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ABSTRACT

Although neural module networks have an architectural bias towards composi-
tionality, they require gold standard layouts to generalize systematically in prac-
tice. When instead learning layouts and modules jointly, compositionality does
not arise automatically and an explicit pressure is necessary for the emergence of
layouts exhibiting the right structure. We propose to address this problem using
iterated learning, a cognitive science theory of the emergence of compositional
languages in nature that has primarily been applied to simple referential games in
machine learning. Considering the layouts of module networks as samples from
an emergent language, we use iterated learning to encourage the development of
structure within this language. We show that the resulting layouts support sys-
tematic generalization in neural agents solving the more complex task of visual
question-answering. Our regularized iterated learning method can outperform
baselines without iterated learning on SHAPES-SyGeT (SHAPES Systematic
Generalization Test), a new split of the SHAPES dataset we introduce to eval-
uate systematic generalization, and on CLOSURE, an extension of CLEVR also
designed to test systematic generalization. We demonstrate superior performance
in recovering ground-truth compositional program structure with limited supervi-
sion on both SHAPES-SyGeT and CLEVR.

1 INTRODUCTION

Although great progress has been made in visual question-answering (VQA), recent methods still
struggle to generalize systematically to inputs coming from a distribution different from that seen
during training (Bahdanau et al., 2019b;a). Neural module networks (NMNs) present a natural
solution to improve generalization in VQA, using a symbolic layout or program to arrange neural
computational modules into computation graphs. If these modules are learned to be specialized,
they can be composed in arbitrary legal layouts to produce different processing flows. However, for
modules to learn specialized roles, programs must support this type of compositionality; if programs
reuse modules in non-compositional ways, modules are unlikely to become layout-invariant.

This poses a substantial challenge for the training of NMNs. Although Bahdanau et al. (2019b)
and Bahdanau et al. (2019a) both observe that NMNs can systematically generalize if given human-
designed ground-truth programs, creating these programs imposes substantial practical costs. It
becomes natural to jointly learn a program generator alongside the modules (Johnson et al., 2017b;
Hu et al., 2017; Vedantam et al., 2019), but the generated programs often fail to generalize system-
atically and lead to worse performance (Bahdanau et al., 2019b).

Iterated learning (IL) offers one way to address this problem. Originating in cognitive science,
IL explains how language evolves to become more compositional and easier-to-acquire in a re-
peated transmission process, where each new generation acquires the previous generation’s lan-
guage through a limited number of samples (Kirby et al., 2014). Early works with human partici-
pants (Kirby et al., 2008) as well as agent-based simulations (Zuidema, 2003) support this hypoth-
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Figure 1: An overview of neural module networks (NMNs). A question q is read by the program
generator to produce a program ẑ. The execution engine assembles neural modules according to
the layout ẑ and feeds the input image x into the assembled module network. A classifier takes the
output of the top-level module to produce an answer ŷ for the given (q,x) pair.

esis. The machine learning community has also recently shown an increasing interest in applying
IL towards emergent communication (Guo et al., 2019; Li & Bowling, 2019; Cogswell et al., 2019;
Dagan et al., 2020; Ren et al., 2020). Different from previous works, we believe that IL is an al-
gorithmic principle that is equally applicable to recovering compositional structure in more general
tasks. We thus propose treating NMN programs as samples from a “layout language” and apply-
ing IL to the challenging problem of VQA. Our efforts highlight the potential of IL for broader
machine learning applications beyond the previously-explored scope of language emergence and
preservation (Lu et al., 2020).

To demonstrate our method, we introduce a lightweight benchmark for systematic generalization
research based on the popular SHAPES dataset (Andreas et al., 2016) called SHAPES-SyGeT
(SHAPES Systematic Generalization Test). Our experiments on SHAPES-SyGeT, CLEVR (John-
son et al., 2017a), and CLOSURE (Bahdanau et al., 2019a) show that our IL algorithm accelerates
the learning of compositional program structure, leading to better generalization to both unseen
questions from the training question templates and unseen question templates. Using only 100
ground-truth programs for supervision, our method achieves CLEVR performance comparable to
Johnson et al. (2017b) and Vedantam et al. (2019), which use 18000 and 1000 programs for super-
vision respectively.

2 RELATED WORK

Systematic generalization. Systematicity was first proposed as a topic of research in neural net-
works by Fodor & Pylyshyn (1988), who argue that cognitive capabilities exhibit certain symme-
tries, and that representations of mental states have combinatorial syntactic and semantic structure.
Whether or not neural networks can exhibit systematic compositionality has been a subject of much
debate in the research community (Fodor & Pylyshyn, 1988; Christiansen & Chater, 1994; Marcus,
1998; Phillips, 1998; Chang, 2002; Marcus, 2018; van der Velde et al., 2004; Botvinick & Plaut,
2009; Bowers et al., 2009; Brakel & Frank, 2009; Fodor & Lepore, 2002; Marcus, 2018; Calvo &
Symons, 2014).

Bahdanau et al. (2019b) investigate various VQA architectures such as neural module networks
(NMNs) (Andreas et al., 2016), MAC (Hudson & Manning, 2018), FiLM (Perez et al., 2018), and
relation networks (Santoro et al., 2017) on their ability to systematically generalize on a new syn-
thetic dataset called SQOOP. They show that only NMNs are able to robustly solve test problems,
but succeed only when a fixed tree-structured layout is provided. When learning to infer the module
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network layout, robust tree-structured layouts only emerged if given a strong prior to do so. The
authors conclude that explicit regularization and stronger priors are required for the development of
the right layout structure.

CLEVR (Johnson et al., 2017a) is a popular VQA dataset, and various benchmarks achieve almost-
perfect CLEVR validation scores (Hu et al., 2017; Hudson & Manning, 2018; Perez et al., 2018;
Santoro et al., 2017). Bahdanau et al. (2019a) proposed an extension of CLEVR with a new eval-
uation dataset called CLOSURE, containing novel combinations of linguistic concepts found in
CLEVR. The authors found that many of the existing models in the literature fail to systematically
generalize to CLOSURE. Moreover, there is a significant gap between the performance achieved
with ground-truth layouts and learned layouts on CLOSURE.

