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ABSTRACT

Multimodal web agents can assist humans in operating unfamiliar websites and
handling repetitive GUI tasks, where effective task planning is essential for de-
composing complex tasks into executable actions. While small open-source mul-
timodal large language models (MLLMs) offer a cost-efficient alternative to com-
mercial models, they suffer from weak planning ability and limited generalization
especially in cross-website scenarios. To address this, we propose the task de-
composition hierarchical analysis framework (TDHAF) to systematically study
compositional generalization across three task granularities: low, middle and high
levels. And two generalization types: in-domain and out-of-domain. Our anal-
ysis reveals that mastering low-level atomic skills does not guarantee high-level
planning competence, while high-level task training yields stronger OOD gener-
alization. Motivated by these findings, we introduce the planning experience ex-
ploration and utilization (PEEU) method, which enables agents to autonomously
set goals, explore unfamiliar environments, and synthesize well-aligned high-level
task trajectories from extracted experiences. In real-world multimodal online web
navigation, where agents train on one website and are evaluated on 12 unseen web-
sites, PEEU consistently outperforms baselines across model scales (3B, 7B) and
training paradigms (SFT, GRPO), reaching 14.9% accuracy, compared to 7.2%
and 10.1% for the atomic and basic methods on the GRPO 7B model. These re-
sults demonstrate that constructing high-level tasks and leveraging experiences is
crucial for OOD planning abilities of small MLLMs.

1 INTRODUCTION

The multimodal web agent is an attractive solution, which can assist humans in operating on unfa-
miliar websites and handling repetitive GUI tasks (Wang et al., 2024; Ning et al., 2025; Tang et al.,
2025a). The core ability of the agent is task planning, which enables it to decompose a complex
task into executable actions (Li et al., 2025d; Cao et al., 2025; Wei et al., 2025). Due to the high
interaction cost of commercial large models, using small open-source multimodal large language
models (MLLMs) is a promising approach (Belcak et al., 2025). However, small MLLMs currently
exhibit weak planning ability and limited generalization, so it is urgent to enhance their planning
abilities (He et al., 2024). In comparison, humans can make plans by utilizing experiences from
interaction and exploration with the environment (Ross, 1989; Anderson, 2013). Inspired by the hu-
man learning process, agents should (1) set their own learning goals in the environment and improve
their abilities through interaction and exploration, and (2) summarize and utilize experiences from
the past to guide future decisions (Silver & Sutton, 2025; Cai et al., 2025; Zhang et al., 2025a).

Recent studies focus on utilizing experiences in the post-training stage to further train models. These
approaches can be categorized into two main streams: (1) Training with low-level tasks (Gu et al.,
2024; Fan et al., 2025). These methods compare changes before and after environment observations
to extract experiences. The extracted experiences are then used to synthesize low-level tasks such
as clicking, typing, and scrolling to train the model. However, it remains unclear whether training
on low-level tasks can effectively generalize to high-level tasks. Hence, it is urgent to propose a
framework to study the compositional generalization of web agent task planning. (2) Training with
high-level tasks (Logeswaran et al., 2025; Trabucco et al., 2025). These methods leverage task-based
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Figure 1: The overview of (a) task decomposition hierarchical analysis framework and (b) planning
experience exploration and utilization method.

exploration trajectories to train the model with high-level tasks, like booking a flight with constraints.
However, trajectories of high-level tasks suffer from misalignment and a lack of stricter constraints.
This limits the generalization ability in high-level tasks. Therefore, it is necessary to develop a
method to synthesize trajectories that are better aligned and strictly constrained by environments.

Therefore, we propose the task decomposition hierarchical analysis framework (TDHAF) to
analyze the compositional generalization ability of models in multimodal web navigation planning
scenarios, as shown in Figure 1a. This framework first defines three levels of task granularity: low-
level tasks, mid-level tasks, and high-level tasks. It further distinguishes between two types of
generalization: in-domain (ID) and out-of-domain (OOD). Building on this taxonomy, we analyze
from three perspectives: (1) ID bottom-up generalization: whether low-level tasks can generalize
to high-level tasks in-domain. (2) ID top-down generalization: whether high-level tasks can gener-
alize to low-level tasks in-domain. (3) OOD multi-level generalization: what granularity of tasks
is better for out-of-domain generalization. The experiments demonstrate the following conclusions:
(1) Mastering individual low-level tasks does not necessarily imply mastery of the corresponding
high-level task. (2) Using high-level tasks makes it easier to generalize downwards in-domain with
greater overall coverage. (3) Using high-level task training can enable the model to acquire stronger
generalization capabilities for multi-level tasks in OOD. Overall, experiments show that in the post-
training stage, using low-level tasks cannot effectively generalize to high-level tasks.

To enable the agent to have stronger OOD generalization ability, we propose the planning experi-
ence exploration and utilization method (PEEU), as shown in Figure 1b. The framework consists
of two stages: planning tree exploration and planning experience utilization. (1) In the planning
tree exploration stage, the exploration model autonomously sets goals adapted to the functional
characteristics of diverse websites, and then conducts goal-driven exploration in the unfamiliar envi-
ronment to construct an exploration tree. (2) In the planning experience utilization stage, trajecto-
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ries are summarized to extract valuable experiences. These experiences are then used to create better
aligned and constrained pairs of tasks and trajectories. To study the agent’s real OOD generalization
ability in web navigation, we evaluate it in a multimodal real-world online web setting. The agent
trains on one website and tests on 12 completely unseen websites. All methods use the same amount
of data and the same hyperparameters to ensure fairness. Based on experiments, our PEEU method
explores and utilizes experience automatically, and has stronger cross-website generalization ability.
For example, PEEU based on Qwen2.5-VL-7B GRPO reaches 14.9% accuracy, compared to 7.2%
for atomic method and 10.1% for basic method. It outperforms baseline methods in both 3B and 7B,
SFT and GRPO settings.

In summary, our contributions are as follows: (1) We propose the task decomposition hierarchi-
cal analysis framework (TDHAF) to analyze the compositional generalization ability of models
in multimodal web navigation task planning scenarios. (2) We propose the planning experience
exploration and utilization method (PEEU), which can explore and better utilize experiences to
improve generalization ability. (3) PEEU improves cross-website OOD generalization in real online
multimodal web navigation tasks, outperforming previous methods across different model scales
and training settings with the same data scale.

