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ABSTRACT

Tractable Function-space Variational Inference (T-FVI) provides a way to estimate
the function-space Kullback-Leibler (KL) divergence between a random prior
function and its posterior. This allows the optimization of the function-space KL
divergence via Stochastic Gradient Descent (SGD) and thus simplifies the training
of function-space Bayesian Neural Networks (BNNs). However, function-space
BNNs on high-dimensional datasets typically require deep neural networks (DNN)
with numerous parameters, and thus defining suitable function-space priors remains
challenging. For instance, the Gaussian Process (GP) prior suffers from scalability
issues, and DNNs do not provide a clear way to set appropriate weight parameters
to achieve meaningful function-space priors. To address this issue, we propose an
explicit form of function-space priors that can be easily integrated into widely-used
DNN architectures, while adaptively incorporating different levels of uncertainty
based on the function’s inputs. To achieve this, we consider DNNs as Bayesian
last-layer models to obtain the explicit mean and variance functions of our prior.
The parameters of these explicit functions are determined using the weight statistics
over the learning trajectory. Our empirical experiments show improved uncertainty
estimation in image classification, transfer learning, and UCI regression tasks.

1 INTRODUCTION

Function-space Bayesian neural networks (BNNs) (Sun et al., 2019) have gained significant attention
within the Bayesian deep learning community, primarily due to their fundamental goal of assigning
prior distributions to the outputs of neural networks directly. Training these BNNs can generally be
conducted by optimizing the function-space Evidence lower bound (ELBO) consisting of the expected
likelihood and the function-space KL divergence between a random prior function and its posterior
function (Sun et al., 2019). The recent tractable function-space variational inference (T-FVI) (Rudner
et al., 2022) presents the closed form of function-space KL divergence using linearized NNs, and thus
facilities the optimization of the training objective via Stochastic Gradient Descent (SGD). However,
recent function-space BNNs use DNN architecture using many parameters to model high-dimensional
dataset and thus raises a challenge in setting the suitable priors for the function-space BNNs.

Gaussian process (GP) has been a representative function-space (Rasmussen, 2004). This prior has
been used for the small-sized BNNs conducting the regression or low-dimensional classification
(Flam-Shepherd et al., 2017; Tran et al., 2022). However, GP prior for modeling high dimensional
datasets has scalable issues in training the kernel hyperparameters. Thus, GP prior is rarely used as
the function-space prior for the commonly-used DNN architectures, such as ResNet.

Alternatively, mapping weight-space prior to function-space prior through the linearized NNs can
be considered for setting the prior of such DNN architectures (Rudner et al., 2022). However, since
the derived function-space prior might incorporate largely different prior into the model’s output
according to the assigned weight-space prior, it requires to carefully set the weight-space prior and
thus limits to practically use of this approach. Additionally, this approach practically restricts the
randomness to the last layer for Jacobian computation because it requires a large amount of GPU
memory to compute the large-sized Jacobian matrix of NN for each input. This practical usage might
reduce the flexibility in the resulting BNNs.
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Furthermore, function-space VI requires the external dataset for computing function-space KL
divergence because this KL term measures the distance between two random functions defined in
an infinite-dimensional space (Sun et al., 2019; Rudner et al., 2022). Employing the well-curated
external datasets can enhance the model’s uncertainty estimation capabilities (Antorán et al., 2023;
Lopez et al., 2023). On the other hand, the arbitrary-chosen external dataset, without considering its
relationship with the training set, may adversely impact training.

In this work, we propose an explicit form of function-space prior that can be easily used for the
widely-used DNN architectures, and adaptively introduce different levels of uncertainty based on the
function’s inputs. To this end, we consider DNNs as Bayesian last-layer models, yielding a closed
form of the function-space prior. Then, we devise the explicit mean function and variance functions
of our prior to adaptively produce higher uncertainty for each function’s output, similarly to GP. We
set the parameters of these explicit mean and variance functions by using the weight statistics over the
learning trajectory. Additionally, based on the property of designed prior, we propose an adversarial
context feature that can be used for computing the function-space KL divergence without relying on
external datasets. We expect this context feature to impose additional uncertainty into the model’s
output on potential Out-of-distribution (OOD) inputs. Our implementation is available here. We
summarize our contribution as follows:

• We propose an explicit function-space prior that can be easily used for the common DNN architec-
tures as well as adaptively incorporate higher uncertainties for each function’s input.

• We propose a context feature to compute the function-space KL without using external datasets.
• We showcase the effectiveness of our approach across diverse benchmark tasks. Notably, our prior

is more effective in experiments involving large-scale models like vision transformers (Dosovitskiy
et al., 2021).

2 BACKGROUND.

Settings and Notations. In this work, we focus on Bayesian neural network (BNN) for supervised
learning task. Let X ⊂ RD and Y ⊂ RQ be the space of inputs and outputs, respectively. Let
f : X ×RP −→ Y be a BNN that takes the input x ∈ X and the random weight parameters θ ∈ RP ,
following prior distribution p(θ), and produces the random output f(x, θ) ∈ Y . For parameter
representation, we notate a vector form θ and its matrix form Θ, i.e, θ = vec(Θ) and Θ = vec−1(θ) .
When it’s evident, we omit the parameter θ and write f(x) instead.

For the notation of vector and matrix, we denote a matrix A ∈ RN×M using uppercase letter and its
k-th row [A]k,: and j-th column [A]:,j . We denote a vector x ∈ RD using lowercase letter and its i-th
entry [x]i. We notate weighted norm ∥x∥2w = x⊤diag(w)x for a weight vector w ∈ RD.

Function Space Variational Inference for BNNs. Function space BNNs introduce the prior
distribution on the output of the Deep Neural networks (DNN) to incorporate the inductive bias into
the model. Due to the intractability of the posterior distribution, the function-space BNNs are generally
trained with the function space variational inference (VI). Given a dataset D = {(xn, yn)}Nn=1 with
input xn ∈ X and yn ∈ Y , let p(f) be the prior distribution of the model output f and q(f) be its
variational posterior distribution with a variational parameter ϕ, where we omit ϕ from the notation.
The variational parameter ϕ is then optimized by maximizing the Evidence Lower Bound (ELBO):

Lfvi(ϕ) = Eq(f)

[
N∑

n=1

log p
(
yn|f(xn)

)]
− λ KL

(
q(f)∥p(f)

)
, (1)

where λ1 is the hyperparameter controlling the regularization effect from the KL divergence. As both
p(f) and q(f) are in principle stochastic processes, the KL divergence in Eq. (1) is defined as,

KL(q(f)∥p(f)) = sup
Xctx⊆Xm

KL
(
q(f(Xctx))∥p(f(Xctx))

)
, (2)

(Sun et al., 2019), where a context set Xctx ⊆ Xm for some m ∈ N denotes a finite number of
dataset and f(Xctx) := (f(x))x∈Xctx and similar for q(Xctx). In practice, evaluating the supremum is

1Setting λ < 1 is equivalent to optimizing a tempered posterior distribution, which usually performs better
than a vanilla Bayes posterior. This phenomenon is well known as the cold posterior effect (Wenzel et al., 2020).
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intractable, and it is typically approximated with a heuristically chosen context set Xctx. A naïve way
is to sample Xctx as a random subset from the training set. (Rudner et al., 2022) suggests utilizing
an external dataset that closely aligns with the original training set but is not identical. Even with
this approximation, the KL divergence evaluated on the context set KL

(
q(f(Xctx))∥p(f(Xctx))

)
in Eq. (2) may not admit a closed-form expression. Optimizing this KL term needs an additional
technique of the gradient estimation (Sun et al., 2019; Shi et al., 2018).

Tractable Function-Space Variational Inference for BNN. Rather than directly eliciting a prior
distribution p(f), one can initially choose a weight-space prior p(θ) and then define the function-
space prior p(f(x, θ)) as an induced distribution p(f(x, θ)) :=

∫
RP δθ(θ

′)f(x, θ′)p(θ′)dθ′. Based
on this prior, (Rudner et al., 2022) proposed a tractable function-space variational inference method
using the linearized BNNs with respect to the weight parameters to make the computation of the
KL term in Eq. (2) tractable. Specifically, for the prior distribution of the weight parameters
p(θ) = N (θ;µ,diag(σ2)), the linearized BNN flin(x, θ) for f(x, θ) is defined as follows:

flin(x, θ) := f(x, µ) + J(x, µ)(θ − µ), (3)

where θ ∈ RP and J(x, µ) = [∂f(x,θ)∂θ ]θ=µ ∈ RQ×P denotes the Jacobin matrix obtained by
differentiating the function value f(x, θ) with respect to the mean parameter µ. Then, one can easily
see that the linearized BNN flin(x, θ) follows the Gaussian distribution, defined as follows:

flin(x) ∼ N (µ(x),Σ(x)), µ(x) := f(x, µ), Σ(x) := J(x, µ)diag(σ2)J(x, µ)⊤. (4)

Based on the linearization, the KL divergence KL
(
q(f(Xctx))∥p(f(Xctx))

)
in Eq. (2) boils down to

the KL divergence between multivariate Gaussian, which has a closed-form expression.

3 LIMITATIONS OF THE EXISTING WORKS ON FUNCTION-SPACE BNNS

In this section, we highlight the limitations of the existing works on function-space BNNs in three
perspectives: (1) the choice of priors, (2) computational complexity, and (3) the choice of context
sets for KL divergence computation.

3.1 THE CHOICE OF PRIORS

Gaussian process prior. Gaussian process (GP) (Rasmussen, 2004) is a stochastic process (SP)
assuming that any finite random variables of the SP follow the multivariate Gaussian distribution.
The GP has been recognized as a representative function-space prior for BNNs (Sun et al., 2019;
Karaletsos & Bui, 2020; Tran et al., 2022). However, using the GP prior is computationally expensive
for the large and high-dimensional dataset (Liu et al., 2020a) due to the computational cost of finding
the kernel hyperparameter. Thus, GP priors have been mainly used for regression tasks. It has rarely
been explored for the BNNs using the commonly-used DNN architecture such as ResNet.

Function-space prior via linearized neural network. The linearized neural network (NN) yields
a tractable function-space prior by specifying the weight-space prior p(θ) and then push-forwarding
the weight-space prior to the output of the linearized NN (Rudner et al., 2022), as described in Eq. (4).
However, this construction still raises concerns about using the obtained prior as the function-space
regularizer KL(q(f)∥p(f)) because it is unclear how the mean µ(x) and variance function Σ(x)
would behave depending on input x. For instance, the mean and variance of the function-space prior
corresponding to a zero-mean Gaussian weight prior p(θ) = N (θ;0P , σ

2IP×P ) is derived as,

µ(x) = f(x,0P ) = 0Q, Σ(x) = J(x,0P )
⊤σ2IP×PJ(x,0P ) = σ2 J(x,0P )

⊤J(x,0P ). (5)

However, one cannot easily interpret the behaviors of these functions. For instance, it is not clear
how the variance Σ(x) changes according to the proximity of an input x to a training set. As shown
in Figs. 1a to 1c, which plots the mean and variance functions for a toy dataset, the variance remains
unchanged when transitioning from IND to OOD regions.

3.2 COMPUTATIONAL COMPLEXITY OF LINEARIZED FUNCTION-SPACE BNNS

The tractable function-space VI using the linearized BNNs requires computing the Jacobian matrix
J(x, µ) = [∂f(x,θ)∂θ ]θ=µ ∈ RQ×P every iteration to compute Σ(x) for KL(q(f)∥p(f)). Computing

3
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Figure 1: Using two moon classification dataset, we depict the function-space prior of the linearized
BNN using residual DNN. For the weight-space prior N (θ;µ,Σ) with µ ≈ 0P and Σ = 10IP×P ,
Panel (a) shows E[softmax(fj(x))] for sample functions {fj(x)}100j=1 ∼ N (µ(x),Σ(x)) of Eq. (4).
Panel (b) shows the corresponding Var[softmax(fj(x))]. Panel (c) compares the predictive entropy
H(p(y|x)) on training inputs (•, •) and their neighbors obtained by adding noise ϵ ∼ N (0, 0.1) and
N (0, 1). Although the function-space prior can impose varying levels of uncertainty for each input x,
the resulting uncertainties fail to distinguish between training data and out-of-distribution data.

J(x, µ) requires GPU memory O(BPQ) where B is a batch size, P is the number of parameters,
and Q is the number of function outputs, which amounts to storing the gradients from BQ models
at each iteration during training. Thus, training function-space BNNs for a DNN with large P
requires prohibitively large GPU memory, which can easily lead to out-of-memory issue (as detailed
in Appendix A.1). A practical solution is to treat only a subset of the parameters as random variables,
such as restricting randomness to the last layer while keeping the parameters of the earlier layers
deterministic. While this approach alleviates memory complexity, it might reduce flexibility in the
resulting BNN model.

