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Abstract

LLMs are revolutionizing NLP tasks. How-
ever, the most powerful LLM, like GPT-4, is
too costly for most domain-specific scenarios.
We present the first continuously trained 13B
Llama2-based LLM that is purpose-built for
medical conversations and measured on au-
tomated scribing. Our results show that our
model outperforms GPT-4 in PubMedQA with
76.6% accuracy and matches its performance in
summarizing medical conversations into SOAP
notes. Notably, our model exceeds GPT-4 in
capturing a higher number of correct medical
concepts and outperforms human scribes with
higher correctness and completeness.

1 Introduction

The emergence of large language model (LLM) has
brought revolutionary changes to natural language
processing and understanding tasks, paving the way
for practical applications of Al across multiple do-
mains such as law, finance, and healthcare. Private
and open-source LLMs such as GPT-4 (OpenAl,
2023) and Llama 2 (Meta, 2023) have shown strong
performance on general NLP benchmarks. How-
ever, recent studies have shown promise that with
continued training on more targeted datasets, e.g.
smaller LLMs like Orca (Mukherjee et al., 2023;
Mitra et al., 2023) and Phi-2 (Mojan Javaheripi,
2023), can surpass much larger LLMs on general
tasks.

Despite the success of LLM in general capa-
bilities, they often fall short in niche domains
like healthcare, where precision and profound
understanding are crucial. This necessitates
domain-specific models, particularly in healthcare
where misinterpretations of facts can have sig-
nificant consequences. Hence, several models
such as Meditron-70B (Chen et al., 2023), PMC-
LLaMA (Wu et al., 2023) have emerged.

Transcribing medical conversations is a chal-
lenging task for both humans and machines due

to potential transcription errors and the innate com-
plexity of spoken language, an issue unaddressed
by existing medical LLMs. Existing LLMs which
have been designed for the medical domain largely
do well on problems like medical Q&A but can-
not create a complete EHR-compatible medical
note. Some domain-adapted LLMs (Van Veen
et al., 2023) can write some components of the
note, but they leave out the crucial "Subjective" sec-
tion. Some fine-tuned models (Zhang et al., 2021)
can generate notes from medical conversations but
need human overview.

Overall, we developed a comprehensive medical
LLM that understands medical dialogues. By using
techniques like explanation tuning and continued
pretraining on diverse set of data, including medical
and general web corpora, GPT-4 task instructions,
EHRs, the model was able to generate physician-
approved medical SOAP notes, making it uniquely
fit for industry application.

Our main contributions include:

To the best of our knowledge, we are the first
to build a small-size (13B) medical LLM that can
produce medical notes from doctor-patient conver-
sations that bypass human quality.

On the task of medical note generation, our 13B
pretrained model performs overall on-par against
GPT-4 and higher in completeness.

We achieved 76.6% in accuracy, which beats
GPT-4 75.2% on PubMedQA, with a much smaller
model size.

2 Continued Pretraining

2.1 Dataset

We grouped our training data into three categories
to enable the model to generate coherent English
sentences, comprehend medical content, and exe-
cute complex instructions required for generating
medical notes. (see Table 1)

Non-medical public datasets. To ensure that the



Dataset Number of tokens | Percentage of
(in billions) total data
Non-medical public 5.33 35.79
Medical public 5.68 38.14
Medical proprietary 3.88 26.07
Total 14.89 100.00

Table 1: Pretraining datasets

new model doesn’t lose the generative capabilities
of the pretrained Llama 2 model, we added general
domain datasets such as C4 (Raffel et al., 2019).
Continued pretraining on them was crucial for gen-
erational tasks, enhancing the model’s grammar
and phrase composition skills. Initially, we also in-
cluded filtered subtitle data from open-subtitle and
youtube. However, we decided to exclude these
datasets due to their poor quality negatively impact-
ing the model’s performance.
Medical public datasets. We extracted medically
relevant datasets from web corpus covering dif-
ferent aspects of medical concept understanding.
MedDialog (Chen et al., 2020) taught medical lan-
guage conversation while reading materials such
as PubMed articles (Gao et al., 2020) provided
the model with an overall medical context. Pub-
MedQA (Jin et al., 2019) addressed ideas of medi-
cal Q&A.
Proprietary medical datasets. We also curated a
deidentified proprietary medical dataset that con-
sists of real-world doctor-patient conversations
from the United States, Electronic Health Records
(EHR), SOAP (Subjective, Objective, Assessment,
and Plan) notes, and ROS templates. We also cre-
ated an artificial dataset with medical instructions,
that includes step-by-step thought processes. This
helped the model understand multi-step reasoning,
essential for the downstream medical documenta-
tion task.

While we developed a much larger high-quality
custom dataset, currently only 14.89B tokens were
used for this training exercise.