2 PRELIMINARIES

In this section, we introduce the definitions of task planning, task levels, in-domain (ID) and out-
of-domain (OOD). More details and definitions, such as experience, are shown in Appendix

Task Planning. In the ReAct paradigm (Yao et al., 2023), the task planning is defined to decom-
pose a complex task into executable actions, which can be formalized as:

ay = ﬂ—(d7 Ho:hst)a (1)
where d is the task description, Ho.: = {(s0,a0), .., (St—1,a¢—1)} is the history, s; is the current
observation, and 7 is the policy. The complete trajectory is 7 = {(s0, o), - - -, (Sm, @m ) }-

Task Levels. We define three levels of tasks as shown in Figure la. Low-level Task: an

atomic task at step ¢ uses only the low-level description and current observation, expressed as
ar = 7(djow, St ). Mid-level Task: a multi-step subtask is executed with the mid-level description,
history from p to ¢, and current observation, expressed as a; = 7(dnid, Hp:t, s¢). High-level Task:
a long-horizon task is executed with the high-level description, full history, and current observation,
expressed as a; = (dnigh, Ho:t, St)-

ID and OOD. ID evaluation uses test data from the same trajectories or websites seen during train-
ing, while OOD evaluation uses test data from entirely new and different websites not encountered
during training. More details are shown in Appendix

3 TASK DECOMPOSITION HIERARCHICAL ANALYSIS FRAMEWORK

To analyze the hierarchical generalization capabilities of task decomposition, we propose the task
decomposition hierarchical analysis framework (TDHAF), as shown in Figure 2. This frame-
work provides an analysis from three perspectives: ID bottom-up generalization, ID top-down
generalization, and OOD multi-level generalization. The subsequent sections will introduce the
analysis framework, data construction, experimental settings, results and analysis.

3.1 ANALYSIS FRAMEWORK

To investigate the compositional generalization ability of models in multimodal web navigation
task planning scenarios, we propose the task decomposition hierarchical analysis framework. This
framework first defines three levels of task granularity: low-level tasks, mid-level tasks, and high-
level tasks. It further distinguishes between two types of generalization: in-domain (ID) and out-
of-domain (OOD). Building on this taxonomy, the framework analyzes from three perspectives:
bottom-up generalization in-domain, top-down generalization in-domain, and multi-level general-
ization out-of-domain. Figure 2 provides a detailed example of the analysis framework. Table
illustrates the training and testing set divisions for the three generalization dimensions. Further
explanations of the three dimensions of generalization are presented following.
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Figure 2: This figure illustrates the task decomposition hierarchical analysis framework. The upper
part shows the trajectory of ID, and the lower part shows the trajectory of OOD. Both domains
contain three levels: low, middle, and high. We study three generalization dimensions, including ID
bottom-up generalization, ID top-down generalization and OOD multi-level generalization.

ID Bottom-up Generalization. To study whether the model can generalize from low-level tasks
to higher-level composite tasks in-domain, we use relatively low-level tasks as the training set and
relatively high-level tasks as the test set. For example, after the model learns single-step atomic task
mapping, we test if it can generalize to multi-step subtasks and long-horizon task decomposition.
We also test if it can generalize to long-horizon task decomposition after learning subtasks.

ID Top-down Generalization. To study whether the model can generalize from high-level tasks to
lower-level tasks in-domain, we use relatively high-level tasks as the training set and relatively low-
level tasks as the test set, which is the opposite of the previous experiment. For example, after the
model learns to decompose long-horizon tasks, we check whether it truly learns the corresponding
subtasks and atomic skills.

OOD Multi-level Generalization. To study whether the model can generalize task decomposition
ability from in-domain tasks to out-of-domain tasks, we separately use three levels of in-domain
tasks as the training set. We use unseen cross-website tasks as the test set to evaluate multi-level
out-of-domain generalization. For example, after the model learns task decomposition at different
levels, we examine how well it applies this ability to unseen tasks.

3.2 DATA CONSTRUCTION

Raw data is collected from Multimodal-Mind2Web (Deng et al., 2023; Zheng et al., 2024a). It is an
offline human-expert-annotated gold trajectory dataset. Employing such a dataset for analysis offers
more significant advantages, as it enables fine-grained examination of the model’s behavior at the
single-step level, including the target numbers, action types, action parameters. The in-domain test
and train data come from the same trajectory, while the out-of-domain test data come from different
trajectories of completely different websites. The in-domain training and test data are derived from
the same trajectories, but the questions are rewritten. The training set has 616 samples, and the test
set has 684 samples. The data statistics are shown in Figure 6. The data split is shown in Table
The prompts for generating data are shown in Appendix D, which are the prompts for generating
low-level tasks and high-level tasks by GPT-4o0.
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Table 1: Accuracy comparison across different generalization dimensions. 3B Instruct refers to the
Qwen2.5-VL-3B-Instruct model. 3B Low refers to the Qwen2.5-VL-3B-Instruct trained at the low
level. Test-ID-Low denotes the in-domain low-level test set. Test-OOD-Low denotes the out-of-
domain low-level test set. The bolded entries indicate the model that achieves the highest Step SR
among the four models on each test set under the same base model.

