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Abstract

Bayesian neural networks (BNNs) provide a for-
malism to quantify and calibrate uncertainty in
deep learning. Current inference approaches for
BNNs often resort to few-sample estimation for
scalability, which can harm predictive perfor-
mance, while its alternatives tend to be computa-
tionally prohibitively expensive. We tackle this
challenge by revealing a previously unseen con-
nection between inference on BNNs and volume
computation problems. With this observation, we
introduce a novel collapsed inference scheme that
performs Bayesian model averaging using col-
lapsed samples. It improves over a Monte-Carlo
sample by limiting sampling to a subset of the net-
work weights while pairing it with some closed-
form conditional distribution over the rest. A col-
lapsed sample represents uncountably many mod-
els drawn from the approximate posterior and thus
yields higher sample efficiency. Further, we show
that the marginalization of a collapsed sample
can be solved analytically and efficiently despite
the non-linearity of neural networks by leverag-
ing existing volume computation solvers. Our
proposed use of collapsed samples achieves a bal-
ance between scalability and accuracy. On various
regression and classification tasks, our collapsed
Bayesian deep learning approach demonstrates
significant improvements over existing methods
and sets a new state of the art in terms of uncer-
tainty estimation and predictive performance.

1. Introduction
Uncertainty estimation is crucial for decision making. Deep
learning models, including those in safety-critical domains,
tend to poorly estimate uncertainty. To overcome this issue,
Bayesian deep learning obtains a posterior distribution over
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the model parameters hoping to improve predictions and
provide reliable uncertainty estimates. Among Bayesian
inference procedures with neural networks, Bayesian model
averaging (BMA) is particularly compelling (Wasserman,
2000; Fragoso et al., 2018; Maddox et al., 2019). How-
ever, computing BMAs is distinctly challenging since it
involves marginalizing over posterior parameters, which
possess some unusual topological properties such as mode-
connectivity (Izmailov et al., 2021). We show that even with
simple low-dimensional approximate parameter posteriors
as uniform distributions, doing BMA requires integrating
over highly non-convex and multi-modal distributions with
discontinuities arising from non-linear activations (cf. Fig-
ure 1a). Accurately approximating the BMA can achieve sig-
nificant performance gains (Izmailov et al., 2021). Existing
methods mainly focus on general-purpose MCMC, which
can fail to converge, or provides inaccurate few-sample pre-
dictions (Kristiadi et al., 2022), because running longer sam-
pling chains is computationally expensive, and variational
approaches that typically assume mean-field and ignore cor-
relations induced by activations (Jospin et al., 2022).

In this work, we are interested in developing collapsed
samplers, also known as cutset or Rao-Blackwellised sam-
plers for BMA. A collapsed sampler improves over classical
particle-based methods by limiting sampling to a subset
of variables and further pairing each sample with a closed-
form representation of a conditional distribution over the
rest whose marginalization is often tractable. Collapsed
samplers are effective at variance reduction in graphical
models (Koller & Friedman, 2009), however no collapsed
samplers are known for Bayesian deep learning. We believe
that this is due to the lack of a closed-form marginalization
technique congruous with the non-linearity in deep neural
networks. Our aim is to overcome this issue and improve
BMA estimation by incorporating exact marginalization
over (close approximate) conditional distributions into the
inference scheme. Nevertheless, scalability and efficiency is
guaranteed by the sampling part of our proposed algorithm.

Marginalization is made possible by our observation that
BMA reduces to weighted volume computation. Certain
classes of such problems can be solved exactly by so-called
weighted model integration (WMI) solvers (Belle et al.,
2015a). By closely approximating BMA with WMI, these
solvers can provide accurate approximations to marginal-
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(a) p(y | x,w) being Gaussian.
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(b) p(y | x,w) being triangular.

Figure 1: The integral surface of (a) the expected prediction in BMA, and (b) our proposed approximation. Both are highly
non-convex and multi-modal. The z-axis is the weighted prediction y p(y | x,w) p(w | D). Integration of (a) does not
admit a closed-form solution, yet integration of (b) is a close approximation that can be solved exactly by WMI solvers.

ization in BMA (cf. Figure 1b). With this observation, we
propose CIBER, a collapsed sampler that uses WMI for
computing conditional distributions. In the few-sample set-
ting, CIBER delivers more accurate uncertainty estimates
than the gold-standard Hamiltonian Monte Carlo (HMC)
method (cf. Figure 2). We further evaluate the effectiveness
of CIBER on regression and classification tasks and show
significant improvements over other Bayesian deep learning
approaches in terms of uncertainty estimation and accuracy.

2. BMA as WVC
In Bayesian Neural Networks (BNN), given a neural net-
work fw parameterized by weights w, instead of doing in-
ference with deterministic w that optimize objectives such
as cross-entropy or mean squared error, Bayesian learning
infers a posterior p(w | D) over parameters w after observ-
ing data D. During inference, this posterior distribution is
then marginalized over to produce final predictions. This
process is called Bayesian Model Averaging (BMA). It
can be seen as learning an ensemble of an infinite number of
neural nets and aggregating results. Formally, the posterior
predictive and the expected prediction for regression are

p(y | x) =
∫

p(y | x,w) p(w | D) dw,

and Ep(y|x)[y] =

∫
y p(y | x) dy.

(1)

For classification, the (most likely) prediction is the class
argmaxy p(y | x). BMA is intuitively attractive because it
can be risky to base inference on a single neural network
model. The marginalization in BMA gets around this issue
by averaging over models according to a Bayesian posterior.

BMA requires approximations to compute posterior predic-
tive distributions and expected predictions, as the integrals

in Equation 1 are intractable in general. Deriving efficient
and accurate approximations remains an active research
topic (Izmailov et al., 2021). We approach this problem
by observing that the marginalization in BMA with ReLU
neural networks can be cast as weighted volume compu-
tation (WVC). Later we show that it can be generalized
to any neural networks when combined with sampling. In
WVC, various tools exist for solving certain WVC problem
classes (Baldoni et al., 2014; Kolb et al., 2019; Zeng et al.,
2020c). This section reveals the connection between BMA
and WVC. It opens up a new perspective for developing
BMA approximations by leveraging WVC tools.