2.2 Training Details

We performed training using FSDP (Zhao et al.,
2023) - pipeline parallelism with hybrid sharding
and flash attention 2 on 32 A100 80 GB GPUs.
We continued training LLaMA2-13B using
learning rate of 5e-5 and decaying it to le-5 fol-
lowing a cosine schedule. We chose a batch size
of 256 with an 8K context window, maintaining
a relatively small batch size to achieve about 10K
effective gradient update steps. We set the weight

decay at 0.1 and a warm-up step count to 50.
Robust Training. To be tolerant of machine
and experiment related mishaps, we used fixed
seed, checkpoints, and implemented phased train-
ing where we divided the training data into n sub-
sets. If the loss of a particular validation subset
started to stabilize, we reduced the sampling rate
in the next phase for efficiency.

Data Packing & Dedup. We packed data by sen-
tence to fit into max sequence length. We also
deduplicated our data to improve data quality (Lee
et al., 2021).

Loss. For the general corpus including C4, pub-
lic medical materials, we calculated the gradient
on every token. However, on proprietary instruc-
tion data, the loss was only calculated on response
tokens.

3 Evaluations

This section shows some of our pretraining results
and evaluation methodology.

3.1 Pretraining

We employed two evaluation methods to monitor
pretraining. Firstly, we measured the perplexity
of each data source to evaluate the model’s task
difficulty. Secondly, for a holistic understanding of
the generation quality, we used several few-shot (3-
shot) generative tasks for validation, that include:
1) Long text generation: This is a subjective sec-
tion summarization task from transcript to evaluate
the generation quality of different note categories.
2) Medium text generation: This is a transcription
based Q&A task created by modifying the (Rohan
et al., 2023) pipeline on the InstructQA dataset.
We query GPT-4 on questions prompting responses
ranging from a few words to a full sentence, like
asking for prescribed medications.
3) Short text generation: This comprises of ROS
(Review Of System) - related Q&A tasks, including
questions about body system identification (multi-
choice), and absence or presence of symptoms
(single-choice).

We measured Rouge-cls for tasks 1, 2 and accu-
racy for task 3, to monitor pretraining performance.

As shown in Figurel, we found that our model’s
performance consistently improved for long text
generation, medium text generation, and multi-
choice Q&A. Surprisingly the single-choice Q&A
did not show any major improvement. We be-
lieve this is because a) the accuracy numbers are
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Figure 1: Pretraining validation generation capability monitoring

Training ROS InstructQA | InstructQA
data (multi-choice) Rouge-1 Rouge-cls
(Acc) (f1) (f1)
1B Total 47.36 0.44 0.41
med 37.85 0.39 0.35
pub 36.81 0.44 0.42

Table 2: Training data ablation results. The med
dataset is derived from the 1B training dataset by exclud-
ing all the public datasets. Similarly, the pub dataset is
produced by removing all medical datasets.

Model #Incorrect | #Irrelevant | #Missed

Human 1.2 0 11.2

GPT-4 0.8 0.2 6.75
Our LLM 0.85 0.3 4.3

Table 3: Average entity errors per conversation

already too high b) we noticed further improve-
ment on these numbers when we separately trained
the model on a smaller related dataset, suggesting
scaling up the training can lead to further improve-
ments.

3.2 Pretraining Ablation

As shown in table 2, we examined the impact of
different data proportions on a 1B token dataset,
derived from a scaled-down version of our custom
15B dataset, using the 7B Llama2 model.

From ablation, we observed that removing the
general datasets from the training mix inversely im-
pacted the generative capabilities of the model lead-
ing to poorer summarization quality. We were also
able to conclude that the medical datasets indeed
improve the model’s understanding of the medical
context. This prompted us to use equal proportions
of these datasets in the training to ensure that the
model doesn’t lose its generative capabilities while
gaining medical understanding.

3.3 Medical Note Generation

Evaluation Setup. We used medical transcripts
from healthcare conversations as our primary in-
put. Both GPT-4 and the pretrained LL.M used the

same prompt to generate a clinical note from these
transcripts. We also evaluated them against human
scribes from our production system (medical stu-
dents who underwent internal scribe training and
received monetary compensation for their services).
The evaluation included 10 doctor-patient dialogue-
style conversations with an average audio duration
of 12 minutes and 35 medical entities. For a fair
comparison of the notes created by humans and the
model, we leveraged human experts for evaluation.

As outlined in (Van Veen et al., 2023), we eval-
uated the generated notes on three key parame-
ters: Completeness, Correctness, and Concise-
ness. We used human experts to create a rubric
note for each transcript. This rubric note marked
all the vital medical information as separate medi-
cal entities. Each entity within this note symbolizes
a crucial sentence or phrase that a provider needs,
to approve the note. We measured the generated
note on three metrics:

Missed Information refers to the entities omitted
in the test note relative to the rubric note. This
metric reflects the test note’s completeness.
Incorrect Information implies the entities inaccu-
rately captured by the test note. Given the critical
nature of information accuracy in healthcare, this
metric is vital as misinformation can undermine
trust in AL

Irrelevant information represents the extraneous
entities included in the test note when compared
against the rubric note. As longer medical notes
require more review time for providers, minimizing
irrelevant information is key.