Model Test-ID-Low Test-ID-Middle Test-ID-High

Id  Action Value StepSR Id Action Value StepSR Id  Action Value Step SR
3B Instruct 30.3  39.5 85.7 17.8 17.1 6.6 9.5 0.0 14.4 9.6 6.7 0.7
3B Low 81.2 994 100.0 80.5 28.6  83.1 4.3 22.7 12.3 85.1 0.0 9.1
3B Middle 72.7  98.7 95.7 714 66.9 955 73.9 63.6 32.5 85.1 0.0 29.2

3B High 773 98.1 95.7 753 57.8 942 65.2 54.5 649 955 65.2 63.0

7B Instruct  59.1 84.4 73.9 49.4 43.1 412 27.3 17.6 358 444 20.0 13.2
7B Low 90.3  99.4 100.0 89.6 377 39.6 435 16.2 292 753 13.0 18.8
7B Middle 87.0 99.4 95.7 86.4 786 922 65.2 72.7 46.1  89.6 21.7 43.5
7B High 85.1 98.1 87.0 83.1 69.5  89.6 39.1 63.6 76.6 922 56.5 72.1

Test-OOD-Low Test-OOD-Middle Test-OOD-High
Id  Action Value StepSR Id  Action Value StepSR Id  Action Value Step SR

3B Instruct  40.5  63.5 100.0 31.1 219 205 333 6.8 16.4 16.4 22.2 0.0
3B Low 81.1 98.6 100.0 79.7 37.8 757 12.5 35.1 29.7 784 0.0 25.7
3B Middle 70.3 100.0 100.0 70.3 486  79.7 125 44.6 324 784 0.0 31.1
3B High 824 100.0 100.0 82.4 459  81.1 12.5 44.6 392 81.1 6.2 39.2

7B Instruct  63.5  91.9 62.5 56.8 46.6 726 20.0 30.1 30.1 64.4 20.0 16.4
7B Low 89.2 973 93.8 85.1 56.8 784 31.2 50.0 37.8  79.7 18.8 33.8
7B Middle 83.8 100.0  93.8 82.4 595 824 12.5 514 37.8 784 0.0 35.1
7B High 81.1 959 75.0 71.0 58.1 824 12.5 54.1 459  81.1 6.2 43.2

Model

Trained in Low, ID Test Trained in Middle, ID Test Trained in High, ID Test

L
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Figure 3: Generalization distribution pie chart for Qwen2.5-VL-3B. The table shows the distribution
of eight types of generalization. Good generalization means successful generalization to other levels,
the larger the better. Bad generalization means failure to fully generalize, the smaller the better.
Results for Qwen2.5-VL-7B, the definitions of good/bad generalization are shown in Appendix

3.3 EXPERIMENTAL SETTINGS

Settings. All experiments are conducted on Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-
Instruct for SFT. The batch size is 8, the learning rate is 5.0e-6 and the training epochs are 3, with
llama-factory (Zheng et al., 2024b) framework. All experiments are conducted on 4 A800 GPUs.

Metric. Following (Deng et al., 2023; Zheng et al., 2024a), we calculate the accuracy between
predictions and ground truth, which includes the following four sub-metrics: Id refers to the ac-
curacy of interactive element number in the Set-of-Mark (SoM). Action measures the accuracy of
action types. Value evaluates the accuracy of action parameters. Step SR represents the accuracy rate
of a single-step prediction completely matching the ground truth.
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3.4 RESULTS AND ANALYSIS

Mastering individual low-level tasks does not necessarily imply mastery of the corresponding
high-level task. As shown in Table | and Figure |2 in the Step SR in-domain setting, the 3B-model
trained in low-level training data achieves 80.5% accuracy in low-level test tasks, but only 9.1%
accuracy for the corresponding high-level test tasks. The 7B-model trained in low-level training
data achieves 89.6% accuracy in low-level test tasks, but only 18.8% accuracy for the corresponding
high-level test tasks. This shows that the bottom-up post-training method is not an effective way for
enhancing planning ability.

Using high-level tasks makes it easier to generalize downwards in-domain with greater overall
coverage. As shown in Figure 3 and Figure 7 in the in-domain setting, we define a task where all
levels succeed as good generalization, and we refer to this percentage as the coverage percentage
(Appendix E for a formal definition). For the 3B model, the coverage percentage is 44.8% when
trained on high-level tasks, 22.7% on middle-level, and 3.2% on low-level tasks. For the 7B model,
the coverage percentage is 51.9% when trained on high-level tasks, 36.4% on middle-level, and 9.1%
on low-level tasks. This shows top-down generalization has higher coverage percentage in-domain.

Using high-level task training can enable the model to acquire stronger generalization capa-
bilities for multi-level tasks in OOD. As shown in Figure 3 and Figure 7 in the out-of-domain
setting, for the 3B model, the coverage percentage is 33.8% when trained on high-level tasks, 24.3%
on middle-level, and 18.29% on low-level tasks. For the 7B model, the coverage percentage is 37.8%
when trained on high-level tasks, 29.7% on middle-level, and 25.7% on low-level tasks. This shows
that top-down generalization also has higher coverage percentage out-of-domain.

4 PLANNING EXPERIENCE EXPLORATION AND UTILIZATION

In this section, we introduce the planning experience exploration and utilization method. This is an
automatic exploration learning framework that first sets goals adaptively and explores in unfamiliar
websites. Then it extracts planning experiences from trajectories and uses them to build aligned and
constrained training data. Users only need to provide a URL to be explored, and the framework can
freely explore the website, extract and summarize experiences, and then build better aligned and
constrained data to train small MLLMs, achieving cross-website generalization capabilities.

4.1 METHOD

The framework is divided into two stages: planning tree exploration and planning experience
utilization, as shown in Figure 4. All prompts are shown in Appendix

Planning Tree Exploration. The autonomous agent requires a shift from passive learning to au-
tonomous learning. It requires self-driven tasks and self-execution exploration. For the self-driven
tasks stage, given a website URL, the exploration agent interacts with the homepage sy (obtained
from the URL) through the MLLM M to generate a basic task list D = {d;,ds,...,d,}, where
each task d; represents a task to be explored. This process can be expressed as:

D = M(so, URL). )

Subsequently, for the self-execution exploration stage, the agent performs autonomous exploration
based on the task list D, the environment Env (with basic URL as entry point), generating a directed
exploration tree R = (V| E) rooted at the homepage, where V' is the set of website screens, E is the
set of actions between these observations. The exploration process is implemented as:

R = Explore(M, D, Env, URL). 3)

This tree can be expanded into interleaved trajectories of observations and actions, where all trajecto-
ries share the same root node. Formally, let 7 = {(so, ao), - - . , (Sm, am )} denote a trajectory, where
S0 is the shared root state (homepage). a; € A represents the action at step t. s;y1 ~ P(+]s¢, ar)
is the subsequent observation. The exploration tree R represents the collection of trajectories from
tasks {7; }7_,, obtained via the recursive exploration process by M.
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Figure 4: An overview of planning experience exploration and utilization method.