Definition 1 (WVC). A weighted volume computation prob-
lem is a pair (�, ϕ) where a region � is a conjunction of
arithmetic constraints and weight ϕ : � → R is an inte-
grable function assigning weights to elements in �. The
task of WVC is to compute the integral

∫
� ϕ(x) dx.

2.1. A General Reduction of BMA to WVC

Let model fw be a ReLU neural net. Denote the set of
inputs to its ReLU activations byR = {ri}Ri=1, where each
ri is a linear combination of weights. For a given input x,
the parameter space is partitioned by whether each ReLU
activation outputs zero or not. This gives the WVC reduction

p(y | x) =
∑

B∈{0,1}R

∫
�B

p(y | x,w) p(w | D) dw,

where B is a binary vector. The region �B is defined as
∧Ri=1ℓi where arithmetic constraint ℓi is ri ≥ 0 if Bi = 1
and ri ≤ 0 otherwise. The expected prediction Ep(y|x)[y]
is analogous but includes an additional factor and variable
of integration y in each WVC problem.

This general reduction, however, is undesirable since it
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(b) CIBER with 10 collapsed samples
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Figure 2: Uncertainty estimates for regression. Red line is the ground truth. Dark blue line shows predictive mean. Shaded
region is the 90% confidence interval of the predictive distribution. For the same number of samples, (b) our proposed
CIBER is closer than (a) small-sample HMC to a highly accurate but slow (c) HMC with a large number of samples.

amounts to a brute-force enumeration that implies a com-
plexity exponential in the number of ReLU activations.
Moreover, not all WVC problems resulting from this reduc-
tion are amenable to existing solvers. We therefore appeal to
a framework called weighted model integration (WMI) that
allows for a compact representation and a characterization
of their tractability for WMI solvers.

2.2. Approximating BMA by WMI

WMI is a modeling and inference framework that supports
integration in the presence of logical and arithmetic con-
straints (Belle et al., 2015a;b) and various WMI solvers have
been proposed in recent years (Kolb et al., 2019). However,
even with the reduction from BMA to WVC shown above,
WMI solvers are not directly applicable due to two main
limitations of existing solvers: (i) feasible regions need to be
defined by Boolean combinations of linear arithmetic con-
straints, and (ii) weight functions need to be polynomials.
Next, we show how these issues can be bypassed.

In WMI, the feasible region is defined by satisfiability mod-
ulo theories (SMT) constraints (Barrett et al., 2010): an
SMT formula is a (typically quantifier-free) expression con-
taining both propositional and theory literals connected with
logical connectives; the theory literals are often restricted
to linear real arithmetic, where literals are of the form
(cTX ≤ b) with variable X and constants cT and b.
Definition 2. (WMI) Let X be a set of continuous random
variables. A weighted model integration problem is a pair
M = (∆,Φ), where ∆ is an SMT formula over X and
Φ is a set of per-literal weights defined as Φ = {ϕℓ}ℓ∈L,
where L is a set of SMT literals and each ϕℓ is a function
defined over variables in literal ℓ. The task of weighted
model integration is to compute

WMI(∆,Φ) =

∫
x|=∆

∏
ℓ∈L

ϕℓ(x)
Jx|=ℓK dx.

where x |= ∆ denotes the satisfaction of an SMT formula ∆
by x, and Jx |= ∆K be its corresponding indicator function.

To bypass issue (i), we propose to use the encoding of ReLU

neural networks into SMT formulas to define the feasible
region of WMI problems. This encoding has been explored
in existing work to enable verification of the behaviour of
neural networks and provide formal guarantees (Katz et al.,
2017; Huang et al., 2017; Sivaraman et al., 2020). To by-
pass issue (ii), we propose to encode both the posterior
distribution and the predictive distribution using polynomial
densities. Next, we show how this process can be general-
ized to a scalable and accurate approximation of BMA.

3. CIBER: Collapsed Inference for Bayesian
Deep Learning via WMI

Given a BNN with a large number of weights, naively ap-
proximating it by WMI problems can lead to computational
issues, since it involves doing integration over polytopes in
arbitrarily high dimensions and this is known to be #P-
hard (Valiant, 1979; De Loera et al., 2012; Zeng et al.,
2020c). Further, weights involved with non-ReLU acti-
vation might not be amenable to the WMI encoding. To
tackle these issues, we propose to use collapsed samples
to combine the strengths from two worlds: the scalability
and flexibility from sampling and the accuracy from WMI
solvers.

Definition 3. (Collapsed BMA) Let (Ws,Wc) be a par-
tition of parameters W . A collapsed sample is a tuple
(ws, q), where ws is an assignment to the sampled parame-
ters Ws and q is a representation of the conditional poste-
rior p(Wc | ws,D) over the collapsed parameter set Wc.
Given collapsed samples S, collapsed BMA estimates the
predictive posterior and expected prediction as

p(y | x) ≈ 1

|S|
∑

(ws,q)∈S

[∫
p(y | x,w) q(wc) dwc

]
, and

Ep(y|x)[y] ≈
1

|S|
∑

(ws,q)∈S

[∫
y p(y | x,w) q(wc) dwc dy

]
.

(2)

The size of the collapsed set Wc determines the trade-off
between scalability and accuracy. The more parameters in
the collapsed set, the more accurate the approximation to
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Table 1: Average test log likelihood for the large UCI regression task.

ELEVATORS KEGGD KEGGU PROTEIN SKILLCRAFT POL

CIBER (SECOND) -0.378 ± 0.026 1.245 ± 0.090 1.125 ± 0.269 -0.720 ± 0.036 -1.003 ± 0.035 2.555 ± 0.115
CIBER (LAST) -0.371 ± 0.023 1.178 ± 0.088 0.964 ± 0.231 -0.720 ± 0.036 -1.001 ± 0.032 2.506 ± 0.150
SWAG -0.374 ± 0.021 1.080 ± 0.035 0.749 ± 0.029 -0.700 ± 0.051 -1.180 ± 0.033 1.533 ± 1.084
PCA+ESS (SI) -0.351 ± 0.030 1.074 ± 0.034 0.752 ± 0.025 -0.734 ± 0.063 -1.181 ± 0.033 -0.185 ± 2.779
PCA+VI (SI) -0.325 ± 0.019 1.085 ± 0.031 0.757 ± 0.028 -0.712 ± 0.057 -1.179 ± 0.033 1.764 ± 0.271

BMA is. The fewer parameters in Wc, the more efficient
the computations of the integrals are since the integration is
performed in a lower-dimensional space.

