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ABSTRACT

Modern recording techniques enable neuroscientists to simultaneously study
neural activity across large populations of neurons, with capturing predictor-
dependent correlations being a fundamental challenge in neuroscience. Moreover,
the fact that input covariates often lie in restricted subdomains, according to exper-
imental settings, makes inference even more challenging. To address these chal-
lenges, we propose a set of nonparametric mean-covariance regression models for
high-dimensional neural activity with restricted inputs. These models reduce the
dimensionality of neural responses by employing a lower-dimensional latent fac-
tor model, where both factor loadings and latent factors are predictor-dependent,
to jointly model mean and covariance across covariates. The smoothness of neural
activity across experimental conditions is modeled nonparametrically using two
Gaussian processes (GPs), applied to both loading basis and latent factors. Addi-
tionally, to account for the covariates lying in restricted subspace, we incorporate
graph information into the covariance structure. To flexibly infer the model, we
use an MCMC algorithm to sample from posterior distributions. After validating
and studying the properties of proposed methods by simulations, we apply them to
two neural datasets (local field potential and neural spiking data) to demonstrate
the usage of models for continuous and counting observations. Overall, the pro-
posed methods provide a framework to jointly model covariate-dependent mean
and covariance in high dimensional neural data, especially when the covariates
lie in restricted domains. The framework is general and can be easily adapted to
various applications beyond neuroscience.

1 INTRODUCTION

Modern neural recording techniques, such as high-density silicon probes (Jun et al., 2017; Steinmetz
et al., 2021; Marshall et al., 2022) and large-scale calcium imaging methods (Ahrens et al., 2013;
Kim et al., 2016; Grienberger et al., 2022), allow us to obtain massive neural activity data across
different regions. Capturing heteroscedasticity in multivariate processes and correlations among
these neurons, potentially along with experimental stimulus (e.g., visual gratings) or animal behav-
iors (e.g., animal locations and movement speed) as covariates, is important for providing scientific
insight.

Given the prevalence of time series data in neuroscience, numerous methods have been developed
for time series modeling. For example, to capture correlation patterns of high-dimensional neural
data, several unsupervised latent factor models have been widely used in neuroscience community,
either 1) assuming the latent factors evolve linearly with a Gaussian noise (Macke et al., 2011) or 2)
modeling the progression of latent factors more generally by a Gaussian process (Yu et al., 2009).
These two modeling strategies leads to two fundamental latent factor models: 1) linear dynamic
systems model (LDS, i.e., the dynamic latent factor model) and 2) Gaussian process factor analysis
model (GPFA). Based on these models, we can further include the covariates into the model (may
also model smoothness of parameters by LDS/ GP), to study the relationship between neural activ-
ity and interested features. However, these methods only model the dynamics of mean and assume
homoscedastic across time and covariates. Although it’s possible to reduce residual correlation over
time/ covariates by more intricate modeling, additional complexity is not efficient and may lead to
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overfitting of the data. Moreover, experimental findings suggest that the variability of neural activ-
ity changes over time and across experiment settings (Churchland et al., 2010; 2011), potentially
providing information about the external world beyond the average neural activity, such as signature
of decision making (Churchland et al., 2011), movement preparation (Churchland et al., 2006), or
stimulus onset (Churchland et al., 2010).

Therefore, our focus here is on mean-covariance modeling for high dimensional neural data, con-
sidering either continuous or categorical experiment covariates. In the context of time series analy-
sis, which is a special case, modeling volatility (conditional standard deviation) has a long history
(Chib et al., 2009), including multivariate (generalized) autoregressive conditional heteroscedas-
ticity (GARCH, Engle (1982); Bollerslev (1986); Engle (2002)), multivariate stochastic volatility
models (Harvey et al., 1994) and Wishart process (Philipov and Glickman, 2006b;a; Gourieroux
et al., 2009). Within computational neuroscience community, some LDS-based methods such as dy-
namic Conway-Maxwell model (Wei and Stevenson, 2023), allow for over- and under-dispersion by
dynamic modeling of both mean and dispersion parameter on covariates for neural spikes (counting
time series). These models can potentially handle high-dimensional neural recordings by incorpo-
rating dynamic latent factors, although the parametrization may not be efficient, and the Markov
assumption may be inappropriate. In general context, Nejatbakhsh et al. (2023) recently proposed
a model based on (Gaussian-)Wishart process (Philipov and Glickman, 2006b; Gourieroux et al.,
2009) especially for repeated trials, to handle the smoothness of mean and covariance over covari-
ates. However, their method may have poor performance in the case with massive neurons. Beyond
the neuroscience community, the research on large-scale mean-variance regression also has a long
history. Some classical strategies rely on regression to elements of log or Cholesky decomposition
of conditional covariance (Chiu et al., 1996; Pourahmadi, 1999; Leng et al., 2010; Zhang and Leng,
2012), which are ill-suited for high dimensional data. Instead, Hoff and Niu (2012) modeled covari-
ance as a quadratic function on covariates with baseline, though parametric assumption may limit the
usage of the model. Fox and Dunson (2015) proposed a Bayesian non-parametric model for continu-
ous response, by assuming both latent factor and basis of factor loading are covariate-dependent, and
handle the smoothness by GP. Some methods, such as Franks and Hoff (2019), Wang et al. (2019)
and Franks (2022) have also been proposed for high-dimensional covariate settings (p� N ).