Planning Experience Utilization. The agent needs to learn from past explorations and use these
experiences to build high-level trajectory data. The basic high-level tasks have two limitations. (1)
The tasks and the trajectories are not always aligned. For example, the task requires more than 4.5
stars, but the trajectory only reaches 4 stars. (2) The task lacks stricter constraints for unknown envi-
ronments, because the websites are naturally partially observable environments. The constraints of
the unknown environment must come from real exploration, and the homepage information cannot
provide them, such as food ingredients and preparation directions.

In the experience extraction stage, the MLLM M compares before-action state and after-action state
to extract atomic experiences:

€ = M(Su aty St41), 4)
where s; and sy are the visual observations before and after action a;, respectively. A trajectory-
level experience p can be represented as a sequence of atomic experiences:

w=(€1,€2,...,€T). &)

The agent then fuses these sequences of atomic experiences into refined high-level tasks that are
both more aligned with real outcomes and stricter in the constraints. Formally, define a mapping ®

with M that aggregates the experiences into PEEU task d, forming the collection D of PEEU tasks:
D = (dy,dy,...,dn) = ®(ju1, iy - - -, i, M). (6)

In the training stage, the agent’s goal is to learn a policy 7 : S X H x D — A, that maps the current
state s; € S, the history h; € H.;, and the task description d € D, to the next action a; € A. We
use SFT and GRPO (Shao et al., 2024) for training. The details are shown in Appendix [ and

4.2 EXPERIMENTAL SETTINGS

Baseline. (1) Atomic-Prompt uses the input task to retrieve related atomic experiences. The re-
triever uses all-roberta-large-v1 (Reimers & Gurevych, 2020). The number of retrieved atomic ex-
periences is set to 10. These experiences are used as prompts to serve as contextual input. (2)
Trajectory-Prompt uses the input task to retrieve one trajectory-level experience according to its
query as the prompt. (3) Basic uses the original exploration task as the training task. (4) Atomic
uses the atomic operation task as the training task. In addition, all the training parameters are kept
the same. And all methods are controlled to use the same amount of data to ensure a fair comparison.
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Model Method
ID OOD OOD OOD OOD OOD OOD OOD OOD OOD OOD OOD OOD  Total
GPT-40 Instruct 563 537 56.6 60.5 57.7 439 440 651 548 286 569 426 652 527
Claude 3 Opus Instruct 459 58.6 581 550 569 190 462 682 66.7 151 553 535 515 500
Instruct 00 00 00 00 00 00 00 00 23 00 00 00 21 0.3
Atomic-Prompt 00 00 00 ©00 O00 00 00 00 00 00 00 00 00 0.0
Trajectory-Prompt 00 00 00 00 O00 00 00 00 00 00 00 00 00 0.0
Basic-SFT 00 00 00 23 24 00 00 47 00 00 24 69 43 1.7
Qwen2.5-VL-3B  Basic-GRPO 00 24 00 209 00 22 00 23 00 23 24 00 173 3.8
Atomic-SFT 22 24 00 46 73 22 22 11 23 23 00 23 152 3.8
Atomic-GRPO 00 121 23 116 00 22 00 95 00 47 00 69 86 44

PEEU-SFT (Ours) 22 73 69 116 24 129 45 00 7.1 23 48 23 108 5.7
PEEU-GRPO (Ours) 6.6 243 3.0 232 97 68 22 71 00 23 00 00 152 7.7

Instruct 22 73 93 46 97 00 00 166 7.1 00 0.0 139 13.0 6.4
Atomic-Prompt 22 00 69 46 24 00 00 95 00 00 00 00 43 2.3
Trajectory-Prompt 44 00 00 46 24 00 00 95 00 23 24 00 65 2.4
Basic-SFT 00 48 00 46 00 00 00 71 00 00 48 139 173 4.0
Qwen2.5-VL-7B  Basic-GRPO 00 170 7.1 209 48 136 00 47 47 23 121 186 26.0 10.1
Atomic-SFT 155 17.0 11.6 232 00 45 00 7.1 00 47 48 232 195 10.0
Atomic-GRPO 22 195 00 186 00 90 22 119 00 23 00 00 282 7.2

PEEU-SFT (Ours) 88 243 186 162 73 22 22 166 142 23 73 116 260 121
PEEU-GRPO (Ours) 4.4 268 186 209 219 68 00 333 261 00 121 23 217 149

Table 2: Performance across different websites. Bold indicates the highest performance. Underline
indicates the second-highest performance. Overall is the average accuracy of all websites.

Evaluation. We evaluate the planning capabilities of the models on real-world multimodal bench-
mark WebVoyager (He et al., 2024). The test set covers diverse real multimodal online websites,
including cooking, shopping, research, code, travel, sports, news, map, study and other categories.
Follow the standard evaluation procedure of WebVoyager (He et al., 2024), the benchmark uses the
trajectory-level success rate as the final accuracy.

Exploration and training settings. (1) For the exploration phase, we use GPT-40 for exploration
with a maximum step length of 15 in 100 exploration tasks. The browser observation resolution is
set to 1024*768 pixels. For the experience summarization phase, we use GPT-40 to summarize the
changes in the browser’s state before and after the exploration. (2) For the training phase, all our
experiments are conducted on Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct. For the SFT
model, the batch size is 16, the learning rate is 5.0e-6, and the number of training epochs is 5, using
the llama-factory (Zheng et al., 2024b) training framework. For the GRPO model, the batch size is
20, the learning rate is 1.0e-6, the rollout size is 10, and the number of training epochs is 7, using the
verl (Yaowei Zheng, 2025) framework. All experiments are performed on 4 A800 GPUs. For fair
comparison, all experiments use identical trajectories. (3) For the division of training and testing,
to thoroughly validate the model’s generalization and universal capabilities, we trained exclusively
on the Allrecipes (Rec) website, while the remaining 12 websites were unseen during the training to
test ability to generalize OOD. More details are shown in Appendix

4.3 RESULTS AND ANALYSIS

Adapt the task to fit the trajectory with experience. As shown in Figure 4, basic trajectory
tasks face problems of mismatch and a lack of strict constraints. For example, in the basic task, the
rating is 4.5, but the trajectory shows only 4 stars, which causes a mismatch. In addition, the basic
task lacks exploration of the model environment, so it lacks environmental constraints. Therefore,
constraints should be derived from exploration experience. By using experience to modify tasks, we
can create more aligned and strictly constrained advanced tasks. As shown in Table 2, for the 3B
model, the SFT and GRPO of our PEEU are 5.7% and 7.7%, higher than 1.7% and 3.8% of the basic
task. For the 7B model, the SFT and GRPO of our PEEU are 12.1% and 14.9%, higher than 4.0%
and 10.1% of the basic task. This proves the effectiveness of adapting tasks with experience.