3.3 THE CHOICE OF CONTEXT SETS

As reviewed in Section 2, evaluating the KL divergence between stochastic processes necessitates
the use of the context set Xctx. The prior works show that well-curated context sets resembling the
original training data yet not identical can enhance the model’s uncertainty estimation capabilities
(Antorán et al., 2023; Lopez et al., 2023). However, previous works underscore that the arbitrarily
chosen context set without considering its relationship with the training set may have detrimental
effects on model training. Indeed, we investigate how varying context setXctx = (1−α)Xtrain+αXext
for α ∈ (0, 1] affects the performance of the function-space VI in Appendix B.1.2 and observe that
its performance on IND set tends to degrade as the context set is set as external set Xext.

4 AN ADAPTIVE FUNCTION-SPACE PRIORS FROM LEARNING TRAJECTORIES

In this section, we introduce a novel function-space prior designed to address the limitations discussed
earlier. Specifically, we present an explicit form of function-space prior to be widely used for DNN
architectures. We consider DNNs as Bayesian Last-layer models, yielding the closed form of the
function-space prior, and then devise the explicit mean and variance function of prior to adaptively
produce higher uncertainty as GP prior does. The parameters of mean and variance functions are
set leveraging the weight and feature statistics obtained from the leaning trajectory. Additionally,
based on our variance function, we propose a straightforward way to compute the context feature
eliminating the need for external datasets as required in previous approaches. Fig. 2a describes the
procedure of prior construction and Figs. 2b and 2c describes the effect of the designed function-space
prior, which is distinct from the push-forwarded prior in Figs. 1a and 1b.

Let us first decompose a neural network f(x, θ) as f(x, θ) = Θ(L)h(x) where h(x) ∈ RH is a
deterministic feature extractor and Θ(L) ∈ RQ×H is a random weight matrix for the linear layer.
We denote θ(L) := vec(Θ(L)) to be the vectorized weight matrix. Then, we first collect statistics
required for h(x) and θ(L) from a learning trajectory following the procedure that will be described

4
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Figure 2: Using the same setting described in Fig. 1, we explore the designed function-space
prior. Panel (a) depicts the procedure of R-FVI, where the feature h(x) and weight parameters
θ(L) are collected at pre-defined epochs (•). Panel (b) depicts E[softmax(fj(x))] for 100 sample
functions {fj(x)}100j=1 ∼ p(f(x);µ(x),Σ(x)) in Eq. (6). Panel (c) depicts the corresponding
Var[softmax(fj(x))]. Notably, our function-space prior induces the equal predictive mean in Panel
(b) and higher variance in Panel (c) as the inputs are closely located on decision boundary.

briefly, and define the function-space prior as Gaussian, f(x) ∼ N (µ(x),Σ(x)), where

µ(x) = (µ̂⊤
k ĥ(x))

Q
k=1, Σ(x) = diag

((
2∥mqx∥2σ̂2

k
− ∥ĥ(x)∥2σ̂2

k

)Q
k=1

)
. (6)

Here, ĥ(x) is the feature extractor constructed from the feature statistics of h(x) evaluated from
different checkpoints in a learning trajectory and (µ̂k, σ̂k)

Q
k=1 are the class-wise weight-space statistics

of θ(L) computed from the same checkpoints. Below, we describe how ĥ(x) and (µ̂k, σ̂k)
Q
k=1 are

specified and explain the rationale behind our design choices for prior N (µ(x),Σ(x)).

We divide our training procedure into two phases: phase I where we run a vanilla SGD and collect
statistics from the checkpoints on the SGD trajectory, yielding the proposed function-space prior, and
phase II where we apply function-space VI based on the prior constructed in the first phase.

4.1 PHASE I: PRIOR CONSTRUCTION.

Computing feature and weight statistics. To compute the statistics required for our prior, we
apply the Stochastic Weight Averaging Gaussian (SWAG) (Maddox et al., 2019) which constructs
an approximate Gaussian posterior p(θ|D) ≈ N (θ;µswag,Σswag) where µswag := 1

T

∑T
t=1 θ(t) and

Σswag := 1
T

∑T
t=1(θ(t) − µswag)(θ(t) − µswag)

⊤ for a set of checkpoints {θ(t)}Tt=1 (periodically)
collected from a SGD trajectory.

Employing this idea in phase I of our prior construction, we first run a vanilla SGD and collect the
checkpoints for a pre-defined set of epochs T := {t1, . . . , tpre}. For each t ∈ T , we then compute
the class-wise mean features mk(t) for k ∈ {1, . . . , Q} and the diagonal total covariance s(t),

mk(t) =
1

Nk

∑
i:yi=k

h(xi), s(t) =
1

N

Q∑
k=1

∑
i:yi=k

[∆k(xi)]
⊗2, ∆k(x) = h(x)−mk, (7)

Here, h(·) is the feature extractor using the checkpoint θ(t) and Nk := |{i|yi = k}|2. The ⊗2
denotes the element-wise square. Along with the class-wise feature means and total variance, we also
store the last-layer weight parameter θ(L)(t) for later use.

After the tpre epochs of SGD training, we compute the following time-averages of class-wise means
{mk}Qk=1 and the corresponding total covariance matrix diag(s),

mk =
1

|T |
∑
t∈T

mk(t), s =
1

|T |
∑
t∈T

s(t). (8)

2For regression task, since mk(t) and S(t) can not be directly defined due to the real-valued label, we use a
newly defined pseudo label by discretizing the real-valued space into Q intervals, as described in Appendix A.5.
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Similarly, for the last-layer parameters θ(L)(t), we compute the time-averages of empirical mean µ̂
and diagonal covariance diag(σ̂2).

µ̂ =
1

|T |
∑
t∈T

θ(L)(t), σ̂2 =
1

|T |
∑
t∈T

θ(L)(t)⊗2 − µ̂⊗2
(9)

Constructing feature extractor. Given the statistics, the feature extractor ĥ(x) is defined as a
mixture model over Q classes,

ĥ(x) =

Q∑
k=1

wk(x)mk ∈ RH , wk(x) =
exp(−∥∆k(x)∥2s−1)∑Q
j=1 exp(−∥∆j(x)∥2s−1)

. (10)

where ∥∆k(x)∥2s−1 = ∆k(x)
⊤diag(s)−1∆k(x) denotes Mahalanobis distance (MHD) using ∆k(x)

in Eq. (7) and {wk(x)}Qk=1 ∈ [0, 1] denotes the weight vectors satisfying
∑Q

k=1 wk(x) = 1.

Constructing function-space prior. Now we describe our function space prior Eq. (6) computed
from the feature extractor ĥ(x) and weight statistics (µ̂k, σ̂k), and explain the motivation behind the
prior’s construction and the properties obtained.

For the mean function µ(x), we simply take it to be an inner-product between the feature extractor
and checkpoint mean of the linear layer,

µ(x) =
(
µ̂⊤
k ĥ(x)

)Q
k=1

,

where µ̂k denotes the elements of µ̂ corresponding to the kth class, i.e., the expected k-th row
E[Θ(L)]k,: = µ̂k for matrix form Θ(L) ∈ RQ×H . Note that this is equivalent to the mean of the
linearized function space BNN f(x) = Θ(L)ĥ(x), i.e, E[Θ(L)ĥ(x)]k = µ̂⊤

k ĥ(x) for k = 1, .., Q.

For the covariance function Σ(x), we consider

Σ(x) = diag

((
2∥mqx∥2σ̂2

k
− ∥ĥ(x)∥2σ̂2

k

)Q
k=1

)
with qx := argmax

k∈{1,...,Q}
wk(x),

though this may seem non-trivial. Intuitively, given ĥ(x), this finds the nearest feature mqx over
{mk}Qk=1. Then, this computes the gap between function-space variances of ĥ(x) and mqx using
f(x) = Θ(L)ĥ(x), i.e., Var[Θ(L)mqx ]k = ∥mqx∥2σ̂2

k
and Var[Θ(L)ĥ(x)]k = ∥ĥ(x)∥2

σ̂2
k
. Through

this form, we intend the Σ(x) to produce higher variance as ĥ(x) is less close to its vicinity mqx .
Also, we observe that Σ(x) shares a similar structure with the predictive variance of Gaussian
processes (Rasmussen, 2004),

ΣGP(x) = k(x, x)− k(x,X)K(X,X)−1k(X,x),

where the first term k(x, x) roughly matches with 2∥mqx∥2σ̂k
in derived from our choice as prior. The

second term k(x,X)K(X,X)−1k(X,x) has a similar role to the term ∥ĥ(x)∥2
σ̂2
k

in the sense that

the variance on x can be modeled by training inputs X and mixture features {mk}Qk=1. Below, we
describe the property of our prior that Σ(x) produces higher variance as an feature ĥ(x) deviates
from its vicinity mixture component mqx .

Proposition 4.1. (informal) For two input x1, x2 ∈ X and features ĥ(x1), ĥ(x2) ∈ RH , let
k=qx1=qx2 for some k={1, .., Q} meaning mk is their vicinity feature. Then, if ĥ(x1) is not equal
to but closer to mk than ĥ(x2) in terms of MHD, i.e, ak < wqx2

< wqx1
< 1 for ak < 1 (specified in

Appendix), each i-th variance of Σ(x1) is larger than that of Σ(mk) and smaller than that of Σ(x2),

[Σ(mk)]i < [Σ(x1)]i < [Σ(x2)]i for i = 1, .., Q, (11)

intuitively meaning if mk is likely to be in-distribution feature, then Σ(x2) would have higher
variance because ĥ(x2) is farther away from mk.

Proof. Concrete statement with assumption and its proof can be checked in Appendix A.4
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Algorithm 1 Function-Space VI using the prior of Eq. (6) and adversarial feature of Eq. (13)

Require: Pre-defined epoch T , extractor parameter θ, last-layer variational parameter (µ, σ)

1: for t = 1, . . . , T do
2: if t ≤ tpre // PHASE I: PRIOR CONSTRUCTION
3: Set last-layer parameter θ(L)=µ(L), and Train θ and θ(L) by Lfvi of Eq. (1) without KL;
4: if t ∈ T then Update (mk, s, µ̂, σ̂

2
k) in Eqs. (8) and (9) recursively

5: if t = tpre then Construct function-space prior N (µ(x),Σ(x)) by Eq. (6)
6: else // PHASE II: FUNCTION-SPACE VI
7: if t = tpre+1 then Set variational weight parameter of L-th layer as N (ψ(L);µ, σ2)
8: Sample f(j)(xi) ∼ q(f(xi)) in Eq. (12) in function space,
9: Construct N (µ(x),Σ(x)) in Eq. (6) using zadv, defined in Eq. (13) for (xi, yi) ∈ D

10: Train θ, µ(L), and σ(L) with Lfvi of Eq. (1) with KL of Eq. (2)
11: end for

4.2 PHASE II: FUNCTION-SPACE VI

Function-space variation inference with the designed prior. Once the function-space prior is
prepared, we employ function-space variational inference for training the variational parameters. We
consider the function-space variational distribution N (µ(x),Σ(x)),

µ(x) =
(
µ⊤
k h(x)

)Q
k=1

, Σ(x) = diag
(
∥h(x)∥2σ2

k

)Q
k=1

(12)

by employing the closed form of function-space distribution f(x) = Ψ(L)h(x) with the feature
extractor h(x), variational last-layer random weight ψ(L) ∼ N (µ, σ2), and its matrix form Ψ(L),
where feature extractor parameter θ and variational parameters (µ, σ) are trained. Similarly to the
function-space prior, the µk and σk denote the partial elements of µ and σ for kth class, respectively.

Figure 3: Our prior has larger variances (Σ <

Σ1 < Σ2) if ĥ1 is closer tom1 than ĥ2 in sense
of MHD. Our feature zadv is located to induce
larger variance (Σ2 < Σadv).

Adversarial context feature. Additionally, we
propose the adversarial context feature to compute
the function-space KL-divergence in Eq. (2) with-
out relying on external dataset for the context set
Xctx. As the proposed function-space prior is de-
signed to induce larger variance when ĥ(x) is far-
ther from the closest feature mqx meaning that the
corresponding wqx decreases. Based on this intu-
ition, we seek the context feature that are adversar-
ially minimizing wqx(x). Unlike the typical adver-
sarial attacks where the search is done at the input
space, we do this at the feature level. Specifically,
let wqx := w′

qx ◦ h, and we define an adversarial
hidden feature zadv := argminz∈Br(h) w

′
qx(z) and

computed it approximately as

zadv ≈ h− r sign
(
∇h logw

′
qx(h)

)
∈ RH , (13)

using Fast Gradient Sign Attack (FSGM) (Goodfellow et al., 2014). The obtained feature zadv can be
used instead of the original feature ĥ(x) in Eq. (6) in computing the function-space KL divergence
during variational inference. We state the property of zadv in Lemma 4.2.

Lemma 4.2. For input x ∈ X and its smoothed hidden feature ĥ(x) ∈ RH , the adversarial hidden
feature zadv is located to increase the variance of the prior, i.e., [Σ(x)]i < [Σadv]i for all i, where
Σadv denotes the variance of function-space prior obtained by replacing ĥ(x) with zadv in Eq. (6).

