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ABSTRACT

Recent advances in applying deep learning in genomics include DNA-language
and single-cell foundation models. However, these models take only one data
type as input. We introduce dynamic token adaptation and demonstrate how it
allows combining these models to predict gene regulation at single-cell level in
different genetic contexts. Although the method is generalisable, we focus on an
illustrative example by training an adapter from DNA-sequence embeddings to
a single-cell foundation model’s token embedding space. As qualitative evalua-
tion, we assess the impact of DNA sequence changes on the model’s learned gene
regulatory networks by mutating the transcriptional start site of the transcription
factor GATA4 in silico, observing predicted expression changes in its target genes
in fetal cardiomyocytes.

1 INTRODUCTION

There have been rapid advances in training single-cell foundation models on large single-cell RNA
sequencing (scRNA-seq) datasets (Theodoris et al.|[2023; [Yang et al.L[2022; |Cui et al.,2023)). These
models represent each gene in a single-cell transcriptome as an input text token and do not integrate
genetic information, making it hard to interpret gene expression predictions under genetic changes.
On the other hand, DNA language models have been trained to predict epigenetic signals from the
DNA sequence (Kelley et al.| 2018}, [Kelley, 2020; |Avsec et al., 2021bja), and can be fine-tuned to
predict the expression values of individual genes across cells in a sScRNA-seq dataset (Schwessinger
et al.| 2023). However, these models do not take cell-level co-regulation into account when predict-
ing a gene’s expression, instead, they focus on predicting epigenetic signals or the expression for
each gene separately.

Our method of combining the modelling of both DNA sequences and single-cell transcriptomics
data is inspired by unified embedding architectures for multi-modal large language models (LLMs),
which convert an image into embedding vectors as a set of special tokens that are prepended to
the input text tokens (Cho et al.| 2021)). Similar approaches using an adapter to provide additional
information to the transcriptome have recently been applied to single-cell models (Maleki et al.}
2025; [Levine et al., [2023), however, these methods have been restricted to a few additional tokens
encoding a single entity (e.g. cell-type, disease state, molecule of drug treatment).

In this paper, we propose extending the approach to all tokens in the input to allow their embeddings
to flexibly encode additional information from a different modality that may change between data
samples, which we call dynamic token adaptation (DTA). As an application, we introduce Bio-DTA,
a novel multi-modal model that learns from single-cell transcriptomes and DNA sequences jointly.
Finally, we demonstrate that the model has learned dynamic co-regulation by assessing the impact
of genetic changes to the DNA sequence of the transcription factor GATA4 in silico on the model’s
predictions for its targets.
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Figure 1: Schematic of Bio-DTA. Fixed token embeddings are replaced with a projection of aggre-
gated Enformer embeddings of the gene’s DNA sequence.

2 METHODS

Training data We downloaded scRNA-seq data from 33, 364, 242 unique cells across 265 datasets
in the census dataset (version 2023-07-25) from the = CellXGene data portal | (CZI Single-Cell
Biology Program et al) 2023). Data processing followed [Theodoris et al.| (2023), represent-
ing each single-cell transcriptome as a sequence of gene names of maximum length 2,048 or-
dered by their median-normalised expression. We excluded cancer cells and cells with < 500
expressed genes. Transcriptional start sites (TSSs) of all protein coding genes were obtained
from Ensembl (GRCh38.108). For each gene, 196,608bp around the TSS of the reference
genome was inputted to Enformer to compute the mean embedding of dimension 3,072 across
the positions of the pooling convolutional filters. The Enformer checkpoint was obtained from
https://github.com/lucidrains/enformer-pytorch.

Model architecture and training Bio-DTA combines a DNA language model with a single-cell
foundation model via token adapters. Although our method is flexible and can accommodate other
architectures, in the experiments presented here, the single-cell foundation model is based on a
bidirectional transformer encoder-only architecture (BERT). The model receives a single-cell tran-
scriptome of length 2,048 as an ordered sequence of gene names as input, which are mapped to
integer identifiers called token IDs (Theodoris et al.,|2023). In a usual BERT model, each token ID
is mapped to a unique and trainable embedding vector that forms the input to the transformer encoder
(Devlin et all 2019). In contrast, Bio-DTA (Figure [I)) projects Enformer’s aggregated embeddings
for each input gene to the token embedding size using an adapter layer (e.g. a multilayer perceptron
followed by a softplus activation). This forms the input to the transformer encoder capturing genetic
information. Here, a gene’s token embedding is not unique and may change if the gene’s input DNA
sequence changes, and the same adapter is used for all the genes. Bio-DTA outputs the token IDs of
the input gene names according to the single-cell foundation model.