However, there are still several challenges, especially for neuroscience applications. First, the spike
count data are majorly used for studying neural activity, but the counting observations make the
inference intractable. Second, many covariates, such as animal locations and movement orienta-
tions, fall in restricted subspace, ignoring the subspace information may lead to inappropriate mean-
covariance inference. To address these problems, motivated by Fox and Dunson (2015) and Dunson
et al. (2022), we introduce a latent factor covariance regression model, based on graph properties of
covariates, and the model is flexibly inferred by an efficient MCMC algorithm.

The rest of this paper is structured as follows. In section 2, we introduce the mean-covariance re-
gression model for high dimensional neural data with restricted inputs, considering both continuous
and counting observations. The key steps of MCMC algorithm for sampling posterior distributions
are provided. Then, after validating and studying the proposed methods using synthetic datasets in
Section 3, we apply our methods to two neural data (local field potential and neural spikes data) in
Section 4, to illustrate usage with continuous and counting observations. Finally, in section 5, we
conclude with some final remarks and discuss some potential extensions of our current model for
future research.

2 METHOD

In this section, we first introduce the covariance regression models in latent space for high dimen-
sional neural data. Both continuous and counting response are considered. We then introduce the
graph based Gaussian process to account for restricted inputs, which are commonly encountered in
many applications. The models are inferred by an MCMC algorithm, and we briefly outline several
key steps. See Section A and B for more details on prior specification and MCMC steps for model
inference. The code for MATLAB implementation can be found in the supplementary material.
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2.1 COVARIANCE REGRESSION MODEL FOR HIGH DIMENSIONAL NEURAL DATA

Denote the neural activity of n neurons in experiment condition j as yj = (y1j , . . . , ynj)
′, for

j = 1, . . . , p. For continuous response, we model it by a multivariate Gaussian nonparametric
mean-covariance regression model as

yj = µ(xj) + εj

, where xj ∈ Rq is the covariate, εj ∼ Nn(0,Σ(xj)) and εjs are independent. Then the mean and
covariance are E(Yj) = µ(xj) and Cov(Yj) = Σ(xj). For counting data such as neural spikes, we
model it in a Poisson GLM with log-link as

yj | λj ∼ Poisson(λj)

logλj = µ(xj) + εj

Then, the mean and covariance of response in the Poisson log-normal model (Aitchison and Ho,
1989), which allows for modeling over-dispersion, are

E(Yj) = Λj = exp

[
µ(xj) +

1

2
diag (Σ(xj))

]
Cov(Yj) = Λj + Λj [exp Σ(xj)− 11′] Λj

To save notations, we denote the (pseudo) response, either transformed or not, as ζj such that ζj =
yj for Gaussian case and ζj = logλj for Poisson case.

To handle large number of neurons n, which are common for modern neural recording techniques,
we resort to model proposed by (Fox and Dunson, 2015) so that the response is induced through a
factor model as

ζj = Λ(xj)ηj + εj

ηj ∼ Nk(ψ(xj), Ik)

εj ∼ NN (0,Σ0)

, where Λ(x) ∈ Rn×k for k � n and Σ0 = diag(σ2
1 , . . . , σ

2
n). Then by marginalizing out ηj , the

mean and covariance for the model are
µ(xj) = Λ(xj)ψ(xj)

Σ(xj) = Λ(xj)Λ(xj)
′ + Σ0

If we use time as covariates, and model the progression of ηj either by linear dynamics or Gaussian
process, the model reduces to dynamic factor analysis model/ linear dynamic systems (LDS, Macke
et al. (2011)) or Gaussian process factor analysis (GPFA, Yu et al. (2009)) model that is widely used
for time series data, especially in neuroscience.

Estimating high dimensional factor loading {Λ(xj)} can be difficult (nkp parameters), therefore we
further factorize the loading as in Fox and Dunson (2015) to reduce the dimension, such that

Λ(xj) = Θξ(xj)

, where Θ ∈ Rn×L and ξ(xj) ∈ RL×k, for L � n. In this paper, we fix the factor dimension k,
but allow the basis size L → ∞ and put multiplicative shrinkage prior (Bhattacharya and Dunson,
2011) to adaptively choose L.

To capture the smoothness of response mean and covariance among different experiment conditions
j, we can put Gaussian process (GP) priors on both latent factor and loading basis. Specifically,
for ψ(x) = (ψ1(x), . . . , ψk(x))′, we have ψm ∼ GP(0, cψ) independently for m = 1, . . . , k.
For factor loading basis, let ξlm(x) be element of ξ(x), and we put GP priors on each element
independently with the same kernel such that ξlm ∼ GP(0, cξ). This leads to a Wishart process in
a manner slightly different from that described in (Nejatbakhsh et al., 2023). The covariances for
ψm(x) and ξlm(x) are both unit, i.e. the correlation, for model identifiability ( Cai et al. (2023);
Conti et al. (2014), although this is not necessary in this paper since we focus on estimation of mean
and covariance). To further take the restricted input into account, we construct the covariance by
incorporating intrinsic geometry of subspace. This leads to Graph Laplacian-based GP (GL-GP)
and we discuss details in the next subsection. Moreover, by using GP or GL-GP priors, we can
easily impute/ sample the missing response under certain conditions, based on conditional Gaussian
distribution. See more details on model settings and prior specification in appendix A.
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2.2 GRAPH BASED GP FOR RESTRICTED INPUTS

In neuroscience experiment and many other applications, it is common for the inputs to fall in a re-
stricted space. For example, in target reaching experiments, both the targets and animals movements
are confined to small areas Wise (1985); Galiñanes et al. (2018), and in maze running experiment,
the animals are even restricted to move along the pre-designed path (Mizuseki et al., 2013). These
restrictions are usually not easy to transform into a non-restricted space, and in some situation the
restriction cannot be known in advance, e.g. because of animals internal preferences.