To develop an algorithm to compute collapsed BMA, we
are faced with two main design choice questions: (Q1) how
to sample ws from the posterior? (Q2) what should be the
representation of the conditional posterior q such that the
integrals in Equation 2 can be computed exactly?

3.1. Approximation to Posteriors

For (Q1), we follow Maddox et al. (2019) and sample from
the stochastic gradient descent (SGD) trajectory after conver-
gence and use the information contained in SGD trajectories
to efficiently approximate the posterior distribution, lever-
aging the interpretation of SGD as approximate Bayesian
inference (Mandt et al., 2017; Chen et al., 2020). Given a
set of parameter samplesW from the SGD trajectory, the
sample set is defined asWs = {ws | w ∈ W}. For each
assignment ws, an approximation q(Wc) to the conditional
posterior p(Wc | ws,D) is necessary since the posteriors
induced by SGD trajectories are implicit.

3.2. Encoding into WMI Problems

When a BNN can be encoded as a WMI problem, the pos-
terior predictive distribution and the expected prediction,
which involve marginalization over the parameter space, can
be computed exactly using WMI solvers. This inspires us to
use the WMI framework as the closed-form representations
for the conditional posteriors of parameters. The challenge
is how to approximate the integrand in Equation 2 using
SMT formulas and polynomial weight functions in order to
obtain a WMI problem amenable to existing solvers.

For the conditional posterior approximation q(Wc), we
choose it to be a uniform distribution which can be encoded
into a WMI problem as Mpos = (∆pos ,Φpos) with the
SMT formula being ∆pos = ∧i∈c (li ≤ Wi ≤ ui) and
weights being Φpos = {ϕℓ(Wc) = 1 | ℓ = true}, where
li and ui are domain lower and upper bounds for the uniform
distribution respectively. While seemingly over-simplistic,
this choice of approximation to the conditional posterior is
sufficient to robustly deliver surprisingly strong empirical
performance. The intuition is that uniform distributions are

better than a few samples, which is further illustrated by
comparing the predictive distributions of CIBER and HMC
in a few-sample setting as shown in Figure 2.

For the choice of predictive distribution p(y | x,w), we
propose to use piecewise polynomial densities. Common
predictive distributions can be approximated by polynomials
up to arbitrary precision in theory by the Stone–Weierstrass
theorem (De Branges, 1959). Take regression as an example,
the de facto choice is Gaussian and we propose to use trian-
gular distribution as the approximation, i.e., p(y | x,w) =
1
r −

1
r2 |y − fw(x)|, with domain |y − fw(x)| ≤ r, and

r := α
√
σ2(x) where the constant α parameterizes the tri-

angular distribution and σ2(x) the variance estimate. Then
p(y | x,w) can be encoded into a WMI problem as:

∆pred =

{
Y − fw(x) ≤ r

Y − fw(x) ≥ −r

Φpred =

{
ϕℓ1(Y,Wc) =

1
r −

Y−fw(x)
r2 with ℓ1 = (Y > fw(x))

ϕℓ2(Y,Wc) =
1
r −

fw(x)−Y
r2 with ℓ2 = (fw(x) > Y )

}

3.3. Exact Integration in Collapsed BMA

By encoding the collapsed BMA into WMI problems, we
are ready to answer (Q2), i.e., how to perform exact compu-
tation of the integrals shown in Equation 2.

Proposition 4. Let the SMT formula ∆ = ∆ReLU ∧∆pos ∧
∆pred , and the set of weights Φ = Φpos ∪ Φpred as defined
in Section 3.2. Let the set of weights Φ∗ = Φ ∪ {ϕℓ(Y ) =
Y with ℓ = true}. The integrals in collapsed BMA
(Equation 2) can be computed by WMI solvers as∫

p(y | x,w) q(wc) dwc =
WMI(∆ ∧ (Y = y),Φ)

WMI(∆,Φ)
,

and
∫

y p(y | x,w) q(wc) dwc dy =
WMI(∆,Φ∗)

WMI(∆,Φ)
.

With both question (Q1) and (Q2) answered, we summarize
our proposed algorithm CIBER as Algorithm 1 in Appendix.
To quantitatively analyze how close the approximation de-
livered by CIBER is to the ground-truth BMA, we consider
the following experiments with closed-form BMA.

Regression. We consider a Bayesian linear regression set-
ting where exact sampling from the posterior is available.
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Table 2: Average test performance for image classification tasks on CIFAR-10 and CIFAR-100.

METRIC NLL ACC ECE

DATASET CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

CIBER 0.1927 ± 0.0029 0.9193 ± 0.0027 93.64 ± 0.09 74.71 ± 0.18 0.0130 ± 0.0011 0.0168 ± 0.0025
SWAG 0.2503 ± 0.0081 1.2785 ± 0.0031 93.59 ± 0.14 73.85 ± 0.25 0.0391 ± 0.0020 0.1535 ± 0.0015
SGD 0.3285 ± 0.0139 1.7308 ± 0.0137 93.17 ± 0.14 73.15 ± 0.11 0.0483 ± 0.0022 0.1870 ± 0.0014
SWA 0.2621 ± 0.0104 1.2780 ± 0.0051 93.61 ± 0.11 74.30 ± 0.22 0.0408 ± 0.0019 0.1514 ± 0.0032
SGLD 0.2001 ± 0.0059 0.9699 ± 0.0057 93.55 ± 0.15 74.02 ± 0.30 0.0082 ± 0.0012 0.0424 ± 0.0029
KFAC 0.2252 ± 0.0032 1.1915 ± 0.0199 92.65 ± 0.20 72.38 ± 0.23 0.0094 ± 0.0005 0.0778 ± 0.0054
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Figure 3: Exact and approximate posterior predictive distri-
butions in Bayesian linear regression.