We refer to the proposed method as the Refined function-space VI (R-FVI) using Learning Trajectory-
based function-space prior. To aid the understanding, we illustrate the effect of the proposed prior
and context feature in Fig. 3, and describe the training procedure of R-FVI in Algorithm 1.
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Figure 4: Figs. 4a to 4d compares ACC, AUROC, Predictive entropy on IND set (CIFAR 10) and
OOD set (SVHN) over varying KL regularization hyperparameter λ. The R-FVI obtains the higher
ACC and AUROC for all λ by yielding smaller predictive entropy on IND sets.

5 RELATED WORK

Function-space BNN, VI, and Prior. Our work aligns with prior works (Sun et al., 2019; Rudner
et al., 2022; 2023; Lin et al., 2023) presenting the function-space VI. Our work relieves their limita-
tions by presenting the explicit form of function-space prior using learning trajectory. Additionally,
our approach aligns with prior works (Hafner et al., 2020; Flam-Shepherd et al., 2017; Tran et al.,
2022) in designing function-space priors. Unlike Hafner et al. (2020), which uses noise perturbation
input for prior construction, we consider adversarial perturbation in feature space and clarify its
impact on the function-space prior. Furthermore, unlike Flam-Shepherd et al. (2017); Tran et al.
(2022), which use GP priors primarily for shallow BNNs, our function-space prior is designed to
be feasible with large-scale BNNs using ResNet He et al. (2016) and VIT Dosovitskiy et al. (2020).
Unlike Liu et al. (2020b) directly using the approximate GP prior into DNN’s last-layer, our work
designs the covariance function motivated from GP predictive variance.

Empirical Bayes for BNNs. Empirical Bayes estimates the parameters of the prior distribution
through training. This contrasts with the conventional Bayesian approach where prior parameters
are set in advance Casella (1992). For BNNs, Immer et al. (2021) employs marginal likelihood
optimization for training the prior. Krishnan et al. (2020) uses the parameters of the pre-trained
model as the mean parameters of the weight-space prior. Shwartz-Ziv et al. (2022) uses re-scaled
parameters of pre-trained models as the weight-space prior for transfer learning. However, unlike
theses work, our work uses the parameter trajectory during training to construct the function-space
prior. Furthermore, our prior is developed from scratch training, whereas Krishnan et al. (2020);
Shwartz-Ziv et al. (2022) relies on pre-trained parameters on training or upstream datasets as prior.

Implicit Process. Our work shares similarities with variants of the variational implicit process
(VIP) Ma et al. (2019); Ma & Hernández-Lobato (2021); Rodrguez-Santana et al. (2022); Ortega et al.
(2022) in modeling stochastic functions using DNNs. However, while VIP variants aim to enhance
modeling capabilities by constructing implicit distributions with stochastic NN generators Ma &
Hernández-Lobato (2021) and sparse GPs Rodrguez-Santana et al. (2022), our focus is on building
effective function-space prior to improve BNNs.

6 EXPERIMENTS

Experiment Setting. We basically use widely-adopted DNN architectures, such as ResNet (He
et al., 2016), as our base model. Then, we convert the model into a last-layer BNN by replacing the
last MLP layer with a Bayesian MLP layer due to memory constraints as described in Section 3.
To evaluate the trained model, we measure the test accuracy (ACC), negative log likelihood (NLL),
and expected calibration error (ECE) on the IND test set as indicators of uncertainty estimation
performance for the IND set. Also, we measure the Area Under the Receiver Operating Characteristic
(AUROC) on the OOD set, serving as indicators of performance for OOD set. We use the predictive
entropy as the input and the IND set’s status as the label.

6.1 FUNCTION-SPACE PRIOR INDUCING VARYING LEVEL OF UNCERTAINTY

Uncertainty of the function-space prior. We investigate whether the proposed function-space
prior induces varying levels of uncertainty depending on each function’s input. We train the ResNet

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: We report each metric using Bayesian model Averaging with 10 sample functions (J=10)
and 3 random seeds; boldface and underline denote the first and second-best metrics, respectively.
For T-FVI, we use CIFAR-100 and Tiny-ImageNet as the context set, respectively.

Model / Data Method ACC ↑ NLL ↓ ECE ↓ AUROC ↑

ResNet 18
CIFAR 10

MAP (0.948, 0.003) (0.199, 0.011) (0.029, 0.000) (0.939, 0.007)
SWAG (0.942, 0.002) (0.195, 0.008) (0.024, 0.001) (0.914, 0.002)
SNGP (0.914, 0.002) (0.407, 0.008) (0.060, 0.001) (0.993, 0.001)
WVI (FL) (0.909, 0.001) — (0.048, 0.003) (0.918, 0.009)
WVI (LL) (0.950, 0.002) (0.216, 0.001) (0.030, 0.003) (0.922, 0.014)
T-FVI (0.947, 0.002) (0.207, 0.011) (0.032, 0.002) (0.938, 0.012)
R-FVI (our) (0.952, 0.001) (0.187, 0.005) (0.028, 0.001) (0.956, 0.004)

ResNet 50
CIFAR 100

MAP (0.797, 0.001) (0.835, 0.002) (0.074, 0.002) (0.805, 0.014)
SWAG (0.772, 0.002) (0.918, 0.008) (0.077, 0.003) (0.896, 0.001)
WVI (LL) (0.780, 0.004) (1.148, 0.012) (0.099, 0.002) (0.777, 0.028)
T-FVI (0.794, 0.001) (0.846, 0.006) (0.076, 0.002) (0.846, 0.015)
R-FVI (our) (0.799, 0.003) (0.792, 0.012) (0.056, 0.002) 0.850, 0.015)

20 using R-FVI on CIFAR 10 and obtain the prior with pre-defined epoch T = {0.8T − 20, 0.8T −
16, 0.8T − 12, 0.8T − 8, 0.8T − 4} with T = 200
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Figure 5: Investigation on the proposed prior

Fig. 5a shows the averagedwqx of Eq. (10), repre-
senting the distance between ĥ(x) and its closest
feature mqx , for the IND set (CIFAR 10), OOD
set (SVHN), and the adversarial feature zadv of
Eq. (13) with radius r ∈ {.05, .10, .20}. Fig. 5b
shows the corresponding averaged standard devi-
ation of the function-space prior, i.e, Tr(Σ

1
2 (x))

in Eq. (6). These figures demonstrate that the pro-
posed prior induces higher uncertainty in model’s
output when wqx decreases, which is stated in
Proposition 4.1 and Lemma 4.2. We also inves-
tigate other priors derived in different SGD tra-
jectories in Appendix B.1.1, confirming that the
prior of each trajectory exhibits a similar trend
when pre-trained epoch is set after 0.5T epoch.
Fig. 5c shows that the obtained function-space
prior produces more uncertain predictive sample
functions when the inputs are OOD data point.

Investigation on the effect of the KL regularization. We investigate the effect of the function-
space KL regularization on the performance on IND and OOD sets. For comparison, we consider
T-FVI with the uniform function-space prior N (0, 10IQ×Q); 10 is empirically found over {5, 10, 50}
and set the context set as CIFAR 100 as following the experiment setting in Rudner et al. (2022).
We consider the KL regularization hyperparameter λ ∈ {1093, 1092, 1091} in Eq. (2) as the relative
ratio between likelihood and KL term to apply the same amount of the regularization into the model
during training, regardless of scale of KL term; λ = 1091 means the value of KL term is adaptively
rescaled to be 1/10 of the likelihood over iterations.

Fig. 4 compares the ACC, AUROC, Predictive entropy on IND set (CIFAR 10) and OOD set (SVHN)
over different λ. These results imply the KL regularization of R-FVI via our function-space prior leads
to better accuracy and AUROC for all λ, as shown in Figs. 4a and 4b. Notably, the KL regularization
of R-FVI allows its variational distribution to have smaller predictive entropy on the IND and OOD
set as shown in Figs. 4c and 4d while yielding the better OOD performances for all λ.

6.2 IMAGE CLASSIFICATION TASK

Following the experimental setup conducted in (Rudner et al., 2022), we perform the classification
tasks using ResNet 18 and 50 to demonstrate the effectiveness of R-FVI. We compare the proposed
inference with other baseline inference methods. Further details can be found in Appendix B.2.
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Table 2: We report the mean and one-standard deviation of each metric over 3 random seeds. We set
the context set as Tiny-ImageNet for training the down-stream torch vision datasets.

Dataset Method ACC ↑ NLL ↓ ECE ↓ AUROC-S ↑ AUROC-C ↑

PETS 37
MAP (0.940, 0.002) (0.279, 0.005) (0.038, 0.001) (1.000, 0.000) (0.998, 0.000)
T-FVI (0.937, 0.001) (0.225, 0.001) (0.015, 0.002) (1.000, 0.000) (0.999, 0.000)
R-FVI (0.942, 0.001) (0.215, 0.003) (0.010, 0.001) (1.000, 0.000) (0.999, 0.000)

DTD 47
MAP (0.790, 0.006) (1.068, 0.016) (0.131, 0.004) (0.972, 0.024) (0.965, 0.006)
T-FVI (0.785, 0.009) (0.801, 0.022) (0.029, 0.004) (0.988, 0.002) (0.985, 0.004)
R-FVI (0.793, 0.001) (0.795, 0.022) (0.033, 0.004) (0.988, 0.006) (0.983, 0.001)

AIRCRAFT 100
MAP (0.701, 0.005) (1.157, 0.008) (0.094, 0.002) (0.998, 0.001) (0.995, 0.001)
T-FVI (0.711, 0.000) (1.155, 0.000) (0.124, 0.000) (0.999, 0.000) (0.998, 0.000)
R-FVI (0.718, 0.006) (1.055, 0.033) (0.045, 0.008) (0.999, 0.000) (0.998, 0.001)

Results. Table 1 demonstrates that R-FVI generally outperforms the baselines in terms of ACC,
NLL, and ECE on the IND set. Especially, R-FVI is more effective when using ResNet 50, i.e.,
the larger model. For OOD performance, R-FVI outperforms other baselines except SGNP (Liu
et al., 2020b) using the approximate GP prior in the last-layer. Additionally, we confirm the variance
property of our priors in Appendix B.2.1 and investigate how the performance of R-FVI may vary
depending on the trajectory T and radius r of zadv in Appendix B.2.2. The SGNP trained on CIFAR-
100 cannot compared directly because the trained SGNP appear to be significantly underfitted, even
after testing various kernel hyperparameters as shown Appendix B.2.3.

6.3 TRANSFER LEARNING WITH VISION TRANSFORMER.

We demonstrate the effectiveness of R-FVI for transfer learning using a large-scale pre-trained model.
We use the pre-trained VIT-Base model Dosovitskiy et al. (2020), using 16 patch and 224 resolution,
trained on ImageNet 21K 3. We consider the last-layer BNN as done in ResNet.

Results. Table 2 demonstrates that R-FVI results in reliable uncertainty estimation on each IND set
and OOD sets (SVHN and CIFAR 100) when adapting the large-sized VIT model (#parameters =
86.6M ) to downstream task . Additional results of different trajectories are reported in Appendix B.3.

6.4 UCI REGRESSION TASK.
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Figure 6: Log likelihood for UCI regression tasks.

We also conduct a UCI regression task to show-
case the effectiveness of R-FVI. Since the MHD
cannot be used for real-valued labels, we em-
ploy a slight modification employing K bins de-
fined in function space for obtaining the discrete
pseudo-label, as described in Appendix A.5.

Results. Fig. 6 indicates that R-FVI generally
outperforms other baselines. Also, the consis-
tency of performance across different number of
bins (K) can be checked in Appendix B.4.

7 CONCLUSION

We propose an explicit form of function-space prior that can be easily used with the widely-used
DNN architectures, as well as to adaptively assign higher uncertainty for each function’s output.
We demonstrate that our prior is effective in improving uncertainty estimation, especially for the
large-sized model.

However, our method has some limitations. As our prior utilizes information from pre-trained epochs,
the function-space prior and its variational posterior depend on the selected pre-trained epoch. Thus,
tuning the pre-trained epochs is necessary. For the regression task, our prior requires binning to
obtain the pseudo-discrete labels from real-valued outputs.

3https://github.com/huggingface/pytorch-image-models
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A APPENDIX: METHODOLOGY DETAILS

A.1 COMPUTATIONAL COMPLEXITY OF T-FVI AND R-FVI

Computational complexity of T-FVI. Training a function-space BNN by variational requires to
compute the (1) the expected log likelihood term and (2) KL divergence in ELBO, as described in
Eq. (14).