Language emergence and compositionality. Agents interacting in a cooperative environment can
learn a language to communicate to solve a particular task. The emergence of such a communication
protocol has been studied extensively in multi-agent referential games. In these games, one agent
must describe what it saw to another agent, which is tasked with figuring out what the first agent saw
(Lewis, 2008; Skyrms, 2010; Steels & Loetzsch, 2012). To encourage a dialogue between agents,
several multi-stage variants of such a game have also been proposed (Kottur et al., 2017; Evtimova
et al., 2018). Most approaches to learning a discrete communication protocol between agents use
reinforcement learning (Foerster et al., 2016; Lazaridou et al., 2017; Kottur et al., 2017; Jorge et al.,
2016; Havrylov & Titov, 2017). However, the Gumbel straight-through estimator (Jang et al., 2017)
can also be used (Havrylov & Titov, 2017), as can backpropagation when the language in question
is continuous (Foerster et al., 2016; Sukhbaatar & Fergus, 2016; Singh et al., 2019).

Several works in the literature have found that compositionality only arises in emergent languages
if appropriate environmental pressures are present (Kottur et al., 2017; Choi et al., 2018; Lazaridou
et al., 2018; Chaabouni et al., 2020). While generalization pressure is not sufficient to guarantee
compositionality, compositional languages tend to exhibit better systematic generalization (Bah-
danau et al., 2019b; Chaabouni et al., 2020). The community still lacks strong research indicating
what general conditions are necessary or sufficient for compositional language emergence.

Iterated learning. The origins of the compositionality of human language, which leads to an as-
tounding open-ended expressive power, have attracted much interest over the years. Kirby (2001)
suggests that this phenomenon is a result of a learning bottleneck arising from the need to learn a
highly expressive language with only a limited set of supervised learning data. The iterated applica-
tion of this bottleneck, as instantiated by IL, has been demonstrated to cause artificial languages to
develop structure in experiments with human participants (Kirby et al., 2008; Silvey et al., 2015).

Ren et al. (2020) present neural IL following the principles of Kirby (2001), where neural agents play
a referential game and evolve a communication protocol through IL. They use topographic similarity
(Brighton & Kirby, 2006) to quantify compositionality, and find that high topographic similarity
improves the learning speed of neural agents, allows the listener to recognize more objects using
less data, and increases validation performance. However, these experiments are limited to domains
with extremely simple object and message structure.

Several ablation studies (Li & Bowling, 2019; Ren et al., 2020) have found that re-initializing the
speaker and the listener between generations is necessary to reap the benefits of compositionality
from IL. However, seeded IL (Lu et al., 2020) proposes to seed a new agent with the previous
generation’s parameters at the end of the learning phase of a new generation. Since self-play has
not yet fine-tuned this initialization, it has not had the opportunity to develop a non-compositional
language to fit the training data. The authors find that seeded IL helps counter language drift in a
translation game, and hypothesize that IL maintains the compositionality of natural language.

3 METHOD

We are interested in solving the task of visual question-answering (VQA). Let X be the space of
images about which our model will be required to answer questions. Next, let Q be the space of
natural-language questions and Y the space of all possible answers to the questions. Additionally,
we consider a space Z of programs, which represent computation graphs of operations that can be
performed on an image in X to produce an output in Y . We consider a question template T to be
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a set of tuples (q, z), where q ∈ Q and z ∈ Z . Each question template contains questions with
the same structure but varying primitive values. For example, the questions “Is a triangle blue” and
“Is a square red” belong to a template “Is a SHAPE COLOR.” The program z corresponding to the
question q in a template defines a computation graph of operations that would produce the correct
answer in Y to q for any input image x ∈ X . Finally, let T be a finite set of question templates.

The dataset for training our model and evaluating VQA performance constitutes tuples of the form
(q, z,x, y). First, a template T ∈ T is sampled and a tuple (q, z) is sampled from T . Then, an
image x ∈ X is sampled and the answer y is produced by passing x through the program z. These
collected variables (q, z,x, y) form a single example in the task dataset. To evaluate our model’s
performance on unseen question templates, we define Ttrain ⊂ T to be a subset of training templates
and Ttest = T − Ttrain to be the subset of test templates. The training dataset D is prepared from
templates in Ttrain and the out-of-distribution test dataset Dtest from templates in Ttest. We allow
a program z to be absent in D, in which case it is not used for auxiliary supervision during training.

Our goal of systematic generalization is to learn a model p(Y | X,Q) that performs well on the
dataset Dtest created using unseen question templates, where Y , X , and Q are random variables
taking values in Y , X , and Q. We define our model to be a composition of a program generator
PGθ(Z | Q) and an execution engine EEφ(Y |X,Z), parameterized by θ and φ respectively.

3.1 MODEL ARCHITECTURE

Our overall model architecture is illustrated in Figure 1. We use the attention-based sequence-to-
sequence model from Bahdanau et al. (2019a) as the program generator, which translates an input
question q into a sampled program ẑ. The execution engine assembles modules into a layout dictated
by ẑ to instantiate an NMN that takes the input image x to predict an answer ŷ. In this work, we
explore three execution engine architecture choices, including Tensor-NMN, which is the module
architecture from Johnson et al. (2017b), and Vector-NMN from Bahdanau et al. (2019a). We also
experiment with a novel hybrid of these architectures that performs better on SHAPES-SyGeT,
which we dub Tensor-FiLM-NMN. Appendix B elaborates the details of our model architecture.