In our comprehensive quality assessment, the
human scribe, on an average, took 1.67 times of
audio time to finish the note summarization. We no-
ticed that humans introduced some incorrectness in
their notes which we attribute to ASR (Automatic
Speech Recognition) errors. Both our model and
GPT-4 outperformed humans in correcting these er-
rors. Overall, our model performs on-par with GPT-



4. Thanks to our optimized training, our model was
able to capture more relevant information than both
human transcriptions and GPT-4.

3.4 Public Benchmark

We evaluated on two benchmarks, PubMedQA (Jin
et al., 2019), MedQA (Jin et al., 2021).

In PubMedQA, our model achieved an accuracy
of 76.6% after fine-tuning, which surpasses GPT-
4’s performance (Nori et al., 2023) of 75.2%. Our
improved performance, aside from training on Pub-
MedQA, can be attributed to our proprietary medi-
cal question-answering tasks on conversational data
which focuses more on medical understanding.

In MedQA, we achieved an accuracy of 45.2%,
which is lower than previous LLaMA?2 based medi-
cal model (Wu et al., 2023). MedQA emphasizes
medical reasoning, requiring the model to deduce
diagnoses or solutions based on given problems.
However, our model is designed to interpret med-
ical conversations which does not align with this
task and hence, leads to subpar performance on this
dataset.

4 Discussion

We deidentified all the clinical data to remove the
PHI information in accordance with our data com-
pliance agreement. Our model is strictly used for
internal medical related scribing tasks such as sum-
marization, transcription Q&A and note review. All
the prompts are audited to avoid any unintentional
usage.

Our current design focuses more on in-context
transcription understanding. The model’s medi-
cal reasoning capability can be further improved
to achieve better performance on MedQA alike
datasts by introducing more medical reasoning
data.

This is our first attempt to showcase the power
of injecting medical reasoning on medical note
generation tasks on a smaller LLM with small scale
15B dataset. We plan to further improve by scaling
up our data and share future work.

5 Conclusions

This paper presents our work of developing a med-
ical LLM capable of comprehending and summa-
rizing medical dialogues. As a result, this is the
first model, with significantly fewer parameters, to
outperform humans on medical note summariza-
tion and GPT-4 on PubMedQA. Evaluations show

that even small scale pretraining of smaller LLMs
can show impressive gains and achieve on-par per-
formance with GPT-4. We further believe that we
can achieve improved results, if we simply scale
up our training. Our work presents a promising
development in healthcare documentation industry
and other medical areas.

6 Related Work

Explanation tuning. Orca (Mukherjee et al., 2023;
Mitra et al., 2023) models showcased that smaller
Language Models (LMs) capable of sound reason-
ing can efficiently perform complex tasks. They
were trained by explanation tuning a Llama 13B
model (Touvron et al., 2023) using bigger models
like GPT4 as a teacher. Despite their smaller size,
they retained a majority of the quality of ChatGPT
and GPT4.

Medical LLMs. Various medical LLMs such as
BioGPT (Luo et al., 2022), MedGPT (Kraljevic
et al., 2021), Med-PalLM (Singhal et al., 2022) and
Med-PalLM 2 (Singhal et al., 2023) show how train-
ing on various medical datasets, improves model’s
performance on medical knowledge understanding
tasks. In the LLaMA (Touvron et al., 2023) family,
MEDITRON-70B (Chen et al., 2023), the state-of-
the-art open-source LLM and PMC-LLaMA (Wu
et al., 2023) demonstrates the importance of funda-
mental medical knowledge in healthcare-focused
models and emphasizes the effectiveness of task-
specific fine-tuning and instruction tuning.
Domain adaption LLM. Continued pretraining
on unlabeled, domain-specific data, as shown by
(Gururangan et al., 2020), (Beltagy et al., 2019) can
successfully improve a model’s performance on
domain-specific tasks, offering a practical solution
when resources for domain-adaptive pretraining
from scratch are constrained. Furthermore, (Wu
et al., 2022) highlighted the benefits of continued
pretraining in improving zero-shot and few-shot
compatibility.

Medical Note Generation. Prior work by (Zhang
et al., 2021), (Van Veen et al., 2023) displayed po-
tential in utilizing Language Models to generate
medical summaries from dialogues. However, their
focus wasn’t on creating a complete note that could
be directly sanctioned by the provider but rather on
partial aspects or semi-automated methods, neces-
sitating human intervention. (Chuang et al., 2023)
leveraged soft prompts to control the variance of
LLM outputs on medical summarization tasks.
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