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ABSTRACT

We study the gap-dependent bounds of two important algorithms for on-policy Q-
learning for finite-horizon episodic tabular Markov Decision Processes (MDPs):
UCB-Advantage (Zhang et al. 2020) and Q-EarlySettled-Advantage (Li et al.
2021). UCB-Advantage and Q-EarlySettled-Advantage improve upon the results
based on Hoeffding-type bonuses and achieve the almost optimal v/7-type regret
bound in the worst-case scenario, where 7' is the total number of steps. How-
ever, the benign structures of the MDPs such as a strictly positive suboptimality
gap can significantly improve the regret. While gap-dependent regret bounds have
been obtained for ()-learning with Hoeffding-type bonuses, it remains an open
question to establish gap-dependent regret bounds for ()-learning using variance
estimators in their bonuses and reference-advantage decomposition for variance
reduction. We develop a novel error decomposition framework to prove gap-
dependent regret bounds of UCB-Advantage and Q-EarlySettled-Advantage that
are logarithmic in 7" and improve upon existing ones for ()-learning algorithms.
Moreover, we establish the gap-dependent bound for the policy switching cost of
UCB-Advantage and improve that under the worst-case MDPs. To our knowl-
edge, this paper presents the first gap-dependent regret analysis for ()-learning
using variance estimators and reference-advantage decomposition and also pro-
vides the first gap-dependent analysis on policy switching cost for (-learning.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a subfield of machine learning focused
on sequential decision-making. Often modeled as a Markov Decision Process (MDP), RL tries to
obtain an optimal policy through sequential interactions with the environment. It finds applications
in various fields, such as games (Silver et al.l 2016} 2017; 2018} |Vinyals et al., [2019)), robotics
(Kober et al.} 2013} |Gu et al., 2017), and autonomous driving (Yurtsever et al., 2020).

In this paper, we focus on the on-policy RL tailored for episodic tabular MDPs with inhomogeneous
transition kernels. Specifically, the agent interacts with an episodic MDP consisting of S states,
A actions, and H steps per episode. The regret information bound for any MDP above and any
learning algorithm with K episodes is O(vV H2SAT) where T = K H denotes the total number
of steps (Jin et al.l 2018). Multiple RL algorithms in the literature (e.g. |Zhang et al.| (2020); |L1
et al| (2021); Zhang et al. (2024)) have reached a near-optimal v/T-type regret that matches the
information bound up to logarithmic factors, which acts as a worst-case guarantee.

In practice, RL algorithms often perform better than their worst-case guarantees, as such guaran-
tees can be significantly improved under MDPs with benign structures (Zanette & Brunskill, 2019).
This motivates the problem-dependent analysis for algorithms that exploit the benign MDPs (e.g.,
Wagenmaker et al.[(2022a); Zhou et al.|(2023);|Zhang et al. (2024))). One of the benign structures is
based on the dependency on the positive suboptimality gap: for every state, the best action outper-
forms others by a margin. It is important because nearly all non-degenerate environments with finite
action sets satisfy some sub-optimality gap conditions (Yang et al., [2021)). Recently, |[Simchowitz
& Jamieson| (2019) proved the log T'-type regret if there exists a strictly positive suboptimality gap.
Since then, the gap-dependent regret analysis has been widely studied, for example, Dann et al.
(2021));|Yang et al.[(2021); | Xu et al.[(2021); |Wang et al.[(2022); [He et al.| (2021), etc.
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Model-free RL algorithms, the focus of this paper, are also called ()-learning algorithms and directly
learn the optimal action value function (Q-function) and state value function (V -function) to opti-
mize the policy. It is widely used in practice due to its easy implementation (Jin et al.,|2018) and the
lower memory requirement that scales linearly in S while that for model-based algorithms scales
quadratically. However, the literature on gap-dependent analysis for ()-learning is quite sparse.
Yang et al.|(2021) studied the gap-dependent regret of the Q-Hoeffding algorithm (Jin et al., |2018),
the first model-free algorithm with a worst-case v/T-type regret in the literature, and presented the
first log T-type regret bound for model-free algorithms:

6
o (H SAAlog(SAT)> . 0

where A, is defined as the minimum nonzero suboptimality gap for all the state-action-step triples.

Xu et al.| (2021)) proposed the multi-step bootstrapping algorithm and showed the same dependency
on the minimum gap as [Yang et al.| (2021). Both papers used the simple Hoeffding-type bonuses
for explorations in the algorithm design. However, their analysis frameworks based on Hoeffding-
type bonuses cannot be directly applied to study two important ()-learning algorithms that improve
the regrets of Jin et al.| (2018)) and achieve the almost optimal worst-case regret: UCB-Advantage
(Zhang et al., 2020) and Q-EarlySettled-Advantage (Li et al.,2021). In particular, UCB-Advantage
and Q-EarlySettled-Advantage use variance estimators in their bonuses and reference-advantage de-
composition for variance reduction. It remains an important open question whether such techniques
can improve gap-dependent regret:

Is it possible to establish a potentially improved gap-dependent regret bound for Q-learning using
variance estimators in the bonuses and reference-advantage decomposition?

This is a challenging task due to several non-trivial difficulties. In particular, bounding the weighted
sum of the errors of the estimated )-functions is necessary to establish the gap-dependent regret
bounds for UCB-Advantage and Q-EarlySettled-Advantage, which is very difficult as it involves the
estimated reference and advantage functions and the bonuses that include variance estimators for
both functions. However, the analysis framework of |Xu et al.| (2021) for their non-optimism algo-
rithm cannot bound the weighted sum of such errors, and the analysis frameworks in all optimism-
based model-free algorithms including Jin et al.|(2018)); [Zhang et al.[(2020); L1 et al.| (2021); Yang
et al.|(2021) can only bound the weighted sum under the simple Hoeffding-type bonus.

Besides the regret, the policy switching cost is also an important evaluation criterion for on-policy
RL, especially in applications with restrictions on policy switching such as compiler optimization
(Ashouri et al.,2018)), hardware placements (Mirhoseini et al.,[2017), database optimization (Krish-
nan et al., [2018)), and material discovery (Nguyen et al., 2019). Under the worst-case MDPs, Bai
et al.|(2019) modified the algorithms inlJin et al.| (2018)) to reach a switching cost of O(H3SAlog T),
and UCB-Advantage (Zhang et al., 2020) reached an improved switching cost of O(H2SAlogT')
due to the stage design in ()-function update, both improving upon the cost of ©(K) for regular
Q-learning algorithms (e.g. [Jin et al| (2018))). To our knowledge, none of existing works study
gap-dependent switching costs for ()-learning algorithms, which remains open.

Summary of our contributions. In this paper, we give an affirmative answer to the open questions
above by establishing gap-dependent regret bound for UCB-Advantage (Zhang et al., [2020) and
Q-EarlySettled-Advantage (Li et al. |2021) as well as a gap-dependent policy switching cost for
UCB-Advantage. For (-learning, this paper provides the first gap-dependent regret analysis with
both variance estimators and variance reduction and the first gap-dependent policy switching cost.

Our detailed contributions are summarized as follows.

« Improved Gap-Dependent Regret. Denote Q* € [0, H?] as the maximum conditional variance
for the MDP and 8 € (0, H] as the hyper-parameter to settle the reference function. We prove that
UCB-Advantage guarantees a gap-dependent expected regret of

2
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and Q-EarlySettled-Advantage guarantees a gap-dependent expected regret of

* 2 3 7 2
o <(Q + B2H) H35 Alog(SAT) | H'SAlog (SAT)) . -

Amin 5

These results are logarithmic in 7 and better than the worst-case \/7-type regret in
Zhang et al| (2020); |Li et al. (2021). They also have a common gap-dependent term
o) ((Q* + p?H) H3SA)/Amin) where O(-) hides logarithmic factors. The other term in either
Equation (2) or Equation (3) is gap-free. Our result is also better than Equation for [Yang
et al.| (2021); Xu et al.| (2021) in the following ways. (a) Under the worst-case Q* = O(H?)
and setting 3 = O(1/v/H) as in Zhang et al. (2020) or 3 = O(1) as in [Li et al.| (2021),
0) ((Q* + B?H) H3SA)/Anin) becomes O(H®S A/ Apin ), which is better than Equation (1) by
a factor of H. (b) Under the best variance Q* = 0 which will happen when the MDP is deter-
ministic, our regret in Equation (3) can linearly depend on O(A;ﬁ/ 3), which is intrinsically better
than the dependency on A;&l in Equation . (c) Since our gap-free terms also logarithmically
depend on T', they are smaller than Equation (I)) when A, is sufficiently small.

* Gap-Dependent Policy Switching Cost. We can prove that for any § € (0, 1), with probability
at least 1 — 4, the policy switching cost for UCB-Advantage is at most

HAS A3 log(s‘?%T)
B/ 1 Dot Amin

T
O H|Dopt| IOg <I‘Il)[| + 1) + H|Dgp[| IOg (4)
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Here, D,y is a subset of all state-action-step triples and represents all triples such that the action is
optimal. Dg,, is its complement, and | - | gives the cardinality of the set. Next, we compare Equa-
tion (4) with the worst-case costs of O(H®>SAlogT) in [Bai et al| (2019) and O(H?SAlogT)
in [Zhang et al.| (2020). Since |D0pt\ < HS A for non-degenerate MDPs, our first term in Equa-
tion (@) is better than the worst-case costs. Specifically, when each state has a unique optimal
action so that | Dy | = HS, it implies the improvement by removing a factor of A compared with
O(H?SAlogT). This improvement is significant in applications with a large action space (e.g.
recommender systems (Covington et al.|2016) and text-based games (Bellemare et al.,[2013))). For
the second term where |D§pt| < HSA in Equation || we also improve log T to loglog 7", and
the significance of such improvement is pointed out by [Qiao et al.|(2022);[Zhang et al.| (2022b).

* Technical Novelty and Contributions.

For gap-dependent regret analysis, we develop an error decomposition framework that separates
errors in reference estimations, advantage estimations, and reference settling. This helps bound
the weighted sums mentioned above. We creatively handle the separated terms in the following
way. (a) We relate the empirical errors and the bonus for reference estimations to Q* to avoid
using their upper bounds ©(H?). This leverages the variance estimators. (b) When trying to
bound the errors in reference and advantage estimations, we tackle the non-martingale difficulty,
originating from the settled reference functions that depend on the whole learning process, with
our novel surrogate reference functions so that the empirical estimations become martingale sums.
To the best of our knowledge, we are the first to construct martingale surrogates in the literature
for Q-learning using reference-advantage decomposition.

For the gap-dependent policy switching cost, we explore the unbalanced number of visits to states
paired with optimal or suboptimal actions, which leads to the two terms in Equation (4).

2 PRELIMINARIES

Throughout this paper, we assume that 0/0 = 0. For any C' € N, we use [C] to denote the set
{1,2,...C}. We use I[z] to denote the indicator function, which equals 1 when the event z is true
and O otherwise.

Tabular episodic Markov decision process (MDP). A tabular episodic MDP is denoted as M :=
(S, A, H,P,r), where S is the set of states with |S| = S, A is the set of actions with |A| = A, H
is the number of steps in each episode, P := {P,}/L, is the transition kernel so that P, (- | s,a)
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characterizes the distribution over the next state given the state action pair (s, a) at step h, and
r:= {rp}}L, are the deterministic reward functions with 1, (s, a) € [0, 1].

In each episode, an initial state s; is selected arbitrarily by an adversary. Then, at each step h € [H],
an agent observes a state s;, € S, picks an action a;, € A, receives the reward r, = 7 (sp, ap)
and then transits to the next state s, 1. The episode ends when an absorbing state sy is reached.
Later on, for ease of presentation, when we describe s, a, h along with “any, each, all” or “V”, we
will omit the sets S, A, [H]. We denote P, o nf = E,,  ~p,(|s,a0)(f(Snt1)lsn = s,an = a),
Vsanf =Psanf? — (Psanf)?and 1,f = f(s),V(s,a, h) for any function f : S — R.

Policies, state value functions, and action value functions. A policy 7 is a collection of H func-
tions {7Th S — AA} he[H]’ where A is the set of probability distributions over .A. A policy is

deterministic if for any s € S, 7, (s) concentrates all the probability mass on an action a € A. In
this case, we denote 7,(s) = a. We use V™ : S — R to denote the state value function at step h

under policy . Mathematically, V" (s) := Zgzh B,/ .y )~(@m) [Th (811, ans) | sn = s]. We also
use Q7 : S x A — R to denote the action value function at step A, i.e., Q7 (s,a) := (s, a) +
Zﬁ:hﬂ Es,.ap )~ @) [Th (Shryan) | sn = s, a = a] . |Azar et al[(2017) proved that there al-
ways exists an optimal policy 7* that achieves the optimal value V;*(s) = sup, V7 (s) = V/™ (s)
forall s € S and h € [H]. The Bellman equation and the Bellman optimality equation are

Vi (s) = Eanm, () [@F (5, )] Vi (s) = maxqea Q(s,a’)
Q7 (s,a) :==rp(s,a) + Ps o, Vi and ¢ Qj(s,a) :=rp(s,a) + PsanVii, (5)
Vii1(s) =0,Y(s,a,h) Vii(s) =0,Y(s,a,h).

For any learning problem with K episodes, let 7% be the policy adopted in the k-th episode,
and s¥ be the corresponding initial state. The regret over T = HK steps is Regret(T) :=
Zszl (Vl*(s’f) - ka (s’f)) . Later, when we mention the episode index k with “any, each, all”
or “v”, we will omit the set [K].

Suboptimality Gap. For any given MDP, we can provide the following formal definition.
Definition 2.1. For any (s, a, h), the suboptimality gap is defined as Ay (s, a) := V7 (s) — Q% (s, a).

Equation (5) implies that Ay (s,a) > 0,V(s,a,h). Then it is natural to define the minimum gap,
which is the minimum non-zero suboptimality gap with regard to all (s, a, h).

Definition 2.2. We define the minimum gap as Ay, = inf{A(s,a) : Ap(s,a) > 0,(s,a,h) €
S x Ax [H]}.

We remark that if {Ay,(s,a) : Ap(s,a) > 0,(s,a,h) € S x A x [H]} = ¢, then all actions are
optimal, leading to a degenerate MDP. Therefore, we assume that the set is nonempty and A, > 0.
Definitions [2.1) and [2.2] and the non-degeneration are standard in the literature on gap-dependent
analysis (e.g. [Simchowitz & Jamieson| (2019); Xu et al.| (2020)).