The goal of the Tensor-FiLM-NMN architecture is to combine the minimalist, FiLM-based defini-
tion of modules in Vector-NMN with the spatial representational power of Tensor-NMN. As such,
the modules in Tensor-FiLM-NMN use FiLM to condition global operations on module-specific em-
beddings as in Vector-NMN, but the module inputs and outputs are tensor-valued feature maps like
in Tensor-NMN. The following equations illustrate the working of a Tensor-FiLM-NMN module:

h̃1 = γh � h1 ⊕ βh, h̃2 = γh � h2 ⊕ βh (1)

e = [(γx � x⊕ βx);max(h̃1, h̃2); (h̃1 − h̃2)] (2)
g =W1 ∗ e⊕ b1 (3)
y = ReLU(W2 ∗ (γg � ReLU([g; cumsum left(g); cumsum down(g)])⊕ βg)⊕ b2 + e). (4)

Here, x is the input image, h1 and h2 are the module inputs, and y is the module output. γ• and
β• are FiLM parameters computed using different 2-layer MLPs per layer on the module-specific
embeddings. The weights W• and biases b• are shared across all modules. We further strengthen
our model’s ability for spatial reasoning by using cumulative sums of an intermediate representation
across locations in left-to-right and top-to-bottom directions. This allows our model, for example,
to select regions to the ‘left of’ or ‘below’ objects through appropriate scaling and thresholding.

3.2 ITERATED LEARNING FOR NMNS

We can view the program generator and the execution engine as communicating agents in a cooper-
ative VQA game where the programs passed between agents are messages drawn from an emergent
language. Introducing more compositional structure to this language, such as reusing low-level
concepts using the same tokens and high-level concepts using the same sequence of tokens, helps
address the combinatorial complexity of the question space, allowing agents to perform better on
new question templates containing previously-unseen combinations of known concepts.

We use IL to encourage the emergence of structure in the generated programs. We iteratively spawn
new program generator and execution engine agents, train them on the VQA task, and transfer their
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Figure 2: Phases of IL for emergent module layouts. Solid arrows indicate forward pass through
the model, and dashed lines indicate the cross-entropy loss between predictions and targets. Af-
ter proceeding through phases (a)-(d), the new program generator and execution engine begin an
interacting phase (a) of a new generation.

knowledge to the next generation of agents. Limiting this transmission of knowledge between gen-
erations imposes a learning bottleneck, where only the easy-to-learn linguistic concepts survive.
Since the central hypothesis of neural IL is that structure is easier for neural networks to learn than
idiomatic non-compositional rules (Li & Bowling, 2019; Ren et al., 2020), our IL algorithm pushes
the language of the programs to be more compositional. The combination of learning a composi-
tional structure and performing well on the VQA training task engenders systematic generalization.

We follow Ren et al. (2020) in dividing our method into three stages, an interacting phase, a trans-
mitting phase, and a learning phase, which are cycled through iteratively until the end of training.
Figure 2 illustrates the phases of our method for training module networks with compositional emer-
gent layouts and Appendix C presents a formal algorithm for the same.

Interacting phase. The program generator and the execution engine must work together. Without
programs that consistently use the same tokens to mean the same operations, the execution engine
cannot assign the correct semantics to modules. Simultaneously, the program generator depends on
the language grounding provided by the execution engine in the form of reinforcement signal for
beneficial layouts. To make the problem more tractable, it is common to provide the model a small
set of ground-truth programs (Johnson et al., 2017b; Vedantam et al., 2019). We find that providing
program supervision with a small number of ground-truth programs throughout the interacting phase
helps in generalization. This can be seen as a form of supervised self-play (Lowe et al., 2020), and
has the effect of simulating an inductive bias towards the desired program language.

The agents are jointly trained for Ti steps to minimize answer prediction error on data sampled from
the training dataset D, with predictions given by ẑ ∼ PGθ(q); ŷ = EEφ(x, ẑ). We train EEφ by
minimizing the cross-entropy loss L between the true answer label y and the predicted distribution
ŷ. Additionally, we estimate the gradients for the parameters θ using REINFORCE:

∇θLPG(θ) = Eẑ∼pθ(·|q) [clip(−L,−5, 5)∇θ log pθ(ẑ | q)] . (5)

Here, pθ is the distribution over programs returned by PGθ(q). We use the negative cross-entropy
loss −L clipped between −5 and 5 as the reward for the program generator. When a ground-truth
program z is available, we additionally minimize a weighted cross-entropy loss between z and the
generated program ẑ using teacher forcing. In practice, the model operates on minibatches of data,
and a subset of every minibatch is subsampled from the examples with ground-truth programs.

Transmitting phase. During the transmitting phase, a new datasetD with Tt samples is prepared
for use during the learning phase. Questions q, as well as ground-truth programs z if available, are
sampled from D. For data examples without ground-truth programs, a program ẑ is sampled from
the execution engine using q. Finally, question-program pairs (q, z), if z is available, or (q, ẑ) are
added toD. By transmitting the ground-truth programs when available, we continue simulating the
inductive bias towards desirable programs during the learning phase.

Learning phase. Program generators and execution engines are initialized in the learning phase,
forming a new generation of agents to play the VQA game. The new program generator then ac-
quires the previous agents’ language from the transmitted data D. However, it does so imperfectly
due to a learning bottleneck that exerts pressure towards compositionality (Ren et al., 2020).

5



Published as a conference paper at ICLR 2021

We implement this learning bottleneck primarily by limiting the number of gradient updates in
the learning phase, effectively performing early stopping. A smaller number of program generator
gradient updates Tp leads to an underfit program generator that could waste computation during the
interacting phase to re-learn global linguistic rules. On the other hand, setting Tp to a high value
can lead to overfitting and learning of the previous generation’s idiosyncrasies, losing the benefits
of the learning bottleneck. In addition to limiting the number of training iterations, we optionally
further regularize the model by applying spectral normalization (Miyato et al., 2018) on the program
generator’s decoder LSTM parameters.