Both the likelihood and the weight posterior are Gaussian
such that the ground-truth posterior predictive distribution
is also Gaussian. We evaluate the posterior predictive es-
timated by CIBER and Monte Carlo (MC), both using the
same five samples drawn from the weight posterior, in Fig-
ure 3. CIBER approximates the samples with a uniform
distribution as posterior p(w|D) and further approximates
the likelihood with a triangular distribution such that the
integral in p(y|x,D) can be computed exactly by WMI. The
CIBER approximation is closer to the ground truth than the
MC estimate. The KL divergence between the ground truth
and CIBER is 0.030 while the one for MC estimation is
0.085, indicating that CIBER yields a better approximation.

Classification. For analyzing classification performance,
Kristiadi et al. (2022) propose to compute the integral I =∫
σ(f∗)pN (f∗) df∗ with σ being the sigmoid function and

f∗ = f(x∗;w) that amounts to the posterior predictive
distribution. We consider a simple case with f(x;w) = w ·
x such that the ground-truth integral can be obtained. With
a randomly chosen x, the ground-truth integral is I = 0.823.
The integral estimated by CIBER is IC = 0.826 while the
MC estimate is IMC = 0.732. That is, CIBER gives an
estimate with a much lower error than the MC estimation
error, indicating that CIBER is able to deliver high-quality
approximations in classification tasks.

4. Experiments
Regression on UCI Datasets We experiment on both small
and large UCI datasets following the setup of Izmailov et al.

(2020). We run CIBER with two different ways of choos-
ing the collapsed parameter set: CIBER (last) chooses all
the weights at the last layer to be the collapsed set; CIBER
(second) chooses three out of all the weights at the second-
to-last layer to be the collapsed set. The baselines we choose
include SWAG (Maddox et al., 2019), PCA+ESS (SI) and
PCA+VI (SI) (Izmailov et al., 2020). We present the test
log likelihoods for large UCI datasets in Table 1 and other
results for more dataset with more baselines in Appendix.
CIBER either outperforms or delivers highly comparable re-
sults on both likelihood and accuracy, which illustrates that
exact marginalization over conditional approximate posteri-
ors enabled by WMI solvers achieves accurate estimation
of the true BMA and boosts predictive performance.

Classification on CIFAR Datasets We experiment with
two image datasets: CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) and evaluate the test performance using three
metrics: 1) negative log likelihood (NLL), 2) classifi-
cation accuracy (ACC), and 3) expected calibration er-
rors (ECE) (Naeini et al., 2015). We run CIBER by choosing
the collapsed parameter set to be weights at the last layer
of the neural network models. We compare CIBER with
strong baselines including SWAG (Maddox et al., 2019)
reproduced by their open-source implementation, standard
SGD, SWA (Izmailov et al., 2018), SGLD (Welling & Teh,
2011) and KFAC (Ritter et al., 2018). We present the test
performance on dataset CIFAR-10 and CIFAR-100 using
VGG-16 networks (Simonyan & Zisserman, 2014) in Ta-
ble 2. We present more results with various network archi-
tectures in Appendix. CIBER outperforms all baselines in
most evaluations and comparable otherwise, demonstrating
the effectiveness of using collapsed samples in improving
uncertainty estimation and classification performance.

5. Conclusions
We reveal the connection between BMA, a way to perform
Bayesian deep learning, and WVC, which inspires us to
approximate BMA using WMI. To further make this approx-
imation scalable and flexible, we combine it with collapsed
samples which gives our algorithm CIBER. It compares
favorably to baselines on regression and classification tasks.
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A. Proofs
Proposition 4 Let the SMT formula ∆ = ∆ReLU ∧∆pos ∧
∆pred , and the set of weights Φ = Φpos ∪ Φpred as defined
in Section 3.2. Let the set of weights Φ∗ = Φ ∪ {ϕℓ(Y ) =
Y with ℓ = true}. The integrals in collapsed BMA
(Equation 2) can be computed by WMI solvers as∫

p(y | x,w) q(wc) dwc =
WMI(∆ ∧ (Y = y),Φ)

WMI(∆,Φ)
,

and
∫

y p(y | x,w) q(wc) dwc dy =
WMI(∆,Φ∗)

WMI(∆,Φ)
.

Proof. By construction, it holds that

p(y | x,w) ∝WMI(∆pred ∧ (Y = y),Φpred)

∝
∏

ℓ∈Lpred

ϕℓ(y,wc)
Jy,wc|=ℓK,

with (y,wc) |= ∆pred ∧∆ReLU

q(wc) ∝WMI(∆pos ∧ (Wc = wc),Φpos)

∝
∏

ℓ∈Lpos

ϕℓ(wc)
Jwc|=ℓK, with wc |= ∆pos

Thus, we have that the likelihood weighted by the approxi-
mate posterior would be

p(y | x,w) q(wc) ∝
∏

ℓ∈Lpred∧Lpos

ϕℓ(y,wc)
Jy,wc|=ℓK

with (y,wc) |= ∆ReLU ∧∆pred ∧∆pos ,

or equivalently,

p(y | x,w) q(wc) =

∏
ℓ∈Lpred∧Lpos

ϕℓ(y,wc)
Jy,wc|=ℓK

WMI(∆,Φ)
,

with (y,wc) |= ∆.

By integrating over the collapsed set Wc, it further holds
that ∫

p(y | x,w) q(wc) dwc

=

∫ ∏
ℓ∈Lpred∧Lpos

ϕℓ(y,wc)
Jy,wc|=ℓK dwc

WMI(∆,Φ)
,

with (y,wc) |= ∆

=
WMI(∆ ∧ (Y = y),Φ)

WMI(∆,Φ)

which proves the first equation.

