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Abstract

We propose the Segmented Full-Song Model (SFS) for symbolic full-song genera-
tion. The model accepts a user-provided song structure and an optional short seed
segment that anchors the main idea around which the song is developed. By fac-
torizing a song into segments and generating each one through selective attention
to related segments, the model achieves higher quality and efficiency compared
to prior work. To demonstrate its suitability for human–AI interaction, we further
wrap SFS into a web application that enables users to iteratively co-create music
on a piano roll with customizable structures and flexible ordering.

1 Introduction

Symbolic music generation has become a prominent research topic in recent years. Previous studies
have explored various aspects, including model architectures (Hadjeres et al., 2017; Huang et al.,
2018; Min et al., 2023; Yuan et al., 2025), representations (Huang and Yang, 2020; Hsiao et al., 2021),
controllability (Wu and Yang, 2023a), arrangement (Zhao and Xia, 2021; Tan et al., 2024a,b), and
structural modeling (Wu and Yang, 2023b; Tan et al., 2022; Shih et al., 2023; Wang et al., 2024).
Among these tasks, full-song generation remains particularly challenging, as models must not only
generate long sequences efficiently but also preserve coherence across the overall song structure.

Consider how human composers typically work. A composer often begins by devising a theme and a
high-level song structure, places the theme within the song, and then fills in the remaining sections.
This process is only partially autoregressive: when composing a specific section, the composer
usually refers to the most relevant context rather than revisiting the entire song, which would be both
impractical and inefficient. Wang et al. (2024) proposed a four-stage generation framework, which we
refer to as WholeSong, adopting a coarse-to-fine hierarchical approach with selective autoregressive
conditioning to better model global song structure. However, their approach relies on a diffusion
backbone, which requires executing the entire diffusion process for each segment, resulting in an
inefficient generation procedure. Moreover, their system encodes all context uniformly into the same
conditioning space, without incorporating higher-level concepts such as themes or motifs.

In this paper, we propose Segmented Full-Song generation model (SFS), which decomposes a
full song into segments using a rule-based segmentation algorithm and employs a customized
Transformer to generate each segment autoregressively, conditioned only on structurally relevant
preceding segments and context explicitly defined by the given structure. By flexibly selecting
relevant segments, our model aligns with the way human composers approach songwriting: first
envisioning a theme, then composing segments in a flexible order, which enables a more natural and
interactive workflow in application. In the experiments, we show that our model outperforms the
approach of WholeSong in terms of structural coherence and motif awareness, as evaluated in a user
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Figure 1: (a) Generative process with (ŝ1, ê1) = (1, 2), (ŝ2, ê2) = (3, 4), (ŝ3, ê3) = (5, 5),
(ŝ4, ê4) = (6, 7), l̂1:4 = (A,B,A,B), and o1:4 = (2, 1, 4, 3). See Section 2.1 for notation. (b)
Example of our music language: orange refers to frame tokens, blue refers to note tokens, and gray
refers to inferred positions. The [Duration 0] token indicates that a note’s offset is set by the next
onset of the same pitch or the next bar line.

study. We open-source our model implementation and trained weights1 , as well as an interactive web
interface for the model.2 A demo page is also provided for listening to generations from our model.3

2 Methodology

2.1 Segment-Factorized Full-Song Generation

SFS focuses on transforming a fixed music structure into a complete song while adhering to specified
themes. Therefore, we assume that the music structure4 is provided by the user. Given a song with
N bars {B1, B2, . . . , BN} and M segments, we represent its structure as (ŝ1:M , ê1:M , l̂1:M ), where
(ŝi, êi, l̂i) denote the start bar, end bar, and label of the ith segment, respectively, indexed from the
beginning of the song. Rather than generating music strictly in chronological order, our model is
capable of generating segments in an arbitrary order. Let {o1, . . . , oM} denote the order in which the
segments are generated5. Using this order, we define the annotations si = ŝoi , ei = êoi , and li = l̂oi ,
so that (si, ei, li) specifies the ith segment to be generated. We can then factorize the joint probability
of the entire song as:

P (B1:N | ŝ1:M , ê1:M , l̂1:M ) =

M∏
i=1

P
(
Bsi:ei

∣∣Bs1:e1 , . . . , Bsi−1:ei−1
, s1:M , e1:M , l1:M

)
. (1)

For simplicity, we refer to the ith segment Bsi:ei as Segi in the following discussion.

