pretraining dataset,
which includes point clouds with varying densities.
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Table 10: Comparison on spatial reasoning benchmarks. We report CIDEr (C), BLEU-4 (B-4),
ROUGE-L (R), and METEOR (M) for ScanQA, and EM & EM-Recall (EM-R) for SQA3D. Lemon
achieves state-of-the-art performance on most metrics. * indicates zero-shot evaluation.

Model ScanQA (val) SQA3D (test) MSQA* Beacon3D*
C B-4 R M EM EM-R Score Case

3D-LLM (Hong et al., 2023) 69.4 12.0 35.2 14.8 49.8 - - -
LSceneLLM (Zhi et al., 2024) 80.0 12.0 - - 54.2 - 11.7 -
3D-VisTA (Zhu et al., 2023) 72.9 13.1 42.7 13.9 48.5 - - 43.2
SceneVerse (Jia et al., 2024) - - - - 49.9 - - 40.5
LEO (Huang et al., 2023) 80.0 11.5 39.3 16.2 50.0 53.7 7.84 45.2
Chat-Scene (Huang et al., 2024) 87.7 14.3 41.6 18.0 54.6 57.5 - 49.8
Inst3D-LMM (Yu et al., 2025) - 14.9 - - - - - -

Lemon (Ours) 90.5 15.4 45.1 20.3 59.4 63.0 10.68 46.2

Condition Embodied Object QA Scene Spatial QA (Non-binary)
Original 57.22 53.45
Noisy (σ = 0.01) 55.86 50.92
Sparse (50% sampling) 53.71 49.38

Table 11: Robustness evaluation under noisy and sparse point cloud conditions.

D.7 EVALUATION ON 3D VISUAL GROUNDING

To further validate Lemon’s fine-grained spatial localization capabilities beyond QA and captioning,
we conducted additional experiments on the 3D visual grounding task. We utilized the widely adopted
ScanRefer benchmark (Chen et al., 2020), which requires the model to localize a specific object in a
3D scene given a natural language description.

Following standard protocols established by baselines, we fine-tuned Lemon on the ScanRefer train-
ing set and evaluated performance using the Acc@0.5 metric (accuracy of bounding box prediction
with IoU ≥ 0.5).

Table 12: Performance comparison on the ScanRefer validation set (Acc@0.5). Lemon achieves
competitive localization performance compared to specialized grounding models, demonstrating
strong spatial-semantic alignment.

Model ScanRefer Acc@0.5
ScanRefer (Chen et al., 2020) 24.3
3D-VisTA (Zhu et al., 2023) 45.8
GPS (Jia et al., 2024) 48.1
Chat-Scene (Huang et al., 2024) 50.2
Lemon (Ours) 48.0

As shown in Table 12, Lemon achieves an accuracy of 48.0%, which is highly competitive with
strong baselines such as GPS (48.1%) and significantly outperforms 3D-VisTA (45.8%). Notably,
Lemon achieves this performance without incorporating large-scale grounding datasets during the
pre-training stage, relying instead on the robust spatial representations learned through our unified
architecture. This result confirms that Lemon possesses precise 3D localization capabilities essential
for tasks such as detection and referring expression comprehension.

D.8 COMPUTATIONAL EFFICIENCY AND SCALABILITY

We provide a comprehensive analysis of the computational efficiency of Lemon, covering training
cost, inference latency, and parameter efficiency.

Training Efficiency. Our three-stage training curriculum is highly efficient, completing in a total
of 78 hours on 8×H100 GPUs (Stage 1: 48h, Stage 2: 24h, Stage 3: 6h). This rapid convergence
is facilitated by our unified architecture, which avoids the instability often associated with jointly
optimizing separate 3D encoders.
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Inference Latency. We compare the inference speed of Lemon against state-of-the-art 2D and
3D multimodal models. As shown in Table 13, Lemon achieves superior latency (0.052s per token
generation step). This speed advantage stems from our encoder-free design, which eliminates the
heavy forward pass of external 3D backbones.

Table 13: Inference latency comparison. Times are measured as the average per-token generation
latency on a single H100 GPU (Input points ≈ 16k).

Model Backbone Size Inference Time (s)
3D-LLM 7B 0.0762
ShapeLLM 7B 0.0745
LLaVA-1.5 13B 0.0672
Qwen2.5-VL 7B 0.0588

Lemon (Ours) 7B 0.0520

Detailed Compute Breakdown. To address concerns regarding the overhead of our Dynamic
Patchification (which involves sorting and sampling), we analyze the per-module latency in Table 14.
Notably, the visual processing stage accounts for only a small fraction of the total latency. While
global FPS can be computationally expensive, our strategy performs hierarchical spatial sorting
first, which is highly efficient (O(N logN)). FPS is then selectively applied only to local oversized
patches, avoiding the quadratic complexity of global sampling on the entire scene.