Using higher-level tasks provides better cross-website generalization than lower-level tasks in
real-world websites. As shown in Table 2, we train only on the Rec website and test on 12 other
websites that the model never sees in training stages to fully test cross-website generalization. For
the 3B model, our PEEU reaches 5.7% in SFT and 7.7% in GRPO, higher than the low-level scores
of 3.8% and 4.4%. For the 7B model, our PEEU reaches 12.1% in SFT and 14.9% in GRPO, higher
than the low-level scores of 10.0% and 7.2%. This shows that using more aligned and constrained
trajectories makes models stronger in cross-website generalization than in low-level tasks.
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Without a specially designed prompt pipeline, direct training is more effective than retrieval
for small models. As shown in Table 2, we apply both training and retrieval under the same
experiences. Because of the limited ability of small models, using prompts without changing model
parameters does not effectively help them improve in complex tasks. For example, with the retrieval
method, a 7B model gets scores of 2.3% and 2.4%, which are even lower than the base model score
of 6.4%. This shows direct training is more effective than retrieval for small models.

PEEU has the capability for more effective long-horizon planning. As shown in Figure 5 and
Figure 8, the x-axis denotes the steps of successful trajectories, while the y-axis denotes the count of
successful trajectories. PEEU enables more effective long-horizon planning, thanks to the higher-
quality high-level data. In contrast, atomic approaches constrain the model’s ability to generalize
over long-horizon planning, with most being limited to completing only 2-step tasks. These results
show that PEEU demonstrates a much stronger advantage in long-horizon planning.

Instruct Basic Atomic PEEU
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Figure 5: The distribution on the number of successful planning steps for 7B SFT and GRPO.
5 RELATED WORK

DeepResearch Agent. DeepResearch emphasizes broad web searches (Zhang et al., 2025b; Li
et al., 2025¢). Systems like WebSailor (Li et al., 2025a), WebShaper (Tao et al., 2025), and Web-
Watcher (Geng et al., 2025) focus on information seeking. But experience summarization and com-
positional generalization analysis (Li et al., 2025b) remain underexplored. Agent KB (Tang et al.,
2025b) and Memento (Zhou et al., 2025a) construct structured knowledge bases from past explo-
rations using prompt engineering. We study compositional generalization in task planning and lever-
age experiences to train agents, enabling them to achieve stronger web-based planning capabilities
under the same scale of data.

Multimodal Web Navigation Agent. The research on multimodal web agent navigation empha-
sizes vertical depth navigation on web pages (Wang et al., 2024; Ning et al., 2025; Tang et al., 2025a).
Open-source models need two core abilities: grounding and planning. Some works strengthen
grounding for more accurate spatial coordinates (Lu et al., 2025; Luo et al., 2025; Zhou et al.,
2025b). The SoM representation can reduce the influence of grounding, making it easier to study
improvements in planning ability. Prior work often trains on low-level tasks (Gu et al., 2024; Fan
et al., 2025) or distills teacher trajectories without fully utilizing experiences (L.ogeswaran et al.,
2025; Trabucco et al., 2025). Our approach makes high-level tasks more aligned and constrained,
thereby providing stronger generalization ability.

6 CONCLUSION

In this work, we analyze the compositional generalization of MLLMs in web navigation planning
tasks. Through the proposed TDHAF framework, it shows that high-level task training is essen-
tial for OOD generalization. Based on these findings, we introduce the PEEU method, which en-
ables autonomous exploration and effective experience utilization. Experiments on real-world web-
sites demonstrate that PEEU consistently outperforms baselines across model scales and training
paradigms, highlighting the importance of leveraging high-level tasks to enhance planning ability.
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A THE USE OF LARGE LANGUAGE MODELS

In this paper, we use ChatGPT to polish our writing and check for grammar errors. The authors are
responsible for the contents of this submissions.

B DEFINITION DETAILS

In this section, we introduce and formalize the definitions of task planning, and then present the
three levels of task planning granularity in this work, including low-level tasks, mid-level tasks, and
high-level tasks. As well as the definitions of in-domain, out-of-domain and experience.

Task Planning Definition. The task planning is formally defined as a tuple (Li et al., 2025d; Cao
et al., 2025; Wei et al., 2025):

P = <SvAa Ta 807g>~ (7)
Here, S is a set of environment states, A is a set of actions, 7' : S x A — S is a state transition
function, sg € S is an initial state, G C S is a set of goal states. The objective is to find a sequence
of actions (ag, a1, . . ., ay,) that transforms the system from the initial state s, to a goal state s, € G.

In the ReAct paradigm (Yao et al., 2023), the objective is to output the next action given the task
description, history, and current observation. This can be formally represented as:

ar = m(d, Ho:t, 5t)- 8

Here, d is the task description, and Ho: = {(so,a0),(s1,a1),...,(St—1,a;—1)} is the his-
tory of state-action pairs up to time ¢ — 1, s; is the current observation, and 7 is the plan-
ning policy that outputs the action a;. Upon task completion, we obtain a trajectory 7 =

{(s0,@0), (s1,a1), .., (Sn,an)}.