We train the new program generator PGθ̃ by minimizing the cross-entropy loss between model
samples z̃ ∼ PGθ̃(q) and transmitted programs ẑ corresponding to q in D for Tp gradient steps.
Then, the new execution engine EEφ̃ is trained with programs from the new program generator
PGθ̃, using the entire dataset D for Te steps. The forward pass in the execution engine learning
phase is similar to that in the interacting phase, but the backward pass only updates the execution
engine parameters φ̃. Adapting the new execution engine to the new program generator ensures
stable training in the upcoming interacting phase.

4 SYSTEMATIC GENERALIZATION TEST FOR SHAPES

The SHAPES dataset (Andreas et al., 2016) is a popular yet simple VQA dataset. The lower image
and question complexities of SHAPES relative to CLEVR make it an attractive choice for experi-
mentation, as training can be faster and require fewer resources. Each of the 15616 data points in
SHAPES contains a unique image. However, there are only 244 unique questions. Although the
validation and test splits of SHAPES contain unique questions not present in any of the other splits,
the questions are of the same form as the ones in the training split.

To the best of our knowledge, there is no published systematic generalization evaluation setup for
SHAPES. Thus, we present SHAPES-SyGeT, a SHAPES Systematic Generalization Test1. To un-
derstand the distribution of question types in SHAPES, we categorized questions into 12 standard
templates, out of which 7 are used for training, and 5 to test systematic generalization.

To evaluate the in-distribution and out-of-distribution generalization performance of our models,
we prepare the SHAPES-SyGeT training set with only a subset of the questions under each train
template and use the rest as an in-distribution validation set (Val-IID). Questions belonging to the
evaluation templates are used as an out-of-distribution validation set (Val-OOD). Please see Ap-
pendix D for further details about the question templates and the dataset splits.

5 EXPERIMENTS

In this section, we present results on SHAPES-SyGeT, CLEVR, and CLOSURE. For our preliminary
experiments on GQA (Hudson & Manning, 2019), please see Appendix G. The SHAPES-SyGeT
experiments are run with 3 different seeds and the CLEVR experiments use 8 seeds. We report the
mean and standard deviation of metrics over these trials. CLEVR experiments use representations
of images from a pre-trained ResNet-101 (He et al., 2016) as input, whereas the SHAPES-SyGeT
runs use standardized raw images. Please see Appendix A for the hyperparameters we use.

For our NMN baselines without IL, we still utilize the multi-task objective of using REINFORCE to
backpropagate gradients to the program generator and using a cross-entropy loss to provide program
supervision when available. We find this method of training NMNs to generalize better than pre-
training on the available programs and then interacting without supervision as is done in Johnson
et al. (2017b). One can also view our baselines as executing one long interacting phase without any
other phases or resetting of the model.

5.1 SHAPES-SYGET

Due to its lightweight nature, we use SHAPES-SyGet for a series of experiments designed to illumi-
nate the essential components of our method. For all SHAPES-SyGeT experiments, we record the

1SHAPES-SyGeT can be downloaded from: https://github.com/ankitkv/SHAPES-SyGeT.
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Table 1: SHAPES-SyGeT accuracies. NMNs are trained with 20 or 135 ground-truth programs;
FiLM (Perez et al., 2018) and MAC (Hudson & Manning, 2018) do not use program supervision.

Model Val-IID Val-OOD

FiLM 0.720± 0.01 0.609± 0.01
MAC 0.730± 0.01 0.605± 0.01

#GT 20 #GT 135 #GT 20 #GT 135

Tensor-NMN 0.645± 0.01 0.700± 0.01 0.616± 0.01 0.641± 0.03
Tensor-NMN+IL 0.756± 0.07 0.763± 0.04 0.648± 0.02 0.661± 0.02
Tensor-FiLM-NMN 0.649± 0.02 0.851± 0.01 0.605± 0.01 0.692± 0.06
Tensor-FiLM-NMN+IL 0.954± 0.07 1.000± 0.00 0.858± 0.15 0.971± 0.02

10 20 30 40 135
No. of GT programs

0.6

0.8

1.0

Ac
cu

ra
cy

Val-IID without IL
Val-OOD without IL
Val-IID with IL
Val-OOD with IL

Figure 3: SHAPES-SyGeT answer accuracies of models with varying number of ground-truth pro-
grams, with and without IL. All models use a Tensor-FiLM-NMN execution engine.

in-distribution Val-IID and the out-of-distribution Val-OOD accuracies. However, model selection
and early stopping are done based on Val-IID. For our IL experiments, we use spectral normaliza-
tion of the program generator during the learning phase, and we study its utility in Appendix E.
We do not report results on Vector-NMN, which performs very poorly. We believe that this is be-
cause SHAPES-SyGeT requires intermediate module outputs to contain detailed spatial information,
which Vector-NMN has an inductive bias against thanks to its module outputs being vectors.

We note that the reported results on SHAPES in the literature make use of NMN architectures with
specially designed modules for each operation (Andreas et al., 2016; Hu et al., 2017; Vedantam et al.,
2019). In contrast, we use generic modules in order to study compositional layout emergence with
minimal semantic priors, making our results hard to compare directly to prior work using SHAPES.

In-distribution and out-of-distribution accuracies. Table 1 illustrates the difference in the per-
formance of various configurations of our models. All the reported models achieve perfect accuracy
on the training data but generalize differently to Val-IID and Val-OOD. We find that Tensor-FiLM-
NMN generalizes better than Tensor-NMN trained with supervision of both 20 and 135 ground-truth
programs. Moreover, we find that IL improves generalization across all configurations. We further
evaluate the relationship between program supervision and performance in Figure 3 and find that IL
improves performance at all levels of supervision, effectively improving data efficiency.