Similarly, we have that

y p(y | x,w) q(wc)

∝
∏

ℓ∈Lpred

y ϕℓ(y,wc)
Jy,wc|=ℓK

∏
ℓ∈Lpos

ϕℓ(wc)
Jwc|=ℓK,

with (y,wc) |= ∆

Algorithm 1 CIBER
Input: input x, sampled weightsW , neural network model
fw, prediction ground truth y∗

Ouput: predictions and likelihoods
1: Choose a partition (Ws,Wc) for network parameters
2: Derive approximate posterior q(wc) from sampled

weights {wc | w ∈ W} // cf. Section 3.2
3: Encode posterior q(wc) into WMI problemMpos =

(∆pos ,Φpos) // cf. Section 3.2
4: Y ← ∅, P ← ∅ // Initialization
5: for sample ws in {ws | w ∈ W} do
6: Encode neural network model fReLU parameterized

by (ws,Wc) into an SMT formula ∆fw

7: Encode predictive p(Y | x,ws,Wc) into a WMI
problemMpred = (∆pred ,Φpred)

8: SMT formula ∆← ∆ReLU ∧∆pos ∧∆pred

9: Weights Φ← Φpos ∪ Φpred

10: Weights Φ∗ ← Φ ∪ {ϕℓ(Y ) = Y with ℓ = true}
11: Add prediction y = WMI(∆,Φ∗)/WMI(∆,Φ) to

prediction set Y // cf. Section 3.3
12: Add likelihood p = WMI(∆ ∧ (Y =

y∗),Φ)/WMI(∆,Φ) to set P // cf. Section 3.3
13: end for
14: return y = MEAN(Y), p(y∗ | x) = MEAN(P)

By integrating over the collapsed set Wc and prediction y,
it holds that∫

y p(y | x,w) q(wc) dwc dy

=

∫
y

∏
ℓ∈Lpred

ϕℓ(y,wc)
Jy,wc|=ℓK ∏

ℓ∈Lpos

ϕℓ(wc)
Jwc|=ℓK dwc dy

WMI(∆,Φ)
,

with (y,wc) |= ∆

=
WMI(∆,Φ∗)

WMI(∆,Φ)

which finishes our proof.

B. Pseudo Code for CIBER
We summarize our proposed algorithm CIBER, Collapsed
Inference Bayesian DEep LeaRning, for regression tasks,
in Algorithm 1. For the classification task, the algorithm
is basically the same except the encoding of the predictive
of the distribution. Specifically, for a given class y, the
predictive distribution p(y | x,w) can be encoded into a
WMI problem as shown below:

∆pred = fw(x) ≥ −d

Φpred =

{
ϕℓ1(Wc) with ℓ1 = (fw(x) ≤ d)

ϕℓ2(Wc) = 1 with ℓ2 = (fw(x) > d)

}
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Table 3: Average test RMSE for the small UCI regression task.

BOSTON CONCRETE YACHT NAVAL ENERGY

CIBER (SECOND) 3.488 ± 1.123 4.880 ± 0.506 0.828 ± 0.241 0.000 ± 0.000 0.447 ± 0.081
CIBER (LAST) 3.478 ± 1.128 4.854 ± 0.503 0.752 ± 0.294 0.000 ± 0.000 0.447 ± 0.081
SWAG 3.517 ± 0.981 5.233 ± 0.417 0.973 ± 0.375 0.001 ± 0.000 1.594 ± 0.273
PCA+ESS (SI) 3.453 ± 0.953 5.194 ± 0.448 0.972 ± 0.375 0.001 ± 0.000 1.598 ± 0.274
PCA+VI (SI) 3.457 ± 0.951 5.142 ± 0.418 0.973 ± 0.375 0.001 ± 0.000 1.587 ± 0.272
SGD 3.504 ± 0.975 5.194 ± 0.446 0.973 ± 0.374 0.001 ± 0.000 1.602 ± 0.275
MCD 2.830 ± 0.170 4.930 ± 0.140 0.720 ± 0.050 0.000 ± 0.000 1.080 ± 0.030
VSD 2.640 ± 0.170 4.720 ± 0.110 0.690 ± 0.060 0.000 ± 0.000 0.470 ± 0.010

Table 4: Average test RMSE for the large UCI regression task.

ELEVATORS KEGGD KEGGU PROTEIN SKILLCRAFT POL

CIBER (SECOND) 0.088 ± 0.002 0.142 ± 0.074 0.115 ± 0.007 0.438 ± 0.009 0.251 ± 0.010 2.212 ± 0.230
CIBER (LAST) 0.088 ± 0.002 0.142 ± 0.072 0.118 ± 0.012 0.438 ± 0.009 0.251 ± 0.010 2.199 ± 0.182
SWAG 0.088 ± 0.001 0.129 ± 0.029 0.160 ± 0.043 0.415 ± 0.018 0.293 ± 0.015 3.110 ± 0.070
PCA+ESS (SI) 0.089 ± 0.002 0.129 ± 0.028 0.160 ± 0.043 0.425 ± 0.017 0.293 ± 0.015 3.755 ± 6.107
PCA+VI (SI) 0.088 ± 0.001 0.128 ± 0.028 0.160 ± 0.043 0.418 ± 0.021 0.293 ± 0.015 2.499 ± 0.684
SGD 0.103 ± 0.035 0.132 ± 0.017 0.186 ± 0.034 0.436 ± 0.011 0.288 ± 0.014 3.900 ± 6.003
NL 0.101 ± 0.002 0.134 ± 0.036 0.120 ± 0.003 0.447 ± 0.012 0.253 ± 0.011 4.380 ± 0.853
DKL 0.084 ± 0.020 0.100 ± 0.010 0.110 ± 0.000 0.460 ± 0.010 0.250 ± 0.000 6.617
ORTHVGP 0.095 0.120 0.117 0.461 — 4.300 ± 0.200
FF 0.089 ± 0.002 0.120 ± 0.000 0.120 ± 0.000 0.470 ± 0.010 0.250 ± 0.020 —

where ϕℓ1 is a cubic polynomial that approximates the
sigmoid function such that the posterior predictive dis-
tribution p(y | x) can be solved by WMI solvers by
p(y | x) = WMI(∆,Φ). Further, the prediction of BMA
for classification tasks is made by y∗ = argmaxy p(y | x).