Maximum Conditional Variance. This quantity is formally defined as follows.

Definition 2.3. We define the maximum conditional variance as Q* := max; o 1 {Vs a,n(Vii 1)}
Under our MDP with deterministic reward, Definition @] coincides with that in (Zanette & Brun-
skill, | 2019) which performed variance-dependent regret analysis.

Policy Switching Cost. We provide the following definition for any algorithm with K > 1 episodes.
Definition 2.4. The policy switching cost for K episodes is defined as Ngyien =

f;ll Nowiren (71, 7). Here, the Nyyien(m, ') 1= Y oses Z,{Ll I[mn(s) # m,(s)] represents
the local switching cost for any policies m and 7'

This definition is also used in Bai et al.|(2019) and |Zhang et al.| (2020).

3 MAIN RESULTS

This section presents the gap-dependent regret for UCB-Advantage and Q-EarlySettled-Advantage
in Subsection [3.1] and the gap-dependent policy switching cost for UCB-Advantage in Subsection
We highlight a new technical tool for the gap-dependent regret bound in Subsection [3.2]
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3.1 GAP-DEPENDENT REGRETS

UCB-Advantage (Zhang et al., 2020) is the first model-free algorithm that reaches an almost opti-
mal worst-case regret, which is also reached by Q-EarlySettled-Advantage (Li et al., 2021). Both
algorithms are optimism-based, use upper confidence bounds (UCB) for exploration, and employ
variance estimators and reference-advantage decomposition. UCB-Advantage settles the reference
function at each (s, h) by comparing the number of visits to a threshold that relies on a hyper-
parameter 3 € (0, H]. For readers’ convenience, we provide UCB-Advantage without any modifi-
cation in Algorithm[I]of Appendix[B.1}

Theorem [3.1] provides the expected regret upper bound of UCB-Advantage.

Theorem 3.1. For UCB-Advantage (Algorithm|[l|in Appendix[B.1) with 3 € (0, H], E[Regret(T")]
is upper bounded by Equation (2)).

Q-EarlySettled-Advantage improved the burn-in cost of Zhang et al.| (2020)) for reaching the almost-
optimal worst-case regret by using both estimated upper and lower confidence bounds for V" to
settle the reference function. In this paper, we slightly modify its reference settling condition. At
the end of k-th episode, for any (s, h), the algorithm holds V¥ (s), V,fCB’kH(s), the estimated
upper and lower bounds for V;*(s), respectively. When [V;F(s) — VhL CBA+L(5)| < B holds for
the first time, it settles the reference function value ViR (s) as V;*™(s). [Li et al. (2021) set 8 = 1
for worst-case MDPs. Our paper treats S as a hyper-parameter within (0, H] to allow better control
over the learning process. Algorithms[2]and[3|provide our refined version. For the rest of this paper,
we still call it Q-EarlySettled-Advantage without special notice.

Theorem [3.2] provides the expected regret upper bound of Q-EarlySettled-Advantage.

Theorem 3.2. For Q-EarlySettled-Advantage (Algorithms [2| and [3| in Appendix with § €
(0, H], E[Regret(T')] is upper bounded by Equation (3).

The proof sketch of Theorem[3.2]is presented in Section]to explain our technical contributions. The
complete proofs of Theorems [3.1]and[3.2]are provided in Appendix [B]and Appendix D] respectively.

Next, we compare the results of both theorems with the worst-case regrets in|Zhang et al.| (2020); |L1
et al. (2021) and the gap-dependent regrets in | Yang et al.| (2021)); Xu et al.| (2021]).

Comparisons with Zhang et al.| (2020); [Li et al. (2021). Since the regrets showed in Equa-
tions and ll are logarithmic in 7', they are better than the worst-case regret O(v H2SAT)
when T' > O(poly(HSA, AL 3~1)) where poly(-) represents some polynomial. In addition, our
results imply new guidance on setting the hyper-parameter 5 for the gap-dependent regret, which
is different from 8 = 1/ VH in Zhang et al.| (2020) and # = 1 in |Li et al.| (2021), respectively.
When Q* = 0 which happens when the MDP is deterministic, if we set 3 = ©(H (SApyin)'/*) for

UCB-Advantage and § = O(H AY 3), the gap-dependent regrets will linearly depend on A[;;l/ % and

min

A;&l/ 5, respectively. This provides new guidance on setting 3 when we have prior knowledge about

Amin. When 0 < Q* < H?, the best available gap-dependent regret becomes é(Q*H 25 A) which
holds when 8 < /Q*/H. Knowing that the gap-free terms in Equations (2) and (3) monotonically
decrease in 3, we will recommend setting 8 = O(,/Q*/H) if prior knowledge on Q* is available.
Comparisons with Yang et al. (2021); |Xu et al.| (2021). The gap-dependent regret for|Yang et al.

(2021) is provided in Equation (I)). For the multi-step bootstrapping in Xu et al| (2021)), their regret
bound is given by:

H
1 Zmu
o[y » ol ) m5100(k6) | | ©
helses N Ah(s,a) Amin
=1s€S a#ny (s)
where Zyy = {(h, s,a)|An(s,a) =0 A |Z(');,t(s)| > 1} and prt(s) = {a]A}(s,a) = 0}. In MDPs
where Ay (s,a) = O(Apin) for ©(HSA) state-action-step triples (e.g. the example in (Xu et al.,
2021, Theorem 1.3)) or there are ©(A) optimal actions for each state-step pair (s, h), their regret
reduces to Equation (1), which is worse than ours.



Under review as a conference paper at ICLR 2025

Next, we compare Equations (2) and (3) with Equation (I). Under the worst-case variance
Q* = ©(H?) and letting 8 be ©(1/v/H) or ©(1) which are the recommendations in Zhang et al.
(2020); [Li et al.| (2021) respectively for the worst-case MDPs, the common gap-dependent term
Equations and Il becomes O(H 5SA/Amin), which is better than Equation by a factor of
H. Under the best variance Q* = 0, the gap-dependent term becomes 0(52H 3S A/ Amin), which is
better than Equation for any 5 € (0, H]. In addition, our best possible gap-dependent regret that
is sublinear in A~} is also intrinsically better. Here, we remark that the proof in|Yang et al.[(2021);

min

Xu et al.|(2021) cannot benefit from Q* = 0 due to their use of Hoeffding-type bonuses.

We also comment on the gap-free terms in Equations (Z) and (3). They are dominated by the gap-
dependent term as long as Api, < O(poly((HSA)~, 3)) for some polynomial poly(-). In addition,
the gap-free term in Equation (3)) is linear in S, which is better than that for Equation (2) thanks to
Q-EarlySettled-Advantage algorithm. It utilizes both upper confidence bounds and lower confidence
bounds for V-functions to settle the reference function.

3.2 OUR TECHNICAL TOOL: SURROGATE REFERENCE FUNCTIONS

We develop a new technical tool in the proofs of both Theorems [3.1] and 3.2} the surrogate refer-
ence functions. In this subsection, we explain it with the notations in the proof of Theorem [3.2]
(Appendix [D.T) for Q-EarlySettled-Advantage while all the ideas also apply to UCB-Advantage. A
more detailed proof sketch will be provided in the next section. For a comprehensive explanation
of Q-EarlySettled-Advantage, we refer readers to Appendlx [D.1] and for a detailed mathematical
explanation of the surrogate function, please see Appendix[G]

Before introducing the surrogate reference function, we provide a brief overview of the key steps
of Q-EarlySettled-Advantage. Denote the estimated ()-function, the estimated V -function, and
the reference function before the start of episode k as QF (s, a), V¥ (s), V,?’k(s) and episode k as
{(sk,a®)HL . Let Nf(s,a) be the number of visits to (s, a, h) before the start of episode k. Let
N,’f“ be short for N} (sF, af) and k™ be the episode index for the n-th visit to (s}, a¥, h). While
remaining unchanged for the unvisited triples, the estimated Q)-function is updated on the visited
ones:

Tl(shvah) min {QUCB kH( B ah)s ikﬂ(sha ai), @y (s, an)}, h € [H]. (7
Here, QUCB kot represents the Hoeffding-type estimation similar to Jin et al| (2018), and
E k1 (sﬁ, aﬁ) represents the reference-advantage type estimation as follows:
Nt
W (s af) = ri(sk, af)+ Z (nn (VR -VRE "yl V,fﬁ")(sﬁll)ﬂ%hvk“. (8)
In Equation ( . V’f" -V, J’rkln represents the running estimation of the advantage function, and

Nk N1 k1 prktl
{nn" ﬁ are the corresponding nonnegative weights that sum to 1. {un b },L, thatsumto 1

are nonnegative weights for the reference function. R"**1 is the cumulative bonus that dominates
the variances in the two weighted sums. Next, the estimated V' —function and the reference function
are also updated. For any (s, h), when some reference settling condition related to £ is triggered at

the end of episode k, the reference function will be settled, which means that V}i{ K (s) = V,f k1 (s)

for any &' > k + 1. Thus, we call V}i{’KH, the reference value function after the last episode as the
settled reference function. Q-EarlySettled-Advantage guarantees that

Vi (s) = max Qji (s, a), mh(s) = arg max Qj; (s, ), V(h, k), ©)

QM < QF <H, VM <VE < H, VR <V < H VE<VRE W(hk).  (10)
Event £; in Lemma|D.2](Lemma 2 in|Li et al] (2021)) also claims that with high probability,

QF > Qp, ViR > VE > Vi V(b k). (11)

Equations (9) and (TI) indicate that Q-EarlySettled-Advantage is an optimism-based method that
updates the policy according to an upper bound of Q5.
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Next, we introduce our surrogate reference functions Vf ok, They are defined as follows:
VEE(s) == max{Vy(s), min{V;* (s) + B, VR (s) 1), V(5. B, k). (12)

We use the word “surrogate” because the algorithm does not rely on or learn it, and V,f o differs

from the actual settled reference function Vh K V,f "y

Equation (TT) implies that

is determined before episode k. In addition,

Vi < VRE = min{VF + 8, VY Y(k, h), (13)

and Lemma in Appendix [D.5.2| shows that with high probability, ‘A/,f ’k(s) coincides with the
settled reference value V,f’KH (s) after the settling condition is triggered.

Next, we discuss the usage of V}f ** in our error decompositions. Our proof relies on relating the
regret to multiple groups of estimation error sums that take the form Zle w,(f)k (QF — Q1) (sF, ak).

Here {wé’)k} L are nonnegative weights and ¢ represents the group. Bounding the weighted sum

via controlling each individual Q} (s}, af) — Q} (s}, aj) by recursion on /2 is a common tech-

nique for model-free optimism-based algorithms, and it is also used by all of |Yang et al.| (2021));
Zhang et al.| (2020); |L1 et al.| (2021). Yang et al. (2021) used it on gap-dependent regret anal-
ysis and Zhang et al| (2020); [Li et al| (2021) used it to control the reference setting errors

S (VR (kY — yREFL(E))  However, their techniques are only limited to the Hoeffding-
type update where the errors generated in the recursion take the simple form of O(y/ H3 /N, ) where

NF is short for NJ(sk,aF). When analyzing the reference-advantage type update, we will face a
complicated error (see Equation (T3) in the proof sketch) that involves reference estimations, advan-
tage estimations, and bonuses with variance estimators. See Appendix [G|for the details.

Motivated by the structure of reference-advantage decomposition, we decompose our error into
. Ny Ny R,k" N
four parts: gl = Zn hl 77” (Psﬁva} he T ]l kn )(Vh+1 V}Z(—‘rl) g2 = Zn hl (]1 kT

Sh41
NF . Nf R,k™ PRA R,k™ n
Psﬁﬂw ) h+1 ’g3 = Znhl( " 77" )PS’Z ah, Vh+1 + Z ” ( htl Vh+1 )(32+1)

k
the bonus term G4 and a negative term Zn 1 ny (V,f +k1 - V}f J’rkl )(SZ +1)- The first three terms
correspond to advantage estimation error, reference estimation error, and reference settling error, re-
spectively. Here, we creatively use the surrogate V}f jrkl as it is determined before the start of episode
k. Thus, G1, G are martingale sums and can be controlled by concentration inequalities. Gs corre-
sponds to the reference settling error and can also be well-controlled given the settling conditions

and properties of VR‘ (s). Gy is controlled using the same idea of bounding G1, Ga, Gs. ,ﬁ_kl is
crucial to this process and cannot be replaced by the actual settled reference function Vh HH ysed

in |Zhang et al.| (2020); [Li et al.| (2021). This is because V,f +If+1 depends on the whole learning
process and causes a non-martingale issue in controlling G1, Go. To the best of our knowledge, we
are the first to introduce the novel construction of reference surrogates for reference-advantage de-
composition, which is of independent interest for future research on off-policy and offline methods.

3.3 GAP-DEPENDENT POLICY SWITCHING COST FOR UCB-ADVANTAGE

Different from Q-EarlySettled-Advantage, UCB-Advantage uses the stage design for updating the
estimated Q-function. For each (s, a, h), Zhang et al|(2020) divided the visits into consecutive
stages with the stage size increasing exponentially. It updates the estimated QQ-function only at the
end of each stage so that the policy switches infrequently. Theorem|[3.3|provides the policy switching
cost for UCB-Advantage, and the proof is provided in Appendix dﬁl

Theorem 3.3. For UCB-Advantage (Algorithm [I|in Appendix[B.1) with 3 € (0, H] and any § €
(0,1), with probability at least 1 — §, Ngwich is upper bounded by Equation (EI) Here, Doy =
{(s;a,h) € S x Ax [H]|la = 7}(s)}, and Dgy = (S x A x [H])\ Dop-

Comparisons with existing works. The first term in Equation (@) logarithmically depends on 7T
and the second one logarithmically depends on 1/A;, and log T'. Next, we compare our result with
O(H 2S5 Alog T') in Zhang et al.| (2020), which is the best available switching cost for model-free
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methods in the literature. For the first term in Equation , knowing that |Dyy| < HSA for all
non-degenerated MDPs where there exists at least one state such that not all actions are optimal, the
coefficient is better than Eation (). Specifically, if each state has a unique optimal action so that

71
|Dope| = SH, Equation l) becomes O (HQSlog (55 +1) + H*SAlog (W))

where coefficient in the first term is[Zhang et al|(2020) by a factor of A.

For the second term in Equation (@), when the total steps are sufficiently large such that T' =
Q (poly (SAH, (BAmin) ")) for some polynomial poly(-), it is also better than O(H2SAlog T).

