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Abstract

LLMs are revolutionizing NLP tasks. How-001
ever, the most powerful LLM, like GPT-4, is002
too costly for most domain-specific scenarios.003
We present the first continuously trained 13B004
Llama2-based LLM that is purpose-built for005
medical conversations and measured on au-006
tomated scribing. Our results show that our007
model outperforms GPT-4 in PubMedQA with008
76.6% accuracy and matches its performance in009
summarizing medical conversations into SOAP010
notes. Notably, our model exceeds GPT-4 in011
capturing a higher number of correct medical012
concepts and outperforms human scribes with013
higher correctness and completeness.014

1 Introduction015

The emergence of large language model (LLM) has016

brought revolutionary changes to natural language017

processing and understanding tasks, paving the way018

for practical applications of AI across multiple do-019

mains such as law, finance, and healthcare. Private020

and open-source LLMs such as GPT-4 (OpenAI,021

2023) and Llama 2 (Meta, 2023) have shown strong022

performance on general NLP benchmarks. How-023

ever, recent studies have shown promise that with024

continued training on more targeted datasets, e.g.025

smaller LLMs like Orca (Mukherjee et al., 2023;026

Mitra et al., 2023) and Phi-2 (Mojan Javaheripi,027

2023), can surpass much larger LLMs on general028

tasks.029

Despite the success of LLM in general capa-030

bilities, they often fall short in niche domains031

like healthcare, where precision and profound032

understanding are crucial. This necessitates033

domain-specific models, particularly in healthcare034

where misinterpretations of facts can have sig-035

nificant consequences. Hence, several models036

such as Meditron-70B (Chen et al., 2023), PMC-037

LLaMA (Wu et al., 2023) have emerged.038

Transcribing medical conversations is a chal-039

lenging task for both humans and machines due040

to potential transcription errors and the innate com- 041

plexity of spoken language, an issue unaddressed 042

by existing medical LLMs. Existing LLMs which 043

have been designed for the medical domain largely 044

do well on problems like medical Q&A but can- 045

not create a complete EHR-compatible medical 046

note. Some domain-adapted LLMs (Van Veen 047

et al., 2023) can write some components of the 048

note, but they leave out the crucial "Subjective" sec- 049

tion. Some fine-tuned models (Zhang et al., 2021) 050

can generate notes from medical conversations but 051

need human overview. 052

Overall, we developed a comprehensive medical 053

LLM that understands medical dialogues. By using 054

techniques like explanation tuning and continued 055

pretraining on diverse set of data, including medical 056

and general web corpora, GPT-4 task instructions, 057

EHRs, the model was able to generate physician- 058

approved medical SOAP notes, making it uniquely 059

fit for industry application. 060

Our main contributions include: 061

To the best of our knowledge, we are the first 062

to build a small-size (13B) medical LLM that can 063

produce medical notes from doctor-patient conver- 064

sations that bypass human quality. 065

On the task of medical note generation, our 13B 066

pretrained model performs overall on-par against 067

GPT-4 and higher in completeness. 068

We achieved 76.6% in accuracy, which beats 069

GPT-4 75.2% on PubMedQA, with a much smaller 070

model size. 071

2 Continued Pretraining 072

2.1 Dataset 073

We grouped our training data into three categories 074

to enable the model to generate coherent English 075

sentences, comprehend medical content, and exe- 076

cute complex instructions required for generating 077

medical notes. (see Table 1) 078

Non-medical public datasets. To ensure that the 079
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Dataset Number of tokens Percentage of
(in billions) total data