Learning bottleneck. Although all models achieve perfect training accuracy in under 5000 steps,
we notice that only IL leads to gradually increasing systematic generalization as training progresses.
Figure 4 shows the effect of the learning bottleneck of IL, comparing two module architectures
with and without IL. In the presence of some ground-truth program supervision that the emergent
language should abide by, there is a stricter notion of correct programs2. Thus, in calculating the
program accuracy, we consider a program to be correct if it matches the ground-truth program ex-
actly and incorrect otherwise. We find that the program accuracy increases steadily through the

2It is unlikely that a diverse set of programs provided for supervision could fit into a compositional structure
significantly different from the ground-truth. Furthermore, small errors in the serialized programs could result
in drastic differences in the parsed computation graph structure and semantics.
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Figure 4: Learning curves of models with and without IL on SHAPES-SyGeT, using 20 ground-
truth programs. The IL curves use a global gradient step counter across all phases. The dips in the
IL training curves indicate the beginning of new generations.

influence of the learning bottleneck in the case of IL as training progresses, indicating increasing
structure in the language of the programs.

Ablation tests. We use SHAPES-SyGeT to perform a series of ablations tests and report the full
results for these experiments in Appendix E. We first examine the importance of reinitializing the
execution engine. We consider two alternatives to reinitializing it from scratch at every genera-
tion: seeded IL (Lu et al., 2020), which uses the parameters at the end of the previous execution
engine learning phase for re-initialization, and simply retaining the execution engine without any
re-initialization. We find that both of these methods harm generalization performance compared to
the standard setting.

Next, we study the effect of spectral normalization applied to the program generator decoder. With-
out IL, spectral normalization has a marginal effect on generalization, indicating it alone is not
sufficient to achieve the generalization improvements we observe. However, it improves the Val-IID
and Val-OOD accuracies substantially with IL in the standard execution engine setting. Finally, we
observe that retaining the previous program generator in a new generation without re-training greatly
harms the performance of our best model, indicating that the learning phase is crucial.

Curiously, we note that the effects of spectral normalization and not resetting the program generator
are small or reversed when the execution engine is not re-initialized from scratch. This can be
explained by an empirical observation that a partially trained execution engine finds it easier to
overfit to the input images when the programs are noisy in the case of a small dataset like SHAPES-
SyGeT, instead of waiting for the program generator to catch up to the existing module semantics.

5.2 CLEVR AND CLOSURE

CLEVR is significantly larger and more complex than SHAPES-SyGeT. It takes an execution engine
over a day to reach 95% task accuracy on the CLEVR validation set on a Nvidia RTX-8000 GPU,
even when trained with ground-truth programs without a program generator. Re-training the exe-
cution engine from scratch for every generation of IL is thus computationally infeasible. Between
using seeded IL and not resetting the execution engine at all, we find not resetting the execution
engine generalizes better. CLEVR contains 699989 training questions, and we provide 100 ground-
truth programs for program supervision, one-tenth of that used by Vedantam et al. (2019). We find
that Tensor-FiLM-NMN does not improve over Vector-NMN for CLEVR. Thus, we report results
only on Tensor-NMN and Vector-NMN for conciseness.

Figure 5 illustrates the training dynamics with and without IL on CLEVR, and Table 2 reports model
performance on the CLEVR validation set and the out-of-distribution CLOSURE categories. The
CLEVR validation curves through training are presented in Appendix F. Similar to Bahdanau et al.
(2019a), we find that Vector-NMN generalizes better than Tensor-NMN on CLEVR without IL.
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Table 2: Task accuracy on the CLEVR validation set and each CLOSURE category for models
trained with and without IL, using 100 ground-truth programs.

Evaluation set Tensor-NMN Vector-NMN

Without IL With IL Without IL With IL

CLEVR-Val 0.912± 0.07 0.964± 0.01 0.960± 0.01 0.964± 0.00

and mat spa 0.278± 0.17 0.264± 0.16 0.400± 0.13 0.335± 0.18
or mat 0.327± 0.11 0.481± 0.24 0.367± 0.11 0.563± 0.23
or mat spa 0.286± 0.13 0.405± 0.22 0.330± 0.11 0.444± 0.24
compare mat 0.793± 0.11 0.851± 0.17 0.660± 0.16 0.873± 0.12
compare mat spa 0.746± 0.13 0.853± 0.15 0.677± 0.14 0.871± 0.12
embed spa mat 0.824± 0.07 0.947± 0.03 0.863± 0.07 0.900± 0.08
embed mat spa 0.739± 0.14 0.941± 0.02 0.894± 0.03 0.936± 0.03
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(b) Program accuracy.

Figure 5: Learning curves of models trained with and without IL on CLEVR using 100 ground-truth
programs. The IL curves use a global gradient step counter across all phases. The dips in the IL
training curves indicate the beginning of new generations.

However, Tensor-NMN systematically generalizes substantially better with IL. Across both models,
using IL improves generalization on CLOSURE, greatly increases program accuracy, and achieves
validation performance on CLEVR close to ProbNMN (Vedantam et al., 2019) despite using far
fewer programs for supervision.

6 CONCLUSION

We establish IL as a practical tool for the emergence of structure in machine learning by demonstrat-
ing its utility in challenging VQA tasks using NMNs. Our work shows that IL leads to improved
performance with less supervision and facilitates systematic generalization. As the study of IL in
neural agents is relatively young and has largely been explored in the narrow domain of language
emergence in referential games, our setting presents several important new challenges for IL meth-
ods. Unlike in simple games (Ren et al., 2020), the emergence of compositional language without
any supervision is thus far infeasible in VQA due to the difficult joint optimization of the program
generator and the execution engine. However, by exploring learning phase regularization, suitable
model architectures, and the learning dynamics of IL, we are able to dramatically reduce the amount
of ground-truth supervision necessary; the surprising success of spectral normalization in particular
should motivate further research into the role of regularization during the learning phase. We hope
that this progress will spur future work to improve IL methods and their theoretical understanding,
as well as extend them to other challenging tasks in machine learning.
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Table 3: IL hyperparameters used in our experiments.