Low-level Task Definition. The low-level task is defined as a single-step task. It is also called the
atomic-level task. For step ¢, the policy 7 uses only the current low-level task description d;,,, and
the current observation s; to determine the next action:

at = T(djow, St)- )

Mid-level Task Definition. The mid-level task is defined as a multi-step subtask. For a subtask
spanning steps p to g, the policy 7 uses the middle-level task description d,y;4, the history H,.; and
the current observation s; to determine the next action:

ay = W(dmida Hp:ta 5t)~ (10)

High-level Task Definition. The high-level task is defined as a long horizon, composed of a se-
quence of subtasks. For a long horizon task 0 to n, the policy 7 uses the middle-level task description
dhign, the history Hg.; and the current observation s, to determine the next action:

at = 7(dnigh, Ho:t, St)- (11)

In-Domain and Out-of-Domain. For the TDHAF, ID evaluation uses test data from the same
trajectories seen during post-training. The task description has been paraphrased, while OOD evalu-
ation uses test data from entirely new websites not encountered during post-training. For the PEEU,
ID evaluation uses test data from the same websites seen during post-training, while OOD evaluation
uses test data from entirely new websites not encountered during post-training.

Experience Definition. As defined in Silver & Sutton (2025), experience is defined as data pro-
duced through an agent’s interactions with the environment. Subsequent work (Cai et al., 2025)
further categorizes experiences into trajectories, knowledge and skills summarized from these tra-
jectories. In this paper, we mainly refer to what is summarized from the trajectory as experience.
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C TDHAF DATASET DETAILS
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Figure 6: Data Distribution for TDHAF.

Table 3: This table shows the TDHAF division of training and test sets for three generalization
dimensions. ID indicates that training and test are derived from the same trajectory in the same
websites, but the tasks are rewritten. OOD indicates they come from different trajectories across
different websites. L denotes low-level tasks, M denotes mid-level tasks, H denotes high-level tasks.

Training Set Test Set
ID Bottom-up Generalization
Train-ID-L Test-ID-L, Test-ID-M, Test-ID-H
Train-ID-M Test-ID-M, Test-ID-H
Train-ID-H Test-ID-H
ID Top-down Generalization
Train-ID-L Test-ID-L
Train-ID-M Test-ID-L, Test-ID-M
Train-ID-H Test-ID-L, Test-ID-M, Test-ID-H

OOD Multi-level Generalization
Train-ID-L  Test-OOD-L, Test-OOD-M, Test-OOD-H
Train-ID-M  Test-OOD-L, Test-OOD-M, Test-OOD-H
Train-ID-H  Test-OOD-L, Test-OOD-M, Test-OOD-H

D TDHAF PROMPT

Build Low Level Prompt for TDHAF

Your task is to generate task descriptions for CLICK/TYPE/SELECT an on-
screen element.

Two screenshots are provided:

Current UI - Shows a interactive element (labeled "1") with a bounding
box.
Post-interaction UI - Highlights changes after interaction (excluding

bounding box disappearance) .

Task:
Purpose Clarity - Clearly define the purpose of the interaction with
the UI element in both descriptions, ensuring they are functionally
identical but phrased differently.
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Ensure the two descriptions serve distinct contexts with no overlapping

phrasing.

Action Consistency - Use only CLICK, TYPE, or SELECT as action types,
with identical parameters in both descriptions (e.g., target
element, input text, or selection option).

UI Change Focus - Describe only observable UI changes (e.g., new
elements appearing, data updates, transitions) resulting from the
action-avoid vague or future-oriented statements.

Training vs. Testing Wording - Paraphrase the purpose distinctly for
training (instructional) and testing (validation) contexts while
keeping functional outcomes identical.

Now, generate the two mission-style descriptions adhering to these
rules. Only output the lists, nothing else.

The raw task is <task>.

Build High Level Prompt for TDHAF

Please make this task more complex, but do not change the parameters in
this task. Add more subtasks after this task, and rephrase the
original task with synonymous expressions. This task and subsequent
tasks can be combined into a more complex task. More complex means
that the current task is a subtask in the middle, and then more
subtasks are added before and after to merge into a more complex
task. But don’t describe the specific tasks in detail. Please
output two task descriptions that are paraphrases of each other, in
the form of a list of Jjson. The key of the element is the string
task, and the value is the task description.
The raw task is <task>.

Inference Prompt for Multimodal-Mind2web for Agent

User:

<image>You are a web agent.

Your task is: <task>

The history is: <history>.

If you want to complete the task, you should output action CLICK/TYPE/
SELECT, id and value in <answer> </answer> tags. Output the one
bbox you should interact with in JSON format.

Examples:

1. For clicking: <answer>{"action": "CLICK", "value": "" ,"id": 3}</
answer>

2. For typing text: <answer>{"action": "TYPE", "value": "example@email.
com", "id": 5}</answer>

3. For selecting an option: <answer>{"action": "SELECT", "value": "
United States","id": 2}</answer>

E GENERALIZATION DISTRIBUTION AND DEFINITION

Let the set of levels be
L = {low, middle, high}. (12)

For a sample x at level ¢ € L, define an indicator

1(t,2) = 1, if the prediction at level / is correct, (13)
77710, otherwise.

Good Generalization. The model is considered to generalize well at some level (low, middle, or
high) if it predicts correctly not only at this level but also at the other two levels. That means correct
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at all three levels. Good generalization means successful generalization to other levels, the larger
the better.
Good(¢,x) =1 ifandonlyif I(¢{,z)=1 V¢ € L. (14)

Bad Generalization. The model is considered to generalize bad at some level if it is correct at
this level, but at least one of the other two levels is wrong. Bad generalization means failure to fully
generalize to other levels, the smaller the better.

Bad(/,z) =1 ifandonlyif I(/,z)=1and 3 € L, {'# ¢ with [({',x) = 0. (15)

Coverage Percentage. Among all samples that are predicted correctly at their own level, and these
samples that are also correct at all three levels (i.e., that achieve good generalization) is called the
coverage percentage.

Formally, let
Gy = {1‘ €Sy | GOOd(f, .T) = 1} (16)

be the set of samples that are correctly predicted at level £ and also satisfy the good generalization
condition. Here, Sy denotes the set of all samples that are predicted correctly at level ¢, and T
denotes the entire test set.