Non-medical public 5.33 35.79
Medical public 5.68 38.14

Medical proprietary 3.88 26.07
Total 14.89 100.00

Table 1: Pretraining datasets

new model doesn’t lose the generative capabilities080

of the pretrained Llama 2 model, we added general081

domain datasets such as C4 (Raffel et al., 2019).082

Continued pretraining on them was crucial for gen-083

erational tasks, enhancing the model’s grammar084

and phrase composition skills. Initially, we also in-085

cluded filtered subtitle data from open-subtitle and086

youtube. However, we decided to exclude these087

datasets due to their poor quality negatively impact-088

ing the model’s performance.089

Medical public datasets. We extracted medically090

relevant datasets from web corpus covering dif-091

ferent aspects of medical concept understanding.092

MedDialog (Chen et al., 2020) taught medical lan-093

guage conversation while reading materials such094

as PubMed articles (Gao et al., 2020) provided095

the model with an overall medical context. Pub-096

MedQA (Jin et al., 2019) addressed ideas of medi-097

cal Q&A.098

Proprietary medical datasets. We also curated a099

deidentified proprietary medical dataset that con-100

sists of real-world doctor-patient conversations101

from the United States, Electronic Health Records102

(EHR), SOAP (Subjective, Objective, Assessment,103

and Plan) notes, and ROS templates. We also cre-104

ated an artificial dataset with medical instructions,105

that includes step-by-step thought processes. This106

helped the model understand multi-step reasoning,107

essential for the downstream medical documenta-108

tion task.109

While we developed a much larger high-quality110

custom dataset, currently only 14.89B tokens were111

used for this training exercise.112

2.2 Training Details113

We performed training using FSDP (Zhao et al.,114

2023) - pipeline parallelism with hybrid sharding115

and flash attention 2 on 32 A100 80 GB GPUs.116

We continued training LLaMA2-13B using117

learning rate of 5e-5 and decaying it to 1e-5 fol-118

lowing a cosine schedule. We chose a batch size119

of 256 with an 8K context window, maintaining120

a relatively small batch size to achieve about 10K121

effective gradient update steps. We set the weight122

decay at 0.1 and a warm-up step count to 50. 123

Robust Training. To be tolerant of machine 124

and experiment related mishaps, we used fixed 125

seed, checkpoints, and implemented phased train- 126

ing where we divided the training data into n sub- 127

sets. If the loss of a particular validation subset 128

started to stabilize, we reduced the sampling rate 129

in the next phase for efficiency. 130

Data Packing & Dedup. We packed data by sen- 131

tence to fit into max sequence length. We also 132

deduplicated our data to improve data quality (Lee 133

et al., 2021). 134

Loss. For the general corpus including C4, pub- 135

lic medical materials, we calculated the gradient 136

on every token. However, on proprietary instruc- 137

tion data, the loss was only calculated on response 138

tokens. 139

3 Evaluations 140

This section shows some of our pretraining results 141

and evaluation methodology. 142

3.1 Pretraining 143

We employed two evaluation methods to monitor 144

pretraining. Firstly, we measured the perplexity 145

of each data source to evaluate the model’s task 146

difficulty. Secondly, for a holistic understanding of 147

the generation quality, we used several few-shot (3- 148

shot) generative tasks for validation, that include: 149

1) Long text generation: This is a subjective sec- 150

tion summarization task from transcript to evaluate 151

the generation quality of different note categories. 152

2) Medium text generation: This is a transcription 153

based Q&A task created by modifying the (Rohan 154

et al., 2023) pipeline on the InstructQA dataset. 155

We query GPT-4 on questions prompting responses 156

ranging from a few words to a full sentence, like 157

asking for prescribed medications. 158

3) Short text generation: This comprises of ROS 159

(Review Of System) - related Q&A tasks, including 160

questions about body system identification (multi- 161

choice), and absence or presence of symptoms 162

(single-choice). 163

We measured Rouge-cls for tasks 1, 2 and accu- 164

racy for task 3, to monitor pretraining performance. 165

As shown in Figure1, we found that our model’s 166

performance consistently improved for long text 167

generation, medium text generation, and multi- 168

choice Q&A. Surprisingly the single-choice Q&A 169

did not show any major improvement. We be- 170

lieve this is because a) the accuracy numbers are 171
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Figure 1: Pretraining validation generation capability monitoring

Training ROS InstructQA InstructQA
data (multi-choice) Rouge-1 Rouge-cls

(Acc) (f1) (f1)
1B Total 47.36 0.44 0.41

med 37.85 0.39 0.35
pub 36.81 0.44 0.42

Table 2: Training data ablation results. The med
dataset is derived from the 1B training dataset by exclud-
ing all the public datasets. Similarly, the pub dataset is
produced by removing all medical datasets.