Ignoring these restrictions may lead to a sub-optimal results. For instance, two points that are close
in Euclidean space might be far apart in a restricted space, and modeling in the Euclidean space
may lead to inappropriate smoothness. Several methods have been proposed to address these issues
within the framework of GP regression. When the restricted space is a known submanifold, we
can extrinsically embed the manifold in a higher-dimensional Euclidean space (Lin et al., 2019), or
intrinsically approximate heat kernel (Niu et al., 2019) by Monte Carlo or use other valid kernels
(Li et al., 2023; Borovitskiy et al., 2020). For an unknown submanifold, we can instead employ
locally linear regression methods (Cheng and Wu, 2013), and we can also use similar ideas in semi-
supervised approaches (Zhu et al., 2003; Zhu, 2005; Belkin et al., 2006; Nadler et al., 2009; Dunlop
et al., 2020; Wang and Lerman, 2015). However, whether known or unknown, these methods assume
the subspace is a manifold, which may not be appropriate in some cases.

Here, we use the kernel based on Graph Laplacian (GL) proposed by Dunson et al. (2022), and hence
both ψ(x) and ξ(x) are modeled by GL-GPs, denoted ψm ∼ GLGP(0, cψ) and ξlm ∼ GLGP(0, cξ).
The GL-GP incorporates intrinsic geometry of restricted space (not necessarily a manifold) by taking
finitely many eigenpairs of the GL, whose covariance approximates a diffusion process on restricted
space based on intrinsic distances between data points. Specifically, given a kernel c(x,x′) (simply
use the squared exponential kernel c(x,x′) = exp

(
−||x− x′||22/4κ

)
in this paper), the GL matrix

is defined as LG = (D−1W − I)/κ. Here, W = {Wij} ∈ Rp×p is an affinity matrix defined by the
kernel as Wij = c(x,x′)/ (r(xi)r(xj)) with r(x) =

∑p
i=1 c(x−x′), and D ∈ Rp×p is a diagonal

matrix with ith diagonal entry be Dii =
∑p
j=1Wij , and κ is the same as used in kernel c(x,x′).

Using the constructed LG, we can define the covariance matrix as

H̃ = p

K−1∑
i=1

e−µi,p,ε ν̃i,p,εν̃
ᵀ
i,p,ε

, where µi,p,ε is eigenvalue of −LG, ν̃i,p,ε is corresponding eigenvector and {ε,K, t} are tuning
parameters (estimated by MLE or sampled by MCMC, see details in Section 2.3). We further convert
the covariance matrix to correlation as H , for model identifiability. For more details of GL-GP,
including the effects of three tuning parameters ({ε,K, t}), see Dunson et al. (2022).

2.3 INFERENCE

The model is inferred by a MCMC algorithm. The sampling details can be found in the appendix
Section B, and we provide some key sampling strategies here.

First, the sampling of the Poisson model for count data (e.g. neural spikes) can be intractable because
of non-conjugacy. However, we can approximate a Poisson distribution by a negative binomial
(NB) distribution, using the fact that limr→∞ NB (r, σ(ζ − log r)) = Poisson(eζ), where σ(ζ) =
eζ/(1 + eζ) and NB(r, p) denotes the NB distribution with expectation be rp/(1 − p). By using
a large enough dispersion parameter r, we can treat a Poisson distribution as an NB distribution,
which follows the Pólya-Gamma (PG) augmentation scheme (Windle et al., 2013; Polson et al.,
2013). Specifically, for response from neuron i under condition j, we introduce an auxiliary variable
ωij ∼ PG(rij + yij , ζij − log rij), where PG(a, b) denotes the Pólya-Gamma distribution. Then
we can sample the pseudo response ζij ∼ N(mij , Vij), where Vij =

(
ωij + σ−2i

)−1
, mij =

Vij(κij + σ−2i µij) and κij = (yij − rij)/2 + ωij log(rij). With samples of ζij , the sampling for
other parameters is the same as in the Gaussian case.

Second, even by factorizing the loading as Λ(x) = Θξ(x), sampling L × k × p parameters for
ξ(x) directly from the joint posterior can be infeasible when p is large (i.e., many experimental
conditions). This is especially common for neural data analysis, since the recording length can be
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very long. In other words, if we take the timestamp as a covariate and try to track the mean and
covariance along the time (and potentially experimental settings), the sampling procedure can be
very cumbersome. Therefore, we sample each element of ξ(x) sequentially. This procedure can be
looped multiple times within each MCMC iteration to achieve better mixing.

Third, although Fox and Dunson (2015) claims that the model is relatively robust to the GP hyper-
parameters because of quadratic mixing over GP dictionary elements, we observe that the inference
can be sensitive to hyper-parameters ({ε,K, t}) for GL-GP. Here, for modeling latent factor and
loading with GL-GP prior, we can fix the hyper-parameters by maximizing likelihood, marginally
or conditionally on ψ(x) and ζ(x) according to burn-in samples, or sample them in each itera-
tion (again marginally or conditionally on samples of ψ(x) and ζ(x)). Here, we found that sam-
pling on marginal distribution is computationally cumbersome, and hence using slice sampler may
not be feasible for large datasets (Murray and Adams, 2010). To choose the hyper-parameters
more efficiently, we can also use a data-driven heuristic, based on the fact that the autocorrelation
ACF(x) = corr(Σij(0),Σij(x)) is specified by the kernel function (Fox and Dunson, 2015).