Hyperparameter Value
Optimizer Adam (Kingma & Ba, 2015)
PG learning rate 0.0001
EE learning rate 0.0001 for CLEVR, 0.0005 for SHAPES-SyGeT Tensor-

NMN, 0.001 for Tensor-FiLM-NMN
Batch size 128
GT programs in batch 4
PG REINFORCE weight 10.0
PG GT cross-entropy weight 1.0
PG spectral normalization On for SHAPES-SyGeT, off for CLEVR
Interacting phase length Ti 2000 for SHAPES-SyGeT, 5000 for CLEVR
Transmitting dataset size Tt 2000× batch size = 256000
PG learning phase length Tp 2000
EE learning phase length Te For SHAPES-SyGeT, 250 when re-initializating EE from

scratch, 200 for seeded IL; For both SHAPES-SyGeT and
CLEVR, 50 when not resetting EE

A HYPERPARAMETERS

Table 3 details the hyperparameters used in our experiments in Section 5 for both SHAPES-SyGeT
and CLEVR.

B MODEL ARCHITECTURE DETAILS

B.1 PROGRAM GENERATOR

The program generator is a seq2seq model that translates input questions to programs. We use the
Seq2SeqAtt model of Bahdanau et al. (2019a), where unlike Johnson et al. (2017b), the decoder
uses an attention mechanism (Bahdanau et al., 2015) over the encoder hidden states. We found
this model to generalize better on held-out in-distribution questions in preliminary experiments.
Ideally, the program generator’s target must be tree-structured since the output program represents
a computation graph. Since a seq2seq model cannot directly model graphs, we instead model a
serialized representation of the programs. Like Johnson et al. (2017b), we chose to use the Polish
(or prefix) notation to serialize the syntax tree.

Considering the program generator parameterized by θ, the probability distribution over layouts ẑ
is given by

pθ(ẑ | q) =
t∏
i=1

pθ(ẑi | ẑ1:i−1, q). (6)

During training, we sample programs from this distribution but take the argmax at each timestep
when evaluating our model. We use an LSTM (Hochreiter & Schmidhuber, 1997) trained using
teacher forcing to represent the distribution pθ(ẑi | ẑ1:i−1, q) at every timestep i. To condition on
q for each decoder step, we perform attention on the hidden states of a bidirectional LSTM encoder
over the question q.

B.2 EXECUTION ENGINE

To run the program ẑ produced by the program generator, the execution engine assembles neu-
ral modules according to ẑ into a neural network that takes x as input to produce an answer
ŷ. We consider this execution engine EEφ(x, ẑ) to be parameterized by φ. To illustrate a for-
ward pass through the module network, consider the program ‘and color[green] scene
transform[left of] shape[square] scene’ from Figure 1. ‘scene’ is a special mod-
ule which represents the input image features from a CNN feature extractor. According to the
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annotators, the ‘color[green]’ module should filter green shapes from the scene, and the
‘shape[square]’ module should filter squares. ‘transform[left of]’ should select re-
gions to the left of the filtered squares. In Figure 1, the final ‘and’ module should then compute the
intersection of green shapes and the region to the left of squares. A classifier takes this output from
the top-level module to produce a distribution ŷ over answers. We consider the final answer ŷ to be
the argmax of ŷ.

Each module corresponds to one token of the program and can be reused in different configurations.
Like Johnson et al. (2017b), our modules are not hand-designed to represent certain functions but
have a similar architecture for all operators. Other than the ‘scene’ module which has arity 0, all
other modules are implemented as a CNN on the module inputs to produce a module output. In this
work, we explore three module architecture choices to make up the execution engine: Tensor-NMN,
Vector-NMN, and Tensor-FiLM-NMN. Here, the Tensor-NMN module architecture is the module
network proposed by Johnson et al. (2017b), Vector-NMN is the architecture from Bahdanau et al.
(2019a), and Tensor-FiLM-NMN is described in Section 3.1.

C ITERATED LEARNING ALGORITHM

We present the full IL algorithm described in Section 3.2 in Algorithm 1.

D SHAPES-SYGET TEMPLATES AND SPLITS

The images in SHAPES are arranged in a 3 × 3 grid, where each grid cell can contain a triangle,
square, or circle that is either red, green, or blue, or the cell can be empty. Table 4a shows the
standard splits for training and evaluating SHAPES used in the literature (Andreas et al., 2016; Hu
et al., 2017; Vedantam et al., 2019). We categorize SHAPES questions into 12 standard templates,
listed in Table 5. We then derive new splits for the SHAPES data, such that each split has the
same primitives, but different ways in which the primitives are combined. The final split of the
SHAPES-SyGeT dataset is presented in Table 4b.

E ABLATION EXPERIMENTS

We perform ablation experiments on SHAPES-SyGeT rather than CLEVR/CLOSURE as the com-
putational requirements of experiments on this dataset are an order of magnitude lighter. Results are
presented in Table 6. We focus primarily on Tensor-FiLM-NMN, which we find benefits far more
from IL than Tensor-NMN. In all cases, we use 20 ground-truth programs for supervision, a choice
which we find to clearly reflect the differences between the various settings considered. We describe
the important observations from our ablation study in Section 5.1.

F CLEVR VALIDATION CURVES

The validation curves for CLEVR, illustrated in Figure 6, are similar to the training curves in Fig-
ure 5. Although CLEVR training exhibits a lower amount of overfitting compared to SHAPES-
SyGeT, we observe higher systematic generalization performance on CLOSURE with models
trained using IL.

G PRELIMINARY EXPERIMENTS WITH GQA

To study if IL can offer benefits for larger datasets without synthetic images and questions, we
choose to evaluate our IL method on the GQA dataset (Hudson & Manning, 2019). As a preliminary
setup, we remain as close as possible to the architectural setup described in Section 3. We only use
question text, spatial image features from a pre-trained ResNet-101 (He et al., 2016), and programs,
all without object annotations. We serialize the programs according to the Polish notation as we do
in the case of SHAPES-SyGeT and CLEVR, which can result in duplicated token sequences as GQA
programs do not always form strict directed acyclic graphs. Although these limitations allow us to
easily apply the presented method to GQA, they also prevent us from getting competitive results on
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Algorithm 1: Iterated learning for compositional NMN layout emergence.
Data: Nepochs: number of epochs, (Ti, Tt, Tp, Te): length of each phase,D: training dataset.