Eq(f)

[
N∑

n=1

log p
(
yn|f(xn)

)]
− λ KL

(
q(f)∥p(f)

)
, (14)

where the KL divergence KL
(
q(f)∥p(f)

)
= supXctx∈XMKL

(
q(f(Xctx, ϕ) ∥ p(f(Xctx, θ))

)
is

computed using the following approximation:

KL
(
q(f(Xctx, ϕ) ∥ p(f(Xctx, θ))

)
≈ KL

(
N (µϕ(Xctx),Σϕ(Xctx)) ∥ N (µθ(Xctx),Σθ(Xctx))

)
,

where (µϕ(Xctx),Σϕ(Xctx)) are the mean and covariance of the approximate variational function-
space distribution q(f) obtained by using the linearization of Eq. (3) with variational weight parameter
ϕ. The (µθ(Xctx),Σθ(Xctx)) denotes those of the corresponding function-space prior obtained by
using prior weight parameter θ.
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Figure 7: GPU Memory for Jacobian computation

The main computational bottleneck for comput-
ing the ELBO in Eq. (14) is to compute the Jaco-
bian matrix

J(·, µ) = [
∂f(·, θ)
∂θ

]θ=µ ∈ RQ×P ,

used for Σ(·)=J(·, µ)diag(diag(σ2))J(·, µ)⊤.
This is because computing the J(·, µ) requires
GPU memory proportional to O(BPQ), where
B is the batch dataset size, P is the number of
model parameters, and Q is the dimension of
the function output. The amount of GPU mem-
ory can be understood as the accumulation of
gradients from BQ models at each iteration for
Jacobian computation.

Indeed, as computing the Jacobian matrix for the
widely-used DNN architectures, such as ResNet 18, 34, and 50, these models face the issue of the
Out-of-GPU memory easily. We demonstrate the amount of GPU memory used for computing the
Jacobian over varying batch sizes (N = 2, 4, 8) and Q = 10 in Fig. 7. This figure potentially sheds
light on the challenges associated with considering the function-space distribution of large-scale fully
BNN models via Jacobian computation.

Computational complexity of R-FVI To address this issue, the proposed R-FVI considers using
last-layer BNNs, assuming the last layer is the only Bayesian layer. This approach can reduce the
computational memory from O(BPQ) to O(BPLQ) by computing the Jacobian of the last layer,
which consists of PL parameters with PL ≪ P ; with this reason, the tractable FVI also employs the
Jacobian matrix of the last layer for the KL divergence computation, as described in Rudner et al.
(2022).

Additionally, if the last layer is a Bayesian MLP layer, the Jacobian matrix can be computed
analytically without using a large amount of GPU memory. Therefore, we can construct the function-
space distribution for large-scale BNNs.

Furthermore, for the last-layer hidden feature h = f (L−1) ◦ · · · ◦ f (1)(x) ∈ RH , where H is the
dimension, the R-FVI uses O(H(Q + 1)) memory for the last-layer hidden feature parameters of
Eq. (8) and O(2HQ) for the last-layer weight parameters of Eq. (9). By updating these empirical
parameters in an online batch manner, R-FVI does not need to store the parameters of |T | trajectories
during the periods of SGD iterations.

13
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A.2 COMPUTATION OF THE FUNCTION-SPACE DISTRIBUTION FOR THE LAST-LAYER BNNS

For an input x ∈ X , we denote f(x, θ) ∈ RQ as the output of the L-layers BNN using the random
weight parameters θ = {θ(l)}Ll=1, as follows:

f(x, θ) =
(
f (L) ◦ · · · ◦ f (2) ◦ f (1)

)
(x), and f (l)(x) = σ(Θ(l) [ x ; 1]), (15)

where θ(l) denotes l-th layer random weight parameters including the bias parameter, and σ(·) denotes
the activation function. We omit the bias term of each θ(l), which does not raise the issue of our
statement.

To detour the memory issue of the Jacobin computation described in Appendix A.1, we assume
f(x, θ) to follow the specific structure as described in Assumption A.1.
Assumption A.1. The f(x, θ) is assumed to to be the last-layer BNNs following these properties:

• The first L− 1 layers {f (l)}L−1
l=1 are deterministic layers. In view of the random weight parameter-

ization used in BNNs, this assumption can be understood as the l-th random weight parameter θ(l)

follows the Dirac delta distribution using parameter µ(l), i.e., p(θ(l)) = δµ(l)(θ(l)).

• The last L-th layer f (L) is a Bayesian MLP layer using Gaussian random weight parameter θ(L),
i.e., vec(Θ(L)) ∼ N ( vec(µ(L)),diag(vec(Σ(L))) ).

Then, for the last-layer feature h(x) = (f (L−1) ◦ · · · ◦ f (2) ◦ f (1))(x) ∈ RH , we can re-express the
f(x, θ) ∈ RQ as follows:

f(x, θ) = Θ(L) h(x) = [ Θ
(L)
1,: h(x) , .. , Θ

(L)
Q,:h(x) ] ∈ RQ, (16)

where Θ(L)
k,: denotes the k-th row of the last weight parameter Θ(L) ∈ RQ×H . Then, we can compute

the parameters for the function-space distribution analytically, as described in Lemma A.2.
Lemma A.2. Under the assumption of the last-layer BNN described in Assumption A.1, the function-
space distribution p(f(x; θ)) = N (µ(x),Σ(x)) has the following closed form of the parameters:

µ(x) = (µ
(L)⊤
k h(x))Qk=1, Σ(x) = diag

([
∥h(x)∥2σ2

1
, .. , ∥h(x)∥2σ2

Q

])
∈ RQ×Q, (17)

where σ2
k denotes the k-th row of Σ(L), i.e., σ2

k = Σ
(L)
k,: ∈ RH .

Proof. The result of µ(x) is trivial because of Eθ(L) [θ(L)h(x)] = µ(L)h(x).

Next, we compute the Jacobin matrix J(x, µ) := [ ∂f
∂θ(L) ]θ(L)=µ(L) ∈ RQ×P , where P denotes the

number of the last-layer weight parameter, i.e., P = Q×H . Then, the k-th row of Jacobian matrix
J(·, µ)k,: ∈ RP is computed as follows:

J(x, µ)k,: =

[
∂(Θ

(L)
1,: h(x))

∂Θk,:
, ... ,

∂(Θ
(L)
k,: h(x))

∂Θk,:
, ... ,

∂(Θ
(L)
Q,:h(x))

∂Θk,:

]
(18)

=

[
0H︸︷︷︸
1-th

, ... , h(x)︸︷︷︸
k-th

, ... , 0H︸︷︷︸
Q-th

]
∈ RP , (19)

which consists of the non-zero entries as h(x) ∈ RH in k-th block and zero entries 0H ∈ RH in left
blocks. Then, the (q, p)-th element of Σ(x) ∈ RQ×Q is computed as follows:

Σ(x)q,p =
[
J(x, µ)diag(vec(Σ))J(x, µ)⊤

]
q,p

(20)

= h(x)⊤ diag(σ2
q ) h(x)︸ ︷︷ ︸

:=∥h(x)∥2
σ2
q

1q=p = ∥h(x)∥2σ2
q
1q=p. (21)

This yields that the covariance Σ(x) of the functions-space distribution has the following form:

Σ(x) = diag
([

∥h(x)∥2σ2
1
, .. , ∥h(x)∥2σ2

Q

])
∈ RQ×Q. (22)
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A.3 MOTIVATION OF THE FUNCTION-SPACE PRIOR CONSTRUCTION

Gaussian process (GP) has been the widely-used function-space prior Rasmussen (2004). The
construction of our function-space prior is motivated from the GP predictive posterior distribution
p(fGP(x) | D) = N (µ(x∗),Σ(x∗)) for X = {xi}Ni=1 and Y = {yi}Ni=1, represented as,

µ(x∗) = (K(X,X)91vec(Y ))T︸ ︷︷ ︸
weight

K(X , x∗)︸ ︷︷ ︸
kernel smoother

(23)

Σ(x∗) = K(x∗, x∗)︸ ︷︷ ︸
prior variance

− K(x∗, X)K(X,X)91K(X,x∗ )︸ ︷︷ ︸
variance modeled by IND set

, (24)

where K(X,X) ∈ RN×N and K(x∗, x∗) ∈ R denotes the kernel Gram matrix computed on the
training inputs X , and the predictive input x∗, respectively.

We note that the kernel smoother employs the distance between the predictive input x∗ and the
training (IND) set X to model the predictive mean µ(x∗) and variance Σ(x∗) in Eq. (23).

Using this observation, we first construct the smoother ĥ(x∗) by using the statistics of hidden feature
{mk}Qk=1, obtained from the pre-trained epoch T , and wk(x) that inherently recognizes the distance
of the hidden feature of x∗ from the features of IND set, as follows:

ĥ(x∗) =

Q∑
k=1

wk(x∗)mk ∈ RH , wk(x∗) =
exp(−∥∆k(x∗)∥2S−1)∑Q
j=1 exp(−∥∆j(x∗)∥2S−1)

. (25)

Then, as we use the linear function g(x) : RH −→ RQ, defined as

g(x) = θ(L)ĥ(x), θ(L) ∼ N
(
θ(L); µ̂,diag

((
σ̂2
k

)Q
k=1

))
,

we design the mean of the function-space prior µ(x∗) as

µ(x∗) = E[ g(x∗) ] = µ̂ ĥ(x∗), (26)

where ĥ(x∗) is considered to work similarly with the kernel smoother of the predictive mean in
Eq. (23). Similarly, we design the variance of the function-space prior Σ(x∗) as

Σ(x∗) = diag
((

2 ∥mqx∗
∥2σ̂2

k︸ ︷︷ ︸
SGD Prior

− ∥ĥ(x∗)∥2σ̂2
k︸ ︷︷ ︸

Cov[g(x∗)]k

)Q
k=1

)
, qx∗ := argmax

k∈{1,..,Q}
wk(x∗), (27)

where the SGD prior in Eq. (27) corresponds to the role of the prior variance of K(x∗, x∗) in
Eq. (24). The Cov[g(x∗)]k in Eq. (27) corresponds to the role of the variance modeled by IND set
K(x∗, X)K(X,X)91K(X,x∗ ) in Eq. (24).

15
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A.4 PROOF OF PROPOSITION 4.1

In this section, we first present the Lemmas A.3 and A.4, and provide the proof of Proposition 4.1.

Lemma A.3. For an input x ∈ X and the last-layer feature h(x) := (f (L−1) ◦ · · · ◦ f1)(x) ∈ RH ,
let m−q =

∑
k ̸=q

wk(x)
1−wq(x)

mk and ∆mq = m−q −mq . Then, the ĥ(x) is re-expressed as follows:

ĥ(x) = mq + (1− wq(x))∆mq (28)

Proof. In the following, we notate h for h(x) and wk for wk(x) for brevity. Then, the ĥ(x) is
re-expressed as follows:

ĥ(x) =

Q∑
k=1

wk mk = wqmq + (1− wq)
∑
k ̸=q

wk

1− wq
mk︸ ︷︷ ︸

:=m−q

= mq + (1− wq)
(
m−q −mq︸ ︷︷ ︸

:=∆mq

)

Lemma A.4. For i, j ∈ {1, .., Q}, suppose ∥mi∥2 = ∥mj∥2. Also for the parameter trajectory
{Θ(t)}t∈T , suppose that each element of [Θ(L)(t)]k,h is bounded by for some 0 < M < 1, i.e.,∣∣[Θ(L)(t)]k,h

∣∣ < M for k ∈ {1, .., Q} and h ∈ {1, ..,H}. Also, for each k ∈ {1, .., Q}, let us
remind σ̂2

k, defined as,

σ̂2
k =

1

|T |
∑
t∈T

[Θ(L)(t)]⊗2
k,: − [µ̂k]

⊗2 ∈ RH
+ , (29)

where [·]k,: denotes k-th row and ⊗2 denotes element-wise square. Then, following inequalities hold:

(1) ∥m−q∥2 ≤ ∥mq∥2, (2) ⟨∆mq , mq⟩ < 0, (3) ⟨∆mq , mq⟩σ̂2
k
< 0 (w.h.p), (30)

Proof. We use the same notation used in Lemma A.3.

The (1) holds with the following reason:

∥m−q∥2 =

∥∥∥∥∥∥
∑
k ̸=q

wk

1− wq
mk

∥∥∥∥∥∥
2

≤
∑
k ̸=q

wk

1− wq
∥mk∥2 = ∥mq∥2

∑
k ̸=q

wk

1− wq
= ∥mq∥2 (31)

where the first inequality holds due to the triangle inequality, and second equality holds due to
assumption ∥mi∥2 = ∥mj∥2.

The (2) holds with the following reason:

⟨∆mq , mq⟩ = ⟨m−q −mq , mq ⟩ = ∥m−q∥2 ∥mq∥2 cos θ − ∥mq∥22 (32)

≤ ∥mq∥2 ∥mq∥2 cos θ − ∥mq∥22 ≤ ∥mq∥22 (cos θ − 1) ≤ 0,
(33)

where the first inequality holds due to (1). The last inequality holds only when the mq = mk for
k ̸= q because if there is some k such that mk ̸= mq, then cos(θ∠) < 1 for the angle θ∠ between
mq and m9q .