3 SIMULATIONS

All the following experiments, including applications in Section 4, are conducted on a laptop with
an Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz 2.11 GHz. Here, we simulate recordings of 50
neurons, for both continuous and counting responses, when an animal is restricted to move within a
”two boxes linking with a tunnel” area, i.e., two squares with side length 3, connected with a 2-by-1
rectangle. The input features x ∈ R2 are coordinates within the restricted domain. The response
is generated from the model in Section 2.1 for both Poisson and Gaussian cases, with L = 4 and
k = 2. The loading coefficients Θ are independently generated by a Gaussian distribution. The
latent factor mean (ψm(x)) and loading basis (ζlm(x)) are generated by mixtures of scaled Gaussian
density. Here, we can observe response from 100 random locations, and our goal is to infer mean
and covariance for the whole restricted area, including 1000 other random locations as test (held-
out). We independently generate the data and conduct analysis six times to check robustness of our
methods (Section D.1), and one set of data is illustrated in Figure 1A and D.

For each set of simulated training data, we fit four models: Gaussian process Wishart process
(GPWP) model (Nejatbakhsh et al., 2023) (on a single trial), latent GP model (L-GP), latent GL-GP
model with fixed hyper-parameters (L-GLGP-fixed) and latent GL-GP model with hyper-parameters
sampled (L-GLGP-adaptive). All kernels used here are squared exponential for fair comparisons.
The tuning parameters for GPWP are selected by 5-fold cross-validation. The bandwidths for L-GP
are sampled within MCMC, and the samples from L-GP are used to select the hyper-parameters
for L-GLGP-fixed. For all latent factor models (L-models), we use both 1) L = 10, k = 2 and 2)
L = 10, k = 5. The running time can be found in the Appendix C. For all six experiments, the
held-out log-likelihood for latent factor models, using either k = 2 or k = 5 is shown in Section
D.1, and one set of them is visualized in Figure 1B and E. For this set of experiment, the fitted
mean and covariance latent factor based models (L-GP, L-GLGP-fixed and L-GLGP-adaptive) are
projected to the first three principal components of the ground true mean response, which captures
more than 90% variance of the data. The fitting results corresponding to Figure 1B and E in PC
space for k = 2 are shown in Figure 1C and A1, and for k = 5 in Figure A2 (Gaussian) and A3
(Poisson).

In all cases, the latent factor based models perform better than GPWP models in terms of held-
out likelihood. Moreover, the latent factor models are easier to fit, as tuning hyper-parameters for
GPWP via cross-validation is cumbersome and difficult, especially for Poisson response. We found
that the last few columns of fitted loading basis Θ are shrunk to 0 for latent factor based models,
suggesting L = 10 is large enough. In the Gaussian case, the latent factor based models are robust
to latent dimension k, which is consistent with previous findings (Fox and Dunson, 2015). The L-
GLGP models (fixing or sampling hyper-parameters) generally improve the fitting results slightly
compared to L-GP, either quantitatively for held-out log-likelihood or qualitatively by visualizing
fitted mean and covariance. However, for the Poisson case, the L-GLGP-adaptive models are more
robust to k. Specifically, the held-out log-likelihood for k = 2 and k = 5 for L-GLGP-adaptive are
closer (Section D.1 and Figure 1). The inferred mean and covariance for L-GP with k = 5 can be
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noisy, while those for L-GLGP-adaptive are relatively close to the ground truth for both k = 2 and
k = 5.

Figure 1: Simulations. Here, we simulate Gaussian and Poisson response in a ”boxes connecting
with a tunnel” restricted area, and fit response from 100 observed locations to the proposed model.
The same procedures are replicated five time, with one set of results for Gaussian response are
summarized in A-C and Figure A1A and A2, while the results for Poisson response can be found in
D-E and Figure A1B and A3. The results in terms of held-out log-likelihood for all experiments are
summarized in Section D.1. (A) and (D) The response from observed (100 plus signs) and held-out
(1000 circle signs) points, for neuron 1 as examples. (B) and (E) The log-likelihood for held-out
dataset (constant drop), fitting with GPWP,L-GP, L-GLGP with fixed hyper-parameters (L-GLGP-
fixed) and L-GLGP with hyper-parameters sampled (L-GLGP-adaptive), with L = 10, k = 2 and
L = 10, k = 5. (C) and (F) The true and fitted mean and covariance in the first PC space, with
L = 10 and k = 2. The observed locations are overlaid, and the variances explained by PCs are
shown alongside. The results projected in the second and third PC space are shown in Figure A1.

4 APPLICATIONS

We then apply the proposed methods to two neural datasets, i.e., 1) the local field potential data
across the mouse brain during a visual behavior task (LFP dataset, Steinmetz et al. (2019)), to show
an example of Gaussian response and 2) the multi-shank silicon probe recordings from hippocampus
of a rat running back-and-forth along a linear maze (HC dataset, Mizuseki et al. (2013)), to show an
example of Poisson case. In all following cases, we use squared exponential kernel and the inputs
are standardized for latent factor models (L-GP and L-GLGP-fixed/adaptive). The k in the latent
factor models are chosen by 5-fold cross-validation for L-GP on short chains, and L is large enough
to ensure the last few columns of Θ are 0s.