1 Initialize PG parameters θ1 and EE parameters φ1;
2 for n = 1 to Nepochs do

/* Interacting phase */
3 for i = 1 to Ti do
4 Sample new tuple (q, z,x, y) from D;
5 ẑ ∼ PGθn(q);
6 L← cross-entropy-loss(y,EEφn(x, ẑ));
7 if z is available then L← L+ cross-entropy-loss(z, ẑ) ;
8 Update θn and φn to minimize L;
9 end

/* Transmitting phase */
10 D′ = ∅;
11 for i = 1 to Tt do
12 sample new tuple (q, z,x, y) from D;
13 if z is available then ẑ ← z ;
14 else ẑ ∼ PGθn(q) ;
15 Add (q, ẑ) toD′;
16 end

/* Program generator learning phase */
17 Initialize PG parameters θn+1;
18 for i = 1 to Tp do
19 Sample new tuple (q, ẑ) fromD′;
20 z̃ ∼ PGθn+1

(q);
21 L← cross-entropy-loss(ẑ, z̃);
22 Update θn+1 to minimize L with spectral normalization;
23 end

/* Execution engine learning phase */
24 Initialize EE parameters φn+1;
25 for i = 1 to Te do
26 Sample new tuple (q, z,x, y) from D;
27 z̃ ∼ PGθn+1

(q);
28 L← cross-entropy-loss(y,EEφn+1

(x, z̃));
29 Update φn+1 to minimize L;
30 end
31 end
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Split Total
questions

Unique
questions

Train 13568 212
Val 1024 16
Test 1024 16

(a) SHAPES dataset.

Split Total
questions

Unique
questions

Train 7560 135
Val-IID 1080 135
Val-OOD 6976 109

(b) SHAPES-SyGeT dataset.

Table 4: Split of questions in the SHAPES and SHAPES-SyGeT datasets.

Template Total
questions

Unique
questions

Train templates 8640 135
1. is a COLOR shape RELATIVE(1) a COLOR shape 2304 36
2. is a SHAPE RELATIVE(1) a COLOR shape 2304 36
3. is a SHAPE RELATIVE(2) a COLOR shape 960 15
4. is a SHAPE RELATIVE(2) a SHAPE 1344 21
5. is a COLOR shape a SHAPE 576 9
6. is a SHAPE COLOR 576 9
7. is a SHAPE a SHAPE 576 9

Evaluation templates 6976 109
8. is a COLOR shape RELATIVE(2) a COLOR shape 960 15
9. is a COLOR shape RELATIVE(1) a SHAPE 2304 36
10. is a COLOR shape RELATIVE(2) a SHAPE 832 13
11. is a SHAPE RELATIVE(1) a SHAPE 2304 36
12. is a COLOR shape COLOR 576 9

Table 5: Overview and splits of the SHAPES-SyGeT templates. The placeholder COLOR can
take values in ‘red,’ ‘green,’ and ‘blue,’ and SHAPE can be either ‘circle,’ ‘triangle,’ or ‘square.’
RELATIVE(1) is a placeholder for one of the positional prepositions ‘above,’ ‘below,’ ‘left of,’ or
‘right of,’ whereas RELATIVE(2) is a combination of two RELATIVE(1)s, such as ‘above left
of.’

the dataset. However, our goal is not to pursue state-of-the-art performance on GQA, but instead
to study if we can still observe the advantage of IL in a limited ground-truth program setting for
our NMN setup. Still, due to the significantly higher complexity of GQA, a few modifications and
special considerations become necessary.

G.1 CHANGES TO THE MODEL ARCHITECTURE

In both SHAPES-SyGeT and CLEVR, the programs are sequences of tokens where each token
represents an operation, corresponding to one module of the assembled NMN. Each possible op-
eration is carried out on the module input, the input image, or a combination of both, and has a
fixed arity. However, the structure of programs in GQA has additional levels of granularity. Each
timestep has an operation (e.g. exist, query), an optional sub-operation (e.g. material,
weather), an integer arity, and a list of argument tuples. Each argument tuple in this list con-
tains an argument (e.g. horse, water) as well as a Boolean value indicating if the argument is
negated. We ignore additional details in the programs provided in the GQA dataset. As an illus-
tration, the question “does the lady to the left of the player wear a skirt?” translates to the pro-
gram “verify.rel(skirt,wearing,o){1} relate(lady,to the left of,s){1}
select(player){0}”, containing three tokens with arities 1, 1, and 0 respectively. The op-
erations and the corresponding sub-operations are separated by a period (.), and the parentheses
contain the list of arguments, none of which are negated in this example.

Since every timestep of the program sequence is given by a tuple (Op, Subop, Args, ArgNegs, Arity),
we modify the program generator to produce this tuple instead of a single operation. For Args and
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PG: Seq2SeqAtt EE: Tensor-NMN Val-IID Val-OOD
+FullSN - 0.646± 0.03 0.614± 0.01
+NoSN - 0.645± 0.01 0.616± 0.01

EE: Tensor-FiLM-NMN
+FullSN - 0.642± 0.02 0.596± 0.02
+NoSN - 0.649± 0.02 0.605± 0.01

+IL +IL 0.954± 0.07 0.858± 0.15
+IL+NoSN +IL 0.803± 0.13 0.630± 0.07
+IL+NoRetrain +IL 0.834± 0.13 0.664± 0.06
+IL +IL+Seeded 0.792± 0.05 0.626± 0.01
+IL+NoSN +IL+Seeded 0.744± 0.13 0.647± 0.12
+IL+NoRetrain +IL+Seeded 0.794± 0.12 0.662± 0.11
+IL +IL+NoReset 0.624± 0.02 0.586± 0.01
+IL+NoSN +IL+NoReset 0.629± 0.01 0.588± 0.01
+IL+NoRetrain +IL+NoReset 0.682± 0.05 0.600± 0.01

Table 6: Ablation experiments for models on SHAPES-SyGeT trained with 20 ground-truth pro-
grams. ‘FullSN’: spectral normalization applied throughout training;“NoSN’: no spectral normal-
ization in any phase; ‘NoRetrain’: new program generator is taken from the previous generation
without any re-training; ‘Seeded’: new execution engine is initialized to the state after the previous
learning phase; ‘NoReset’: execution engine is not re-initialized at the start of a generation.
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Figure 6: Validation curves of models trained with and without IL on CLEVR using 100 ground-
truth programs.