Key Ideas of the Proof. The proof of Theorem 2 in [Zhang et al. (2020) implies Ngywiceh <
> e an 4H log <& + 1), where N,X*!(s,a) is upper bounded by the total number of

visits to (s,a,h). Under their worst-case MDP and noticing that 3, NftY(s,a) < T,

Zhang et al. (2020) further proved their bound O(H?2SAlogT) by applying Jensen’s inequality.
In our gap-dependent analysis, Equation (76) in Appendix [C| shows that with high probability,

2 (s.a h)eDg, Nt (s,a) < O (HAGSA + HS/BS;A), which is much smaller than 7" when T is suf-

ficiently large. This implies the discrepancy among the number of visits to state-action-step triples
with optimal or suboptimal actions. Accordingly, we prove the bound in Equation @) by using
Jensen’s inequality separately for triples with optimal or suboptimal actions.

4 PROOF SKETCH

This section provides a proof sketch to outline the key steps for proving Theorem [3.2] on the gap-
dependent regret of Q-EarlySettled-Advantage and explain our technical contributions. The key
steps for proving Theorem [3.1)are similar except for different bounds on reference settling error and
gap-free regret terms. For space consideration, their complete proofs are presented in the appendix.

Notations. First, we show the weights used in the algorithm. Let n,, := % For N € Ny,
denote 7§ := 1 and 7}’ := va 1(1 — ;). For integers 1 < n < N, we also denote 7%
M H2 ng1(1 —n;), and ul) = ZZ nN/i. When N > 0, they satisfy 1 — n}¥ = 25:1 nN =

N NF  NE - n
Zﬁf L ulY. For simplicity later, we use the notations Er,ffkf =D ol un” f(shﬂ) and Eﬁffkfk =

Zghlunhfk”(shﬂ) for any functions f : S — R and f*¥ : S — R with k € N+, respec-

tively. Similarly, we denote E‘;‘ld‘];f = Zg"l Nn hf(shH) and E?Ld‘,;fkn = Enhl n hfk"( ’,ijrl)
We also denote Pﬁffkf = Zghﬂ‘n P, Kk wf Pffkfkﬂ = ZnN’Llun ]P)Sk ak b W ]P";‘l‘%f =
Zgh L ]P)s;” ok J and Py ZnNh1 Mn szfL,afL,hfkn
In what follows, we present the proof sketch of Theorem [3.2]

Step 1: Bounding Q’ﬁ — Q7 via decomposition and the surrogate reference function. The update
of the estimated Q-function in Equations (7) and (8) guarantees that

Qli(sh ak) < " H + m(s5, o) + B (Vi — VA + BESVER + R (9)
Here, R™* is the cumulative bonus provided in Equation in Appendix l Together with
Q* (8h7 ah) > {rh(slfi? ah) + (1 - 770 )Psf,ak th+1 by Equatlon " and Eadv (‘/}L—‘rl Vlf—kkl ) ==
B (VE — V,FH ) implied by Equation li we have (QF — Q1) (sF,ak) < n, ALY
B (Vi = VA + B VST — P Vi | =: G Denote Vi"* = V% — V%, then:

Gk — Eadv (Vh+1 Vh+1) (Padv _ adV)Vadv E™ + (Eref _ re’r )VR kT + Rh k + R

h+1 ht1 (15)

else 0

Here, Rel;e o = Hip' "t Byt (ViR — VR + (PR VA — B VAT, Equation and
Equation (89) in Appendix show that for all (k, k) simultaneously, with high probability,

adv adv \ Y adv, k™ A Hp? re re A Q*+p2
(P, — B Vi) gO(,/N}k , (BT, — ]pf)vhHgO TNE +W . (16)
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Equation (T6) corresponds to controlling G1,G> discussed in Section [3.2] and holds because our

surrogate reference function adapts to the learning process. To bound the bonus R**, we use V,f ok
in Appendix Equation shows that for all (k, i) simultaneously, with high probability

R <0 (Vi@ e /NE + V) g ). a7

where UF = Zfﬁl(v,ﬁ’f — VXA (s57,1)- Equations (15) to (17) imply
(Qh = Qh)(sh. a) < BV = Vi) +O(y/ (Q + HB?)/NE+ H(NF) ™) + Ryze (18)

h,k ~( NE mre KT R ref 1/R,E™ adv Y/R,k"™
where R .. = O(Uo "HARE (VY -V )+ @RV PRV +( H‘I’£+H)/N;f>-

else

Remark 1: We can show Q* in Equation instead of its upper bound ©(H?) thanks to the
variance estimator (line 16 of Algorithm [2]in Appendix [D:1]) used in Q-EarlySettled-Advantage.

Step 2: Bounding the Weighted Sum. For any given / and non-negative constants {wp j } (k] We
denote ||w||oo,n = Maxye[x]Wh,k and [|wl1,n = ZkE[K] wh, k. We also recursively define wy ;. (h)
forany h < b/ < H, k € [K] as follows:
K Nf
wnp(h) = wngswn (1) = 305wy k(hnN TR = 4], V) € (K]0 > b (19)

k=1n=1

Equation implies the mapping from {wp  },[(k] to {wn’ k() }n (k] is linear. Equation (100)
and Equation (TOT) shows that

lwo(M)ll1n < w1 ne—1s [lw(A)lloo pr < (14 1/H)llw(R)lloo pr—1, YR > b (20)
Next, given non-negative constants {wp }n (], We bound S r—, wni(QF — Q7)(sk,ak).
In Equation (I8) where we take summations with regard to &k on both sides and
apply the standard summation rearrangement technique given in Appendix [D.41] we

K K
have 37", Wh,k(Qﬁ - QZ)(Sﬁa aﬁ) < ke Wh+1,k(h)(Qﬁ+1 - QZ+1)(32+1’ aﬁ+1) +
Z,If:l wn kO /(Q* + HB2)/NF + HY(NF)=3/%) + Zszl whka:]’S]:. Recurring it with regard
toh,h+1...,H, we have

K K H
> wnk(@QF — Q) (shaf) SR+ Y wwn()RES 1)
k=1

where R, = Zszl Zgzh wi x(h)O ( (Q* + HB?)/N}F + H2(N}’f)3/4>. Lemmain Ap-
pendix [D.2]implies that

R <0 (MW@ + ) [SAlollonlilln + B Al ], ) . 2

Step 3: Integrating Multiple Weighted Sums. Next, consider multiple groups of weights related
to [Amin, H]. We split it into N disjoint intervals Z; := [271Apin, 2 Apin) for i € [N — 1] and
In = 2V Apin, 2 Apin]. Here, N = [logy(H/Amin)]. For any giveni € [N] and h € [H], we
denote w,(f)k =1[(QF — Q;)(sk,af) € I;] . For {Wf(;,)k}h,[K]’ we have [|w®||o0., < 1and

K
27 A [ D10 < 3w % (QF — QR)(sE, af) < 2/ Al |1 (23)
k=1

Noticing that -1 | 5540 | wi} (QF — Q5)(sh,ak) = Y/, clip[(Qf — Q7)(sk, af) | Amin] where
cliplz | 6] := = - I[xz > §], Equation further implies

K N
S clipl(Qf — Q5)(sk,af) | Auial = © (Z 2Z‘Amm||w<i>|1,h> . 24)
i=1

k=1
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Letting wy, j, = w,(f)k in Equation lb and applying Equations and , we have

. . ~ . . 1 K H ’
271 Ay |0 ® |1, < O (91\/ w1 n + 02l F, + > ww k(MRS | ©29)

k=1h'=h
Here, 0, = \/H2SA(Q* + 32H), 0, = H3(SA)%. Thus, by Equation in Appendix
A ((Q* B*H) SAH? + H'SA Zk 1 Zh’ —h Wh' (h)Re}:ll;:ek>

Q) <0
™ l1n < 4i-TA2 (201 Apin) + 271 Anin

This further implies

N . . 5 * 2H AH2 4 K H
ZQZAminHW(Z)HLh <0 ((Q +B )S n H*SA Z Z UJh’ Rh k) ) (26)

A else
i=1 min Amin k=1h'=h

where Wy, i (h) = Ef\il w,(f,)k(h) Noticing that dthg(h) =1[(QF — Q7)(sF,ak) > Apin], together

with the linearity showed in Equation (19), Equation (20) implies @/ (h) < O(1),Vh < h/ < H.

Thus, Zszl Zﬁ:h Onr e (h) :]bek < O(Zk 1 Zh 1 else) Appendix shows that with high
probability,

Z Z RMF < O(H®SA/B). (27)

k=1h=1

Summarizing Equations , and (27) and noticing that H*SA/ Amm = O(B*H3SA/Amin +
H*SA/B+ H>SA/j) that follows from the AM—GM inequality, we have

K
> clip[(QF — Q7)(sh,af) | Amin] = O(SAH*(Q* + 8°H) /Amin + H°SA/B).  (28)

Remark 2: Integrating groups of sums is first introduced in|Yang et al.| (2021)) and also applied in [Li
et al.[(2021). It leads to regret dependency on 1/Ay;, instead of 1/AzZ.  that will appear if we do not

use integration. We extend this method in handling Relse that only appears in our proof: we apply the
upper bound in Equation after the integration instead of Equation (25) before the integration.
This helps us remove the dependency on A, in the second term in Equation (28).

Remark 3: Equation can be regarded as bounding the reference settling errors, which is related

to V,? ** and the reference settling design in Q-EarlySettled-Advantage. UCB-Advantage and Q-
EarlySettled-Advantage mainly differ on the reference settling policy, which results in different
bounds for reference settling error and the gap-free regret terms in Equations (2) and (3). We show
the details in Appendix[D.5.2]

Step 4: Bounding the Expected Regret. By Equation @) QF(sk,ak) = VF(sF) > Vr(sh).
Ap(xy, ay) = clip[Vy (z5) — Qj (2, af) | Awin] < clip[(QF — Q) (@Fs af) | Aminl, V(k,

h).
Equation (4) of [Yang et al.|(2021) shows that E (Regret(K)) = [Zk 1 Zh L An(zha )]
which further implies

Thus,

K H
E (Regret(K)) <E | > > " clip[(QF; — Q}) (@}, a}) | Aumin]
k=1h=1
Using Equation (TT8) from Appendix which connects Equation (28) to Equation (29), we can
derive the desired gap-dependent regret bound presented in Theorem

(29)

5 CONCLUSION

In this paper, we have presented the first gap-dependent regret analysis for ()-learning using
reference-advantage decomposition and also provided the first gap-dependent analysis on the policy
switching cost of ()-learning, which answers two important open questions. Our novel error decom-
position approach and construction of surrogate reference functions can be used in other problems
using reference-advantage decomposition such as the offline @-learning and stochastic learning.

10
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A  GENERAL LEMMAS

Lemma A.1. (Azuma-Hoeffding Inequality) Suppose { X} } o~ is a martingale and | X, — Xj,_1| <
ci, Vk € Ny, almost surely. Then for any positive integers N and any positive real number e, it

holds that:
2

€
P(Xx — X0 > ) < exp ()
QZszlci

and

2
P(| Xy — Xo| > €) < 2exp <E> :
2 EkN:1 i
Lemma A.2. (Lemma 10 in[Zhang et al.|(2022a)) Let X1, Xo, ... be a sequence of random vari-
ables taking value in [0,1]. Define Fr, = 0(X1, Xa, ..., Xx—1) and Yy, = E[X|Fy] for k > 1. For
any 6 > 0, we have that

P [Hn,ZXk >3 Vi -l—llog(l/é)] <4

k=1 k=1
and

k=1 k=1
Lemma A.3. (Lemma 11 in[Zhang et al.[{(2021b)) Let (M,,).,>0 be a martingale such that My = 0
and |M,, — My,_1| < cfor some ¢ > 0 and any n > 1. Let

P [371, > Vi =3> Xy -l-llog(l/é)] <4

n
Vary, =Y E[(Mj), — My_1)*| Fi_1]
k=1
forn >0, where Fi, = 0(My, ..., My,). Then for any positive integer n and any €,0 > 0, we have

that
2

i <|Mn| > 2y/2Var, In(1/6) + 2+/eIn(1/3) + 2cln(1/§)) <2 <log2 (”j) n 1> 3.

B PROOF OF THEOREM [3_1]

B.1 ALGORITHM DETAILS

The UCB-Advantage algorithm, first introduced in |Zhang et al.| (2020), achieves the information-
theoretic bound on regret up to logarithmic factors, using a model-free algorithm. The key inno-
vation of the algorithm lies in its combination of UCB exploration (Jin et al., 2018)) with a newly
introduced reference-advantage decomposition for updating ()-estimates.

Before discussing the algorithm in detail, we will first review the special stage design used in the
algorithm. For any triple (s, a, h), we divide the samples received for the triple into consecutive
stages. Define e; = H and e; 1 = [(1 + %)eij for all ¢ > 1, standing for the length of the stages.

We also let £ := {Zle eilj = 1,2,3,...} be the set of indices marking the ends of the stages.

We note that the definition of stages is with respect to the triple (s, a, k). For any fixed pair of k& and
h, let (s§,aF) be the state-action pair at the h-th step during the k-th episode of the algorithm. We
say that (k, h) falls in the j-th stage of (s, a, h) if and only if (s,a) = (s§,a}) and the total visit

—1
im el

number of (sf, a¥) after the k-th episode is in (37, e;, > 0, e

Now we introduce the stage-based update framework. For any (s, a, h) triple, we update Q,(s, a)
when the total visit number of (s,a,h) reaches the end of the current stage (in other word, the
total visit number occurs in £). For k-th episode at the end of a given stage, the ()-estimate

VRFL(sk k) learned from UCB is updated to:
~k
1 &N g H2,
1,k+1 il
W s ak) = rh(shyah) + — D Vi) +2 [ (30)
h j=1 h
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Here we define 7% = 7% (s¥, a¥) be the number of visits to (s¥, a¥, h) during the stage 1mmed1ate1y
before the stage of k-th episode and I; = [ h,x; denotes the index of the i-th episode among the e
episodes. V;¥(s) is the V-estimate at the end of the episode k — 1 with the initial value V}! (s) = H.

The term 2 H - represents the exploration bonus for 77 -th visit, where ¢ = log( ) withp € (0,1)
being failure probablhty

The other estimate, denoted by Q2 k“(sﬁ7 aﬁ), uses the reference-advantage decomposition tech-
nique. For k-th episode at the end of a given stage it is updated to:

nh

k £kl 1, £kl I k k _k
Shvah k Zvii:-l h+1 vk Z ( h+1 iiiq ) (Sh+1) + bh+1(5h,ah). (3D

Here we define nh = n’fL(st, al) be the number of visits to (s, ah, h) prior to the stage of (k)-th
episode and [; = [, 1.1, denotes the index of i-th episode among the n¥ episodes.