4.1 LFP DATASET

In the LFP dataset, the neural activity across multiple brain regions is recorded when the mice
perform a task on choosing the side with the highest contrast for visual gratings. The data contains
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39 sessions from 10 mice, and each session contains multiple trials. Time bins for all measurements
are 10 ms, starting 500 ms before stimulus onset. The recording ends at 2000 ms after the stimulus,
and hence each trial contains data from 250 time points. See Steinmetz et al. (2019) for more details
of the LFP dataset.

To show the application of proposed methods with Gaussian response, we study the relationship
between LFP response and pupil conditions (area and location). This is motivated by some previous
research in monkey, which found that the pupil size of monkeys can reflect neural activity (Joshi
and Gold, 2020), containing LFPs, in several brain regions, including 1) cortical modulation of
the pretectal olivary nucleus (PON) (Gamlin et al., 1995), 2) the superior colliculus (SC) (Wang
et al., 2012; Krauzlis et al., 2013; McDougal and Gamlin, 2015) and 3) the locus coeruleus (LC) -
norepinephrine (NE) neuromodulary system (Alnæs et al., 2014; Joshi et al., 2016; Wang et al., 2012;
Liu et al., 2017). Moreover, the eye position of monkey are related to neural activity in superior
colliculus (SC), although the position tuning is more common with build-up or burst activity and
less common in neurons with visual activity (Campos et al., 2006).

Here, we choose LFP recordings from the 13th session, which include LFPs from 14 areas. These
regions contain 1) the midbrain reticular nucleus (MRN), sensory and motor superior colliculus
(SCs, Scm) in the midbrain, 2) the secondary motor area (MOs) in the cerebral cortex, and 3) the
zona incerta (ZI) in the hypothalamus. All these areas have been found to have significant inputs
to LC-NE neurons (Breton-Provencher et al., 2021). Here, we use 4 trials (trials 7-10), and 70% of
these 1000 data points are used as training while remaining are held out as the test dataset (Figure
2A). In other words, the dimension of training response is 14 × 700 (n = 14, p = 700) and testing
is 14 × 300. In the training, each iteration takes 3.5 seconds. Three pupil covariates (area, hori-
zontal and vertical position, i.e. q = 3, Figure 2B and C) are considered in the model, and they are
standardized before model fitting. Three models are used (L-GP, L-GLGP-fixed/adaptive), where
k = 4 and L = 5. In this case, the pupil locations and areas are quite restricted, the L-GLGP per-
forms better than L-GP, and the model is further improves by sampling hyperparameters in MCMC,
according to the held-out log-likelihood (Figure 2D).

We then check the mean and variance patterns obtained from the L-GLGP-adaptive for pupil loca-
tions in the first 2 PC spaces, under three different pupil areas (0.02, 0.05 and 0.08). The evaluated
location boundaries are determined by the 0.05 and 0.95 quantiles of data (Figure 2E and F). Ac-
cording to the fitting results, these neurons may tend to be more focused on center locations when
the pupil area is relatively small (Figure 2E). The variance of LFP is larger when the pupil is smaller
(area = 0.02) or larger (area = 0.08) than in the common case, but this may be caused by a lack of
data for extreme pupil diameters (Figure 2F). For a more concrete conclusion for formal analysis,
we may need to include more data.

4.2 HC DATASET

In the HC dataset, CRCNS hc-3 (Mizuseki et al., 2013), a rat was running back and forth along a
250 cm linear track. Extracellular spiking activity was recorded in the dorsal hippocampus using
multi-shank silicon probes. Spikes were sorted using KlustaKwik followed by manual adjustment
(Rossant et al., 2016). Here, we use data from one recording session (ec014-468) and analyze spike
counts in 200 ms bins. For further details on how the data were obtained, see Mizuseki et al. (2014).
In this analysis, the recordings from 14 min to 16 min are used, which contains around 4 cycles. The
neurons with firing rate less than 1 Hz are discarded, which results in 36 neurons remaining.

We randomly choose 80% of points to be training and the remaining data to be test, and hence the
dimension of training response is 36 × 480 (n = 36, p = 480) and testing is 36 × 120. Both time
and (vertical) position are used as covariates (q = 2). Each iteration takes 3.3 seconds during
training. Many neurons in the hippocampus are both position and direction tuned, and the place
field of neurons may vary over time. To accommodate the effects of position and direction, we use
the circular representation. In Figure 3A, we show both the original and directionally represented
maze trace, with spiking counts from 4 neurons overlaid. The overall neural spikes from these 36
neurons are shown in Figure 3B. To track the dynamics of mean and variance of neural spikes, Wei
and Stevenson (2023) previously proposed a dynamic Conway-Maxwell Poisson model (dCMP),
which allows for both over- and under-dispersion over time. However, their method can be difficult
for multi-neuron modeling in this case. Here, every neuron has the same input (time and directional
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Figure 2: Application to Steinmetz Data. We use LFP data in 14 brain regions, from 4 trials. Each
trial contains data from 250 time points. A. The LFP from 14 regions for all 1000 time points. The
red line show SCs as an example. B. The scatter plot of LFP against pupil area, taking LFP from SCs
(red) as an example. C. The pupil positions of data, colored by amplitude of LFP response. D. We fit
3 models (L-GP, L-GLGP-fixed/adaptive) to 70% of data, and compare the held-out log-likelihoods.
The fitted mean E and variance F in PC space by L-GLGP-adaptive, according to pupil locations
and 3 areas. The variance explained by PCs are shown alongside.

position); therefore under their model framework, we either 1) assume all neurons have the same
response, which is inappropriate; or 2) fit the model separately for each neuron, which ignores the
correlation between neurons. Here, we fit 1) dCMP separately for each neuron, 2) L-GP, 3) L-
GLGP-fixed and 4) L-GLGP-adaptive. For all latent factor models, we use k = 8 and L = 7. We
compare the model according to log-likelihood on test dataset, since the Poisson is nested within
CMP distribution. The held-out log-likelihood for independent dCMP is −9.90× 103, and they are
−6.24 × 103 (L-GP), −6.24 × 103 (L-GLGP-fixed), and −5.89 × 103 (L-GLGP-adaptive) for the
remaining models.