Table 14: Per-module compute and latency statistics for Lemon (Qwen2.5-7B backbone, batch size
= 1, FP16, Input Points ≈ 16k). The visual processing overhead is minor compared to the LLM
backbone.

Module Params (M) FLOPs (G) Latency / Memory
Single H100 8×H100 Memory (GB)

Patchification (Sort + FPS) 0 3.0 12.5 / 15.0 ms 10.5 / 12.0 ms 0.8
Linear Projector 6.3 1.0 2.5 / 3.5 ms 2.0 / 3.0 ms 0.5
LLM Backbone (Qwen2.5-7B) 7610 520 64.0 / 78.0 ms 37.5 / 46.0 ms 14.5

Total 7616.3 524 79.0 / 96.5 ms 50.0 / 61.0 ms 15.2

Parameter Efficiency. I n Table 15, we compare the architectural complexity. While ShapeLLM
and PointLLM fall under the same "7B" category, they require loading external 3D encoders (e.g.,
ShapeLLM uses a heavy ReCon++ Large encoder with ∼500M parameters) in addition to the LLM.
In contrast, Lemon achieves a streamlined design with zero encoder parameters, integrating 3D
processing directly into the LLM.

Table 15: Detailed comparison of architectural components and trainable parameters. Lemon achieves
a streamlined design by removing the standalone 3D encoder.

Model 3D Encoder Projector LLM Backbone
Type Params

PointLLM-7B PointBERT ∼40M Linear LLaMA-2 7B (∼7.3B)
ShapeLLM-7B ReCon++-L ∼300M MLP Vicuna 7B (∼7.5B)

Lemon-7B None 0 Linear Qwen2.5-7B (7.2B)

E DATASET AND BENCHMARK

E.1 DETAILS OF EMBODIED 3D SPATIAL QA SET

To evaluate the model’s capability in handling complex spatial reasoning tasks required for embodied
agents, we constructed a specialized test set comprising 100 challenging samples. We sourced the 3D
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Table 16: Detailed statistics of the 100 Challenging 3D Spatial QA set. The dataset is manually
curated to cover diverse aspects of embodied spatial reasoning.

Task Category Focus & Example Count
Navigability Analysis Passability checks (e.g., “Can a robot pass through...?”) 30
Precise Distance Estimation Relative distance comparison (e.g., “Closer to A or B?”) 25
Collision & Interaction Physics/Safety (e.g., “Will it hit the table if fell?”) 20
Spatial Relations Complex positioning (e.g., “Behind/Next to under occlusion”) 25

Total 100

Table 17: Composition of the object evaluation set. We explicitly include diverse real-world scanned
datasets to verify robustness against noise and occlusion.

Dataset Source Type Characteristics Count
ShapeNet Synthetic Clean CAD models 400
Structured3D Synthetic Photorealistic simulation 400

ScanNet Real-world RGB-D Scans (Indoor) 400
3RScan Real-world Temporal Scans 400
ARKitScenes Real-world Mobile Lidar/RGB 400

Total Mixed Domains 2000

scenes from the 3D-GRAND dataset, specifically selecting dense and cluttered indoor environments
such as bathrooms, kitchens, living rooms, and bedrooms. These scenes were chosen to provide rich
geometric contexts where spatial relationships are intricate and require precise 3D understanding
beyond simple object recognition.

Based on these selected point clouds, we engaged human experts to manually design Question-
Answer pairs focused on embodied interaction scenarios. Unlike general captions, these questions are
specifically tailored to test rigorous spatial reasoning capabilities. As detailed in Table 16, the dataset
covers specific embodied tasks including precise distance estimation, navigability analysis, and
collision avoidance. By incorporating these manually verified, high-difficulty cases, this set serves as
a robust benchmark for assessing fine-grained spatial intelligence in realistic 3D environments.

E.2 DETAILS OF OBJECT EVALUATION DATASETS

As shown in Table 17, our 3D object evaluation set covers both synthetic environments and challenging
real-world scanned scenes (e.g., ScanNet, ARKitScenes), ensuring a balanced assessment of the
model’s robustness.