In Equation Vgef’k( ) is the reference function learned at the end of episode k — 1. We expect
that for any s € S, sufﬁ01ently large k and some given 5 € (0, H], it holds |Vref F(s) — Vir(s)] <
B. In this case, for s, ~ Pu(-[sk",af"), the variance of the advantage term th-t1(3211)

V,:flk (s fLIH) is bounded by 32, which can be less volatile than the stochastic term Vh 1 (sfjﬂ)

2 nh ref, ki
whose variance can be H?. Meanwhile, the reference term > ;") V,71" (sf) +1) /n¥ use a batch
of historical visits to (s¥,al, h), which can lower the variance as the increase of the sample size

nh. Accordingly, the exploration bonus term bi“ is taken to be an upper confidence bound for the

above-mentioned two terms combined.

With these (Q-estimates, we can update the final Q-estimate as follows:

k+1( .k k Lk+1/ k  k 2k+1kk k(k k

n ' (shyap) = min{Q," (sh, ap,), (sh»an), Qn(sh,ap)}. (32)
We also incorporate Q% (s¥,a¥) here to keep the monomcity of the update. Then we can learn
VM1 (sk) by a greedy policy with respect to the Q-estimates V," ™ (s¥) = max, Q¥ (sF, a). If
the number of visits to the state-step pair (s, h) first exceeds No = O(%) at k-th episode, then

we learn the final reference function V,REF(s) = V,¥*1(s). For the reader’s convenience, we have
also provided the detailed algorithm below.

Algorithm 1 UCB-Advantage

Initialize: set all accumulators to 0; for all (s,a, h) € S x A x [H], set Qn(s,a), Vi(s,a) +
H—-h+ 1;Vhref(s) — H;

—_

2: for episodes k < 1,2,..., K do
3 observe si;
4 forh <+ 1,2,...,H do
5 Take action aj, +— arg max, Qp(sp, a), and observe sp,1.
6: Update the accumulators by 7 := 1y, (sp, an) <= 1,7 := i (sp, an) <= 1,
7: and Equation (33)), Equation (34)), Equation (33).
8 if n € £ then
ref / /
. b 2y TIGEIE o, [OR=GIRP 5 (Mo y By B | HELY,

10: b« 2\/7L;

11: Qn(sh,an) < min{ry(sp, an) + 2 +b,rp(sn, an) + ”Tf + 24+ b,Qn(sn,an)};
12: Vi(sn) < max, Qp (s, a);

13: Sk, an), fon(Shy an), On(Sh, an), n(Sh, an) < 0;

14: end if

15: if Za nh(sh,a) = Ny then V,fef(sh) — Vh(Sh)

16: end if

17: end for

18: end for
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The accumulators in the algorithm are updated as follows.

o= [ (s, an) €= Vi (sng1) — Vit (she1); 0= On(snh,an) & Vi1 (8541); (33)

- - It 2

& = Gnlsn,an) < (Vi1 (sn+1) = Visly (snt1)) s (34)
Meanwhile, the following two types of global accumulators are used for the samples in all stages

ref

2
et i= g (snsan) <= Vi (snen); - ofst o= 0™ (snyan) < (Vigi(snia)) ™ 35)

£k refk -k <k < . Lo
We use ,u',f R a;f R uﬁ, v,’i, 0'2, bﬁ to denote respectively the values of umf, o', [, 0, 0,batstep h

by the start of the k-th episode.

B.2 KEY LEMMAS

Before proceeding to the proof, we will first establish several key lemmas. In the algorithm, define
v =log(2/p) with p € (0, 1) being the failure probability.

Lemma B.1. Using (s, a, h, k) as the simplified notation for ¥V (s,a,h, k) € S x A x [H| x [K].
Let NF(s) = 3, nk(s,a), \i(s) = I[NF(s) < Nol, V"% (s) = max{V;*(s), min{V;*(s) +
B, V¥ (5)}}. Then we have the following conclusions:

(a) (Proposition 4 in Zhang et al.| (2020)) With probability at least 1 — (4H?T* + 12T)p, the
following event holds:

& = {Q,*L(s,a) < QZ-H(S,G) < Q’fb(s,a),V(s,a,h,k)}.

(b) (Corollary 6 in Zhang et al.| (2020)) With probability at least 1 — (AH?*T* + 13T)p, the
following event holds:

& = {NE(s) = No = Vi (s) S V™ < Vi (s) + B,¥(s, 0, b ) }

(c) With probability at least 1 — p, the following event holds:
K K
&3 = {Zpsﬁ7aﬁ,h)‘]f€z+1 <3 Z N1 () + L} :
k=1 k=1
Especially, N, ,1(s) = 0.
(d) With probability at least 1 — S AT'p, the following event holds:

nk Orref,l; *
2 (1, P (5 v2)|
54 = A SB k ,V(s,a,h,k)
nh(sa CL) nh(sa a)
(e) With probability at least 1 — S AT?p, the following event holds:
nk *
’Ziﬁl (lsﬁ;‘H - Psva’h) Vh+1’ 20% AH.
& = - < . : V(s a,h, k)
ng (s, a) ni(s,a) ni(s,a)
(f) With probability at least 1 — S AT?p, the following event holds:
’fbﬁ ]P > ref,l'i *
Zi:l ]lsfliﬂ — Ls,a,h (Vh+1 - Vh+1> 2%
& = < ,V(s,a,h, k
0 nr (s, a) <p ik (s,a) (s,a )

18
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(g)

With probability at least 1 — S AT'p, the following event holds:

’Znh ( Ps,a,h) (Vh*+1)2’ 2 2

nk(s,a) - n¥(s,a)

Sh+

Er = ,V(s,a,h, k)

Proof. We only need prove (c) to (e).

(©)
(d)

(e)

®

Using Lemma[A.2]with [ = 1 and § = p, we can prove this conclusion.
From the definition of V""" (s), we know that for any k € [K]:
Vi(s) < Vit (s) < Vi(s) + B (36)

Then the sequence {Zf nen i Ps’a’h)(V}{f{z — Vi 1)} jen+ is a martingale sequence

with [(1 ., —Ps, h)(V}ﬁf =V 1)| < B. Then according to Azuma-Hoeffding inequal-
Sh+1

ity, for any p € (0, 1), with probability at least 1 — p, it holds for given n¥(s,a) = n € Ny

that:

n

1 _]P)sa )(Aref,li,_ * )
Z ( slh+ ,a,h Vh+1 Vh+1

1

n

2082,

n

<

For any all (s,a,h, k) € S x A x [H] x [K], we have nf (s, a) € [%]. Considering all the
possible combinations (s, a, h, n) € S x Ax [H] x [%], with probability at least 1 — SATp,
it holds simultaneously for all (s,a, h, k) € S x A x [H| x [K] that:

k
1 L £,1; 252L
- 1, -P, )(V B 7 ) < 2
nk (s, ) ;( St et T =k (s, a)

The sequence {Zg_l(]l i —Psan)Viy bjen+ is a martingale sequence with |(1 1, —
T Sht Shy1

Py o)V | < H. Using Lemmaw1th ¢c=H,e= H?and § = &, for a given
nk(s,a) = n € [L], with probability at least 1 — (log,(n) + 1)p > 1 — T'p, we have:

S (L = Poan) Vi
=1

1

n

2Q*.  4H.
@, aH

n n

<2

h+1

Considering all the possible combinations (s, a, h, n) € S x.Ax [H]x [Z], with probability
at least 1 — SAT?p, it holds simultaneously for all (s, a, h, k) € S x A x [H] x [K] that:

k
np

1 2Q~ 4H.
- 1, —P,, )V* <9 n .
oy |2 (L, ~ B Vi S 242 S

The sequence {37_, (1 i —Psa ;L)(V,iill —V¥11)}jen+ is a martingale sequence with
+1
(L:, - IPM,h)(V,ffll — Vi)l < B. Then according to Azuma-Hoeffding inequality,
Sh+1

for any p € (0, 1), with probability at least 1 — p, it holds for given 75 (s,a) = 7 € N4
that:

Z (]]-SL - IP)s,a,h> (V}ﬁfll - Vh+1>
i—1 h+1

For any all (s,a,h, k) € S x A x [H] x [K], we have iif(s,a) € [%
all the possible combinations (s,a,h,k) € S x A x [H] x [K] and n

232,

n

IA

S| =

Considering

J
h(s,0) € [F],
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with probability at least 1 — SAT?/Hp > 1 — SAT?p, it holds simultaneously for all
(s,a,h, k) € S x A x[H] x [K] that:

Sk
p

1 N 232,
1, —P,, (V”f’“—v* ) < 2t
i} (s,a) Z< l ) v T kG, a)

k2
Sh41

(2) The sequence {Zgzl(lli — Poan)(Viii1)?} jen+ is a martingale sequence with
Sh41 e
(L1 —Psan)(Vii1)?| < H? Then according to Azuma-Hoeffding inequality, with
Sht1 o

probability at least 1 — p, it holds for given nf (s,a) = n that:

<H2\/%
- n

Considering all the possible combinations (s, a, h, n) € S x Ax[H]x [%], with probability
atleast 1 — SATp, it holds simultaneously for all (s, a, h, k) € S x A x [H] x [K] that:

n

Z (]l o IP)s,a,h) (Vi:Jrl)z
i=1

1

n Sh1

k
1 h 2
— 1, —P,, ) Vel <m? =2
nﬁ((%a) Z_Zl( siH—l ,a,h ( h+1> = nﬁ((%a)

O

From this lemma, we know that the event (_, &; holds with probability at least 1 — (40 H2S AT*)p.

Next, we will discuss the relationship among the V -estimate th’ the reference function V,;ef’k(s),
the surrogate function V;*"*(s) and the final learned reference function V;REF(s).

Lemma B.2. Forany (s, h,k) € S x [H] x [K], let . Under the event £, N E; in Lemma [B.1} we
have the following conclusions:

(@) V¥ (s) = min{ Vi (s) + B, V¥ (s)}
(b) 0 < V¥ (s) — VREF(5) < HAE(s).
(c) 0 < VIHF(s) — VIR (s) < HAR(s).

(d) [ViF(s) — VREF(s)| < HAE(s).

Proof. (a) Under the event £; in Lemma , we have V¥ () > V¥ (s) > Vi (s). Therefore,
min{V;(s) + 3, V;"*(s)} > V;*(s). According to the definition of V;*"*(s), we have
Vit® (s) = min{ Vi (s) + B, V¥ (s) .

(b) Forany (s,h,k) € S x [H] x [K]:
If NJ¥(s) > Ny, then \f(s) = 0. In this case, the reference function Vgef’k(s) is updated to
its final value V;REF(s) and then V,;*"* (s) — VREF(s) = 0 = HA} (s).
If NF(s) < Ny, then A\f(s) = 1. Since the reference function is non-increasing and
Vb (s) = H, we have 0 < V;*"*(s) — VREF(s) < H = H\(s).
Combining these two cases, we can prove the conclusion (b).

(c) Forany (s,h, k) € S x [H] x [K]:
If NF(s) > Ny, then A (s) = 0. Under the event & in Lemma we have V" (s) <
V;*(s) + 3. Therefore, it holds that V;"*(s) = V;*"*(s) by (a). In this case, V;*"*(s) —
VIt (s) = 0= HAE(s).
If NF(s) < Ny, then A\¥(s) = 1. Since the reference function is non-increasing and
Vb (s) = H, we have 0 < V¥ (s) — V*MF (s) < H.
Combining these two cases, we can prove the conclusion (c).
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(d) Forany (s,h,k) € S x [H] x [K]:
If NJF(s) > No, then A} (s) = 0. In this case, the reference function V;*"* (s) is updated to
its final value V;REF(s). Under the event & in Lemma | we have V,fEF(s) = ViR () <
V*(s) + B. In this case, we know V;*"*(s) = V*"¥(s) = VRF(s). Therefore, it holds
that V" (s) — VREF(s ):O:H/\k( ).
If NJ(s) < No, then \f(s) = 1. Since the reference function is non-increasing and
VM (s) = H, we have 0 < VREF(s) < V¥ (s) < H and 0 < V¥ (s) < V() <
H. Therefore, it holds that ‘Vgef’k(s) — V,fEF(s)‘ < H = HN(s).
Combining these two cases, we can prove the conclusion (d).

[
Lemma B.3. Forany (s,a,h, k) € S x A x [H] x [K] such that 7% (s, a) # 0, it holds that:
k
M)
i, (s, a)
Proof. For it} (s,a) # 0, there exists j € N, such that 7} (s, a) = e; and nf (s,a) = S/_, e;. We
will use the mathematical induction to prove that for any j € RLN# < 4H.
. J
Forj:I bf1<4H
If Zl L% < 4H, then for j € N and j > 2, because e; = |[(1+ %)ej—1] > (1+ 75 )ej—1, we
have ) -
i i-1,
Zi:l 61 Zz 1 € < 1+ Zle € S 1 + 4H1 S 4H
€ €; (1 + ﬁ)ej_l 1+ 3
Therefore, we finish the proof. O
Lemma B.4. For any non-negative weight sequence {wp 1}, , and o € (0, 1), it holds that:
K E(k k 2—a
w,kl[ny (s, ap) # 0] 2
> TR e T2 < S (SAlwlloen) Il
Pt ng(sy,ay) o
and
K k 24 Iy
whkl[7 (s, ap) # 0] _ 2*7°H 1-
. < (SA[wlfoo.n)* lle]ly 5"
; nﬁ(sf,a;’j)a 11—« Lh
= IH}?X{wh,k} and ||w||1,n = Zszl Wh k-
For o = 1, we have the following conclusions:
K
Iink (s ak) £ 0
Z [nh(:h’kah)k# ] < 25Alog(T),
k=1 ny, (sy,, ay)
and
K
TIAk (s ak) £ 0
S Wnton ) 200 545 1og(1).
=1 iy (sy» ay)
Proof.
K k(gk ok K k
3 wh,kl[ny (s, ap) # 0] _ ) wh 1[0} (s,a) # 0, (s}, ap) = (s, a)]
k=1 nﬁ(si’ aﬁ)a s,a k=1 ng (8’ a’)
K !
A wh (8, )
= % (37)
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K

Here we let wj, ;. (s,a) = whkl[nf(s,a) # 0, (sF,af) = (s,a)] and cx(s,a) = Y, w, 1 (8, @).
K

Then o), . (5,0) < [[wllocp and 37, , cn(s,a) < S wns = [l 11

Because nf (s, a) is nondecreasing for 1 < k < K, given the term Zk 17 “h

—hike_
h(s,a)”
wj, 1 (s, @) concentrates on former terms, we can obtain the largest value. For a given state-action

when the weights

pair (s,a) and j € N, according to the stage design, the set {k : nf(s,a) = 25:1 e;} has
at most ej11 < (1 + ;I)ej elements. Thus, the upper bound for the sum of the coefficients of
nk(s,a) = j L €; in Equation (37) is given by (1 + 7 )e;|w]|so,n-

Let:

-1
ko=max{k:» (1+
1

?T‘

H)eijHoo,h <cn(s,a),k € Ny

J

Because €41 < (1 + £ )e; forany j € N, we have

ko
> ejlwlloen < cnls, a),

=2
and then kg satisfies

ko—1 ko

Zejnwnooh < Z (14— ejl‘w||ooh+zej||wl|ooh < 2cp(s,a). (38)

Jj=2
Therefore, back to Equation 1! concentrating the weight to the terms with nf (s, a) = Zzzl €
j€{1,2,...,ko}, for any given state-action pair (s,a) € S x A, we have:

K ko ko
whk 1+ 77)€5]|w]|o0,n 1 €;
~=(14+ = oo — . 39
Y e g ( 1+l | 32— (39)

3 1 el) i j=1 (Zgzl ei)

Forany 0 < y < z and « € (0, 1), we have:

r—=y < 1 (xlfa lfa).