The coverage percentage at level ¢ is then defined as

Coverage(() = ||ij|| x 100%. (17)

Trained in Low, ID Test Trained in Middle, ID Test Trained in High, ID Test

Generalization Types
LowX Midx Highx
LowX MidX Highv
LowX Mid~ Highx
LowX Mid~ Highv
Low~ Midx Highx
Low~ MidX High/

Low~ Mid~ Highx

Low~ Mid~ High/

;r/‘/' S X0 Good Genera-lliza-tion
2 % Bad Generalization

74

Figure 7: Generalization Distribution Pie Chart for Qwen2.5-VL-7B. Good generalization means
successful generalization to other levels, and the larger it is, the better. Bad generalization means
failure to fully generalize to other levels, and the smaller it is, the better.

F PEEU ProMPT

Inference Prompt for Web Voyager

System:

Imagine you are a robot browsing the web, Jjust like humans. Now you
need to complete a task. In each iteration, you will receive an
Observation that includes a screenshot of a webpage and some texts.

This screenshot will feature Numerical Labels placed in the TOP
LEFT corner of each Web Element.
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Carefully analyze the visual information to identify the Numerical
Label corresponding to the Web Element that requires interaction,
then follow the guidelines and choose one of the following actions:
Click a Web Element.
Delete existing content in a textbox and then type content.
3. Scroll up or down. Multiple scrolls are allowed to browse the
webpage. Pay attention!! The default scroll is the whole window. If
the scroll widget is located in a certain area of the webpage,
then you have to specify a Web Element in that area. I would hover
the mouse there and then scroll.
4. Wait. Typically used to wait for unfinished webpage processes, with
a duration of 5 seconds.
5. Go back, returning to the previous webpage.
6. Google, directly jump to the Google search page. When you can’t find
information in some websites, try starting over with Google.
7. Answer. This action should only be chosen when all questions in the
task have been solved.

[N

Correspondingly, Action should STRICTLY follow the format:
— Click [Numerical_Label]

— Type [Numerical_Label]; [Content]

— Scroll [Numerical_Label or WINDOW]; [up or down]
- Wait

— GoBack

- Google

— ANSWER; [content]

Key Guidelines You MUST follow:

* Action guidelines =«

1) To input text, NO need to click textbox first, directly type content

After typing, the system automatically hits ‘ENTER' key.
Sometimes you should click the search button to apply search
filters. Try to use simple language when searching.

2) You must Distinguish between textbox and search button, don’t type
content into the button! If no textbox is found, you may need to
click the search button first before the textbox is displayed.

3) Execute only one action per iteration.

4) STRICTLY Avoid repeating the same action if the webpage remains
unchanged. You may have selected the wrong web element or numerical

label. Continuous use of the Wait is also NOT allowed.

5) When a complex Task involves multiple questions or steps, select "
ANSWER" only at the very end, after addressing all of these
questions (steps). Flexibly combine your own abilities with the
information in the web page. Double check the formatting
requirements in the task when ANSWER.

* Web Browsing Guidelines =

1) Don’t interact with useless web elements like Login, Sign-in,
donation that appear in Webpages. Pay attention to Key Web Elements

like search textbox and menu.

2) Vsit video websites like YouTube is allowed BUT you can’t play
videos. Clicking to download PDF is allowed and will be analyzed by

the Assistant API.

3) Focus on the numerical labels in the TOP LEFT corner of each
rectangle (element). Ensure you don’t mix them up with other
numbers (e.g. Calendar) on the page.

4) Focus on the date in task, you must look for results that match the
date. It may be necessary to find the correct year, month and day
at calendar.

5) Pay attention to the filter and sort functions on the page, which,
combined with scroll, can help you solve conditions like ’‘highest’,

"cheapest’, ’lowest’, ’'earliest’, etc. Try your best to find the
answer that best fits the task.

For example:
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Click [3]

Type [3]; [apple]
Scroll [WINDOW]; [down]
Wait

GoBack

Google

ANSWER; [apple is red]

Your reply should strictly follow the format:

Thought: {Your brief thoughts (briefly summarize the info that will
help ANSWER) }

Action: {One Action format you choose}

Then the User will provide:
Observation: {A labeled screenshot Given by User}

User:

<image>Now given a task: <task> Please interact with https://www.
example.com and get the answer. Observation: please analyze the
attached screenshot and give the Thought and Action. I’ve provided
the tag name of each element and the text it contains (if text
exists). Note that <textarea> or <input> may be textbox, but not
exactly. Please focus more on the screenshot and then refer to the
textual information. <SoM Observation>

. J

Task Setting Prompt

<image>

Analyze the given webpage screenshot and generate 50 different tasks
that users might want to accomplish on this website.

You can focus on searching for specific items. The task should be
combined with the specific function of this website.

The tasks should be varied, and there should be both difficult and
simple tasks.

Output only a JSON-formatted list of tasks with no additional
commentary or explanation.

Example format:

{

"tasks": [

"task 1 description",

"task 2 description",

"task n description"
]
}

J

Exploration Prompt

Imagine you are a robot browsing the web, Jjust like humans. Now you
need to complete a task. In each iteration, you will receive an
Observation that includes a screenshot of a webpage and some texts.

This screenshot will feature Numerical Labels placed in the TOP
LEFT corner of each Web Element.

Carefully analyze the visual information to identify the Numerical

Label corresponding to the Web Element that requires interaction,

then follow the guidelines and choose one of the following actions:

Click a Web Element.

Delete existing content in a textbox and then type content.

3. Scroll up or down. Multiple scrolls are allowed to browse the
webpage. Pay attention!! The default scroll is the whole window. If

the scroll widget is located in a certain area of the webpage,

[
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then you have to specify a Web Element in that area. I would hover
the mouse there and then scroll.

4. Wait. Typically used to wait for unfinished webpage processes, with
a duration of 5 seconds.

5. Go back, returning to the previous webpage. If you scroll down more
than twice and still can’t find the answer, you need to use "Go
back" to return.

6. Google, directly jump to the Google search page. When you can’t find

information in some websites, try starting over with Google.