The (3) holds with the following reason:

Let σ̃ =
[
σ̂2
k[1] , .. , σ̂

2
k[H]

]
∈ RH

+ and m̃ = ∆mq ◦ mq ∈ RH for brevity; ◦ denotes the
element-wise product. Then, ⟨∆mq , mq⟩σ̂2

k
can be re-expressed

⟨∆mq , mq⟩σ̂2
k
=

H∑
i=1

σ̂2
k[i] (∆mq[i]mq[i]) = ⟨σ̃ , m̃⟩, (34)
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where σ̂2
k[i], ∆mq[i], and mq[i] denote the i-th element of each vector, respectively. Using the

inner product in (2) can be re-expressed as ⟨∆mq , mq⟩ = ⟨1H , m̃⟩ with 1H = [1, .., 1] ∈ RH ,
⟨∆mq , mq⟩σ̂2

k
can be also re-expressed

⟨∆mq , mq⟩σ̂2
k
= ⟨σ̃ − α1H , m̃⟩ + ⟨α1H , m̃⟩ for any α > 0. (35)

Since ⟨α1H , m̃⟩ is a negative value due to result of (2), if ⟨σ̃ − α1H , m̃⟩ is proven to be much
smaller value compared to |⟨α1H , m̃⟩|, then ⟨∆mq , mq⟩σ̂2

k
< 0 is also negative value. In this

context, we proceed with this proof.

Sub-Gaussian distribution of σ̃. To this end, we first show that each σ̃[h] is sub-Gaussian dis-
tribution; note σ̃[h] = σ̂2

k[h]. For t ∈ T , let us assume each element of t-th trajectory weight
parameter θ(L)(t) is bounded by some M > 0, i.e., |[θ(L)(t)]k,h| < M for any k ∈ {1, .., Q} and
h ∈ {1, ..,H}. Then, each element of the empirical variance σ̂2

k is bounded by 1
|T |M

2, as follows:

σ̂2
k[h] =

1

|T |
∑
t∈T

[Θ(L)(t)]⊗2
k,h − [µ̂k]

⊗2
h ≤ 1

|T |
M2

. (36)

Then, we can regard σ̂2
k[h] as bounded random variable because σ̂2

k[h] could be different value

depending on the parameter trajectory {θ(L)(t); t ∈ T } and σ̂2
k[h] is satisfied with σ̂2

k[h] ∈
[
0, M

2

|T |

]
.

Then, since the bounded random variable X ∈ [a, b] with zero mean is (b−a)2

4 sub-Gaussian random
variable due to Hoeffding’s lemma (Van Handel, 2014), σ̂2

k[h]− E[σ̂2
k[h]] is also M4

4|T |2 sub-Gaussian
random variable.

Mean of σ̃. Additionally, we assume E[σ̂2
k[h1]] = E[σ̂2

k[h2]] for any h1, h2 ∈ {1, ..,H} and thus
set α := E[σ̂2

k[h]]. This is because each difference
∣∣E[σ̂2

k[h1]]− E[σ̂2
k[h2]]

∣∣ is bounded by M2

|T | and
thus would be small value if M is small value such as M < 1.

Concentration inequality Next, using the Chernoff bound of the sub-Gaussian distribution (Zhang
& Chen, 2020), we show that the tail probability of {σ̃; ⟨σ̃ − α1H , m̃⟩ > ϵ} is bounded as follows:
Pr ({σ̃; ⟨σ̃ − α1H , m̃⟩ > ϵ}) ≤ infλ>0 exp (−λϵ) E [ exp (⟨σ̃ − α1H , λ m̃⟩) ] (37)

= infλ>0 exp (−λϵ)
H∏

h=1

exp

(
λ2(m̃[h])2

2

M4

4|T |2

)
(38)

≤ infλ>0E

[
exp (−λϵ+ λ2

2

∥m̃∥22M4

4|T |2
)

]
= exp

(
−2|T |2ϵ2

∥m̃∥22M4

)
(39)

This implies that with probability 1− δ, the following inequality holds

⟨σ̃ , m̃⟩ ≤ ⟨α1H , m̃⟩ +
1√
2
log(

1

δ
)
∥m̃∥2M2

|T |
. (40)

As we consider ⟨α1H , m̃⟩ = α
√
H∥m̃∥2 cos(θ∠) with cos(θ∠) < 0 due to the result of (2) and

α = E[σ̂2
k[h]] = CM2

|T | for some C ∈ (0, 1), if the feature dimension H is large enough to satisfy

H ≥ (log ( 1
δ ))

2

2C2 cos2 (θ∠) , then the right side of Eq. (40) would be negative for the following reason:

⟨α1H , m̃⟩ +
1√
2
log(

1

δ
)
∥m̃∥2M2

|T |
=
(√

HC cos(θ∠) +
1√
2
log (

1

δ
)︸ ︷︷ ︸

<0 for large H

)∥m̃∥2M2

|T |
< 0. (41)

Therefore, if each element of the weight parameter θ(L)(t) ∈ RQ×H is bounded by a small value M ,
and the feature dimension H is large enough, then ⟨σ̃, m̃⟩ < 0 holds with high probability. Note that
the condition of M and H is easily feasible for the DNN.
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Assumption. Let assume that {mq}Qq=1 and {σk}Qk=1 follow assumptions in Lemmas A.3 and A.4.

For H feature dimension, let H be large enough to satisfy H ≥ O((log (1δ ))
2 1
cos2(θ∠) ) for small

δ > 0 and the angle θ∠ between 1H = [1, .., 1] ∈ RH and m̃ satisfying ⟨∆mq , mq⟩ = ⟨1H , m̃⟩.
Proposition A.5. For two input x1, x2 ∈ X and features ĥ(x1), ĥ(x2) ∈ RH , let k=qx1

=qx2
for

some k={1, .., Q} meaning mk is their vicinity feature. Then, if ĥ(x1) is not equal to but closer to
mk than ĥ(x2) in terms of MHD, i.e, ak < wqx2

< wqx1
< 1 for

ak = sup{x∈X | qx=k}a(x) with a(x) = max
j∈{1,..,Q}

⟨mqx ,m9qx⟩σ̂2
j

∥∆mqx∥
2
σ̂2
j

,

then each i-th variance of Σ(x1) is larger than that of Σ(mk) and smaller than that of Σ(x2),
[Σ(mk)]i < [Σ(x1)]i < [Σ(x2)]i for i = 1, .., Q, (42)

Proof. For an input x1 ∈ X , let us assume k = qx1
with qx1

= 1. Then, we can easily show
ĥ(x1) = mk due to Eq. (10) and

Σ(x1) = diag

((
2∥mk∥2σ̂2

i
− ∥mk∥2σ̂2

i

)Q
i=1

)
= diag

((
∥mk∥2σ̂2

i

)Q
i=1

)
.

Next, for an input x2 ∈ X satisfying k = qx2 , we assume wqx2
< wqx1

< 1 intuitively meaning
that ĥ(x1) is closer to mk than ĥ(x2) in sense of MHD. We show that each k-th component of the
variance

[Σ(x)]k = 2∥mqx∥2σ̂2
k
− ∥ĥ(x)∥2σ̂2

k
= ∥mqx∥2σ̂2

k
+ ∥mqx∥2σ̂2

k
− ∥ĥ(x)∥2σ̂2

k︸ ︷︷ ︸
:=ρk(x)

is an increasing function of wqx on some range. This is because ∥mqx∥2σ̂2
k

is constant for given qx
and ρk(x) is an increasing function of wqx as wqx decreases from 1 to some constant a ∈ (0, 1). To
prove this statement, we will show that ρk(x) satisfies the following properties for each k = 1, ..Q:

(1) ρk(x) = 0 for wqx = 1,

(2) ρk(x) increases if wqx ∈
(

⟨mqx , m-qx ⟩σ̂2
k

∥∆mqx∥2

σ̂2
k

, 1

)
moves from 1 to

⟨mqx , m-qx ⟩σ̂2
k

∥∆mqx∥2

σ̂2
k

,

To prove these properties, we first compute ∥ĥ(x)∥2
σ̂2
k
, as follows:

∥ĥ(x)∥2σ̂2
k
= ∥mqx + (1− wqx)∆mq∥2σ̂2

k
(43)

= ∥mqx∥
2
σ̂2
k
+ (1− wqx)

2 ∥∆mqx∥
2
σ̂2
k
+ 2(1− wqx) ⟨mqx , ∆mqx⟩σ̂2

k
, (44)

where the first equality holds due to Lemma A.3. Then, we can re-express ρk(x) as follows:

ρk(x) = ∥mqx∥2σ̂2
k
− ∥ĥ(x)∥2σ̂2

k
= −

(
(1− wqx)

2 ∥∆mqx∥
2
σ̂2
k
+ 2(1− wqx) ⟨mqx , ∆mqx⟩σ̂2

k

)
(45)

For the property of (1), we can easily show pk(x) = 0 if we consider wqx = 1 for pk(x). To prove
the property of (2), let us denote bq = 1 − wqx ∈ [0, 1) for brevity. Then, ρk(x) is expressed as a
second-order polynomial function of bq (concave), as follows:

ρk(x) = − ∥mqx∥
2
σ2
k

(
bq +

⟨mqx ,∆mqx⟩σ̂2
k

∥∆mqx∥
2
σ̂2
k︸ ︷︷ ︸

<0

)2

+
(⟨mqx ,∆mqx⟩σ̂2

k
)2

∥∆mqx∥
2
σ̂2
k

(46)

= − ∥mqx∥
2
σ2
k

(
wqx −

⟨mqx
, m-qx

⟩σ̂2
k

∥∆mqx
∥2σ̂2

k

)2

+
(⟨mqx

,∆mqx
⟩σ̂2

k
)2

∥∆mqx
∥2σ̂2

k

(47)
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where the inequality
⟨mqx ,∆mqx ⟩σ̂2

k

∥∆mqx∥2

σ̂2
k

< 0 holds due to (3) in Lemma A.4.

The second equality holds due to 1 +
⟨mqx ,∆mqx ⟩σ̂2

k

∥∆mqx∥2

σ̂2
k

=
⟨mqx , m-qx ⟩σ̂2

k

∥∆mqx∥2

σ̂2
k

< 1. Then, since ρk(x) is a

concave function having the maximum at
⟨mqx , m-qx ⟩σ̂2

k

∥∆mqx∥2

σ̂2
k

< 1, and ρk(x) = 0 for wqx = 1, pk(x)

increases if wqx ∈
(

⟨mqx , m-qx ⟩σ̂2
k

∥∆mqx∥2

σ̂2
k

, 1

)
moves from 1 to

⟨mqx , m-qx ⟩σ̂2
k

∥∆mqx∥2

σ̂2
k

.

Then, the ρk(x) is an increasing function of wqx for all k ∈ {1, .., Q} if wqx(x) decreases in range of

wqx(x) ∈
Q⋂

k=1

( ⟨mqx
, m-qx

⟩σ̂2
k

∥∆mqx
∥2σ̂2

k

, 1
]
=
(
max

k

⟨mqx
, m-qx

⟩σ̂2
k

∥∆mqx
∥2σ̂2

k︸ ︷︷ ︸
:=a(x)

, 1
]
. (48)

Therefore, each component of Σ(x) is an increasing function of wqx on this range of wqx as well.

Proof of the main statement For x1, x2 ∈ X with k = qx1 = qx2 , we first consider ak =
sup{x∈X | qx=k}a(x) using the a(x) in Eq. (48). Then, if ak ≤ wqx2

< wqx1
< 1 intuitively

meaning that ĥ(x1) is not equal to but closer to mk than ĥ(x2) in sense of MHD, the i-th diagonal
variance of Σ(x1) is larger than that of Eq. (6) and smaller than Σ(x2), i.e.,

[Σ(mk)]i < [Σ(x1)]i < [Σ(x2)]i for i = 1, .., Q . (49)

because [Σ(x)]i is an increasing function as wqx decreases for all x ∈ {x ∈ X | qx = k}.

Lemma A.6. (Analysis of predictive mean for classification) For Q-class classification task, let us
assume that q = argmaxk∈{1,..,Q} ⟨µ̂k , mq⟩, meaning that q-th weight vector µ̂q leads the highest
logits value for q-th feature mq , where µ̂ is represented as

µ̂ =
1

|T |
∑
t∈T

θ(L)(t) ∈ RQ×H . (50)

Then, the following inequality [µ(x2)]q < [µ(x1)]q < [µ(µq)]q holds where [µ(x)]q denotes q-th
logit (peaked) value of µ(x) ∈ RQ in Eq. (6).