From our observations, musicians tend to focus on the main musical idea while selectively attending
to specific contexts to ensure coherence across the song. Inspired by this, we define four types of
essential information (referred to as the context): Left, Right, Seed, and Ref . Here, Left and Right
denote the nearest existing segments to the left and right of the target segment, Seed represents the
segment carrying the main idea of the song, and Ref is a reference segment with the same label
among the existing segments (Figure 1(a)). The precise definition of the context is provided in
Appendix A. Instead of attending to all previously generated tokens, the model attends to these four
segments at the token level, while all existing segments are encoded into a compact representation
through a global vision module G. The approximated joint probability is formulated as:

P (B1:N | s1:M , e1:M , l1:M )

≈
M∏
i=1

P
(
Segi

∣∣∣Lefti,Righti,Seedi,Refi, si, ei, G(Seg1:i−1, s1:i−1, e1:i−1)
)
, (2)

1https://github.com/eri24816/segmented-full-song-gen
2https://github.com/eri24816/co-compose
3https://sfs-demo.eri24816.tw
4Music structure refers to the combination of musical form and lengths of segments.
5We train the model on all permutations, enabling adaptation to any user-specified order at inference.
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Figure 2: Model architecture of the Segmented Full-Song Model. At the output heads of the Generator
(bottom middle), pitch, velocity, and duration are generated sequentially due to their dependencies.
During training, the velocity classifier receives the ground-truth pitch, and the duration classifier
receives the ground-truth pitch and velocity. During inference, they instead receive sampled values.

where Lefti,Righti,Seedi, and Refi are token-level references extracted from previously generated
segments Seg1:i that are most relevant to the current segment according to the given structure. The
global vision module G provides a coarse summary of all previously generated segments, giving the
model awareness of the song’s overall content.

2.2 Tokenization

We represent music using a frame-based representation. The note onsets and offsets are first quantized
into frames of frames of length 1/8 beat. For each frame, a frame token is added to the sequence,
followed by note tokens representing the notes that onset at that frame, sorted in ascending pitch
order. The sequence then continues with the frame token and note tokens of the next frame. A note
token is composed of three sub-tokens: pitch, velocity, and duration (see Figure 1(b)). Positional
information is encoded using model-specific embeddings (see Appendix D for details).

2.3 Implementation

The model consists of two components: the global vision encoder G and the song generator P (see
Figure 2). The global vision encoder G employs a pretrained VAE encoder to embed each bar in
Seg1:i−1, converting tokens into bar-level embeddings. The generator P is a Transformer conditioned
on two sources: (i) the global vision output, incorporated into the decoder via in-attention (Wu
and Yang, 2023a), and (ii) the context (Lefti,Righti,Seedi,Refi), provided through the generator’s
encoder. To represent positional information in both G and P , we apply positional encodings
specifically designed for our model, with details provided in Appendix D.

3 Evaluation and Discussion

We compare our model against two baselines: a flat model and WholeSong. The flat model is a
GPT-like Transformer trained on 8-bar fragments, which can be regarded as an ablation of our model
without structural conditioning. For a fair comparison, we only use the last 3 levels of Wang’s
model for inference because the form is a given condition. Also, we modify the inference code of
WholeSong to support seed conditioning by fixing the given seed segment throughout the diffusion
process across all three levels of generation. All models are trained on our in-house dataset, consisting
of 32,090 pop piano performances for training and 3,615 for testing.
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Table 1: Comparision between models

SI User Study

Model Inference Speed SI2−8 SI8−16 SI16+ O A
SFS (Ours) 2.03 beat/sec. 0.3286 0.2264 0.1109 3.14 3.59
WholeSong 0.197 beat/sec. 0.3234 0.2262 0.0860 3.02 3.16
Flat 5.68 beat/sec. 0.3426 0.1990 0.0409 3.36 2.34

Datset - 0.4398 0.3827 0.3300 4.00 4.07

For objective evaluation, we sample 45 songs from the test set. Using their structural specifications,
we condition both our model and WholeSong to generate corresponding songs. The flat model instead
simply generates unconditional pieces of the same length. We then compute the average Structureness
Indicator (SI) (Wu and Yang, 2020) at short (2–8 bars), mid (8–16 bars), and long (16+ bars) ranges,
which reflects the ability of a model to maintain structural consistency.