ArgNegs, we consider a fixed argument list length of 3, padding with the argument <NULL> and no
negation when the argument list is shorter than 3. This allows us to represent the distribution over
the tokens at various levels of granularity for every timestep using a fixed number of logits.

Finally, it is no longer feasible to have dedicated modules for every possible unique program step,
as the number of possible (Op, Subop, Args, ArgNegs)3 combinations is very large. Thus, we restrict
ourselves to using the Vector-NMN architecture, where instead of using a FiLM embedding for the
operation the module represents, we concatenate embeddings for the Op, Subop, Args, and ArgNegs
to generate timestep-specific FiLM embeddings.

G.2 CHANGES TO THE METHOD

Unlike the question and program structures of SHAPES-SyGeT and CLEVR, the structures in GQA
are significantly more diverse and include larger vocabularies as illustrated in Table 7. This makes
training the program generator to a decent performance, even when trained on ground-truth pro-
grams directly, prohibitively slow. As a result, it becomes impractical to train the program generator

3Arity is consumed during the assembly of the NMN.
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Dataset Token type Vocabulary size

SHAPES-SyGeT Question 18
Program 16

CLEVR Question 93
Program 44

GQA

Question 2939
Program Op 16
Program Subop 55
Program Arg 2659

Table 7: Vocabulary sizes for SHAPES-SyGeT, CLEVR, and GQA token types after pre-processing.

#GT programs Model Accuracy
- Vector-NMN on GT programs 0.556± 0.002

943000 Vector-NMN 0.486± 0.002

4000 Vector-NMN 0.455± 0.006
4000 Vector-NMN+ResetEE 0.469± 0.007
4000 Vector-NMN+ResetEE+FinetuneEE 0.470± 0.007
4000 Vector-NMN+IL 0.480± 0.003

Table 8: GQA validation accuracies. In Vector-NMN on GT programs, the execution engine always
assembles modules according to the ground-truth programs, including at test time. For all the models
except Vector-NMN+IL, the program generator is retained between generations. ‘ResetEE’: reset
parameters except the FiLM embeddings; ‘FinetuneEE’: train the execution engine on a frozen
program generator before joint training; ‘IL’: the full IL algorithm.

from scratch in every generation of IL. We thus need to explore strategies of resetting the program
generator between generations while maintaining the benefits of the learning bottleneck of IL.

We hypothesize that due to the larger vocabulary sizes, learning good embeddings for question
tokens and the various program tokens at all levels of granularity constitutes a large portion of the
program generator training time. Following this intuition, we find it helpful to retain the input and
output embeddings of the questions and the programs while resetting other parameters between
generations. Experimentally, we verified that this method of resetting generalizes better than not
resetting the program generator at all during IL. It also outperforms an alternate strategy of choosing
new parameters based on an interpolation of a freshly initialized program generator and the final
program generator from a generation.

Finally, despite a search over the Vector-NMN hyperparameters, we find that the optimal hyper-
parameters have a tendency to exhibit overfitting on the GQA images. The strategy of retaining
embeddings and resetting the rest of the parameters also works well to combat this overfitting for
the execution engine, where the embeddings we retain are the various FiLM embeddings. In Sec-
tion G.3, we compare our IL method with baselines that only implement this partial reset of the
execution engine as a regularizer.

G.3 RESULTS

For our GQA experiments, we use the balanced train and validation splits for training and reporting
results respectively. For each run, we report the mean and standard deviation across 3 trials. To
study the effect of IL with limited ground-truth programs, we run our IL experiments with 4000
ground-truth programs, which constitutes only 0.4% of all available training programs.

Table 8 presents the results for different configurations of our models. A Vector-NMN execution
engine that assembles modules using ground-truth programs during both training and validation
provides an upper bound of performance over a learned program generator. When learning the
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(a) Op.
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(b) Op+Subop.
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(c) Op+Subop+Arg.
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(d) Op+Subop+Arg+ArgNeg.
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(e) Op+Subop+Arg+ArgNeg+Arity.

Figure 7: Program accuracies at various levels of granularity of models trained on GQA using 4000
ground-truth programs. Here, (e) uses the strictest notion of program accuracy. The models with
any form of IL use a global gradient step counter across all phases. The dips in the curves indicate
the beginning of new generations.
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(a) Training accuracy.
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(b) Validation accuracy.

Figure 8: Training and validation curves of models trained on GQA using 4000 ground-truth pro-
grams. The models with any form of IL use a global gradient step counter across all phases. The
dips in the training curves indicate the beginning of new generations.

program generator, we find that using 4000 ground-truth programs with IL performs almost as well
as using 943000 ground-truth programs without IL. Due to the tendency of the execution engine
to overfit on the GQA images, we also compare our IL model with stronger baselines that perform
regularization through iterated partial resetting of the execution engine. While we find this method to
generalize better than standard training, we still find it necessary to employ the learning bottleneck
through the learning phase of the program generator to achieve the best accuracy in the limited-
program-supervision setting.

We see a clear advantage of IL in learning the correct program structure in Figure 7, which re-
ports program accuracy at various levels of granularity. We notice that this increase in the program
accuracy correlates with an improved generalization performance in Figure 8, even though the train-
ing accuracy of all the iterated models is similar. These preliminary experiments on GQA indicate
that a learning bottleneck can be beneficial even in larger non-synthetic datasets, but may require
additional considerations such as partial resetting to make the training time tractable.
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