Proof. For an input x ∈ X , let us consider qx = argmaxQk=1 wk(x). Then, we show that µ(x)qx

decreases as wqx decreases for wqx(x) ∈
(
maxk

⟨mqx , m-qx ⟩σ̂2
k

∥∆mqx∥2

σ̂2
k

, 1
]

with following reason:

µ(x)qx = ⟨µ̂qx , (mqx + (1− wqx) ∆mqx)⟩ = ⟨µ̂qx , mqx⟩ + (1− wqx) ⟨µqx , ∆mqx⟩︸ ︷︷ ︸
≤0

,

where ⟨µ̂qx , ∆mqx⟩ ≤ 0 holds with the following reason:

⟨µ̂qx , ∆mqx⟩ =
∑
k ̸=q

wk

1− wqx

⟨µ̂qx , mk⟩ − ⟨µ̂qx , mqx⟩ (51)

=
∑
k ̸=qx

wk

1− wqx

(
⟨µ̂qx , mk⟩ − ⟨µ̂qx , mqx⟩︸ ︷︷ ︸

≤0 due to assumption

)
≤ 0, (52)
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A.5 EXTENSION FOR REGRESSION TASK

We consider the following modifications for the regression, assuming a 1-dimensional function space
(Q = 1) for brevity.

Pseudo-label for MHD. The MHD cannot be directly used for regression task because the MHD
is defined using the discrete-valued label. Thus, we introduce the discrete pseudo label that is
transformed by the real-valued output. To this end, for a continuous-valued label Y = {yi}Ni=1 in
training set, we consider the range of (−∞,min(Y )) ∪ [min(Y ),max(Y )] ∪ (max(Y ),∞), and
partition this range into K ordered intervals {Bink}Kk=1, with Bin1 = [−∞,min(Y )),BinK =
(max(Y ),∞), and

K⋃
k=1

Bink = (−∞,min(Y )) ∪ [min(Y ),max(Y )] ∪ (max(Y ),∞). (53)

Then, we assign the pseudo label L(yi) := k if yi ∈ Bink. For the tuple of (xi, yi, L(yi))
with L(yi) ∈ {1, ..,K}, we compute mk and S in Eq. (7) using L(yi) instead of yi with
Nk = |{i |L(yi) = k}|, as follows:

mk =
1

Nk

∑
i:L(yi)=k

h(xi), S =
1

N

Q∑
k=1

∑
i:L(yi)=k

∆k(xi), ∆k(x) = h(x)−mk

Variance of the function-space prior. The covariance Σ(x) of Eq. (6) using the pseudo label,
consists of K ×K diagonal covariance representing the variances of K intervals in function space.
This K could be different to the dimension of the output (Q = 1).

Thus, we consider to choose the variance of the specific interval using qx = argmaxk∈{1,..,K} wk(x),
and define the one-dimensional variance Σ(x) ∈ R+ as follows:

Σ(x) = 2 ∥mqx∥2σ̂2︸ ︷︷ ︸
SGD Prior

− ∥ĥ(x)∥2σ̂2︸ ︷︷ ︸
Var[g(x)]

with qx = argmax
k∈{1,..,K}

wk(x),

where g(x) = θ(L) ĥ(x) using the projected feature ĥ(x) of Eq. (10) and the last weight random
weight parameter θ(L) ∼ N (θ(L); µ̂, σ̂2). The average of mean µ̂ ∈ RH and standard deviation
σ̂2 ∈ RH

+ are obtained by Eq. (9) for 1-D regression. This can be naturally extended for Q-D
regression by using µ̂ ∈ RQ and diag((σ̂2

q )
Q
q=1) ∈ RQ×Q

+ for last weight random parameter θ(L).
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B APPENDIX:EXPERIMENT DETAILS

B.1 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.1

Experiment setting. We follow the established training hyperparameter configurations as outlined
in He et al. (2016). For ResNet 20 training on CIFAR 10, we use 200 training epochs, a batch size of
128, and use the SGD optimizer with a learning rate of 0.1, weight decay of 5×10−4, and momentum
of 0.9. The cosine learning scheduler is applied after 10 warm-up epochs.

Additionally, we introduce the scale hyperparameter to increase the variance of the weight-space prior
σ̂2
k in Eq. (9) because the variance of the weight-space prior obtained from SGD trajectory is often

too small, potentially leading to numerical errors. We also consider to constrain the dimension of
the function-space prior by selecting the top-k dimensions of the function-output based on the mean
parameters µ(x) of the function-space prior in Eq. (6). Subsequently, we apply KL regularization to
the constrained dimension in function space.

The other configurations of the inference method is described in Table 3.

Inference Hyperparameters Range

T-FVI, R-FVI KL regularization (relative) λ in Eq. (1) {1091, 1092, 1093}
T-FVI, R-FVI Variance of of variational weight parameters (log) U(−6,−5)

T-FVI, R-FVI The number of context inputs per batch 32 / 128
R-FVI Pre-determined iterations T TResNet

R-FVI Radius r in Eq. (13) for adversarial feature {0.05, 0.10, 0.20}
R-FVI Scale of the variance of weight-space prior σ̂2

k 10

R-FVI Restriction of function-space prior (TopK) 3 (CIFAR 10)

Table 3: Hyperparameters settings of the proposed inference (R-FVI)

For computational resource, we used an RTX 2080 (11 GB) to run experiments.

B.1.1 INVESTIGATION OF THE FUNCTION-SPACE PRIOR CONSTRUCTED BY DIFFERENT SGD
TRAJECTORIES.

Following the experiment setting in Section 6.1, we further investigate the function-space prior
constructed by different SGD trajectories. For training epoch T = 200, we consider the SGD
trajectories TResNet = {T1, T2, T3, T4} where each Ti for i = 1, 2, 3, 4, is defined as follows:

T1 = {0.50T − 20, 0.50T − 16, 0.50T − 12, 0.50T − 8, 0.50T − 4},
T2 = {0.70T − 20, 0.70T − 16, 0.70T − 12, 0.70T − 8, 0.70T − 4},
T3 = {0.80T − 20, 0.80T − 16, 0.80T − 12, 0.80T − 8, 0.80T − 4},
T4 = {0.80T − 10, 0.80T − 8, 0.80T − 6, 0.80T − 4, 0.80T − 2}.
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Fig. 8 shows the averaged wqx of Eq. (10) over IND set (CIFAR 10), OOD set (SVHN), and the
adversarial hidden feature zadv of Eq. (13) with radius r ∈ {.05, .10, .20} for the function-space
priors constructed by SGD trajectories {T1, T2, T3, T4}. Fig. 9 shows the corresponding averaged
standard deviation of the function-space priors, i.e, Tr(Σ

1
2 (x)) of Eq. (6), respectively. These figures

imply that when the parameter trajectory of SGD iterations contains sufficient information to discern
whether the feature of an input is likely to be an in-distribution (IND) feature, as illustrated in
Figs. 8c and 8d, then their function-space priors constructed by T3 and T4 induce the larger levels
of uncertainty into the model as the hidden feature ĥ is likely to be OOD set as shown in Figs. 9c
and 9d. These results demonstrate our statements in Proposition 4.1 and Lemma 4.2.
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Figure 8: Investigation on wqx using the different SGD trajectories {T1, T2, T3, T4}.
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Figure 9: Investigation on Tr(Σ
1
2 ) using the different SGD trajectories {T1, T2, T3, T4}.

Comparison of the R-FVI and F-prior. Fig. 10 compares the ACC, NLL (CIFAR 10), and AUROC
(SVHN) of the R-FVIs (KL regularization hyperparameter λ = 0.1) and those of their function-space
priors constructed by SGD trajectories {T1, T2, T3, T4}, respectively. We use the 10 predictive sample
functions (J = 10) for Bayesian model averaging (BMA) prediction and obtain the results over 3
random seeds.

This figure shows that if the SGD trajectory is well selected like {T3, T4}, their corresponding
function-space variational posterior leads to superior performance on IND set (higher ACC) and on
OOD set (higher AUROC).
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Figure 10: Investigation on the performances obtained from different SGD trajectories
{T1, T2, T3, T4}.
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B.1.2 HOW DOES THE RELATIONSHIP BETWEEN CONTEXT AND TRAINING SET AFFECT
T-FVI’S PERFORMANCE ?

Following the experiment setting in Section 6.1, we further investigate the effect of the context set
on the performance of T-FVI using the uniform Gaussian function-space prior N (0, 10IQ×Q); 10 is
empirically found over {5, 10, 50}. We consider the context set

xcxt = (1− α)xtr + αxadd

by introducing the external dataset xext and then mixing xext with training set xtr with the mixing
level α ∈ (0, 1); if α is close to 0, the context set can be regarded as the IND-context set close to xtr.

1e-03 1e-02 1e-01
regularization effect

0.89

0.90

0.91

0.92

0.93

ac
c

T-FVI R-FVI ( 1) R-FVI ( 2)

(a) ACC

1e-03 1e-02 1e-01
regularization effect

0.84

0.86

0.88

0.90

0.92

au
ro

c

(b) AUROC

1e-03 1e-02 1e-01
regularization effect

0.08

0.10

0.12

0.14

in
d-

en
tr

op
y

(c) IND Entropy

1e-03 1e-02 1e-01
regularization effect

0.30

0.40

0.50

0.60

0.70

oo
d-

en
tr

op
y

(d) OOD Entropy

Figure 11: Performance comparison between T-FVI and R-FVIs using mixing level α = 0.2
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Figure 12: Performance comparison between T-FVI and R-FVIs using mixing level α = 1.0

Results. Figs. 11 and 12 compare the results of the baseline inference (T-FVI) the proposed
inference (R-FVI) using different SGD trajectories:

T1 = {0.80T − 10, 0.80T − 8, 0.80T − 6, 0.80T − 4, 0.80T − 2},
T2 = {0.80T − 20, 0.80T − 16, 0.80T − 12, 0.80T − 8, 0.80T − 4}

where T = 200, xtr = CIFAR10, xadd = CIFAR100, and mixing level α ∈ {0.2, 1.0} are
considered. The x-axis denotes the relative regularization hyperparameter λ ∈ {1093, 1092, 1091}
that applies the same amount of the regularization to the model as described in Section 6.1, and the
y-axis denotes the corresponding metric.

Figs. 11 and 12 imply that when the context input is less likely to be the IND set (α = 1.0), the
performance of T-FVI on the IND set (ACC) degrades as shown in Figs. 11a and 12a, while its
performance on the OOD set (AUROC) improves as shown in Figs. 11b and 12b. Notably, the
predictive entropy of T-FVI on the IND set is consistently higher, as shown in Figs. 11c and 12c,
whereas its predictive entropy on the OOD set increases when α = 1.0, as shown in Figs. 11d
and 12d.

Fig. 13 compares the predictive sample functions of our prior on IND set and OOD sets.

IND data # class

#
 s

am
pl

e

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

OOD data # class

#
 s

am
pl

e

0.1
0.2
0.3
0.4
0.5
0.6
0.7

IND data # class

#
 s

am
pl

e

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

OOD data # class

#
 s

am
pl

e

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 13: These figures describes predictive samples {softmax(fi(x))}15i=1 of our prior for each two
IND (CIFAR 10) and OOD (SVHN) data, implying our prior yields more uncertainty on OOD data.
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B.2 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.2

Experiment setting. We follow the established training hyperparameter configurations as outlined
in He et al. (2016). For ResNet 18 and 50 training on CIFAR-10 and CIFAR-100 respectively, we
follow the same configuration of ResNet training on CIFAR 10, described in Appendix B.1.

We compare our method with the following baselines: Maximum a posterior (MAP), Stochastic
weight averaging Gaussian (SWAG) Maddox et al. (2019), Spectral-normalized Gaussian process
(SNGP) Liu et al. (2020b), Mean-field weight-space Variational inference Blundell et al. (2015)
(WVI) using fully Bayesian layer (FL) and last Bayesian layer (LL), and T-FVI Rudner et al. (2022).

The other configurations are described in Table 4.

Inference Hyperparameters Range

MAP Regularization λ {1093, 1094}
T-FVI, R-FVI KL regularization λ in Eq. (1) {1093, 1094, 1095}
T-FVI, R-FVI Variance of of variational weight parameters (log) U(−6,−5)

T-FVI, R-FVI The number of context inputs per batch 32 / 128
R-FVI Pre-determined iterations T TResNet

R-FVI Radius r in Eq. (13) for adversarial feature {0.05, 0.10, 0.15}
R-FVI Scale of the variance of weight-space prior σ̂2

k 10

R-FVI Restriction of function-space prior (TopK) 3 (CIFAR 10), 10 (CIFAR 100)

Table 4: Hyperparameters settings of the proposed inference (R-FVI)

For the R-FVI, we consider the following SGD trajectories TResNet = {T1, T2, T3} with T = 200:
T1 = {0.75T − 20, 0.75T − 16, 0.75T − 12, 0.75T − 8, 0.75T − 4},
T2 = {0.80T − 20, 0.80T − 16, 0.80T − 12, 0.80T − 8, 0.80T − 4},
T3 = {0.85T − 20, 0.85T − 16, 0.85T − 12, 0.85T − 8, 0.85T − 4},

For computational resource, we used RTX 2080 (11 GB) and RTX 3090 TI (24 GB).