C. Additional Experiments
C.1. Toy Regression in Figure 2

We evaluate the predictive distributions obtained by our
CIBER and HMC respectively, in a toy dataset generated
by sampling 10 input x uniformly distributed in the interval
[−1,−0.5] and interval [0.5, 1]. For each input x, the corre-
sponding target y is computed from a cubic polynomial with
Gaussian noises. We apply to these data a Bayesian neural
network which is a ReLU neural network with two hidden
layers, where both parameter priors and likelihood are Gaus-
sian distributions. We compare HMC and our CIBER in
a few-sample setting which is common in most Bayesian
deep learning applications, with 10 samples from the poste-
rior distribution. An estimation generated by HMC with a
sufficiently large number of samples of size 2, 000 is further

presented as a ground truth.

The results are shown in Figure 2. Even with the same 10
samples drawn from the posterior distribution, since CIBER
further approximates the 10 samples with a uniform distri-
bution as q(w), it yields a predictive distribution p(y | x)
closer to the ground truth than HMC. The intuition behind
is that using a uniform distribution instead of a few sam-
ples forms a better approximation to the true posterior since
the uniform distribution in a collapsed sample represents
uncountably many models.

C.2. Regression on Small and Large Datasets

Sampling from SGD Trajectories. During training, we
use Gaussian log likelihood as the objective for obtaining
smooth gradients and use early stopping to prevent over-
fitting. At convergence, we start the sampling process by
keeping running SGD and collecting the weights. At de-
ployment time, we approximate the Gaussian predictive
distribution with the triangular distributions.

Hyperparameters. The hyperparameters including learn-
ing rates and weight decay are tuned by performing a grid
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Table 5: Average test log likelihood for the small UCI regression task.

BOSTON CONCRETE YACHT NAVAL ENERGY

CIBER (SECOND) -2.471 ± 0.140 -2.975 ± 0.102 -0.678 ± 0.301 7.276 ± 0.532 -0.716 ± 0.211
CIBER (LAST) -2.471 ± 0.140 -2.959 ± 0.109 -0.687 ± 0.301 7.482 ± 0.188 -0.716 ± 0.211
SWAG -2.761 ± 0.132 -3.013 ± 0.086 -0.404 ± 0.418 6.708 ± 0.105 -1.679 ± 1.488
PCA+ESS (SI) -2.719 ± 0.132 -3.007 ± 0.086 -0.225 ± 0.400 6.541 ± 0.095 -1.563 ± 1.243
PCA+VI (SI) -2.716 ± 0.133 -2.994 ± 0.095 -0.396 ± 0.419 6.708 ± 0.105 -1.715 ± 1.588
SGD -2.752 ± 0.132 -3.178 ± 0.198 -0.418 ± 0.426 6.567 ± 0.185 -1.736 ± 1.613
DVI -2.410 ± 0.020 -3.060 ± 0.010 -0.470 ± 0.030 6.290 ± 0.040 -1.010 ± 0.060
DGP -2.330 ± 0.060 -3.130 ± 0.030 -1.390 ± 0.140 3.600 ± 0.330 -1.320 ± 0.030
VI -2.430 ± 0.030 -3.040 ± 0.020 -1.680 ± 0.040 5.870 ± 0.290 -2.380 ± 0.020
MCD -2.400 ± 0.040 -2.970 ± 0.020 -1.380 ± 0.010 4.760 ± 0.010 -1.720 ± 0.010
VSD -2.350 ± 0.050 -2.970 ± 0.020 -1.140 ± 0.020 4.830 ± 0.010 -1.060 ± 0.010

Table 6: Average test log likelihood for the large UCI regression task.

ELEVATORS KEGGD KEGGU PROTEIN SKILLCRAFT POL

CIBER (SECOND) -0.378 ± 0.026 1.245 ± 0.090 1.125 ± 0.269 -0.720 ± 0.036 -1.003 ± 0.035 2.555 ± 0.115
CIBER (LAST) -0.371 ± 0.023 1.178 ± 0.088 0.964 ± 0.231 -0.720 ± 0.036 -1.001 ± 0.032 2.506 ± 0.150
SWAG -0.374 ± 0.021 1.080 ± 0.035 0.749 ± 0.029 -0.700 ± 0.051 -1.180 ± 0.033 1.533 ± 1.084
PCA+ESS (SI) -0.351 ± 0.030 1.074 ± 0.034 0.752 ± 0.025 -0.734 ± 0.063 -1.181 ± 0.033 -0.185 ± 2.779
PCA+VI (SI) -0.325 ± 0.019 1.085 ± 0.031 0.757 ± 0.028 -0.712 ± 0.057 -1.179 ± 0.033 1.764 ± 0.271
SGD -0.538 ± 0.108 1.012 ± 0.154 0.602 ± 0.224 -0.854 ± 0.085 -1.162 ± 0.032 1.073 ± 0.858
ORTHVGP -0.448 1.022 0.701 -0.914 — 0.159
NL -0.698 ± 0.039 0.935 ± 0.265 0.670 ± 0.038 -0.884 ± 0.025 -1.002 ± 0.050 -2.840 ± 0.226

search to maximize the Gaussian log likelihood using a
validation split.

We experiment on 5 small UCI datasets: boston, concrete,
yacht, naval and energy. We follow the setup of Izmailov
et al. (2020) and use a fully-connected network with a sin-
gle hidden layer and 50 units with ReLU activations. We
further experiment on 6 large UCI datasets: elevators, keg-
gdirected, keggundirected, pol, protein and skillcraft. We
use a feedforward network with five hidden layers of sizes
[1000, 1000, 500, 50, 2] and ReLU activations on all datasets
except skillcraft. For skillcraft, a smaller architecture is
adopted with four hidden layers of size [1000, 500, 50, 2].
All models have two outputs for the prediction and the het-
eroscedastic variance respectively.

We run CIBER with two different ways of choosing the col-
lapsed parameter set: CIBER (last) chooses all the weights
at the last layer to be the collapsed set; CIBER (second)
chooses three out of all the weights at the second-to-last
layer to be the collapsed set. The heuristic we use for choos-
ing the weights is to look into the sampled weights from

SGD trajectories to see which ones have the greatest vari-
ance. The intuition is that a greater variance indicates that
the weight is prone to have greater uncertainty and thus one
might want to perform more accurate inference over it.