Model #Incorrect #Irrelevant #Missed
Human 1.2 0 11.2
GPT-4 0.8 0.2 6.75

Our LLM 0.85 0.3 4.3

Table 3: Average entity errors per conversation

already too high b) we noticed further improve-172

ment on these numbers when we separately trained173

the model on a smaller related dataset, suggesting174

scaling up the training can lead to further improve-175

ments.176

3.2 Pretraining Ablation177

As shown in table 2, we examined the impact of178

different data proportions on a 1B token dataset,179

derived from a scaled-down version of our custom180

15B dataset, using the 7B Llama2 model.181

From ablation, we observed that removing the182

general datasets from the training mix inversely im-183

pacted the generative capabilities of the model lead-184

ing to poorer summarization quality. We were also185

able to conclude that the medical datasets indeed186

improve the model’s understanding of the medical187

context. This prompted us to use equal proportions188

of these datasets in the training to ensure that the189

model doesn’t lose its generative capabilities while190

gaining medical understanding.191

3.3 Medical Note Generation192

Evaluation Setup. We used medical transcripts193

from healthcare conversations as our primary in-194

put. Both GPT-4 and the pretrained LLM used the195

same prompt to generate a clinical note from these 196

transcripts. We also evaluated them against human 197

scribes from our production system (medical stu- 198

dents who underwent internal scribe training and 199

received monetary compensation for their services). 200

The evaluation included 10 doctor-patient dialogue- 201

style conversations with an average audio duration 202

of 12 minutes and 35 medical entities. For a fair 203

comparison of the notes created by humans and the 204

model, we leveraged human experts for evaluation. 205

As outlined in (Van Veen et al., 2023), we eval- 206

uated the generated notes on three key parame- 207

ters: Completeness, Correctness, and Concise- 208

ness. We used human experts to create a rubric 209

note for each transcript. This rubric note marked 210

all the vital medical information as separate medi- 211

cal entities. Each entity within this note symbolizes 212

a crucial sentence or phrase that a provider needs, 213

to approve the note. We measured the generated 214

note on three metrics: 215

Missed Information refers to the entities omitted 216

in the test note relative to the rubric note. This 217

metric reflects the test note’s completeness. 218

Incorrect Information implies the entities inaccu- 219

rately captured by the test note. Given the critical 220

nature of information accuracy in healthcare, this 221

metric is vital as misinformation can undermine 222

trust in AI. 223

Irrelevant information represents the extraneous 224

entities included in the test note when compared 225

against the rubric note. As longer medical notes 226

require more review time for providers, minimizing 227

irrelevant information is key. 228

In our comprehensive quality assessment, the 229

human scribe, on an average, took 1.67 times of 230

audio time to finish the note summarization. We no- 231

ticed that humans introduced some incorrectness in 232

their notes which we attribute to ASR (Automatic 233

Speech Recognition) errors. Both our model and 234

GPT-4 outperformed humans in correcting these er- 235

rors. Overall, our model performs on-par with GPT- 236

3



4. Thanks to our optimized training, our model was237

able to capture more relevant information than both238

human transcriptions and GPT-4.239

3.4 Public Benchmark240

We evaluated on two benchmarks, PubMedQA (Jin241

et al., 2019), MedQA (Jin et al., 2021).242

In PubMedQA, our model achieved an accuracy243

of 76.6% after fine-tuning, which surpasses GPT-244

4’s performance (Nori et al., 2023) of 75.2%. Our245

improved performance, aside from training on Pub-246

MedQA, can be attributed to our proprietary medi-247

cal question-answering tasks on conversational data248

which focuses more on medical understanding.249

In MedQA, we achieved an accuracy of 45.2%,250

which is lower than previous LLaMA2 based medi-251

cal model (Wu et al., 2023). MedQA emphasizes252

medical reasoning, requiring the model to deduce253

diagnoses or solutions based on given problems.254

However, our model is designed to interpret med-255

ical conversations which does not align with this256

task and hence, leads to subpar performance on this257

dataset.258

4 Discussion259

We deidentified all the clinical data to remove the260

PHI information in accordance with our data com-261

pliance agreement. Our model is strictly used for262

internal medical related scribing tasks such as sum-263

marization, transcription Q&A and note review. All264