B.2.1 DEMONSTRATION OF PRIOR PROPERTY FOR CLASSIFICATION TASK

Furthermore, we empirically demonstrate the property of the function-space prior in Proposition 4.1
and Lemma 4.2 for ResNet 18 and 50. We use the trained models which are reported in Table 1. For
comparison, we consider the random Gaussian perturbation of the last-layer hidden feature, i.e., h+ r
with r ∼ N (0, r2) instead of using the adversarial hidden feature zadv using the radius r.
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(a) ResNet 18 with zadv and r = 0.05
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(b) ResNet 18 with zadv and r = 0.10

Figure 14: Demonstration of the property of the function-space prior in Proposition 4.1 and Lemma 4.2
Fig. 14a shows the result of ResNet 18 using the R-FVI with r = 0.05. The left panel shows wqx

with qx = argmaxQk=1 wk(x), evaluated on the IND set (CIFAR-10), the OOD set (SVHN), the
adversarial hidden feature zadv from Eq. (13), and the random Gaussian perturbation (RN). The
right panel shows the sum of the standard deviation Tr(Σ1/2(x)) of the function-space prior over
each dataset. Similarly, Fig. 14b shows the corresponding results of using r = 0.10. Note that
as r increases from r = 0.05 to r = 0.10, the value of wqx decreases and Tr(Σ1/2(x)) increases.
Figs. 15a and 15b show the corresponding results of the ResNet 50 using R-FVI with r = 0.10 and
0.20, respectively.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

IND ADV RN OOD ADV RN
0.0

0.2

0.4

0.6

0.8

1.0

w
qx

lower  is likely to be OOD feature

IND ADV RN OOD ADV RN
0

2

4

6

8

su
m

 o
f 

1/
2 (

x)

higher  means higher variance of F-S prior

(a) ResNet 50 with zadv and r = 0.10
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(b) ResNet 50 with zadv and r = 0.20

Figure 15: Demonstration of the property of the function-space prior in Proposition 4.1 and Lemma 4.2

From these figures, we confirm that the function-space prior of the trained model can assign the
different levels of the uncertainty into the model depending on the status of the input, which is stated
in Proposition 4.1 and Lemma 4.2. That is, as the inputs are less likely to come from the IND set,
the value of wqx decreases. The sum of the corresponding standard deviation of the function-space
prior Tr(Σ1/2(x)) increases as the value of wqx decreases. This behavior is also observed for zadv,
whereas the value of wqx remains almost constant for RN.

Qualitative analysis of the function-space prior. We present examples of the random predictive
probabilities (J = 15) of R-FVI and T-FVI, evaluated on IND and OOD set, in Fig. 16. This visualiza-
tion shows that R-FVI leads to confident predictions on the IND set as well as inconsistent predictions
on the OOD set as compared to those of T-FVI. This is possibly due to the KL regularization through
the proposed function-space prior.
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Figure 16: Comparison of 15 predictive sample probabilities for IND (CIFAR 10) and OOD (SVHN).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.2.2 INVESTIGATION OF THE EFFECT OF VARYING HYPERPARAMETERS ON R-FVI.

Parameter trajectories of SGD iterations. We first investigate how the parameter trajectory of
SGD iterations affects the performance. We consider the setting of CIFAR 100 using ResNet 50.

We set the KL regularization hyperparameter λ = 1093, the scale of the variance of weight-space
prior S = 10, the radius of adversarial hidden feature r = 0.1, the constrained dimension of the
function output TopK = 10 for regularization as described in experiment setting. Then, we consider
the following SGD trajectories with T = 200:
T1 = {0.75T − 20, 0.75T − 16, 0.75T − 12, 0.75T − 8, 0.75T − 4},
T2 = {0.80T − 20, 0.80T − 16, 0.80T − 12, 0.80T − 8, 0.80T − 4},
T3 = {0.85T − 20, 0.85T − 16, 0.85T − 12, 0.85T − 8, 0.85T − 4},

Table 5 shows the results of the ResNet 50 trained by R-FVI using the parameter trajectories T1, T2,
and T3. The R-FVI using the trajectories T2 and T3 improves the uncertainity estimation on IND set
and OOD set compared to those of MAP.

SGD Trajectory # sample ACC ↑ NLL ↓ ECE ↓ AUROC ↑
MAP J=1 (0.797, 0.015) (0.835, 0.002) (0.074, 0.002) (0.807, 0.014)

R-FVI w. T1
J=1 (0.797, 0.005) (0.835, 0.015) (0.075, 0.001) (0.827, 0.018)
J=5 (0.798, 0.005) (0.820, 0.017) (0.072, 0.002) (0.829, 0.017)

J=10 (0.799, 0.005) (0.819, 0.017) (0.072, 0.001) (0.829, 0.017)

R-FVI w. T2
J=1 (0.797, 0.005) (0.819, 0.015) (0.071, 0.002) (0.843, 0.015)
J=5 (0.798, 0.006) (0.815, 0.016) (0.070, 0.002) (0.844, 0.015)

J=10 (0.798, 0.006) (0.815, 0.016) (0.070, 0.002) (0.844, 0.015)

R-FVI w. T3
J=1 (0.800, 0.005) (0.791, 0.011) (0.062, 0.001) (0.846, 0.010)
J=5 (0.802, 0.005) (0.790, 0.012) (0.061, 0.001) (0.846, 0.010)

J=10 (0.801, 0.004) (0.790, 0.011) (0.061, 0.000) (0.846, 0.010)

Table 5: Investigation the performance for varying the parameter trajectories of the SGD iterations.

Radius r of the adversarial hidden feature. We also investigate how the radius of the adversarial
hidden feature zadv affects the performance. We set the trajectory T3 and consider the following
radius r as described in Table 6, where U(a, b) denotes uniform distribution defined on [a, b].

From Table 6, we see that using the random perturbation on the radius r ∈ U(0.05, 0.15) can improve
ECE evaluated on IND set and the AUROC evaluated on OOD set.

Radius for zadv # sample ACC ↑ NLL ↓ ECE ↓ AUROC ↑
MAP J=1 (0.797, 0.015) (0.835, 0.002) (0.074, 0.002) (0.807, 0.014)

r = 0.10
J=1 (0.800, 0.005) (0.791, 0.011) (0.062, 0.001) (0.846, 0.010)
J=5 (0.802, 0.005) (0.790, 0.012) (0.061, 0.001) (0.846, 0.010)

J=10 (0.801, 0.004) (0.790, 0.011) (0.061, 0.000) (0.846, 0.010)

r ∈ U(0.05, 0.10)
J=1 (0.802, 0.005) (0.799, 0.014) (0.063, 0.002) (0.845, 0.012)
J=5 (0.802, 0.004) (0.797, 0.014) (0.063, 0.001) (0.845, 0.012)
J=10 (0.801, 0.005) (0.797, 0.014) (0.062, 0.001) (0.845, 0.012)

r ∈ U(0.05,0.15)
J=1 (0.799, 0.004) (0.794, 0.012) (0.057, 0.001) (0.849, 0.015)
J=5 (0.799, 0.003) (0.792, 0.012) (0.056, 0.000) (0.850, 0.014)

J=10 (0.799, 0.003) (0.792, 0.012) (0.056, 0.000) (0.850, 0.014)

r ∈ U(0.10, 0.15)
J=1 (0.801, 0.005) (0.790, 0.013) (0.060, 0.001) (0.847, 0.012)
J=5 (0.801, 0.004) (0.789, 0.014) (0.060, 0.001) (0.847, 0.012)
J=10 (0.801, 0.004) (0.789, 0.013) (0.061, 0.001) (0.847, 0.012)

Table 6: Investigation the performance for varying the parameter trajectories of the SGD iterations.

Comparison with the context feature as noise perturbation. Following setting previous ex-
periment for training ResNet 18 on CIFAR 10, we compare the R-FVI using the adversarial hidden
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feature zadv from Eq. (13) and the random Gaussian perturbation (RN) to investigate the effectiveness
of the zadv. Additionally, we compare them with R-FVI using the only RP trick on function-space
without using the function-space KL divergence regularization to investigate the effectiveness of the
feature-distribution-aware prior.

Method # sample ACC ↑ NLL ↓ ECE ↓ AUROC ↑

R-FVI w. zadv (r = .10)
J=1 (0.952, 0.001) (0.187, 0.005) (0.027, 0.002) (0.955, 0.004)
J=5 (0.952, 0.001) (0.187, 0.005) (0.027, 0.002) (0.956, 0.004)

J=10 (0.952, 0.001) (0.186, 0.005) (0.027, 0.001) (0.956, 0.004)

R-FVI w. RN (r = .10)
J=1 (0.952, 0.001) (0.185, 0.003) (0.026, 0.001) (0.952, 0.009)
J=5 (0.952, 0.001) (0.185, 0.003) (0.025, 0.001) (0.952, 0.009)

J=10 (0.952, 0.001) (0.185, 0.003) (0.026, 0.001) (0.952, 0.009)

R-FVI w/o regularization
J=1 (0.948, 0.001) (0.199, 0.004) (0.030, 0.001) (0.940, 0.011)
J=5 (0.948, 0.002) (0.199, 0.005) (0.030, 0.001) (0.940, 0.011)

J=10 (0.948, 0.002) (0.199, 0.005) (0.030, 0.001) (0.940, 0.011)

Table 7: Comparison of R-FVI using the adversarial feature zadv and the random perturbation (RN).

Table 7 shows that using the proposed prior with zadv and Gaussian perturbation (RN) leads to better
uncertainty estimation on both IND set (higher NLL and ECE) and the OOD set (higher AUROC) than
that of using on RP trick (w.o regularization). Also, this result implies that using zadv leads to better
uncertainty estimation on the OOD set (higher AUROC) than that of using Gaussian perturbation.

Comparison with variants of T-FVI using non-linear layers. We conduct additional experiments
on CIFAR-10 using ResNet 18 to demonstrate that using the structure of the last-layer BNN with
R-FVI is effective. To this end, we compare the proposed method with variants of T-FVI replacing
the last linear layer ([512, 10] with 512 layer features and 10 classes) to the following layers:

T-FVI-2: a Bayesian 2-hidden MLP layer ([512, 128] → ReLU → [128, 10]), and
T-FVI-3: a Bayesian 3-hidden MLP layer ([512, 256] → ReLU → [256, 128] → ReLU → [128, 10]).

Method # sample ACC ↑ NLL ↓ ECE ↓ AUROC ↑

T-FVI
J=1 (0.943, 0.004) (0.216, 0.011) (0.032, 0.002) (0.927, 0.009)
J=5 (0.943, 0.004) (0.216, 0.011) (0.032, 0.002) (0.927, 0.009)

J=10 (0.943, 0.004) (0.216, 0.011) (0.032, 0.002) (0.927, 0.009)

T-FVI-2
J=1 (0.945, 0.001) (0.214, 0.006) (0.032, 0.001) (0.924, 0.012)
J=5 (0.945, 0.001) (0.214, 0.006) (0.032, 0.001) (0.924, 0.013)

J=10 (0.945, 0.001) (0.213, 0.006) (0.032, 0.001) (0.924, 0.013)

T-FVI-3 J=1 (0.946, 0.001) (0.220, 0.006) (0.031, 0.001) (0.931, 0.007)
J=5 (0.947, 0.001) (0.219, 0.005) (0.030, 0.001) (0.931, 0.007)

J=10 (0.946, 0.001) (0.219, 0.005) (0.031, 0.001) (0.931, 0.007)

R-FVI
J=1 (0.952, 0.001) (0.187, 0.005) (0.028, 0.002) (0.956, 0.004)
J=5 (0.952, 0.001) (0.187, 0.005) (0.028, 0.002) (0.956, 0.004)

J=10 (0.952, 0.001) (0.187, 0.005) (0.028, 0.001) (0.956, 0.004)

Table 8: Comparison with variants of T-FVI using non-linear layers on IND set (CIFAR 10) and
OOD set (SVHN).

Results. Table 8 shows that R-FVI consistently outperforms the variants of the T-FVI using non-
linear mapping that uses an increasing number of weight parameters for the mean and variance
parameters of the weight-space variational and prior distribution. In addition, we attempted to
compare higher-order MLP layers (4 - 10 layers) with dropout (p = 0.5), and observed that the
models were significantly under-fitted. Therefore, we want to emphasize that this performance
improvement of R-FVI is not marginal.
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B.2.3 COMPARISON WITH THE GAUSSIAN PROCESS (GP) LAST-LAYER

Following the hyperparameters of Wide-ResNet described in the appendix Liu et al. (2020b), we
set the hyperparameters of SNGP because ResNet has not been demonstrated directly. Considering
the sensitivity to kernel hyperparameters, we consider the various length scales l of the RBF kernel
function. We train SNGP based on the experimental protocol in Appendix B.2.

Table 9 shows that SNGP achieves better AUROC for recognizing the OOD set compared to the
proposed method. However, SNGP performs significantly worst on the IND set as comparing other
baseline in Table 1.