Baselines. We compare CIBER to the state-of-the-art ap-
proximate BNN inference methods. We separate these
methods into two categories: those sampling from SGD
trajectories as approximate posteriors, which includes
SWAG (Maddox et al., 2019), PCA+ESS (SI) and PCA+VI
(SI) (Izmailov et al., 2020), vs. those who do not, which
includes the SGD baseline, deterministic variational in-
ference (DVI) (Wu et al., 2019), Deep Gaussian Pro-
cesses (DGP) (Bui et al., 2016), variational inference
(VI) (Kingma & Welling, 2013), MC Dropout (MCD) (Gal
& Ghahramani, 2015; 2016), and variational structured
dropout (VSD) (Nguyen et al., 2021). These methods
achieved state-of-the-art performance on the small UCI
datasets. We also compare to baselines Bayesian final
layers (NL) (Riquelme et al., 2018), deep kernel learn-
ing (DKL) (Wilson et al., 2016), orthogonally decoupled
variational GPs (OrthVGP) (Salimbeni et al., 2018) and Fast-
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Table 7: Average test log likelihoods for image classification tasks on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

MODEL VGG-16 PRERESNET-164 WIDERESNET VGG-16 PRERESNET-164 WIDERESNET

CIBER 0.1927 ± 0.0029 0.1352 ± 0.0014 0.1913 ± 0.0029 0.9193 ± 0.0027 0.8144 ± 0.0065 0.7930 ± 0.0065
SWAG 0.2503 ± 0.0081 0.1459 ± 0.0013 0.1076 ± 0.0009 1.2785 ± 0.0031 1.0703 ± 0.4861 0.6719 ± 0.0035
SGD 0.3285 ± 0.0139 0.1814 ± 0.0025 0.1294 ± 0.0022 1.7308 ± 0.0137 0.9465 ± 0.0191 0.7958 ± 0.0089
SWA 0.2621 ± 0.0104 0.1450 ± 0.0042 0.1075 ± 0.0004 1.2780 ± 0.0051 0.7370 ± 0.0265 0.6684 ± 0.0034
SGLD 0.2001 ± 0.0059 0.1418 ± 0.0005 0.1289 ± 0.0009 0.9699 ± 0.0057 0.6981 ± 0.0052 0.6780 ± 0.0022
KFAC 0.2252 ± 0.0032 0.1471 ± 0.0012 0.1210 ± 0.0020 1.1915 ± 0.0199 0.7881 ± 0.0025 0.7692 ± 0.0092

Table 8: Average test accuracy for image classification tasks on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

MODEL VGG-16 PRERESNET-164 WIDERESNET VGG-16 PRERESNET-164 WIDERESNET

CIBER 93.64 ± 0.09 95.95 ± 0.06 95.63 ± 0.16 74.71 ± 0.18 79.23 ± 0.25 81.25 ± 0.35
SWAG 93.59 ± 0.14 96.09 ± 0.08 96.38 ± 0.08 73.85 ± 0.25 73.02 ± 10.30 82.27 ± 0.07
SGD 93.17 ± 0.14 95.49 ± 0.06 96.41 ± 0.10 73.15 ± 0.11 78.50 ± 0.32 80.76 ± 0.29
SWA 93.61 ± 0.11 96.09 ± 0.08 96.46 ± 0.04 74.30 ± 0.22 80.19 ± 0.52 82.40 ± 0.16
SGLD 93.55 ± 0.15 95.55 ± 0.04 95.89 ± 0.02 74.02 ± 0.30 80.09 ± 0.05 80.94 ± 0.17
KFAC 92.65 ± 0.20 95.49 ± 0.06 96.17 ± 0.00 72.38 ± 0.23 78.51 ± 0.05 80.94 ± 0.41

food approximate kernels (FF) (Yang et al., 2015), which
have achieved state-of-the-art performance on the large UCI
datasets.

Results. We present the test log likelihoods for small UCI
datasets in Table 5 and those for large UCI datasets in Ta-
ble 6. In both tables, the first block summarizes SGD-
trajectory sampling based approaches and the second sum-
marizes the rest. Underlined results are the best among all
and bold results are the best among SGD-trajectory sam-
pling based approaches. From the results, our CIBER has
substantially better performance than all others on three
out of the five small UCI datasets four out of six large
UCI datasets, with comparable performance on the rest,
demonstrating that CIBER provides accurate uncertainty
estimation. We also present the test root-mean-squared-
error (RMSE) results for small UCI datasets in Table 3 and
RMSE results for large UCI datasets in Table 4. where
CIBER outperforms all other SGD-trajectory sampling
based baselines on four out of five small UCI datasets and
four out of six large UCI datasets; it outperforms all base-
lines on two small UCI datasets and one large UCI datasets,
and has comparable performance on the rest. This further
illustrates that exact marginalization over conditional ap-
proximate posteriors enabled by WMI solvers achieves ac-
curate estimation of the true BMA and boosts predictive
performance.

C.3. Image Classification

Sampling from SGD Trajectories. All the network models
are trained for 300 epochs using SGD. We start the weight
collection after epoch 160 with step size 5. We follow
exactly the same hyperparameters as Maddox et al. (2019)
including learning rates and weight decay parameters.

CIFAR datasets. We experiment with two image datasets:
CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). We
run CIBER by choosing the collapsed parameter set to be
10 weights and 100 weights at the last layer of the neu-
ral network models for CIFAR-10 and CIFAR-100 respec-
tively. The weights are chosen using the same heuristic
as the one for regression tasks, i.e., to choose the weights
whose samples from the SGD trajectories have large vari-
ances. We compare CIBER with strong baselines including
SWAG (Maddox et al., 2019) reproduced by their open-
source implementation, standard SGD, SWA (Izmailov et al.,
2018), SGLD (Welling & Teh, 2011) and KFAC (Ritter et al.,
2018).