For subjective evaluation, we generate 16 samples with our model and WholeSong, conditioned
on seed segments and structures from the test set. The flat model again produces unconditioned
sequences. We then conduct a user study in which each participant listens to the seed, followed
by generations from the models and the original song. Participants rate each piece on a 1–5 scale
along two aspects: Overall quality (O) and Adherence to seed (A). We collect responses from 44
participants and report the mean scores.

Results of both evaluations are shown in Table 1. Compared to WholeSong, our model achieves
stronger adherence to the seed and slightly higher scores in both overall quality and structureness.
However, a substantial gap remains relative to real data, highlighting the need for further improvement
in full-song generation. We suspect that the higher overall quality reported for the flat model arises
from its fluency, which is often preferred by users, as it always generates in a forward direction.

In terms of efficiency, our model achieves real-time generation at an average of 2.03 beat/second ,
about 10× faster than WholeSong, despite operating at twice the temporal resolution (1/8 beat vs.
1/4 beat). This real-time capability enables streaming output to a user interface during generation,
improving user experience in applications such as interactive composition and live performance.

Despite the segment-level correspondence, we notice that the generated music sometimes lack smooth
phrase-level transitions and progression across the full song. The segments may appear thematically
consistent yet loosely connected, without the natural buildup and flow that typically define sections
such as the introduction, verse, chorus, and outro. This suggests the need for a higher-level planning
mechanism to guide how each phrase develops within the overall song form in future works.

4 Web Interface

We build a web interface for our model to showcase human–AI co-composition.2 It provides (i) a
structure editor for defining song structure and seed, and (ii) a piano-roll editor where users can edit
notes or let the model generate selected ranges, enabling iterative, arbitrary-order song completion.
The application also serves as a general interface for full-song music generation via an abstract
Python API that can connect to different models. Usage instructions are in Appendix F.

5 Conclusion

We proposed the Segmented Full-Song Model (SFS) and demonstrated its capability in generating
complete songs. Experiments show that SFS achieves stronger adherence to seeds, improved structural
consistency, and higher subjective quality compared to prior work, while being an order of magnitude
faster, enabling real-time streaming. We also highlighted its potential for human–AI co-creation
through a web-based composition interface. We look forward to further explorations of model designs
that align more closely with human creative workflows and open new possibilities for human–AI
interaction in music-making.
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A Definition of the Context

To provide contextual information for generating a target segment Segi, the context is selected from
segments that have been generated, Seg1:i−1, with the following rule:

• Lefti: the nearest existing segment to the left of Segi, helps generate a smooth transition
from that segment.

Lefti = Segn where n = argmax
j<i

{ej | ej ≤ si}

(or ∅ if no such j exists)
• Righti: the nearest existing segment to the right of Segi, helps generate a smooth transition

to that segment.
Righti = Segn where n = argmin

j<i
{sj | sj ≥ ei}

(or ∅ if no such j exists)
• Seedi: The seed segment carries the main idea of the song (motifs and overall style) to all

other segments. It is defined as the first segment of the song, based on the assumption that
the main idea is the first thing to be written down when composing music.

Seedi =

{
∅ if i = 1

Seg1 if i > 1

• Refi: A reference segment with the same label occurring earlier. The earliest segment is
chosen if multiple segments are eligible:

Refi = Segn where n = min
j

{j | lj = li, j < i}

(or ∅ if no such j exists)

In practice, to limit computational cost, each of the four context types is truncated to a maximum
length of 8 bars. For Left, we retain the right-most 8 bars, while for Right, Seed, and Ref, we retain
the left-most 8 bars.

B Experiment Setting

The dataset consists of performances of piano covers of pop music from YouTube, ranging from 4 to
200 bars. On average, each song contains 4,394 tokens, or 54.6 tokens per bar. It includes 32,090
songs for training and 3,615 songs for testing. All songs are transported to C major or A minor
key. The structural labels of the pieces are assigned automatically using our segmentation algorithm
described in Appendix C.