7. Answer. This action should only be chosen when all questions in the
task have been solved.

Correspondingly, Action should STRICTLY follow the format:
— Click [Numerical_Label]

— Type [Numerical_Label]; [Content]

— Scroll [Numerical_Label or WINDOW]; [up or down]
- Wait

- GoBack

- Google

— ANSWER; [content]

Key Guidelines You MUST follow:

% Action guidelines «

1) To input text, NO need to click textbox first, directly type content

After typing, the system automatically hits ‘ENTER' key.
Sometimes you should click the search button to apply search
filters. Try to use simple language when searching.

2) You must Distinguish between textbox and search button, don’t type
content into the button! If no textbox is found, you may need to
click the search button first before the textbox is displayed.

3) Execute only one action per iteration.

4) STRICTLY Avoid repeating the same action if the webpage remains
unchanged. You may have selected the wrong web element or numerical

label. Continuous use of the Wait is also NOT allowed.

5) When a complex Task involves multiple questions or steps, select "
ANSWER" only at the very end, after addressing all of these
questions (steps). Flexibly combine your own abilities with the
information in the web page. Double check the formatting
requirements in the task when ANSWER.

6) If you feel the current product does not meet the task requirements,

you can use GoBack action to return to the previous screen and
look for other products. Don’t just scroll down-learn to go back.

* Web Browsing Guidelines =«

1) Don’t interact with useless web elements like Login, Sign-in,
donation that appear in Webpages. Pay attention to Key Web Elements

like search textbox and menu.

2) Vsit video websites like YouTube is allowed BUT you can’t play
videos. Clicking to download PDF is allowed and will be analyzed by

the Assistant API.

3) Focus on the numerical labels in the TOP LEFT corner of each
rectangle (element). Ensure you don’t mix them up with other
numbers (e.g. Calendar) on the page.

4) Focus on the date in task, you must look for results that match the
date. It may be necessary to find the correct year, month and day
at calendar.

5) Pay attention to the filter and sort functions on the page, which,
combined with scroll, can help you solve conditions like ’"highest’,

"cheapest’, ’"lowest’, ’'earliest’, etc. Try your best to find the
answer that best fits the task.

Your reply should strictly follow the format:

Thought: {Your brief thoughts (briefly summarize the info that will
help ANSWER) }

Action: {One Action format you choose}
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Then the User will provide:
Observation: {A labeled screenshot Given by User}

Experience Summarize Prompt

Analyze the user’s intent based on the following:
The action performed between these interfaces is <ACTION>

Task:

The first screenshot shows the interface before interaction, while the
second screenshot displays the interface after the click operation.

Generate descriptions explaining the purpose of interaction with the
element.

Focus on meaningful UI changes (e.g., new elements, transitions, or
data updates, Don’t pay attention to the changes in the bbox.).

Only output the task descriptions experience.

Experience Utilization Prompt

In this task, there are too many details provided. I only want to keep
the details specified by the user, and the specific operational
details need to be deleted.

Please directly output the processed string.

The task requirement is a declarative sentence, appearing like a real
world user task.

The raw task is as follows:<low-level task list>

G ALGORITHM DETAILS

In this algorithm, the number of tasks is set to 100, and the maximum exploration depth is 15. In the
experiments, exploration is performed on one website, while testing is conducted on 12 previously
unseen websites to evaluate cross-site generalization ability. The algorithm is shown in Algorithm |.

Algorithm 1 Autonomous Planning with Exploration and Experience Utilization

Require: Website URL, MLLM M, Environment Env
Ensure: Policy 7 for task-oriented planning
Stage 1: Planning Tree Exploration
Obtain homepage state s from the given URL
Generate task list: D = M (sg, URL)
for each task d; € D do
Execute actions a; guided by M
Transition: s;y1 ~ P(:|s¢, at)
Record trajectory 7 = (sg, ag, S1,a1, ... )
end for
Build exploration tree R = Explore(M, T, Env, URL)
Stage 2: Planning Experience Utilization
9: for each trajectory 7 do
10: Extract atomic experiences €; = (¢, G, St+1)
11: Build pu = (€, €1, ..., €r)
12: Fuse into PEEU task: d = ®(u)
13: end for
14: Train policy 7 with SFT and GRPO using PEEU dataset
15: return trained policy 7

PRDIUN R
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For RL training, we set two types of rewards. The first reward is for format, and the second reward
is for answer correctness. For the format reward, we align with the action space and action format
from WebVoyager. Each reward is 1.0, and if both are correct, the total reward is 2.0.

1.0, if the action follows the predefined format
Tformat = . (18)
0.0, otherwise,
1.0, if the predicted answer is correct
Tanswer = . (19)
0.0, otherwise,
R, = Tiormat + Tanswer- (20)

H PEEU EXPERIMENT DETAILS

We evaluate the planning capabilities of the models on real-world multimodal benchmark WebVoy-
ager (He et al., 2024). The test set consists of 643 samples, covering 15 real multimodal online
websites, including shopping, research, code, travel, and other categories. Because some websites
have access frequency limits, we do not evaluate Cambridge Dictionary and Google Search. We
train only on Allrecipes and test on this site and the remaining 12 websites. Following Web Voy-
ager (He et al., 2024), these websites fully comply with the terms of service and user agreements.
The exploration task includes 100 items with a maximum of 15 steps. We filter out data with wrong
formats. The final training set size is 579. In this section, ID refers to the same websites but different
tasks, while OOD refers to completely unseen and different websites. The abbreviation corresponds
to the following names, as shown in Table

Abbreviation Full Name Domain Category
Rec Allrecipes ID Cooking
Ama Amazon OOD Shopping
App Apple 00D Shopping
ArX ArXiv OOD Research
Git GitHub OOD Code
Boo Booking 00D Travel
ESP ESPN OOD Sports
Cou Coursera OOD Study
BBC BBC News 00D News

Fli Google Flights 00D Travel
Map Google Map 00D Map

Hug Huggingface OOD Model
Wol Wolfram OOD Tool
Overall Average accuracy of all websites ID/OOD  Diversity

Table 4: Abbreviations and corresponding full names table

Instruct Basic Atomic PEEU
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Figure 8: The distribution on the number of successful planning steps for 3B SFT and GRPO.

20



Under review as a conference paper at ICLR 2026

I TRAINING REWARD DETAILS
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Figure 9: RL Training Reward.
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