¢ T 1—«

Forany j € Ny, letz = 3/_ e;andy = 327 e;, then we have:
. 1 j @ j—1 11—«
St ((Te) (B
( i=1 ei) =1 =1
ko

Sum the above inequality from 1 to kg, then it holds that:
ko lI-a 11—«
e; 1 1 2¢p(s,a)
< i < — |57 .
Z( J ) _1—04(;6) 1—a<||w||oo,h

Jj=1 i=1Ci

1—

The last inequality is because of Equation (38). Applying this inequality to Equation (39), we have:

Wik 2270‘ a 1-a
an b < 2 ol pentsa)
i

Using this inequality in Equation (37), we have:

K k 2—«

wp kI[ng (s, a) # 0] 22— o 2 -
3 nallo < Tl oo™ < T (Sl ol
k=1 nk(sk,af)
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The last inequality holds due to Holder’s inequality, as )~ , cn(s,a)' = < (SA)“| |w||%*h°‘

By Lemma|[B.J] it is easy to prove prove the second conclusion:

‘ ik k 24a o
Z wn k7 (55, af,) # O} 2°T*H . -

7 > SA||w .
h—1 ﬁﬁ(s ,ay )Ot 1—a ( H ||oo,h) ||w\|1)h

The case of o = 1 is proved in Lemma 11 of [Zhang et al.| (2020). O

Lemma B.5. For any non-negative sequence {X ,’f}k n, we have that

K "h K
H
Z nh(shaah) # 0] ZXl < 3log(T )ZXi}f’
— ny sy, af) i=1 k=1
K . iy K
I[ag (s, ak) # 0] <N "
2 a2 (1) 2
k=1 i=1 =1
Proof. For the first conclusion,
K ny K nk 1. K
I [nyi( Sh’ah #0] < li 2ot Xy o kok ok
X = e [l = j,np(sp,ap) #0
z:l ny, (sy, af)) Z z:: ny(sy, ay) ]22:1 | )
K nf K

Xj. (40

k
For a given episode k, according to the definition of I;, >, I [l; = j,nk (s}, af) # 0] = 1 if and
only if (s§,af) = (sh, ah) and (j, h) falls in the stage before that (k, k) falls in. As a result, for

nk(sk ak) =771 e, the set {k : Enh I[l; = j,nk(sk,af) # 0] = 1} has at most e; elements.
Then it holds that:

Z?hlﬂ = j,ny (s, ap) # 0]
<
Z nh(sﬁ,aﬁ) Z

<> Z < 3log(T) (41)

jeAZ €i JEA p= 1 1 € +

Here, A={j: H < Z] ! eZ < T,j € N, }. The second inequality is because e; < (1 + 7;)e;—1

and then for any p € [e;], 1 e;+p <3 le e;. Then we finish the proof of the first conclusion.
For the second conclusion,

1% ke 0 Ay . K iy, i K
[nh(k )7& ] ZXM:ZZiX ZH l 7],nh($hvah)7é0]
i=1 j=1

k k
1 n (ks an) =1

E
I

L[l = g, 05 (s, ar) # 0]

X, 42

- k -
For a given episode k, according to the definition of I;, Yi* I [l; = j,nf(sk,af) # 0] = 1 if

and only if (sF,af) = (sfl,a{b) and (j,h) falls in the previous stage of that (k,h) falls in.
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As a result, in the stage of (j,h), the number of visits to (s¥,ak, h) is 1 (sk,ak), and the set

{k: Z"’L [l; = j,nf # 0] =1} has at most (1 + 2 )7f (sk, af) elements. Then it holds that:

K S — 0 1
Z i Ec k ok 7& ] <1+ (43)
k=1 nh (8h7 a‘h) H
Therefore, we prove the second conclusion. O

B.3 PROOF SKETCH OF THEOREM [3.1]

Next, we will begin to prove Theorem under ﬂzzl &

Step 1: Bounding the term Q¥ — Q7. By Equation and Bellman Optimality Equation (5, it
holds that:

QZ(SI}CL’ alli) - QZ(SIZ,CLZ)

nf Lig ol I l;
Dot Vhfil (32+1) n Z (V}f+1 fo{1 )(SZH)
G s (s ap)
F[nf = 0 H ~ Py oy Vit

nl l; i Ak
D it Viiifl (32+1) n D it (V}5+1 V}F—E]l:)(sh+1)

(s ai) i (sh» ay)

+1[ng = 0] H—L[itg # 0] Py ox 5, Viry

=1 [nj; = 0] H+1[n} # 0] (G1 + bj(sy,ap)) + 1 [nf; # 0] (G2 + Gs)

+ b (s, af)

<]I[n§750]

<I[nf #0] + 0 (sh, al)

The second inequality is because V,f:ll (shi1) = fo‘f(sh +1)- In the last equality we use

I [nf(sk,af) =0] =1[af(sk,af) = 0]. Here
nk‘
G it (V;ﬁ:ll (sh+1) P, k k’hV}F_Elf)
1 - 3
n; (s, @)

s (Ps,ﬁ,ah,h—ﬂl )(Vﬁf‘f Vi)
Gy =

h+1

ﬁ’fb(s’fb, a’fb) ’

o i i, i,
i (Vhll(sﬁﬂ) - fo+1(5h’+1)>
s (sh, af) '

The upper bounds of G1, G5 and bﬁ is given in Appendix Combining the three upper bounds
Equation (54), Equation (58) and Equation (63)), the following inequality holds:

Gs =

(@ — Q) (s al) ST[ak £0] (G4 —T2 )y 0] | @y
iy (i, ap) T ny (sh, aj,)

(44)

Here, for any b/ € [H] and k € [K], Y}% is defined as:

n , 0 h .
Yk = HI [nf, =0] + h # 0] <ZH( + sﬁ”a:”h/))\lh",_‘_l+\/HFZ,(SZ,,QZ,)L>

nh, sh,,ah, h’+1

ny, £ 0 T . -
+% ZH(Pk’k wot L 1>A§;,+1+H\/m+m

e, (s, ak,) p
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Then in Equation , for the given h, W, = Zszl wh kY.

Step 2: Bounding the weighted sum. For any given / and non-negative constants {w, x }n [x]> We
denote ||wl|oo,n = Maxye[x]wWh,k and [|wl1,n = ZkE[K] wh, k- We also recursively define wy, ;. (h)
forany h < b/ < H, k € [K] as follows:

< M iy = gk, # 0
_th%(h)z [ j?nh 7é ] (45)

whk(h) == wh ik wh 41,5 (h) =
! ny, (sf., ak,)
By Equation (#3)), it is easy to show that
lw(P) L n1 < w1, lw(B)lloon < (L4 1/H)[lw(h) oo, V' > h. (46)

Given the weight {wy, 1}, we will bound Zszl wh i (QF — Q7)(sk, ak). With Equation (44), we
have:

thk Qh Shvah) Qh(shaalﬁ))

k=1

K K 3

) (Q* + B2H). n H.f

<> wnal [t £ 0] Ga+ Y wna | T[mnk £ 0] [ b L[k £ 0] o
= Z ER T

K

—|—th7th]€.

k=1

K
< s () (@ = Qi) (Shys @) +1/(@ + B2H)S Al ol il 10

<.
I
—

K
11 3 1
+ H 3 (SA[w][oont) TIWlIf ), + D wn i Vi (47)
k=1

In this inequality, the upper bound of Zle wh, k%ﬂfb # 0] G5 is given in Appendix The upper

bounds of middle two terms is given by Lemma|B.4|with « = § and a = 3.

Recurring Equation (47) for h, h + 1, ..., H, since Q% (s,a) = Q%,(s,a) = 0 and the weight
relationship Equation (45) and Equatlon (@ we have:

thk Qr(sy,af) — Qr (s, af))

k=1

S H\/ Q* + B2H)SA||w|loo,nlll|1,n0 + H T (SAJI][o0,nt) IIWI|1h+ Z th’ Y.
=h k=1
(48)

Step 3: Integrating multiple weighted sums. For any N = [log,(H/Amim)], n € [N], k € [K]
and the given h € [H], let:

=1 [QZ(S;CL ) Qh(sh’ ah) [2n 1AImm 2nAmm)] )

and

oo = maxewy) < 1, ™l = Y wi-

For h < b/ < H and any n € [N] the weight {wgf’)k} % can be defined recursively by Equation 1i

K 'Flk/ 7 - vk
(n) (n).  (n) _ (n) 1\ i Wl = g, 15, # 0]
whn (h) - whnj’ th’L-‘rlj(h) - wh',k(h’) ‘ 1'FLZ (Sz (Lzh) .
k=1 ’ 7y ’

25



Under review as a conference paper at ICLR 2025

Therefore, for any j € [K], it holds that:

K N ﬁ]l:/ y ﬁk/
thq-l,ﬂ Z <Z }(L’})k(h)> >t H[lz( ,j’ kh) £ 0].

k=1 \n=1

Then by mathematical induction on &' € [h, H], it is straightforward to prove that for any j € [K],

N 1 h'—h
S wih(n) < <1 + H) <3,
n=1

given that for any j € [K]
K iy, )
Z Zzhlﬂ[ 7 —],nh/ #0] < 1+i
ny, (s, ak,) - H

k=1

by Equation (43) and 3" (”)(h) PO ,(:? <1
Applying the weight {wﬁn,z} « to Equation , for any n € [N], it holds that:

Zw(n) Qh Shaah) QZ(SIfLaaZ))

< 1@ 1 P AT+ B S I, 1 3 5wl

h'=h k=1

On the other hand, according to the definition of W;:;z’

s

K
ST w (QE(sh,af) — Qn(sk.af)) = 27 A w7
k=1

Therefore, we obtain the following inequality:

on-— lAmlnHWH(n)

< H@ 1 PSR o+ H¥ A O, + 3 3wl

h'/=h k=1
Then at least one of the following three inequalities holds:

2 Al [lI{) < HAJ/ (@7 + B2H)S Al w1 e,

2" A in 0™ |1, < HT(SAﬁ(HwH{”ﬁ,

2" IAmm||¢"||1h Z ZW Yf/.

h'=h k=1
Solving this three inequalities, we know that:

(Q* + B?H) SAH?*. H3%SA S St Wt

h)YE.

Yh B

4n=2AZ. ,(anlAmin)%7 2n- 1Amm

min

lwl[{") < O max{

o (R)Y5 })

An—2A2. (2"’_1Amin)% 2n= 1Amm

min

By Equation (#9), we have:

<O<(Q*+52H) SAH?. HS SA Zh’ th lwh’ ( )Y;i?)

N H K H K H K
>3 Suthonm = 3 (St v <23 3o
k=1

n=1h'=h h'’=h k=1 \n=1 h'=1k=1
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Therefore,
N * 2 2 H K
A () (Q* + B?H) SAH*. H SAL
;2 Amm”le,h < @) ( Amin ( mm Z: ]; . (51)

From Appendix m we know the upper bound for 2521 Zszl Yk is O(w). There-
fore, back to Equation (51)), it holds that:

N
> 2" A
n=1

<0 ((@* +B°H) SAH | H¥SAL H752Ablog(T)>

Amin (Amin)% 52
* 2 2 7Q2
§O<<Q +5AQ)SAHL+H S%;log(T)) )

The last inequality is because:

Hs5SAL _ B?H3SAc  H*SA.  H*SA. _ (Q*+B%H)SAH?*  H7SAulog(T)
= S + + S + 5 :
(Amin) 3 Amin 5 ﬁ Anmin 6
Step 4: Bounding the expected gap-dependent regret. Let p = (40SAH?T5)~!, then £ =

mZ:1 &; holds with probability at least 1 — % and ¢ < log(SAT). Therefore, by Equation , we
have:

K H
E (Regret(K)) < E [Z S clipl(Q) — @3)(sk, af) | Aun]

k=1h=1
=E lz clip[(QF, — Q)(@k, ar) | Amin] 8] P(£)
k=1h=
K H
> clip[(QF — Q) (@F, af) | Amin SC] P(&°)
k=1h=1
H N
<> "Amm||w|| +f TH
h=1n=1
(Q* + 2H) H3SAlog(SAT) H882Alog(SAT) log(T)
SO mm /82 ’
The third inequality is because
K K N
> clipl(QF = Q1) sk, af) | Al :ZZ VA (QF — Qi)(sh af)
= k=1n=1

an

2" A Z ) = 32 Bl )
n=1
The last inequality is by Equation (52).

k
B.4 BOUNDING THE TERM ()} — Q%
B.4.1 BOUNDING THE TERM G
We can split G5 into four terms:

.0 0 1;
Z (Vlii-l ( h+1) Psﬁ; ,ar, th+1)

nj, (sh» @)

=G11+Gi2+Gi3+ G, (53)
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where .
ny, ref,l; Orref,l;
Zi:l (]l bi Psﬁ,a’ﬁ,h) (Vh+1 “ Vhtl )