The procedure to construct one training sample is:

1. Sample a song in the dataset.

2. Obtain its structure (ŝ1:M , ê1:M , l̂1:M ) using the segmentation algorithm.
3. Identify the label that appears on the most bars, in which we assume the theme is located.

Among the segments with that label, select the one that starts closest to the song’s middle,
and assign it to o1.

4. Assign a segment to o2 with similar way we assign o1, but select the second-most frequent
label.

5. Fill o3:M with the remaining segments in a random order to construct an arbitrary sequence
o as specified by the user.

6. Randomly pick one segment to be the target segment. If its length is greater than 8 bars,
randomly sample an 8-bar fragment inside it, so it can fit our model’s receptive field.

7. Obtain the context segments with the definition described in Appendix A.

We train the model for 2 million steps over 127 hours on a single RTX 4090 GPU. The batch size
is 12. Optimization is performed with Adam, minimizing negative log-likelihood (NLL) summed
over tokens rather than averaged. The learning rate decays exponentially from 1× 10−4 to 5× 10−6

through the training.
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C Details about the segmentation algorithm

C.1 Similarity Metric

The segmentation algorithm is based on our similarity metric between two bars of music s(·, ·). It is
constructed as follows.

First, given two bars of music a and b, each considered as a set of notes, we define the note overlap
score f(a, b) as the maximum number of one-to-one matches between notes in a and b, divided by
max(|a|, |b|). A valid match requires that the notes share the same pitch and that their onset times
differ by at most one frame (i.e., 1/8 beat).

To increase the weight of the skyline in the note overlap score, we define the skyline of a bar

SKY(a) =
{
n ∈ a

∣∣∣∄m ∈ (a− {n}) such that
m.pitch− n.pitch

|m.onset− n.onset|
> 1 octave

1 beat

}
and revise the overlap score to jointly consider all notes and skylines:

f̃(a, b) = 0.5 f(a, b) + 0.5 f(SKY(a),SKY(b)).

Finally, the similarity between two bars is defined as

s(a, b) = max
(
f̃(a, b), f̃(a, b8va), f̃(a, b8vb)

)
,

where b8va and b8vb denote transpositions of b one octave up and down, respectively.

C.2 Segmentation Algorithm

Given a song divided into N bars B1, . . . , BN , the segmentation proceeds as follows:

1. Similarity matrix. Compute the bar-wise similarity matrix

Si,j = s(Bi, Bj),

where s(·, ·) is the similarity between two bars.

2. Adjacency regularization. This step encourages consecutive label assignment. First,
construct a banded adjacency matrix A with ones on the main diagonal and the first diagonals
above and below it. Then form the adjusted similarity matrix

M = (1− α)max(0.3,S) + αA.

3. Spectral embedding. Compute the unnormalized graph Laplacian L = D−M, where D
is the diagonal degree matrix. Let λ1 ≤ · · · ≤ λN be the eigenvalues of L, and choose

k = arg max
2≤j≤Kmax

(λj − λj−1),

i.e., the index of the largest eigen-gap up to Kmax.

4. Clustering. Take the first k eigenvectors of L, normalize them, and run k-means clustering
to obtain bar labels ℓ1, . . . , ℓN .

5. Segmentation. Identify split points at positions where ℓi ̸= ℓi−1. Using these split points,
the start bar, end bar, and label of each segment in the song are determined.

In practice, we adopt

α = 0.7, Kmax = min
(
6,
⌊
N
8

⌋)
,

which we find to work well on our dataset.

We spot two limitations of the algorithm. First, it does not provide semantic labels (verse, chorus,
etc.). Also, it can’t identify consecutive repeated segments. Instead of reporting two segments with
the same label, it reports one big segment.
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Figure 3: The segmentation result of song Hikaru Nara - Your Lie in April OP1 [Piano](https:
//www.youtube.com/watch?v=zsVAbS8xmaU) using our algorithm with different settings of α
and k. The setting we actually use for this song α = 0.7 and k = 6. The heatmap shows the similarity
matrix of the song, where purple to yellow indicates 0 to 1.
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D Positional Encodings Used in Our Model

The positional information is not directly embedded into frame tokens but instead provided through
positional embeddings. When predicting a token, the position assigned to the query of each attention
block always corresponds to the token’s position in music, measured in frames.