The fitted mean and variance in the first four PC spaces of mean is shown in Figure 3C and D.
The mean response patterns in PC space correspond to 4 typical neuron in hippocampus, shown in
Figure 3A (PC x corresponds to neuron x). Specifically, these are neurons that fire 1) frequently
without preference of location and direction (interneurons, PC1 - neuron1), 2) selectively at 150 cm
upward (PC2 - neuron2), 3) selectively downward in early cycle (PC3 - neuron3) and 4) selectively
at 150cm downward (PC4 - neuron4). The corresponding variances for downward direction are
generally smaller than upward ones, but the variance pattern are relatively static for these 4 cycles.
Generally, both mean and variance of neural responses are tuned according to location and direction,
and the patterns (especially mean) for some neurons drift along time, even in such a short period.

5 DISCUSSION

In this paper, we introduce a covariance regression model for high dimensional neural data, ac-
counting for both continuous and counting observations. To accommodate the restricted experi-
mental inputs/ covariates, we consider using a graph based Gaussian process (GLGP), to model the
smoothness over covariates for both loading basis and latent factors. The model is inferred by an
MCMC algorithm, where the counting observations are handled by a Pólya-Gamma (PG) data aug-
mentation technique. After validating and studying the proposed methods by simulations, we apply
them to two publicly available datasets to illustrate the usage of models with both continuous (LFP
dataset) and counting observations (HC dataset).
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Figure 3: Application to Hippocampus Data. A. The trace of linear track, which contains around
4 cycles. The colored dots represent spiking activity from 4 neurons, with dot sizes proportional to
spiking counts. To encode the direction into model, we use the directional representation of position
here (lower panel). B. The spiking counts for all neurons in the data. The fitted mean and variance
according to time and location in PC space are shown in C and D, with the trace of linear track
overlaid. The variance explained by PC are shown alongside.

Although the proposed method can successfully model the mean and covariance according to co-
variates, there are some potential improvements. First, we assume independent GPs on covariates
for each basis and factor dimension, to achieve computational efficiency. However, this assumption
may miss some important covariance structures for different objects/ neurons, and similar results are
found in gene expression data (Cai et al., 2023). Therefore, it would be attractive to model using
multi-output Gaussian process (MOGP) whenever computationally feasible, either simply by linear
combinations of independent GP, such as linear model of coregionalization (Philipov and Glick-
man, 2006b) or convolution model (Alvarez and Lawrence, 2008), or using more advanced spectral
mixture to handle cross-covariance (Ulrich et al., 2015; Parra and Tobar, 2017). Second, even un-
der independent GP assumption, the MCMC sampling can be cumbersome for large scale dataset,
which is common in neural data analysis (e.g. long recordings of spiking data). The main reasons
for using sampling method are checking exact posterior distributions and choosing basis dimension
L flexibly. However, in applications to massive data, approximation by variational inference, using
methods to reduce computational cost of GP covariance matrix inversion (e.g., Zhu et al. (2024)) or
using special cases of GP whenever appropriate (e.g. use linear dynamics for time series data) can
be useful. Third, even though the basis dimension L is chosen adaptively by shrinkage prior, we
still need to specify latent dimension k in advance, which may influence the Poisson model signifi-
cantly (at least for L-GP). Instead, we can further sample the number of latent factors by birth-death
MCMC (BDMCMC, Stephens (2000)), as in Fokoué and Titterington (2003), which requires very
little mathematical sophistication and is easy for interpretation. Besides BDMCMC and shrinkage
prior used for L, there are several other ways for choosing latent dimension, such as using multi-
plicative exponential process prior (Wang et al., 2016), Beta process prior (Paisley and Carin, 2009;
Chen et al., 2010) or Indian Buffet process prior(Knowles and Ghahramani, 2007; 2011; Ročková
and George, 2016) on the loading matrix in the Gaussian factor analysis model. However, these
methods can be difficult in our case, since we further factorize the loading with basis. Finally, we
observe that in Poisson version of the model, the L-GLGP can sometimes be sensitive to hyper-
parameters for covariance functions. To stabilize the L-GLGP, we can assume several constraints/
priors based on initial fitting of L-GP, or use a slice sampler for these hyper-parameters (Murray and
Adams, 2010) to achieve better mixing, if the computation is feasible.
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Overall, as the scale of data becomes large (e.g., simultaneously observing many neurons), it can
be challenging to estimate the mean and covariance (either across subjects/neurons or across co-
variates). Moreover, the constraints on input space/covariates make the inference more difficult.
Therefore in this paper, we build a framework to accommodate both problems for continuous and
counting observations. The proposed methods are quite general, and they have potential for appli-
cation to data beyond neuroscience.
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Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., and Piatek, R. (2014). Bayesian exploratory
factor analysis. Journal of Econometrics, 183(1):31–57.
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A PRIOR SPECIFICATION

In this section, we provide prior specifications for model parameters.