Model Method ACC ↑ NLL ↓ ECE ↓ AUROC-S ↑

ResNet 18
CIFAR 10

R-FVI (our) (0.952, 0.001) (0.187, 0.005) (0.028, 0.001) (0.956, 0.004)

SNGP (l = 1× 100) (0.904, 0.013) (0.395, 0.009) (0.055, 0.005) (0.993, 0.001)
SNGP (l = 5× 10−2) (0.908, 0.005) (0.423, 0.013) (0.063, 0.002) (0.993, 0.001)
SNGP (l = 1× 10−4) (0.912, 0.005) (0.412, 0.020) (0.061, 0.003) (0.994, 0.001)

ResNet 50
CIFAR 100

R-FVI (our) (0.799, 0.003) (0.792, 0.012) (0.056, 0.002) (0.850, 0.015)

SNGP (l = 1× 100) (0.540, 0.017) (1.957, 0.053) (0.068, 0.016) (0.953, 0.008)
SNGP (l = 5× 10−2) (0.574, 0.023) (2.242, 0.056) (0.138, 0.025) (0.951, 0.011)
SNGP (l = 1× 10−4) (0.542, 0.015) (2.220, 0.159) (0.091, 0.051) (0.927, 0.016)

Table 9: Comparison R-FVI with SNGP on CIFAR-10 and CIFAR-100.

B.2.4 COMPARISON WITH DEEP ENSEMBLE

We also compare the R-FVI with the Deep Ensemble (DE) Lakshminarayanan et al. (2017). As DE
uses n× P parameters, where P represents the number of single model parameters, and similarly
requires n × T training time, where T is the training time for a single model, we believe that
comparing the DE version of R-FVI is fair as done in Rudner et al. (2022); Wilson & Izmailov (2020)

Thus, we compare DE, R-FVI, and Multi R-FVI (DE version of our method) using 5 member
ensemble meaning one ensemble consists of 5 models trained independently. We report the results in
Table 10.

Model Method ACC ↑ NLL ↓ ECE ↓ AUROC-S ↑

ResNet 18
CIFAR 10

R-FVI (0.952, 0.001) (0.162, 0.003) (0.028, 0.001) (0.956, 0.004)

DE (5 member) (0.961, 0.001) (0.124, 0.002) (0.007, 0.000) (0.964, 0.007)
Multi R-FVI (our) (0.962, 0.001) (0.123, 0.002) (0.007, 0.000) (0.963, 0.004)

ResNet 50
CIFAR 100

R-FVI (our) (0.799, 0.003) (0.785, 0.013) (0.056, 0.002) (0.850, 0.015)

DE (5 member) (0.824, 0.003) (0.654, 0.005) (0.020, 0.001) (0.848, 0.007)
Multi R-FVI (our) (0.824, 0.001) (0.644, 0.005) (0.020, 0.001) (0.860, 0.005)

Table 10: Comparison of R-FVI with DE and Multi-RFVI on CIFAR-10 and CIFAR-100.
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B.3 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.3

Experiment setting. We basically follow the well-known training hyperparameters configurations
in (Dosovitskiy et al., 2021). We use 128 batch size (4 step gradient accumulation with 32 batch
size), and use 1000 steps for training PETS 37 dataset and 2000 steps for training DTD 47 dataset
and AIRCRAFT 100 dataset (T = 41 epoch for PETS 37, T = 77 epoch for DTD 47, and T = 43
epoch for AIRCRAFT 100).

For optimizer, we use SGD optimizer with 1× 1092 learning rate and 0.9 momentum. We use the
cosine learning scheduler after consuming 0.1× total steps as warm-up steps. The other configuration
of each inference method is described in Table 11.

Inference Hyperparameters Range

MAP Regularization λ {1093, 1094}
T-FVI, R-FVI KL regularization λ in Eq. (1) {1095, 1096}
T-FVI, R-FVI Variance of of variational weight parameters (log) U(−6,−5)

T-FVI, R-FVI The number of context inputs per batch 32 / 128 (VIT)
R-FVI Pre-determined iterations T TVIT

R-FVI Radius r in Eq. (13) for adversarial feature {0.05, 0.10, 0.15}
R-FVI Scale of the variance of weight-space prior σ̂2

k 10

R-FVI Restriction of function-space prior (TopK) 5 (PETS 37 and DTD 47), 10 (AIRCRAFT 100)

Table 11: Hyperparameters settings of the proposed inference (R-FVI)

For the R-FVI, we consider the following SGD trajectories TVIT = {T1, T2, T3, T4} with T epoch:
T1 = {0.5T − 10, 0.5T − 8, 0.5T − 6, 0.5T − 4, 0.5T − 2} ,
T2 = {0.6T − 10, 0.6T − 8, 0.6T − 6, 0.6T − 4, 0.6T − 2},
T3 = {0.7T − 10, 0.7T − 8, 0.7T − 6, 0.7T − 4, 0.7T − 2},
T4 = {0.8T − 10, 0.8T − 8, 0.8T − 6, 0.8T − 4, 0.8T − 2}.

For computational resource, we used RTX 3090 TI (24 GB) to run experiments.
Results for AIRCRAFT 100 dataset. Table 12 shows the results of MAP, T-FVI, and R-FVI for
the AIRCRAFT 100 dataset over 3 random seeds. We use J predictive sample functions for Bayesian
model averaging (BMA) prediction.

SGD Trajectory # sample ACC ↑ NLL ↓ ECE ↓ AUROC-S ↑
MAP J=1 (0.701, 0.005) (1.157, 0.008) (0.094, 0.002) (0.998, 0.001)

T-FVI J=10 (0.694, 0.000) (1.255, 0.000) (0.102, 0.000) (0.998, 0.000)
J=100 (0.710, 0.000) (1.166, 0.000) (0.126, 0.000) (0.999, 0.000)

R-FVI w. T1, r = 0.10
J=10 (0.706, 0.010) (1.146, 0.031) (0.033, 0.005) (0.999, 0.000)

J=100 (0.718, 0.006) (1.060, 0.027) (0.044, 0.007) (0.999, 0.000)

R-FVI w. T2, r = 0.10
J=10 (0.692, 0.009) (1.201, 0.034) (0.059, 0.006) (0.998, 0.000)

J=100 (0.707, 0.007) (1.114, 0.030) (0.081, 0.006) (0.999, 0.000)

Table 12: Full results for AIRCRAFT 100 dataset

Results of PETS 37. Table 13 shows the results of MAP, T-FVI, and R-FVI for the PETS 37 dataset
over 3 random seeds. We use J predictive sample functions for Bayesian model averaging (BMA)
prediction.

Results of DTD 47 dataset. Table 14 shows the results of MAP, T-FVI, and R-FVI for the DTD 47
dataset over 3 random seeds. We use J predictive sample functions for Bayesian model averaging
(BMA) prediction.
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SGD Trajectory # sample ACC ↑ NLL ↓ ECE ↓ AUROC-S ↑
MAP J=1 (0.940, 0.002) (0.279, 0.005) (0.038, 0.001) (1.000, 0.000)

T-FVI J=10 (0.935, 0.001) (0.245, 0.004) (0.012, 0.001) (1.000, 0.000)
J=100 (0.937, 0.001) (0.223, 0.001) (0.016, 0.002) (1.000, 0.000)

R-FVI w. T2, r = 0.10
J=10 (0.941, 0.001) (0.237, 0.002) (0.016, 0.001) (1.000, 0.000)

J=100 (0.942, 0.002) (0.213, 0.003) (0.012, 0.001) (1.000, 0.000)

R-FVI w. T3, r = 0.05
J=10 (0.941, 0.003) (0.236, 0.004) (0.014, 0.002) (1.000, 0.000)

J=100 (0.942, 0.001) (0.213, 0.003) (0.009, 0.001) (1.000, 0.000)

R-FVI w. T3, r = 0.10
J=10 (0.942, 0.003) (0.237, 0.002) (0.016, 0.001) (1.000, 0.000)

J=100 (0.942, 0.001) (0.213, 0.002) (0.010, 0.001) (1.000, 0.000)

Table 13: Full results for PETS 37 dataset

SGD Trajectory # sample ACC ↑ NLL ↓ ECE ↓ AUROC-S ↑
MAP J=1 (0.790, 0.006) (1.068, 0.016) (0.131, 0.004) (0.972, 0.004)

T-FVI J=10 (0.781, 0.010) (0.906, 0.027) (0.038, 0.003) (0.983, 0.002)
J=100 (0.785, 0.009) (0.801, 0.022) (0.029, 0.004) (0.988, 0.002)

R-FVI w. T2, r = 0.10
J=10 (0.784, 0.007) (1.012, 0.073) (0.076, 0.016) (0.959, 0.031)

J=100 (0.790, 0.005) (0.883, 0.06) (0.065, 0.018) (0.966, 0.029)

R-FVI w. T3, r = 0.10
J=10 (0.787, 0.004) (0.900, 0.013) (0.047, 0.003) (0.982, 0.006)

J=100 (0.793, 0.001) (0.797, 0.022) (0.035, 0.004) (0.988, 0.006)

R-FVI w. T3, r ∈ U(0.05, 0.15) J=10 (0.791, 0.002) (0.927, 0.010) (0.057, 0.002) (0.980, 0.005)
J=100 (0.794, 0.000) (0.817, 0.018) (0.048, 0.002) (0.986, 0.005)

R-FVI w. T4, r = 0.10
J=10 (0.783, 0.003) (0.892, 0.014) (0.040, 0.002) (0.979, 0.006)

J=100 (0.790, 0.002) (0.790, 0.020) (0.032, 0.001) (0.985, 0.005)

Table 14: Full results for DTD 47 dataset

B.4 ADDITIONAL EXPERIMENT RESULTS FOR SECTION 5.4

Experiment settings. Following the setting of UCI regression task in the appendix of Sun et al.
(2019), we conduct the UCI regression task to demonstrate the effectiveness of the R-FVI. The
baselines of the FVI Sun et al. (2019) and T-FVI Rudner et al. (2022) employ the GP prior with the
RBF kernel and Neural Kernel Network (only for the protein set) as described in Sun et al. (2018).
For the proposed method of R-FVI, we employ the hyperparameter described in Table 15. Then, we
apply MAP inference for first 50 percent of the total training iterations to obtain the information from
SGD trajectory, and then apply function-space variational inference for the remaining iterations.

Hyperparameters Range

learning rate {1093, 1094, 3× 1094},
KL regularization λ in Eq. (1) {0.1, 1.0}
Variance of of variational weight parameters (log) U(−6,−5)

The number of context inputs per batch (#Dtrain/4) / (#Dtrain)

Pre-determined iterations T TUCI

The number of sample functions J 100

Radius r in Eq. (13) for adversarial feature {0.5, 1.0}
Scale of the variance of weight-space prior σ̂2

k 100

Table 15: Hyperparameters settings of the proposed inference (R-FVI)

We consider the SGD trajectory TUCI = {0.5T − 10, 0.5T − 8, 0.5T − 6, 0.5T − 4, 0.5T − 2} with
T = 2000 iterations and T = 80000 epochs (protein set).

For computational resource, we used RTX 4070 (12 GB) for UCI regression task.
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Additional results. Fig. 17 describes the RMSE and Log likelihood (LL) over the UCI datasets.

2.4

3.0

3.6
rm

se

boston

GP VIP FVI T-FVI R-FVI (K=5) R-FVI (K=10)

4.0

4.8

concrete

0.35

0.40

0.45
energy

0.56

0.64

wine

0.30

0.45

0.60

yacht

4.0

4.5

protein

(a) rmse (↓ is better)

3.0

2.4

1.8

lo
g 

lik
el

ih
oo

d

boston

GP VIP FVI T-FVI R-FVI (K=5) R-FVI (K=10)

3.0

2.7

2.4
concrete

0.4

0.0

energy

0.9

0.6

0.3

wine

0.8

0.4

0.0
yacht

2.4

1.6

protein

(b) log likelihood (↑ is better)

Figure 17: RMSE and Log likelihood for UCI regression tasks

Investigation on performance consistency over the different number of bins K. We investigate
on the consistency of the R-FVI performance as using the different number of the interval. Table 16
shows that R-FVI shows consistent performances across varying interval K ∈ {5, 10, 15}.

Metric Dataset K = 5 K = 10 K = 15

RMSE (↓)

Boston 2.521± 0.371 2.525± 0.372 2.530± 0.375
Concrete 3.793± 0.416 3.777± 0.466 3.770± 0.450
Energy 0.350± 0.031 0.349± 0.036 0.335± 0.025
Yacht 0.422± 0.119 0.410± 0.111 0.410± 0.115
Wine 0.510± 0.026 0.509± 0.026 0.509± 0.026
Protein 3.611± 0.039 3.617± 0.041 3.617± 0.041

Log likelihood (↑)

Boston −1.806± 0.202 −1.808± 0.197 −1.810± 0.200
Concrete −2.464± 0.293 −2.509± 0.339 −2.575± 0.479
Energy 0.255± 0.147 0.275± 0.160 0.307± 0.127
Yacht −0.530± 1.053 −0.528± 1.085 −0.512± 1.148
Wine −0.355± 0.113 −0.343± 0.139 −0.345± 0.134
Protein −2.018± 0.008 −2.019± 0.009 −2.019± 0.009

Table 16: RMSE and Log likelihood values for different number K of interval.
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