F EVALUATION PROMPTS

We provide the specific prompts used for our LLM-as-judge evaluations to ensure reproducibility.
Following the protocols in previous works, the prompts for Object Recognition, Object Captioning,
and Embodied Object QA are adopted from ShapeLLM (Qi et al., 2024). For the Scene Spatial
Awareness QA, we reference the evaluation design from 3D-GRAND (Yang et al., 2024a), tailoring
the prompt to cover diverse aspects including Navigability Analysis, Precise Distance Estimation,
Collision & Interaction, and Spatial Relations.
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Object Recognition Evaluation Prompt

Analyze two sentences and determine if they’re referring to the
same general object or concept, focusing on the type of object,
not attributes such as color, size, or shape. Respond with ’T’
if they refer to the same thing and ’F’ if not. Also, provide a
brief rationale (no more than 20 words) for your judgment.

Example:
Input: 1. Spiral staircase that goes from a ground floor. 2. This

is a 3D model of wooden stairs in light brown
Output: T\#Both refer to a staircase.

Now, analyze the following:
Input: 1. \{ground\_truth\} 2. \{model\_output\}
Output:
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Object Captioning Evaluation Prompt

Evaluate a model-generated caption against a human-generated
caption (ground truth) for a 3D model. Identify the aspects
mentioned in the human caption and calculate the percentage of
these aspects correctly mentioned or partially matched in the
model caption. Score from 0 to 100, where each aspect
contributes equally to the score. Consider similar concepts for
partial score.

Provide your score (0-100) and a short justification (less than 15
words) in the format of ’score\#reason’

Example:
Human: A white brown skeleton
Model: This is a 3D model of a small, cartoon-like robot. It has a

spherical body and is covered in a layer of white dust.
Output: 50\#mention white; skeleton and robot have similar

appearence.

Now score the following:
Human: \{ground\_truth\}
Model: \{model\_output\}
Output:
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Embodied Object QA Evaluation Prompt (3D-MM-Vet)

Now I will give you a question, the type of the question, an answer
from model, and an answer from label.

All you need to do is focus on these two answers and figure out
whether they are saying the same thing about the specific type
of question.

Your response should only be a confidence score ranging from 0 to
100.

Remember the confidence score is to evaluate how much two answers
are describing the same thing.

Your response confidence score should follow the scoring standard
of the prompt I gave.

Firstly I will give you several question \& answer pairs as long as
their confidence score:

question1: How many oranges will there be if 1/3 of them are
removed?

question type: Knowledge
answer from model: There will be 6 left.
answer from label: As there are 9 oranges in total, there will be 6

oranges left if 1/3 of them are removed.
confidence score: 100

question2: What is this object?
question type: General Visual Recognition
answer from model: This is a bathtub
answer from label: This is a dirty bathtub.
confidence score: 80

question3: What is this object?
question type: General Visual Recognition
answer from model: This is a bottle of water
answer from label: This is a bottle of oil
confidence score: 50

question4: What is holding in this boy’s right hand?
question type: Spatial Recognition
answer from model: He is holding a white cup in his right hand.
answer from label: He is holding a sword in his right hand.
confidence score: 0

Next, I will give you the elements:
question: \{question\},
question type: \{type\},
answer from model: \{model\_output\},
answer from label: \{ground\_truth\}.
Please remember, while outputting the confidence score, do not

include any words, just the number.
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Scene Spatial Awareness QA Evaluation Prompt

Now I will give you a question about a 3D scene, the type of the
question, an answer from the model, and an answer from the label
.

All you need to do is focus on these two answers and determine
whether the model’s answer conveys the same spatial information
or reasoning as the label, given the specific question type.

Your response should only be a confidence score ranging from 0 to
100.

Remember the confidence score is to evaluate the accuracy of the
spatial understanding and reasoning.

Your response confidence score should follow the scoring standard
of the prompt I gave.

Firstly I will give you several question \& answer pairs as long as
their confidence score:

question1: Is the coffee table closer to the sofa or the TV stand?
question type: Spatial Relations
answer from model: It is closer to the sofa.
answer from label: The table is positioned right in front of the

sofa, far from the TV.
confidence score: 100

question2: Can a robot vacuum pass between the bed and the wall?
question type: Navigability Analysis
answer from model: Yes, there is plenty of space.
answer from label: No, the gap is too narrow for a robot to

navigate.
confidence score: 0

question3: What is the distance between the ceiling lamp and the
floor?

question type: Precise Distance Estimation
answer from model: It is about 2 meters.
answer from label: The lamp hangs approximately 2.5 meters above

the ground.
confidence score: 80

question4: If I open the wardrobe door, will it hit the bedside
table?

question type: Collision \& Interaction
answer from model: No, there is enough clearance.
answer from label: Yes, the door swing radius intersects with the

table.
confidence score: 0

Next, I will give you the elements:
question: \{question\},
question type: \{type\},
answer from model: \{model\_output\},
answer from label: \{ground\_truth\}.
Please remember, while outputting the confidence score, do not

include any words, just the number.
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