Sh41

’ LACTY ’

nﬁ 1 _P Crref,l; v

G Zi:l Si;ﬁrl s¥.ak h h+1 h+1

1,2 = E(ok k )
ny (sp,a,)

k
o1, —P *
B Zz:l ( Si;+1 s’fb,aﬁ,h) Vh+1
s k(.k Lk

ny, (sy,, ay)

and
k
ny ref,l; REF
a Zi:l ]Psﬁ,aﬁﬁ (‘/h-i-l - h-‘rl)
14 = E(ok ok
. . nh(S}N a’h)
According to (c) in Lemma|[B:2] we have:
k
ny, l;
>l H (]ls’;fﬂ + Psﬁ,a’,j,h) )‘h+1

Gi1 <

1 = k(.k ok
ny, (sp, ay,)

Under the event &, in Lemma@ we can bound G »:

2t
nk(sk, ak)’
Under the event & in Lemma|[B.T} we can bound G 3:

2Q* 4H.

ny(sp.ay)  ng(syap)
The upper bound of Gy 4 is given by (b) in Lemma[B.2}

k
Z?:hi HPgr o h)‘%ﬂ

Sho%ho

nﬁ(s’fb,aﬁ)

Combining these four upper bounds together, we can bound G

Gi2<pB

Gi3<2

G4 <

k
ny l;
Gl<Zi‘lH(ls';ﬂ+2Psﬁva::»h)kh+l (@ +4,  He (54)
~ ACHY ny, (s ) g (sh, af)

B.4.2 BOUNDING THE TERM G5

We can split the term of G5 into two terms:

nk [ A I
> (mﬁ,aﬁ,h -1, ) [(VREE = Vi) + (Uit = Vi)
Gy = R : (55)
UGS
According to (d) in Lemma[B.2] we can bound the first term in Equation (33):

nk REF ~ref,l; Ay l;
Zi£1 (Ps;j,a;j,h - 1Sl;7z+1> (Vh+1 - Vh+1 ) 2121 H Psﬁ,aﬁ,h + 1sii+1 )‘h+1
, < ,
Sk (k ok = Sk (k ok
75, (Sh» @) ACHYY)
The upper bound for the second term in Equation (53) is given by the event £ in Lemma B T}

Lk " -
B (Poan =1 ) (Ve = Vi)
Zz-l( ,a,h S;;ﬂ) h+1 h+1 _ 2ﬁ2L < ,62HL
ﬁﬁ(s,a) - ﬁﬁ(s,a) ~ nﬁ(s,a).

The last inequality is because of Lemma[B.3] Applying Equation (56) and Equation to Equa-
tion (33), we have:

(56)

(57

B2H.

g i
Ziél H (]P)s’h“,af,h + 1sii > Athl
< ’ : h+1
G A .
ny(s,a)

. A )

(58)
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k
B.4.3 BOUNDING THE TERM b} (s¥ aF)

According to the definition of bf (s5, af) in the algorithm, we have

ok H. H. H.i H.3
bE(sF,af) =2 el R e e B el I (59)
iy, ny o N (ng)io (ng)d

ref,k __ ref k/nh ( ref, k/nh) and &/ vrefk: Ov_h/ﬁﬁ _ (ﬂz/ﬁz)g

where v, " =
Since V™M (sl ) > Veti(gli ) it holds that
h+1 Sht1 h+1 Sht1)s
O_retk(sk ak) retk(s ) 2
ref, k h h'"hZ __ ho%h h,k h,k
vyl nh’(sh’,aﬁ) ( ’fbh(éhaah) ) L < Il +12 .
B k(ok -k = k(ok k)
h ny, (sy,, ap) ny, (sy,, ap)
where:
Znh Vrefl( i ) 2 Vrefl( i ) 2
- i=1 h+1 \Sh+1 h+1 Sht1
;" =
1 k(ok K ’
ny (sp, ap)
and
Z”E (Vref,li(sli ))2 nk crefil; 1 2
. h sbi 7
Thk — =1\ "h+1 \Th+1 Zi:thJrl (Sh+1>
2 k(ok Ak - kE(ok Ak
ny (sp, ay,) CAC )
Kk h.k
Next we want to bound both J;"" and J,".
nh ref,l; /1, refl L refl L; ref,l; o 1;
ik D ity (Vh+1 (Shi1) +Vh+1 Sht1 ) ( il (Shy1) — Vh+1 (Sif+1))
L nk (st al)
R\Sh> p
k
ny ref,li l; _ I”Cf,lri l;
- Dont1 2H (Vh+1 ($h41) Vh+1 (Sh+1)> a 2HT}(sF, af) 60)
= k(ok -k - k(b kY
ny, (sy, ap) ny sy, ay,)
where
k
Np
ko .k _k\ _ ref,l; 1 1; ref,l; 1 1;
I (sh, a) E (Vh+1 (3h+1) Vh+1 (Sh+1))'
i=1
For the second term 1. g ", because of Cauchy’s Inequality, we have:
f,0 2
. rel
Znﬁ Vref,li (Sli ) . >0 h Vh+1l(5h+1)
n=1 h+1 \"h+1 ”h,(shwah)
h.k h.k h.k
ok = <2(if+157)
2 k(k k = 2,1 2.2 >
ng(sy,ay)
where:
L 2
Zﬂﬁ Vrefl( i )7‘/* (Sli )+ En 1Vh+1(sh+1) 2onls Viy1" (shy1)
=1 h+1 Sht1 h+1\"h+1 nk(sk,ak) nk(sf,af)
h.k
L7 =
2,1 k(k k ’
ng(sy,a;)
and
2
k Zni Vv (ln )
ZmL V* (sli )_ n=1k hk+1 ht1
h.k e ni (sh,an)
Ly =
2,2 k(ok K
ng(sg,ay)
k 2 2
Mo (1 li ) nk 1
R S h * i
2221( 1 (she) B it Vi (syy)
k(k -k
ny sy ar,)

(5> @)
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. l; Srref,l; l; l; . .
Since Vi, 1 (si11) < Viid' (snp1) < Vi (syy1) + B it holds that:

Ny Iy Np ref,ln  ln
orref,l ¢ L L D ont Vh+1(3h+1) D ns Vh+1 (5h+1)
Vi (s1) = Vidpa (siy0) + -

nh(sh,ah) nh(sh,ah)
) Nh V (8 ) Nh Vrefl (Sl" )
< ‘A/ret,li(sli )= Vi (sli )‘+ hr+1\5hy1) h+1 \Sht1 <28
h+1 h+1 +1\°h+1 nh(sfwah) nh(sh’ ah)

Therefore, applying this inequality to I. ;L f , we have [. g lk <452
Moreover, according to the definition of Q*, it holds that

hk
-Q < Iyy — (Psg,ah W (Viga)? — (Ps’; ah,th+1 )

k
k n
np, * l; h (Ilz Pkk)V*
_ it Vi (sgq) P v il i1 Spoanh ) Thl
- k(ok -k + sk,af hVh41
(5, @3) ny,(sh af)

Znh (]]'l 1 Psﬁ,aﬁ,h) (V}:(+1)2

_|_
ny (sh, af,)
3
<H? |— " .
~ n’i(sﬁiaa’ﬁ)

The last inequality is because of Q* < H?2, the event & and the event £; in Lemma Therefore,

h,k * 2
Ly SQ+H [ g
A

Combining the upper bounds of 1 f ok Equation , Ig lk and Ig 2k , we have:

refk h Sh’ ah (Q* + ﬁg)b H.i
ok kT R e (61)
”h Sh’ah ny (sp, ap) ng(sy,ay)s

Using the inequality (80) of Zhang et al.| (2020), we have:

82, \/ 2T (sp, af)e FH, Y H2TF(sf, af )
vk T aE oy . (62)
np ”h Np

where T (sF aF) = 27 (V,ﬁff (32"“) V,f{ll (sil+1)) . The last inequality is by Lemma
Applying Equation (61)) and Equation (62) to Equation (59), we have:

HTF(sk af)e . (Q* + B2H) . H.2 HJTE(sk,akf)e + Hu

)
n(sh, aj,) nk(sk.ak) " ak(sk ak)d AE(s¥ ak)

B.5 REARRANGE THE WEIGHTED SUM OF (G3

Similar to Equation (@2, it holds that:

(s
thkﬂ nh;é() G3 thkﬂ nh;«éO] oy

k=1 k=1 nh(slﬁa%)

<k -
i ( Tl = j,ak # 0]
> Wk -
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K K A I = i ik
= i =], N 750 j * j j
< Z th,kz : ngc 27 0] (@1 = Qhgr) (Shi Ghia)

j=1 \k=1 h(shah)
(64)
K . .
= Z‘*’M—LJ( ) (Qh+1(5h+1vah+1) Q2+1(ng+1’agz+1)) . (65)
j=1
H K k
B.6 BOUNDING THE TERM ),/ > 1y Y7o
K K
> v = ZH [nf, =0 H
k=1
K
"h/ # 0] L \/ﬁ
+ Z nh/ Shu ah’ ZH (]l lh/+1 + S:/)aﬁnh,> )\hl-‘rl + Hrh’(sh”ah’)L
k=1
+i n’”éo Z/H(IP’ +1 )Af‘ + H\JT% (s, a0+ H
kak/ I Y ASE,ar, )t L
k=1 h Sh’7ah’ 1 St siﬂﬂ et AT
(66)

In this equation

ZZ]I nk, (sk,ak)) )=0]H = ZZHZH nk,(s,a) =0, (sk,, ah,):(s,a)} < H3SA.

h'=1k=1 h'’=1 s,a k=1

(67)

By Lemma [B.4] we have the following inequalities:

H K
gy, #0
¥ %m < H3SAulog(T). (68)
= i (ke aii)
According to Lemma|[B.3] we have:
K n ;é 0 s K
h' L.
H ; P, A <3HlogT 1 P AE,

; nh,(sh,,ah, Z h1/+1 + S h) h'+1 = 08 kZ:l( “;2’+1 T Sy sh ) h'+1
(69)

and

K ] iy
I [rg, # 0] - I; k
Z ik, (s%, k) ;H (Ps’;, ko1 ;/ 1> Ahr1 < QHZ ( sk, ak, bt ls’;,+1> A1

(70)

Note that

K
Zkk/—‘rl Z]I Nh’+1(5h’+1 <N0 ZZH Nh+1 <N0,8h/+1—3} <SNO
= k=1 s k=1
Then under the event &3 in Lemma [B-1] it holds that:
K K
Pk, ak, v A1 < 3 Apyy 4t < ASN,.
k=1 k=1

Applying these two inequalities to Equation (69) and Equation (70), then the following two inequal-
ities holds:

H K h'
S5 LS (1 4P s SN, )

h=1k=1"h (sf- afy) Rt "
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and )
[nf, # 0] o L ,
Zzngf )ZH Pt g 1) Vo S 2SNy (72)

Sh/7 ah’
Meanwhile, according to Lemma[B.2] we have:

k k
Tyt Myt

o .k £l 0 k" £,0; s ; ok :
FZ'(SEH alfu) = Z (Vl;?+1l(3£'+1) Vi§$+1(5§ﬂ+1 ) < HZ)‘I ’+1(32/+1) = @k'(siu GZ')~

i=1 i=1

Then it holds that:

T K ko gk
L%, (sf.,ak,) oF, (sk,,af,) e =
<> <D = | VOK(s,0)
€

4 < —
s,a jec Zj:

Eak)
<logTZ OF (s,a) <logT /SAZ@{; s,a) (73)

k 1 ”h'(sh'vah') 1 ”Z'(Sh" Qs
Here, C ={j: H < Zj 1 € < T'}. The second inequality is by Equat10n 1)) and the mononicity
of ©F, (s, a). The last inequality is by Cauchy’s inequality. To continue, note that:

H

H K
Z Z@ﬁ(s,a)gz HZA£’+1(8§’+1)SH HSNy

h'=1 s,a h'=1 k=1

Together with Equation (73)), it holds:

H K JHTE (sk, ak ) )
ZZ <10gTZ HSAY  ©K(s,a)e < H*Slog(T)y/ANor.  (74)

s (Shr ajyr) =1 s

Since I}, (s§,, af,) < T (sk,,all,) and AHAE, (s§,, ak,) > nk, (sk,, af,) by Lemmal[B.3] it holds:

H K [\/T% (sk, ak )
SN < H3Slog(T)\/HAN. (75)
h'=1k=1 nh’ Sh” ah’)
Applying the inequalities Equation (67), Equation (68)), Equation (71}, Equation (72), Equation

and Equation to Equation , since Ny = O( SAﬁIst ), we have:

Z ZYh, <0(H SQ‘ZLI‘)g( )>.

h'=1k=1

C PROOF OF THEOREM[3.3]
In this section, we will prove Theorem

Proof. For § € (0,1), let p < 40511%’ then v = log( ) = O(#4L). Now with probability at

least 1 — 4, ﬂi:l &; holds. Next, we will prove the upper bound for policy switching cost under the
event ﬂZ:1 &

From the proof of Theorem 2 in|Zhang et al.| (2020), we have:

NK+1 a
Nsw1tch < Z 4H10g (2]—_](—) +1].

s,a,h
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Next for any (s,a,h) € S x A x [H], we will bound the term N,* (s, a). For a # m}(s). In this
case, we have Ap(s,a) > 0 and then Ay (s,a) > Apin. For any h € [H], let set Dj, be all triples of
(s, a, h) such that a # 7} (s), that is:

Dy, = {(s,a, h)la # 77 (s)}.

We also let the set D = U,Ile Dy, and the set Doy = {(s,a,h)|la = 7j(s)}. Then we have
|D| + |Dopt| = SAH. Since for every state-step pair (s, 1), there exists at least one optimal action.
Therefore we know |Dyy| > SH and then 0 < |D| < SA(H —1).

If for given (h, k) € [H] x [k], (s¥,af) € Dy, we have Ay (sF,ak) > Apin. Then it holds that:
Qh(sh, ai) — Qi (shyar) = Vi (sh) — Qh(sh, ak) = An(sh, af) > Aumin.