Bio-DTA was trained end-to-end with a masked language modelling task (masking 15% of input
tokens) for three epochs. For more implementation details as well as hyperparameters used for the
final model and training procedure see Appendix


https://cellxgene.cziscience.com/
https://github.com/lucidrains/enformer-pytorch
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3 IN SILICO MUTAGENESIS REVEALS LEARNED CONNECTION DYNAMICS IN
B10-DTA

To assess how changes in the input DNA sequence of one gene affects learned co-regulation net-
works, we followed Theodoris et al.|(2023)) and focussed on GATA4 and TBXS5, two known congen-
ital heart disease genes, which are co-expressed during cardiac morphogenesis, physically interact
and have co-bound targets (Misra et al., 2014). We obtained 103 transcriptomes from fetal cardiomy-
ocytes expressing GATA4 (Knight-Schrijver et al.,[2022). We then introduced random mutations in
silico in 100bp around the GATA4 TSS, which reduced Enformer’s predicted expression (Figure [2)).
For each single-cell transcriptome in the dataset, we performed a forward pass and extracted the
contextualised embedding for each input gene from the penultimate layer of Bio-DTA, once when
using the unchanged GATA4 embedding, and once when using the mutated embedding as input for
GATA4. As the retained gene embeddings are from deeper layers of Bio-DTA’s BERT encoder,
they may capture information about other co-regulated genes in the input sequence. To test if these
depend on genetic changes, we calculated the cosine similarity between the gene embeddings be-
fore and after GATA4’s in silico mutagenesis for each transcriptome. Indeed, the embeddings of
experimentally identified GATA4 and TBXS5 targets (defined based on ChIP-seq data in [Theodoris
et al.|(2023)) had a significant drop in cosine similarity compared with the remainder of the genome
(p < 0.05, Wilcoxon test), while embeddings of housekeeping genes remained stable (Table [I)).
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Figure 2: Enformer predicted Cap analysis of gene expression (CAGE) tracks of gene expression
centered around the GATA4 TSS for the reference genome (top), in silico mutated sequence (random
sequence replacing 100bp around TSS) (middle), and the difference in predictions between the in
silico mutated and reference sequence showing a large decrease around the TSS in the middle of the
track (bottom).

Next, we selected the 50 genes with the largest changes in their embeddings and assessed the model’s
capability to identify experimentally derived targets compared with a random gene set of the same
size. To compare the performance of Bio-DTA with Geneformer, we perform in silico deletion of
GATA4 by removing it from the input sequence as described in [Theodoris et al| (2023). We also
train a BERT model similar to Geneformer with the same parameters as Bio-DTA that does not use
adapters and instead uses the gene names as input sequence on the same training data. We perform
in silico deletion of GATA4 for this model as described for Geneformer.

Figure [3| shows the precision and recall of true targets for each of the models in each group. Bio-
DTA performs best on both metrics for direct GATA4 and TBXS5 and their co-bound targets, and
is comparable to the adapter-free model on indirect GATA4 targets. However, it is outperformed
by the adapter-free model on indirect TBXS targets. Across all groups and metrics, Geneformer
is outperformed by both models and sometimes the random gene set baseline. In particular, it can
not recover any experimentally verified GATA4 targets. A similar trend can be seen using the top
100 genes (Figure[A.T). Taken together, our results demonstrate how the dynamic token embeddings
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P-value | FDR adjusted P-value
GATAA4 direct 6.42e-10 3.85e-09
GATA4 indirect 3.41e-07 5.11e-07
GATA4 & TBXS combination | 1.51e-09 4.52e-09
TBXS direct 2.64e-09 5.27e-09
TBXS indirect 5.75e-07 6.90e-07
housekeeping genes 7.24e-01 7.24e-01

Table 1: P-values of a Wilcoxon test comparing the cosine similarities of the gene embeddings
before and after in silico mutagenesis of GATA4 in a target group with those of the remainder of
the genome not in any of the target groups. Significant FDR-adjusted p-values at a significance
threshold of 0.05 are highlighted in bold. Target groups as indicated were obtained from Theodoris|

(2023).
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Figure 3: Barplots of precision and recall of putative GATA4 and TBXS5 targets (orange) based on
contextualised embedding changes under in silico mutagenesis of GATA4 in fetal cardiomyocytes,
comparing with the in-silico deletion of GATA4 in the BERT model without an adapter (green),
Geneformer (red) and size-matched random samples (blue). Target group annotations based on

ChlIP-seq data were obtained from (Theodoris et al.}, 2023)).

allow the model to be sensitive to small genetic changes and their impact on its learned co-regulation
networks.

4 CONCLUSION

We introduced dynamic token adaption to project embeddings of a different data modality into the
text token embeddings of a foundation model. As an application, we presented Bio-DTA, a multi-
modal model that combines a DNA language model with a single-cell transcriptome model.