Transfer from CIFAR-10 to STL-10. We further consider
a transfer learning task where we use the model trained
on CIFAR-10 to be evaluated on dataset STL-10 (Coates
et al., 2011). STL-10 shares nine out of ten classes with the
CIFAR-10 dataset but has a different image distribution. It
is a common benchmark in transfer learning to adapt models
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Table 9: Average test ECE for image classification tasks on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

MODEL VGG-16 PRERESNET-164 WIDERESNET VGG-16 PRERESNET-164 WIDERESNET

CIBER 0.0130 ± 0.0011 0.0250 ± 0.0005 0.0760 ± 0.0011 0.0168 ± 0.0025 0.1423 ± 0.0029 0.1650 ± 0.0046
SWAG 0.0391 ± 0.0020 0.0214 ± 0.0005 0.0096 ± 0.0006 0.1535 ± 0.0015 0.1031 ± 0.0471 0.0678 ± 0.0006
SGD 0.0483 ± 0.0022 0.0255 ± 0.0009 0.0166 ± 0.0007 0.1870 ± 0.0014 0.1012 ± 0.0009 0.0479 ± 0.0010
SWA 0.0408 ± 0.0019 0.0203 ± 0.0010 0.0087 ± 0.0002 0.1514 ± 0.0032 0.0700 ± 0.0056 0.0684 ± 0.0022
SGLD 0.0082 ± 0.0012 0.0251 ± 0.0012 0.0192 ± 0.0007 0.0424 ± 0.0029 0.0363 ± 0.0008 0.0296 ± 0.0008
KFAC 0.0094 ± 0.0005 0.0092 ± 0.0018 0.0060 ± 0.0003 0.0778 ± 0.0054 0.0158 ± 0.0014 0.0379 ± 0.0047

Table 10: Average test log likelihoods for image transfer
learning task.

MODEL VGG-16 PRERESNET-164 WIDERESNET

CIBER 0.9869 ± 0.0102 0.9684 ± 0.0075 0.8259 ± 0.0148
SWAG 1.3425 ± 0.0015 1.3842 ± 0.0122 1.0142 ± 0.0032
SGD 1.6528 ± 0.0390 1.4790 ± 0.0000 1.1308 ± 0.0000
SWA 1.3993 ± 0.0502 1.3552 ± 0.0000 1.0047 ± 0.0000

Table 11: Average test accuracy for image transfer learning
task.

MODEL VGG-16 PRERESNET-164 WIDERESNET

CIBER 72.56 ± 0.23 75.70 ± 0.17 75.02 ± 0.31
SWAG 72.30 ± 0.11 76.30 ± 0.06 76.96 ± 0.08
SGD 72.42 ± 0.07 75.56 ± 0.00 76.75 ± 0.00
SWA 71.92 ± 0.01 76.02 ± 0.00 77.50 ± 0.00

trained on CIFAR-10 to STL-10.

Following the set-up of Maddox et al. (2019), we run ex-
periments with VGG-16, PreResNet-164 and WideResNet
network models on both the image classification task and
the transfer learning task. For the image classification task
on CIFAR datasets, we present the log likelihood results in
Table 7, the accuracy results in Table 8, and ECE results in
Table 9. For the transfer learning task from dataset CIFAR-
10 to dataset STL-10, we present the log likelihood results in
Table 10, the accuracy results in Table 11, and ECE results
in Table 12.

D. Related Work
Bayesian Deep Learning. Bayesian inference over deep
neural networks (MacKay, 1992) is proposed to fix the
issue that deep learning models give poor uncertainty es-
timations (Nguyen et al., 2015; Hein et al., 2019). Some
methods use samples from SGD trajectories to approximate

Table 12: Average test ECE for image transfer learning task.

MODEL VGG-16 PRERESNET-164 WIDERESNET

CIBER 0.0925 ± 0.0028 0.0704 ± 0.0031 0.0336 ± 0.0009
SWAG 0.1988 ± 0.0028 0.1668 ± 0.0006 0.1303 ± 0.0008
SGD 0.2149 ± 0.0027 0.1758 ± 0.0000 0.1561 ± 0.0000
SWA 0.2082 ± 0.0056 0.1739 ± 0.0000 0.1413 ± 0.0000

the implicit true posteriors similar to us: Izmailov et al.
(2020) (SI) proposes to perform Bayesian inference in a
subspace of the parameter space spanned by a few vectors
derived from principle component analysis (PCA+ESS(SI))
or variational inference (PCA+VI(SI)); SWAG (Maddox
et al., 2019) proposes to approximate the full parameter
space using an approximate Gaussian posterior whose mean
and covariance are from a partial SGD trajectory with a
modified learning rate scheduler.

Some other approaches using approximate posteriors in-
clude MC Dropout (MCD) (Gal & Ghahramani, 2015;
2016) which is one of the Bayesian dropout methods and re-
cently, one of its modification called Variational Structured
Dropout (VSD) (Nguyen et al., 2021) using variational infer-
ence is proposed. Other state-of-the-art approximate BNN
inference methods including deterministic variational in-
ference (DVI) (Wu et al., 2019), deep Gaussian processes
(DGP) (Bui et al., 2016) with Gaussian process layers and
variational inference (VI) (Kingma & Welling, 2013).

WMI Solvers. WMI generalizes weighted model counting
(WMC) (Sang et al., 2005) from discrete to continuous do-
mains (Belle et al., 2015a;b) with WMC being a state-of-the-
art inference approach in many discrete probabilistic models.
The tractability of WMI is extensively studied (Zeng et al.,
2020c; 2021) and is leveraged for building WMI solvers for
structured problems (Zeng & Van den Broeck, 2019; Zeng
et al., 2020a;c;b). Existing exact WMI solvers for arbitrar-
ily structured problems include DPLL-based search with
numerical (Belle et al., 2015a; Morettin et al., 2017; 2019)
or symbolic integration (de Salvo Braz et al., 2016) and
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compilation-based algorithms (Kolb et al., 2018; Zuidberg
Dos Martires et al., 2019) that use extended algebraic deci-
sion diagrams (Sanner & Abbasnejad, 2012; Sanner et al.,
2012) as a compilation target. Recent WMI efforts converge
in the pywmi python package (Kolb et al., 2019).