Three types of positional encodings are used in our model: Start-End positional encoding (Start-End
PE), Sub-beat positional encoding (Sub-beat PE), and RoPE. We use a concatenation of Start-End PE
relative to song, Start-End PE relative to segment, and Sub-beat PE and add it to every token-level
input to provide complete information about the local and the global position. RoPE is used in every
self-attention and cross-attention layer.

Start–End positional encoding provides the model with information about a token’s relative position
within a segment or song. It is constructed by concatenating two standard sinusoidal encodings: one
representing the distance from the start and the other representing the distance from the end.

Figure 4: Start–End positional encoding

Sub-beat positional encoding indicates the frame index inside a bar. It is a concatenation of a one-hot
vector and a binary vector.

Figure 5: Sub-beat positional encoding. Purple indicates 0, and yellow indicates 1.

Notably, all positional embedding in our model uses time frames (instead of tokens’ positions in
sequence) as position indices, which provides a more natural representation.
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E Details about the User Study

To construct the listening materials for the user study, we sample 16 songs from the test set whose
seed segments consist of 8 bars. For each song, we use the seed and structure to condition our
model and WholeSong. For the flat model, we generate songs of the same length without additional
conditioning.

In the user study, each participant evaluates four instances of musical pieces associated with the
same seed and structure in a shuffled order. These four instances are: generation from our model,
generation from WholeSong, generation from the flat model, and the real sample from the dataset. In
the study, we refer to these as generations.

For each generation, the participant first listens to the seed, then to the generation, provided with the
following description:

• Seed: a given short musical idea.
• Generation: a complete piece of music generated based on the seed.

Participants then rate each generation on a 5-point Likert scale (1 = lowest, 5 = highest) according to
the following criteria:

1. Adherence to Seed:
How much does the generated piece retain the seed’s musical idea? How similar is the
overall style or mood of the generated piece compared to the seed?

2. Structureness:
How good is the generated piece’s structure as a complete composition? Consider, for
example, does the piece have a clear form (e.g. intro, verse, chorus, outro etc.) and have a
reasonable emotional development?

3. Overall Quality:
How good is the overall quality of the generated piece? How good does the generated piece
sound to you?

We collect 44 responses from 21 amateur participants (with no or fewer than 3 years of music-related
training), 19 experienced participants (3 or more years of training), and 4 professionals, and we report
the mean scores.

F Instructions for Using Our Web Interface

The interface consists of the following components:

1. Structure editor. Lets users define the song structure, which serves as a condition for
generation. The structure can be specified beforehand or adjusted during composition. Drag
the left or right edge of a segment to resize it, or click a segment to assign its label.

2. Piano roll. The workspace where users and AI collaborate on music. Users can use the
space bar to toggle play, click on empty space to create a note, drag to move a note, and
right-click to delete a note. Use the scroll wheel to pan, and hold Control while scrolling
to zoom.

3. Assets. Provides several 8-bar MIDI assets that users can drag into the piano roll as starting
material or to combine with an existing composition. Users can also import additional assets
from their own disk. Click on an asset to preview it.

4. Bar selection. Enables quick selection of one or multiple bars, which can then be used with
the command palette.

5. Command palette. Click Generate! to let the AI generate content for the selected range, or
use other buttons to perform different operations.

To play with it, here’s a workflow we recommend:

1. First, specify the desired structure of the song. Using the default structure is also acceptable.
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Figure 6: User interface of our web Interface.

2. Next, set the seed segment. You can do this by dragging in an asset, composing it yourself in
the built-in or an external editor, or letting the AI generate it. Because the application is not
yet ideal for detailed note editing, we suggest composing in another program and importing
the MIDI as an asset.

3. Finally, generate the remaining segments in any order, one or several bars at a time. Incorpo-
rate human composition when you have a clear idea or wish to refine the AI’s output. As
our model does not allow fine-grained control, generating an entire segment at once may
yield overly random results. In such cases, shorten the generation range and apply rejection
sampling guided by human evaluation.

Note that users can listen to the AI’s generation in real time by playing the music immediately after
clicking the Generate! button, as the output streams to the client. For this feature to work reliably,
the BPM should be kept below about 120 (or occasionally 100), based on our tests on an RTX 4090.
This limit may vary depending on hardware and runtime conditions.
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