We showed that Bio-DTA learns the impact of small genetic changes on co-regulation networks. We
evaluated the model’s ability to capture gene co-regulation by performing in silico mutagenesis of
the GATA4 transcription factor and observing changes in the contextualized embeddings of target
genes in fetal cardiomyocytes. Next, we showed that Bio-DTA successfully returns experimentally
verified targets amongst the 50 genes with the largest changes in their embeddings. We compared
these results with an adapter-free model that was trained on the same data with the same hyperpa-
rameters. We showed that Bio-DTA outperforms the adapter-free model on direct GATA4 and TBXS
targets. This may be due to the method of in silico deletion completely removing GATA4 from the
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input sequence, which changes the entire input transcriptome and removes learned connections be-
tween GATA4 input embeddings and its targets. In contrast, Bio-DTA uses small changes to the
embedding of GATA4 to signal reduced expression without changing the overall input and allows
the assessment of these changes on learned connections. On the other hand, the adapter-free model
outperforms Bio-DTA on indirect targets. This may be due to the complete removal of GATA4’s in-
put during the in silico deletion, resulting in a much larger change to the input, which may influence
the contextualised embeddings more in the adapter-free model.

In future work, we plan to extend our evaluation beyond the GATA4 case study by exploring ad-
ditional transcription factors and cell types to validate the generalisability of Bio-DTA further.
However, identifying suitable benchmark cases for such evaluation remains a significant challenge.
While there are many examples of the impact of genetic changes on one gene’s expression (for exam-
ple, eQTLs), high-quality, well-characterized instances where both the genetic perturbation and its
downstream co-regulation impact are experimentally validated — especially in a cell-type-specific
context — are rare. This limits the availability of ground truth data against which to benchmark
model predictions. Furthermore, we will expand our evaluations to more complex genetic variations
such as SNPs, indels, and structural variants which introduce additional biological layers that will
provide a more comprehensive evaluation of the model.

In the work presented here, the reference genome was used as input to Enformer and in silico mu-
tagenesis was performed as a zero-shot approach. DNA language models trained on the reference
genome such as Enformer struggle to reliably predict the direction of eQTLs and the expression vari-
ation for different individuals (Huang et al., 2023} [Sasse et al.,[2023). For a personalised medicine
approach, future work will also include fine-tuning Enformer on different genomes with allelic infor-
mation as described in|Drusinsky et al.| (2024)) to provide more nuanced DNA sequence embeddings.

Other applications of DTA will include projecting embeddings of the gene’s RNA isoforms or amino
acid sequence into the token embedding space. While we mapped the DNA sequence to one token
in the presented experiments, we will also evaluate using several tokens per input gene representing
the DNA sequence to allow the encoding of larger genetic contexts.
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A APPENDIX

A.1 IMPLEMENTATION

We used the same BERT-based architecture as in [Theodoris et al.| (2023 with 6 transformer layers
with input size 2, 048, embedding dimensions 256, 4 attention heads per layer and feed-forward size
of 512. The adapter is a single MLP layer with a Softplus activation. Hyperparameters were chosen
to allow for distributed learning: max learning rate, 1 x 102 scaled by the number of GPUs; a
learning scheduler, linear with warm-up (10k steps) and linear decay; Adam optimizer with weight
decay parameter 0.001. Training was distributed over 4 GPUs in one node with minibatch size 11
and 2 gradient accumulation steps.

To speed up pretraining we used dynamic padding combined with a length-grouped sampler to
minimise computation on padding. This sampler takes a randomly sampled megabatch and then
orders minibatches by their length in descending order. Mini-batches are then dynamically padded,
minimising the computation wasted on padding as sequences of similar lengths are grouped. The
authors of Geneformer extended an existing version of this sampler from Huggingface transformers
for the distributed case (Theodoris et al.,[2023;|Wolf et al.,[2020)). However, neither of these samplers
shuffle the mini-batches within the megabatch before passing them to the model, which resulted in
a 60x-performance-drop of the trained model in our tests (in terms of training and test perplexity on
smaller sample datasets) compared to model runs not employing the grouped-length batching. We
implemented a shuffling of the mini batches which slightly diminishes the speed up during training.

For efficient data parallelisation across the GPUS, we used Deepspeed (Rasley et al.|[2020). Overall,
pre-training was achieved in just over 7 days distributed across one node with four Nvidia A10G
24GB GPUgs.
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Figure A.1: Barplots of precision and recall of putative GATA4 and TBXS targets (orange) based on
contextualised embedding changes under in silico mutagenesis of GATA4 in fetal cardiomyocytes,
comparing with the in-silico deletion of GATA4 in the BERT model without an adapter (green),
Geneformer (red) and size-matched random samples (blue). Target group annotations based on

ChIP-seq data were obtained from (Theodoris et al.| [2023).
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