1. idiosyncratic noise σi: σ−2i ∼ Gamma(aσ, bσ)

2. loading basis Θ: to adaptively choose loading basis size, we use the shrinkage prior (cite)
for Θ as θil ∼ N(0, φ−1il τ

−1
l ), where φil ∼ Gamma(γ/2, γ/2), τl =

∏l
h=1 δh, δ1 ∼

Gamma(a1, 1) and δhGamma)(a2, 1) with h ≥ 2, a2 > 1.
3. factor loading mean ψm and loading basis ξlm. We assume independent (GL)-GP prior for

each dimension of ψm(x1), . . . , ψm(x1) ∼ N(0,K), where the covariance is determined
by GP kernel, and graph Laplacian of input {xj}. We also use (GL)-GP prior for ξlm(xj),
but with different hyper-parameters (even potentially with different kernels). Throughout
this paper, we use squared exponential kernel c(x,x′) = exp(−||x − x′||2/4κ) for both
GP and GLGP.

4. Hyperparameters for GP or GL-GP. For positive/ non-negative continuous parameters, we
put log-normal priors on them. The discrete parameter K in GL-GP are pre-fixed before
entering MCMC.

B MCMC DETAILS

Here, we provide details for MCMC iterations. The MATLAB code can be found in supplementary
material, modified from Pierce (2016) and Wu (2022). For ease of sampling, we equivalently write
ηj = ψ(xj) + νj , with νj ∼ Nk(0, Ik). The full conditional distributions for parameter θ is
generally noted as θ | . . .. Then, in each MCMC iteration:

Step 0: (for Poisson case only). Sample pseudo response ζij by Pólya-Gamma data augmentation
technique, approximating the Poisson distribution by negative binomial distribution with
sufficiently large dispersion parameter rij .
(a) Sample PG variable ωij | . . . ∼ PG(rij + yij , ζij − log rij), where PG(a, b) denotes

the Pólya-Gamma distribution abd ζij is the sample from previous iteration.

(b) Sample ζij | . . . ∼ N(mij , Vij), where Vij =
(
ωij + σ−2i

)−1
, mij = Vij(κij +

σ−2i µij) and κij = (yij − rij)/2 + ωij log(rij).

Step 1: Sample σ2
i . σ−2i | . . . ∼ Gamma

(
aσ + n

2 , bσ + 1
2

∑n
i=1(ζij − θi.ξ(xj)ηj)2

)
, for i =

1, . . . , n.
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Step 2: Sample θi.. The full conditional for row i of Θ is θi. | . . . ∼
NL
(
Σθη̃

′σ−2i (ζ1j , . . . , ζnj)
′,Σθ

)
, where η̃ = {ξ(x1)η1, . . . , ξ(xn)ηn}′ and

Σθ =
(
σ−2i η̃′η̃ + diag(φi1τ1, . . . , φiLτL)

)−1
Step 3: Sample hyper-parameters for Θ. φil | . . .Gamma(2,

γ+τlθ
2
il

2 ), δ1 | . . . ∼ Gamma(a1 +
nL
2 , 1 + 1

2

∑L
l=1 τ

(−1)
l

∑n
i=1 φilθ

2
il) and δh | . . . ∼ Gamma(a2 + n(L−h+1)

2 , 1 +
1
2

∑L
l=1 τ

(−h)
l

∑n
i=1 φilθil

2), where τ (−h)l =
∏l
t=1,t6=h δt for h = 1, . . . n.

Step 4: Sample ψm. By rewriting ηj = ψ(xj) + νj and denoting Γj = Γ(xj), we have ζj =

Γjψ(xj) + Γjνj + εj . Marginalizing out νi, ζj ∼ N(Γjψ(xj), Σ̃j = ΓjΓ
′
j + Σ0). Since

we put (GL-)GP prior on ψl, such that ψ(x1), . . . , ψ(xp) ∼ N(0,K), then,

(ψl(x1), . . . ψl(xp))
′ | . . . ∼ N

(
Σψ

(
Λ′1lΣ̃

−1
1 ζ̃

(−l)
1 , . . . ,Λ′plΣ̃

−1
p ζ̃

(−l)
p

)′
,Σψ

)
,where ζ̃(−l)j = ζl −

∑
r 6=l Γjrψr(xj) with Γjl be lth column vector of Γj , and Σψ =(

K−1 + diag(Λ′1lΣ̃
−1
1 Λ1l, . . . ,Λ

′
plΣ̃
−1
p Λpl)

)−1
Step 5: Sample νj Let ζ̃−lj = ζj − Γjψ(xj), such that ζj = Γjνj + εj , then νj | . . . ∼

N(
(
I + ξ(xj)

′Θ′Σ−10 ξ(xj)
−1ξ(x)

)−1
ξ(xj)

′Θ′Σ−10 ζ̃j ,
(
I + ξ(xj)

′Θ′Σ−10 ξ(xj)
−1ξ(x)

)−1
)

Step 6: Sample (GL)-GP hyperparameters for ψ. Sample by HMC, based on Gaussian likelihood.
The log-normal prior is used for positive/ non-negative parameters.

Step 7: Sample ξ Although we can sample ξ(xj) similar to ψ(xj), it can be very cumbersome for
data with large sample size (L× k× p). Here, we sample ζlm(xj) sequentially when fixing
the remaining parameters in ζ(xj). Therefore, the problem reduced to update sequentially
for regular GP regression.