the prompts are audited to avoid any unintentional265

usage.266

Our current design focuses more on in-context267

transcription understanding. The model’s medi-268

cal reasoning capability can be further improved269

to achieve better performance on MedQA alike270

datasts by introducing more medical reasoning271

data.272

This is our first attempt to showcase the power273

of injecting medical reasoning on medical note274

generation tasks on a smaller LLM with small scale275

15B dataset. We plan to further improve by scaling276

up our data and share future work.277

5 Conclusions278

This paper presents our work of developing a med-279

ical LLM capable of comprehending and summa-280

rizing medical dialogues. As a result, this is the281

first model, with significantly fewer parameters, to282

outperform humans on medical note summariza-283

tion and GPT-4 on PubMedQA. Evaluations show284

that even small scale pretraining of smaller LLMs 285

can show impressive gains and achieve on-par per- 286

formance with GPT-4. We further believe that we 287

can achieve improved results, if we simply scale 288

up our training. Our work presents a promising 289

development in healthcare documentation industry 290

and other medical areas. 291

6 Related Work 292

Explanation tuning. Orca (Mukherjee et al., 2023; 293

Mitra et al., 2023) models showcased that smaller 294

Language Models (LMs) capable of sound reason- 295

ing can efficiently perform complex tasks. They 296

were trained by explanation tuning a Llama 13B 297

model (Touvron et al., 2023) using bigger models 298

like GPT4 as a teacher. Despite their smaller size, 299

they retained a majority of the quality of ChatGPT 300

and GPT4. 301

Medical LLMs. Various medical LLMs such as 302

BioGPT (Luo et al., 2022), MedGPT (Kraljevic 303

et al., 2021), Med-PaLM (Singhal et al., 2022) and 304

Med-PaLM 2 (Singhal et al., 2023) show how train- 305

ing on various medical datasets, improves model’s 306

performance on medical knowledge understanding 307

tasks. In the LLaMA (Touvron et al., 2023) family, 308

MEDITRON-70B (Chen et al., 2023), the state-of- 309

the-art open-source LLM and PMC-LLaMA (Wu 310

et al., 2023) demonstrates the importance of funda- 311

mental medical knowledge in healthcare-focused 312

models and emphasizes the effectiveness of task- 313

specific fine-tuning and instruction tuning. 314

Domain adaption LLM. Continued pretraining 315

on unlabeled, domain-specific data, as shown by 316

(Gururangan et al., 2020), (Beltagy et al., 2019) can 317

successfully improve a model’s performance on 318

domain-specific tasks, offering a practical solution 319

when resources for domain-adaptive pretraining 320

from scratch are constrained. Furthermore, (Wu 321

et al., 2022) highlighted the benefits of continued 322

pretraining in improving zero-shot and few-shot 323

compatibility. 324

Medical Note Generation. Prior work by (Zhang 325

et al., 2021), (Van Veen et al., 2023) displayed po- 326

tential in utilizing Language Models to generate 327

medical summaries from dialogues. However, their 328

focus wasn’t on creating a complete note that could 329

be directly sanctioned by the provider but rather on 330

partial aspects or semi-automated methods, neces- 331

sitating human intervention. (Chuang et al., 2023) 332

leveraged soft prompts to control the variance of 333

LLM outputs on medical summarization tasks. 334

4



References335

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:336
A pretrained language model for scientific text. arXiv337
preprint arXiv:1903.10676.338

Shu Chen, Zeqian Ju, Xiangyu Dong, Hongchao Fang,339
Sicheng Wang, Yue Yang, Jiaqi Zeng, Ruisi Zhang,340
Ruoyu Zhang, Meng Zhou, Penghui Zhu, and Peng-341
tao Xie. 2020. Meddialog: a large-scale medical342
dialogue dataset. arXiv preprint arXiv:2004.03329.343

Zeming Chen, Alejandro Hernández Cano, Angelika344
Romanou, Antoine Bonnet, Kyle Matoba, Francesco345
Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf,346
Amirkeivan Mohtashami, et al. 2023. Meditron-70b:347
Scaling medical pretraining for large language mod-348
els. arXiv preprint arXiv:2311.16079.349

Yu-Neng Chuang, Ruixiang Tang, Xiaoqian Jiang,350
and Xia Hu. 2023. Spec: A soft prompt-based351
calibration on mitigating performance variability352
in clinical notes summarization. arXiv preprint353
arXiv:2303.13035.354

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-355
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-356
race He, Anish Thite, Noa Nabeshima, et al. 2020.357
The pile: An 800gb dataset of diverse text for lan-358
guage modeling. arXiv preprint arXiv:2101.00027.359

Suchin Gururangan, Ana Marasović, Swabha360
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