Step 8: Sample (GL)- GP hyperparameters for ξ. Again, we use the HMC for sampling, but only
use the ξ corresponding with Θ that is large enough from 0 for hyper-parameter sampling.

C RUNNING TIME FOR EACH SIMULATION

In simulations, the training response for both continuous and counting cases has N = 50 and p =
100, and use q = 2 covariates. The following two tables (Table C for continuous response and Table
C for counting response) show the time consumed for each iteration, under different response types
and latent dimensions. The ”-fixed” means the hyperparameters for kernel function is fixed, while
”-adaptive” means they are sampled in MCMC.

Table 1: Running time for simulation with continuous response
L-GP-fixed L-GP-adaptive L-GLGP-fixed L-GLGP-adaptive

k = 2, L = 10 0.12s 0.20s 0.13s 0.21s
k = 5, L = 10 0.18s 0.28s 0.22s 0.25s

Table 2: Running time for simulation with counting response
L-GP-fixed L-GP-adaptive L-GLGP-fixed L-GLGP-adaptive

k = 2, L = 10 0.31s 0.38s 0.32s 0.75s
k = 5, L = 10 0.37s 0.45s 0.37s 0.75s

D SUPPLEMENTARY RESULTS FOR SIMULATIONS

In this section, we provide supplementary results for simulations in Section 3. The simulation is
replicated six times. For each simulation, we observe data from 100 locations and we need to
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predict response in other 1000 locations (test). The details of data generation and models can be
found in Section 3. Section D.1 summarizes results for all six experiments, in terms of held-out
log-likelihood for all latent factor models. The supplementary results corresponding to one set of
experiment in Figure 1 are shown in Section D.2.

D.1 HELD-OUT LOG-LIKELIHOOD

For all six independent experiments, we calculate log-likelihood for all latent models, with Gaussian
response in Table D.1 and Poisson response in Table D.1, to show the robustness of our methods.
The evaluations for GPWP methods (Nejatbakhsh et al., 2023) are dropped, since hyper-parameter
tuning via cross-validation can be cumbersome and difficult, especially for Poisson response. For
all fitted GPWP models with tuned hyper-parameters, the held-out log-likelihoods are −6× 106 for
Gaussian response and −10× 104.

Table 3: Gaussian held-out log-likelihood For each experiment, we observe data from 100 loca-
tions and calculate the held-out likelihood for 1000 locations.

True(×104) L-GP(×104) L-GLGP-fixed(×104) L-GLGP-adptive(×104)

k=2 k=5 k=2 k=5 k=2 k=5

8.57 8.14 8.15 8.17 8.17 8.24 8.22
8.55 8.13 8.07 8.14 8.08 8.17 8.14
8.56 8.15 8.16 8.21 8.16 8.22 8.20
8.56 8.18 8.22 8.18 8.24 8.28 8.25
8.57 8.11 8.08 8.17 8.12 8.25 8.13
8.56 8.18 8.14 8.20 8.15 8.23 8.20

Table 4: Poisson held-out log-likelihoodFor each experiment, we observe data from 100 locations
and calculate the held-out likelihood for 1000 locations.

True(×104) L-GP(×104) L-GLGP-fixed(×104) L-GLGP-adptive(×104)

k=2 k=5 k=2 k=5 k=2 k=5

-4.49 -4.64 -4.79 -4.63 -4.67 -4.61 -4.62
-4.49 -4.63 -4.65 -4.62 -4.62 -4.62 -4.61
-4.47 -4.69 -4.75 -4.68 -4.72 -4.67 -4.69
-4.49 -4.62 -4.65 -4.60 -4.64 -4.60 -4.61
-4.49 -4.63 -4.67 -4.61 -4.62 -4.61 -4.61
-4.47 -4.77 -4.75 -4.74 -4.71 -4.69 -4.67

D.2 FITTED MEAN AND COVARIANCE

The results shown here correspond to the experiment in Figure 1. The Figure A1 provides fitted
mean and covariance for three models (L-GP and L-GLGP-fixed/adaptive) in the PC2 and PC3 for
Gaussian (Fig. A1A) and Poisson response (Fig. A1B), when k = 2 (ground truth) and L = 10.
To study the sensitivity of misspecified latent dimension, we refit models with k = 5 and L = 10,
and plot the fitted mean and covariance to PC space. The Gaussian response is relative roust to
misspecified k (Fig. A2), while the effect on Poisson response is relatively significant (Fig. A3).
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Figure A1: Supplementary results for L = 10 and k = 2. The true and fitted mean and covariance in
second and thrid PC space, for L-GP, L-GLGP-fixed and L-GLGP-adaptive models, using L = 10
and k = 2. The results of Gaussian response in (A) and Poisson response in (B). The observed
locations are overlaid, and the variances explained by PCs are shown alongside.

Figure A2: Results of Gaussian response for L = 10 and k = 5. The true and fitted mean and
covariance of Gaussian response in the first three PCs space, for L-GP, L-GLGP-fixed and L-GLGP-
adaptive models, using L = 10 and k = 5. The observed locations are overlaid, and the variances
explained by PCs are shown alongside.
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Figure A3: Results of Poisson response for L = 10 and k = 5. The true and fitted mean and
covariance of Poisson response in the first three PCs space, for L-GP, L-GLGP-fixed and L-GLGP-
adaptive models, using L = 10 and k = 5. The observed locations are overlaid, and the variances
explained by PCs are shown alongside.
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