The first inequality is because V;*(s) > V;*(s). Therefore, we have

(s,a,h)EDy,
<I [QZ(waah) - QZ(S;CI» ap) > Amin]
N
(n)
=D Wi
n=1
and then
H H K
Y. Nt =) Ny (s,a) = > Il(sh af) = (s,a)
(s,a,h)€D h=1 (s,a,h)EDy, h=1 (s,a,h)€D}, k=1
H K N H N
(n) (n)
<222 wie =20 2 il
h=1k=1n=1 h=1n=1

H N
n Q* + B%2H) SAH?. H852AL10g(T)
S N33 ) <o (SIS L0
(s,a,h)€Dgy h=1n=1 min

(76)
Therefore we have:

NEFY(s,a
Nswitch S Z 4H10g <h2I_§) +1

s,a,h

K+1 K41
— Y 4Hlog (W + 1) + > 4Hlog <W + 1) 77

(s,a,h)ED, (s,a,h)& Doy
Oy iy (B[ T
<4H(SAH — |D 1 1 - - : 4H| Dy L 1
< ( ‘ opt‘) og < + QH(SAH — |Dopt|) + | opl| 0g <2H|Dopt| + )

(Q" + B2H)H?SAr  HTS®Aulog(T)
(SAH — |Dop )AL, B*(SAH — | Dopi|) Amin

opt

< O(H(SAH — | Dopt|) log (

K
+ H|Dop| log (m + 1)) (78)
opl

The first inequality is because of Jensen’s Inequality. The last inequality is by Equation (52)). Since
Q* < H? and 8 < H, then we have:

(Q* + B*H)H?*SAu < H7S A
(SAH — [Dop)ALin = F*(SAH — [Dopl )AL,
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By Anin < H, we also have:

H"S?Avlog(T) < H®S? Aulog(T)
BQ(SAH* |Dopt|)Amin o BQ(SAH |D0PI|) min

For § € (0,1), let p + m, then ¢ = log(%) < O(log(s‘gi)). Applying the above two
inequalities to Equation (78), with probability at least 1 — ¢, we have it holds that:

/BQ(SAH |D0pt|) min

H*SAz, K
O | H(SAH — |Dyy|) 1o + H|Dyy| lo +1
( (SAH = [Denl g(@ (SAH|DopI|>Am> IDenl o8 (15,7 + >>

H&S%Alo K
Nowiten < O(H(SAH ~ Do) log ( 0 ) +HIDwl1o8 (57 1))
opt

H*S Az log(54T K
= O | H|Dgy|log g(%5-) +H|D0ptlog( o) +1>
| D gpl | Amin | opt |
Especially, if the optimal policy is deterministic and unique, which means |Dqy| = SA, then the

policy switching cost is upper bounded by:

H:S3 log(—SAT) K
2 5 2
0] (H SAlog <BAmin + H*Slog (HS + 1)

D PROOF OF THEOREM

D.1 ALGORITHM DETAILS

Before continuing, let us briefly introduce the refined algorithm, which is similar to the original
version in |Li et al.| (2021)). Before diving into the algorithm itself, we will first discuss the key
auxiliary functions used for estimating the Q-value functions. For any § € [0, 1], let . = log(£4L),

In the algorithm, pi*' and o' are updated to represent the current mean and second moment of

the reference function. 3% and 0% are updated to be the current weighted mean and weighted
second moment of the reference function with weight to be the learning rate 7,, = gi}l bR is the

exploration bonus for Q-EarlySettled-Advantage. With these update functions, we can then discuss
the Q-EarlySettled-Advantage algorithm.
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Algorithm 2 Auxiliary functions

1:
2:

»

A A

11:
12:
13:
14:

15:
16:

17:
18:

function UPDATE-UCB-Q
QB (snyan) < (1 —nn) QP (sn, an) + 10 (V‘h(Sh, an) + Vit1(she1) + ¢
function UPDATE-LCB-Q
Qi (sn,an) — (1= 1,) Q5 (51, an) + 1n <7"h(8h7ah) + VB (snp1) — e/ 2
function UPDATE-UCB-UCB-ADVANTAGE
[ufhef, a;ff, uﬁ‘fv, a’;‘ldv](sh, ap,) < UPDATE-MOMENTS();
[55, Bh](sh, ap,) < UPDATE-BONUS();
R« BR(sp,ap) + (1 —1,) h<?h an) 4 e,
Qh(sn,an) <+ (1 — nn)Qh(Shvah)
0 (7 (shyan) + Vigi(sn1) — Vitey (Sna1) + w5 (sn, an) + ) -
function UPDATE-MOMENTS
it (shs an) <= (L= ) @5 (sp, an) + VR (she1):
2
?ft(Shvah) (1-3%) ?ff(smah) + = (VR (snp1) s
1Y (snyan) < (1= 10) 13 (shy an) + M (Vg1 (sn41) — ViR (sng1)):
2
a3 (snyan) <= (1= 10) 3 (shy an) + 1 (Visr (sn41) = Vit 1 (sn41)) 5
function UPDATE-BONUS
Bnexl(sh, ah) <

/L (\/ 1 (Sh, an) (M'}ff(smah))z-&-\/ﬁ\/UZdV(Sh,ah (M?Ldv(smah))Q);

OR(nyan) = By (sp, ap) — BR(sh, an);
BS(Sha ah) — B}nzeXt(Sha ah) - BE(Sh, ah)-

s|=
(\w
N———

I
&
N———

n3/4 s

Algorithm 3 Refined Q-EarlySettled-Advantage

1:
2:

R AR A

10:

12:
13:

14:

15:
16:
17:
18:

Parameters: Some universal constant ¢, > 0 and probability of failure § € (0,1);
Initialize Q; (s, a), thjCB (s, a), Qi'l(s a) < H,; QECB (s,a) + 0;
Vi (s) < H, N (s, a), 15" (s, 0), 0" (s, ), i (5, a), 03 (5, 0), 0} (5, ), BR (s, @) < 0;
and u¥ (s, a, h) + True, for all (s,a,h) € S x A x [H].
for Episode £k = 1to K do

Set initial state s¥ <« s¥;

for Step h = 1 to H do

Take action aff = 7 (sy) = argmax, QF (sf,a), and draw s} | ~ Py(-|s}, af);

Nk(shva’h) Nk 1(5;€Laah)+1 nENk(S}ma;CL)
H+1.
Nn < H+n’

VCBETL (g% k) < UPDATE-UCB-Q().
i " (sh,af) + UPDATE-LCB-Q().
"1 (sh, ) « UPDATE UCB-UCB-Advantage().

k R,k+1 UCB,k+1, k .

h+1(827a‘h) <_m1n{Q * (Sha ﬁ) h * ( h? h) Qh( )}
Vk+1(5h) < max, ’fbH(sh,a)

LCB k+1(8 ) « max {maxa QI;LCB,k-&-l(SZ’a)’V;CB,I@(S;CL)};

) — VEBHRL(6kY > 3 then
k41 kY.
(%)« Vi (sh):
else 1f u h( ¥) = True then

vy kH(Sﬁ) A th+1(3£) kH(Sh) False.
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At the beginning of the k-th episode, we can obtain V-estimate V,f"‘(s), the reference function
V,? k(s) and the policy ¥ from the previous episode k& — 1 and select a initial state s¥ (For the
first episode, we randomly choose a policy 7! and V}!(s) = V,f 1= H). At step h € [H], we

can process the trajectory with aff = 7y (sF) and sf_, ~ Py(-|s), af). Now we need to update the

estimates of both ()-value and V -value functions at the end of k-th episode. In the algorithm, the
estimate learned from the UCB by the end of k-th episode, denoted as QUCB AL s updated to:

k

N n n H3L
QECB K1 _ rﬁ(sh, ab) + Z o <V,f+1(8§+1) + cpt/ n) (79)

n=1

Here we define N} = N (sk, aF) as the number of times that the state-action pair (s¥,af) has

been visited at step h at the beginning of the k-th episode and k™ = k}f(s’fb, a’fL) denotes the index
of the episode in which the state-action pair (s¥,af) is visited for the n-th time at step h. The term

cpy/ = H L represents the exploration bonus for n-th visit, where ¢, > 0 is a sufficiently large constant

and 1 = log(SAT) with € (0, 1) being failure probability.
LCB,k+1

Another Q-estimate obtained from LCB at the end of k-th episode, denoted as ()},
UCB,k+1

, is updated

similarly to Q,, , but with the exploration bonus subtracted instead.

R,k+1

The last estimate of ()-value function, denoted as @, , uses reference-advantage decomposition

techniques. At the end of k-th episode, QR AR updated to:
N"Jrl n R,k*/ ki
Rk+1 _ NEH nogn RE™, ™ dic1 Vi (8h41)  ramaa
h n(sh an)+ Z M Viie1 (She1) = Viiy (Shgn)+ " +0y, :

(80)
In Equation , V,f ok (s) is the reference function learned at the end of episode k — 1. The key idea
of the reference-advantage decomposition is that we expect to maintain a collection of reference val-

ues {V}i2 ’k(s)}&hh, which form reasonable estimates of {V;*(s)}s,j, and become increasingly more
accurate as the algorithm progresses. It means for any s € S, sufficiently large k£ and some given

B € (0, H], itholds [V;X* (s) — V;#(s)| < B. In this case, for s}, ~ Py (-[sf", al"), the variance of
the advantage term V", (sf', ) — V2" (k' +1)» is bounded by 3%, which can be less volatile than

the stochastic term thjl (sk +1). Meanwhile, the reference term » ., Vh 1 (s P +1) /m use a batch
of historical visits to (séf , a’fL, h), which can lower the variance as the increase of the sample size n.

Accordingly, the exploration bonus term bﬁ’knﬂ is taken to be an upper confidence bound for the
above-mentioned two terms combined. Given that the uncertainty of Equation largely stems
from the advantage and the reference terms (which can both be much smaller than the variability in
Equation (79)), the incorporation of the reference function helps accelerate convergence and lower
the regret upper bound.

With two additional Q-estimates in hand — QECB #*1 Jearned from UCB and QR +*1 btained from
the reference-advantage decomposition, it is natural to combine them as follows to further reduce
the bias without violating the optimism principle:

W (s af) = min{Q M (sh, af), QT (s, af), QR sk af) - (81)

We also incorporate () h(s rs aﬁ) here to keep the monotonicity of the update. Then we can learn
thH (s¥,ak) and V,LCB okl (s¥,ak) by a greedy policy with respect to these Q-estimates:

V,f“(s’,i) max Qkﬂ(s’fb, a), V,i‘CB’kH(SZ) max {max QLCB k“(sﬁ, a), V,fCB’k(sZ)} .

In the algorithm, VLCB *(s) is used as lower bound estimates of Vi (s). We learn the final value
VR (s) of the reference function for the state-step pair (s, k) when it first meets the condition V;*(s)—

VLCBk( )<,6
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D.2 AUXILIARY LEMMAS

As can be easily verified, we have

N
1, if N>0
N _ 9 )
D m = {0, if N = 0. (82)

N N
1 2 1
— <Y o 2 forall 5 <a <1, (83)
n=1
2H 2H & 1
N o 2 Ny2 - 2 N =
Jmax o < S Y )< Yo S g (84)
n=1 N=n
Proof. 1t is proved in Appendix B of|L1 et al.| (2021)). O
Letul = ZnN ; - Then according to Equation ( ) we know ul < % forany: < N € N;.

Lemma D.2. Consider any 6 € (0,1) and v = log(%4L). Using V(s,a,h, k) as the simpli-
fied notation for ¥(s,a,h, k) € S x A x [H] x [ ] and V(s h, k) as the simplified notation for
Y(s,a,h,k) € S x [H] x [K]. Let V}*(s) = max{V;*(s), min{V;}(s) + 8, ;" (5)}}. Then we
have the following conclusions:

(a) (Lemma 2 of|Li et al.|(2021))) With probability at least 1 — 6, the following event holds:
&= {Qis,0) < Q5 (5,0) < Qf(s,0), Vi () < VE(s) < VRH(s), Vs, a,h )}

(b) (Lemma 3 of [Li et al.|(2021))) With probability at least 1 — 9, the following event holds:

Ey = {Q&LCB”“(&CL) < Qi(s,a), VEPF(s) < Vi¥(s), ¥(s,a,h, k) and

H K
SAHS,
> > 1 (@hshaf) - QhPF(shaf) > €) £ 25—, forany e € (0,H]}-

h=1k=1

(c) (Paraphrased from Lemma 4 of|Li et al.|(2021))) With probability at least 1 -4, the following
event holds:

& = { ‘Vf(S) - V;ﬁ"’“(s)‘ < 2/ and
H K
ZZ( p ;K—H(Sh)) < ZH(;%, Y(s, h, k;)}
=1

k=1

(d) With probability at least 1 — 0, the following event holds:

i N,’f R,k * 262L
Z;ui (]lsggl - IP’s,a,h> (Vidh = Vi) <2 NE(s,a)’ V(s,a,h, k)
1=

(e) With probability at least 1 — 6, the following event holds:

Cﬂ

Nh(]ll _P )V* S Y AR < GRS
Zu 2+ s,a,h h+1 = N}lf(s’a) + N}’f(s7a)’ (87047 ) )
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(f) With probability at least 1 — §, the following event holds:

Nj,
NP ~ R,k B2H.
;nnh (Psvavh - 15211) (Vh+1 - V]:+1) <2 Wa V(S, a, hv k)

(g) With probability at least 1 — 0, the following event holds:

{ZZRh,ah, VR (sh) = Vi (sh)|

h=1k=1

H K
§3ZZ‘ VREH (gk) — VR (s Z)‘—&—HLV(S,h,k)}.
h=1k=1

Proof. (d) From the definition of VX *(s), we know that for any k € [K]:

Vir(s) < Vith(s) < Vi (s) + 6. (85)
Then the sequence

{Zu (L, = Paan) (V5 - Vh*H)}

is a martingale sequence with

2
Uiv (lski _Ps,a,h) (Viirkl foﬂ)‘ < Wﬁ

h+1

JEN+

Then according to Azuma-Hoeffding inequality, for any § € (0, 1), with probability at least
1- S,X%’ it holds for given N¥ (s,a) = N € N, that:

N
R,k * 2ﬁ21/
Z; (1 St *]P)s,ayh) (Vh+1 - Vh+1> <2y N

1=

For any all (s,a, h, k) € S x Ax [H] x [K], we have N} (s,a) € [Z]. Considering all the

X
possible combinations (s, a,h, N) € S x A x [H] x | H], with probability at least 1 — 6,
it holds simultaneously for all (s,a, h, k) € S x A x [H] x [K] that:

Ni
Nk R,k 2ﬂ2b
3o (L, = Pren) O —Viw) <2 ey

(e) The sequence

{Zu (i - sa,h)vh*ﬂ}

is a martingale sequence with

JENL

2H
(132+1 PS @ h) Vthl - N
Using Lemmawith c=21 e=c?and§ being SATZ , for any given Nf(s,a) = N €

N, with probability atleast 1 — (logy(n) + 1) SAT2 >1- SAT, we have:

ZU ( kl - smh)V};—lSS\/(Q‘;V +16%

For any all (s, a, h, k) € 8 x A x [H] x [K], we have NF (s, a) € [£]. Considering all the
possible combinations (s,a,h, N) € S x A x [H] x [%], with probability at least 1 — §,
it holds simultaneously for all (s,a,h, k) € S x A x [H] x [K]:

Nh

Nh(117 —P )V* <8, XL g
Zu S ssah ) Thtl = N}’f(s,a)—’_ NE(s,a)
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(f) The sequence

J
~ R,kn *
{E 777];[ (Ps,a,h 1, sk ) (Vh+1 - Vh+1>}
n=1

is a martingale sequence with
N ORE™ * N
) <]P’s,a,h - ]15;311) (Vthl - Vh+1) <M B

Then according to Azuma-Hoeffding inequality and Equation , for any ¢ € (0,1), with
probability at least 1 — Siﬁ’ it holds for given NJ*(s,a) = N € N, that:

N 2

N R,k B2Hu
o (Puan = Ly, ) (W = Vi) <2y 55
n=1

For any all (s,a, h, k) € S x A x [H] x [K], we have Nh (s,a) € [%]. Considering all the

X
possible combinations (s,a,h, N) € S x A x [H] x [%], with probability at least 1 — 4,
it holds simultaneously for all (57 a,h, k) € S x Ax [H] x [K] that:

NE 2
NE R,k * 5 He
n;l n " (]P)s,a,h - ]19’];:_1) (Vh+1 Vh+1) <2 W

(g) This conclusion is directly proved by Lemma[A.2|with | = H

jENt

Lemma D.3. For any non-negative weight sequence {wy 1}, , and o € (0, 1), it holds that:

K

Wh.k 1
: < (SAw[o0,n)* w177
;Nf(sﬁ,aﬁ)a e Lk

- Zszl Wh, k-

For o = 1, we have the following conclusions:

& 1
—— < SAlog(T),
,; Njy(sh,ap) ™
Proof.
K w wh Ei(
h,k i(s,a)
(86)
2 NEGE a2 Z
. K
Here k*(s, a) is the episode index of the i-th visits to (s, a, h). Let ¢, (s,a) = ?2‘1(8’@ Wh ki (s,a)
and then we have 37, cn(s,a) = S Wik = ||w|[1,4. Given the term Y g “E0) when

the weights wy, 1i(s,q) cOncentrates on former terms, we can obtain the largest value. Let

Ch, 57(1,
Foas = [ ( W and dy o = (5 @) — (kuan — 1)lJlloo
l|wl] oo,k

Then we have:

sah

K
Z th Z Z HUJHooh sah
Nk k(:ah

hsh’ s,a i=1

«
i=1 -« kaah

kSTa,hfl l—a . 1—«
) —(1—1 d h
<SS wlloon e
s,a
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HwHOOh s,a,h — )70( dsah
Z +

11—« k<

s,a,h
S ol (st = Dllolloosd ™ o
” 0,k 1—« (ks,a,hHwvah)a
[(Foan = Dllwllson]' ™ | duan
< « 1 2 — . 87
;|w|oo,h< 1—a +Ch(5,(1)o‘ ®n

Here the last inequality is because ks o ||w||co,n > cn(s, a). The second inequality is because for
any 0 <y < z and o € (0, 1), we have:

r—Yy 1 11—« 11—«
< —_
z* T 1- oz(m v
Then, let z = 7 and y = ¢ — 1, it holds that:
1 1
< (Z-l—a _ (’L _ 1)1—04).

@ T 1—«

Alsolet x = ¢p(s,a) and y = (ks q.n — 1)||w]]0o,n, We have:

dsan [(Fsan = Dllwllson] ™" _ cnls,a)' =
cn(s,a)® 1-« - l-a
Applying this inequality to Equation (87), we have:
K
Y i < Ll D < (Al 15
= N’“(sh7 T l-a ’

The last inequality is by Holder’s inequality, as Y, , cn(s,a)' = < (SA)*||w||] 5%
For oo = 1, it holds that:

K N (s, a)

=>. D *<ZlogNh (s,a)) + 1) < SAlogT.

k
k:lNhS a s,a i=1

O
D.3 STEP 1: BOUNDING Qf — Qf
D.3.1 BOUNDING THE EMPIRICAL ESTIMATION ERRORS
By & in Lemma|[D.2] we have:
adv ddV adv, k™ NE R, k? * ﬁ2HL
(i — B ) v Z " (P = L) (V85 = Vin) <2y e oy
(88)
By &4 in Lemma(D.2] it holds that:
Nh.
~ref ref 3 R,k” _ Nk % R,k‘i 2/82L
(BRS — B ) (O Vi) = ;” (L, Pegapa) (RS Vi) <2 NE(sk,ak)’
By & in Lemma|[D.2] it holds that:
* H.
B, — Pt ) Vi Ni (L = Pugapn) Virgs <8 Q- 16 .
( htl ™ Zu Sho siaj, h+1 = NFE(sk, ak) * NFE(sk ak)
Therefore, combining these two inequalities, we have:
* +ﬁ2 H.
Bt — Pt ) Vi S 9 . . (89)
( S\ NEGh e NE(sha)
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D.3.2 BOUNDING THE BONUS

Since the term ¢ in the last inequality of Lemma 7 in |Li et al.|(2021) can be easily improved to ¢,
we can paraphrase the equation (87) and equation (88) of [Li et al.|(2021)) to the following form:

n 1 n n
bs,k +1 _ (1 _ n) B}?,k (Sz,ah) + BRk +1( h, h) + 37/4H2 (90)

This taken collectively with the definition of 72 allows us to expand

R,k™+1
Zan +
Nh, Nh k

1 n N
:Zﬁn H (1772.)((177)3,‘:”“ (shap) + ; BRkH(hvah >+Cb2 e

n=1 i=n—+1 n n=1

Nh N h

BRk h+1+ bz 773/4 . 1)

o REVE T Rk . . .
Then with B, = B}’ and Equation (83) in Lemma|D.1} it holds that

H2
RMF < BRF 4 7L3. (92)
Nk(sh,aﬁ)z
Similar to equation (158) of|Li et al.[(2021), we have:
2 k
dv,k dv,k N n n R,k™ n
‘72 (sﬁ,a’,j) (/f}; (sﬁ,aﬁ)) - POME/ (th+1( ]fi+1) =V (s (s ZH)) <
NF(sk ak) - NF(sk ak) <26
h\°h?*h h\2hr%p

93)

Nh

’Vl n n k
Equation ( D is because |Vh+1(s’fl+1) V}irkl (s 1) <2Bby&sin Lemmaand Zn n

1. Meanwhile, since thrl (sK) > Vthl (sK'} ). italso holds that

2
ref,k/ k k e,k k k
Oh (Shvah)*o‘h (Shvah)) < I gyt

Ny (sh» ap) TV NE(shah)
where: ) )
L m () - (o))
vt NE(sk, ak) ’
and " " ) ) )
ik _ 2ot (Vh+1 (5h+1)> B Z VhRJrl (sf'y)

N}f(sﬁ,aﬁ) N}’f(sh,a’g)

Next we want to bound both J{L’k and JZh’k.

km

Ny R,k n R,k n
D onli (Vh+1 (5}}2-5-1) +Vh+1 5h+1 ) Vh+1 h+1 Vh+1 (SZH))
Nk(sha I}CL)
Nk RE™, g R,k™
- donli2H (Vh+1 (8h+1) Vh+1 (5h+1))
B N}]f(sma‘;i)

hk
Ji =
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Therefore, we have
2H \IIZ (s’,fL , aﬁ)

th’k < —2nho (94)
NE(sk, ak) 7
where
N
ook K RE™ , k™ SR, kT
Uy (sy,ap) = Z <Vh+1 (5h+1) - Vh+1 (5h+1)) .
n=1

For the second term th * because of Cauchy’s Inequality, we have:

NE . KT T
ZN;If VR,k'”( k™ ) — i VRl (sii)
n=1 h+1 \Sht1 Nf(sfyaf)

>2
h.k h.k
< 2(J2,1 +J2) )s

Jh,k _
2 = k(ok k
Nh (Shaah)
where:
Ny e Nﬁ ~RET kT 2
EN}L“ VR,k"( k" )_ v ( k" )+ Zidi Vitpa(hen)  2idh Vidy (Snga)
n=1 | Yh+1 Sht1 h+1\Sh+1 NF(sF,ab) NF(sk aF)
h h*"h h h*'"h
JhJc _
2,1 — k(k Lk !
Nh (Sh,ah)
and

k
N,

2
ZN:: V* ( k™ ) _ 2y V):+1(SI;L+1)
n=1 | Yh+1\Sh41 N (skak)

T3
’ Nji(sy, ap)
NE e (kT V)2 NE trk (kT 2
_ Zn:l (‘/h-'rl(sh-'rl)) _ Zn:l ‘/h-'rl(sh-'rl)
NE(sk,ak) NE(sk, ak)

Since Vi, (s571) < VA (s 1) < Vi (s5yy) + B, it holds that:

N]Z n NF SR E™ n
> iy Vh*+1(5§+1) _ D i Vh+1 (SZ-H)
N(sy, af) N}y (s, af)

A R7kn kﬂ, k’IL
Vit (8ha1) = Viga(sha) +

NF NF SRE™, o
D i Vh*+1(3§11) B D Vh+1 (57}24-1)
N}y (s, af;) Nf(sy.ap)

< 2B.

RE™ KT k™
<|\Viiy (Shy1) — Vh*+1(5h+1)‘ +

Therefore, applying this inequality to JQh, ’f , we have Jg, ’f < 4B32. Moreover, according to equation
(165) of [Li et al.| (2021), the following inequality holds:

Jh’k 5 Q* + H2 ;
2 Ny (sp, af)

Combining the upper bounds of J{L’k Equation || J; f and J; ’Qk, we have:

‘ 2
ref k ref,k
o sk ak) — (uh (si,aﬁ)) _ HUk(sk ak) Q* + 2
NEGh o) SN\ MR T Nk
95)

Back to the definition of BZ”“ in Algorithm |2} combining Equation || and Equation , it holds
that:

2
adv,k adv,k
o (Sﬁ, aﬁ) - (uzv (Sﬁv aﬁ))

ref,k/ k &k refk/ k _k 2
oy, " (sp.ap) — (ﬂ}f (sh,ah)) h
+cpVHL YR
Ny (sg,ap)

Bﬁ”“ < /i
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h(shy ap)e

N (sh, i) Nii(spoan) — Nh(sf,af)

Then by Equation (92), we have

h Sh’aZ)L 96)
n(sE,af) Ni(si,af)  NE(sk,af)?
Applying Equation (88), Equation (89), Equation (96) to Equation (T3), it holds that:
(Q*+p32H) H?.
QF — Q1) (sk,ak) <EM.(V, Vis) + +RMEC (97
( h — h)( h h) ( h+1 h—‘,—l) N,’f(slﬁ,alﬁ) N}f(sz,al}i)% else
Here
n H\Pﬁ(sﬁ7 aﬁ)b H.
Rglse: NhH—i_Eref(VRk _VRk)—i_ k(.k Lk + k(.k k\°
Ny (sp. ap) Ny (sp. ap)
D.4 STEP 2: BOUNDING THE WEIGHTED SUM
D.4.1 REARRANGING THE SUMMATION
K Nf
th k]E dv ( Vh+1 Vi) = Z th M]n (Vh+1(5h+1) Vfb*+1(5§+1)>
k=1n=1
K K Nh . . .
= Z Z Z WhkTn h]I = J (Vifﬂ(siﬂ) - Vh*+1(5?z+1))
j=1 \k=1n=1
K K Nh’ . . .
< Z Z Z Wh,kTn h]I =J] (Qiﬁ-l - Q;L+1) (She1> @hi)
J=1 k=1n=1
£ Z h+1,j(h) (Q%+1(5%+17a%+1) - Q‘;LJrl(S‘;LJ,-l? aiL+1)) . (98)
j=1
Here, for any j € [K]
K Nf
whiri(h) =)D whrnn NeL(kn = j).
k=1n=1

The inequality is because QiH_l(sfH_l, aiH_l) = V,f+1(s§l+1), QZH(SiHv aiLH) < Vi (sfH_l).
D.4.2 PROOF OF EQUATION (22)

For any given h and non-negative constants {wp  } 5, [k]» We denote ||w||so,n = Mmaxye[x] Wh,k and
= X peK] Whik- We also recursively define wy,r (h) forany h < h' < H + 1,k € [K] as

follows:
K Nf .
thg(h) = Whk; whf,j(h) = Z th/_Lk(h)niLVhH[k‘n = j] RS [K],h <h < H+1.
k=1n=1

According to the definition of k™, I [k" = j} = 1 if and only if (sh, ah) (sk,ak), 7 <k—1and
n = Ni*' (s} al). Then by Equation (84) in Lemma | we have:

K Ni

Nk NF 1
> 2 'l Z UNEY {Sh’ah) (waah} E Mrer S 142 (99)
k=1n=1 _]+1 — NJ+1
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Therefore, for h < h' < H + 1, it holds that:

K Nf
1
g () < lwlloo—1 S5 mi Ik = 4] < (1 + 2ot oo, 1. (100)
k=1n=1
It also holds that:
Nh

K
> wnwj(h) ZthZn b < [k MIh—1 (101)
j=1

Combining Equation with Equation , the weighted sum > 1 o1 Wik (QF — Q7)(sF, af) can
be bounded by

thk Q(sy,ak) — Qh(sr,ar))

k=1

K
Q* + B82H)e H?,
thHk (Qh+1 Qh+1)(5h+17ah+1 +thk< ( ) + + RMF

3 Is
‘ Ni(spoan) (V)T

A

>
Il

] >

< Wh+1,k(h)(Q]fi+1 - Q;’(L+1)(8;€L+17a2+1) + \/(Q* + B82)SAl|w||oo,nllwl]1,nt
k=1
3 1 ad
+ H2u(SAlwlloon) T wllf), + Y whras(h)Rye. (102)
k=1
The last inequality is by Lemma with a = % and %. Recurring Equation 1) with regard
toh,h+1,..., H, since Q% ,,(s,a) = Q7141(s,a) = 0 and the weight recursions relationship
Equation (TO0) and Equation , we have

thk Qh Shaah) Qh(shvaZ))

k=1

K H
USAwl o) Il + 5SS wnw(B)RE.

k=1h'=h

< H\(@ + 82H)SAl|wl oo
(103)
D.5 STEP 3: INTEGRATING MULTIPLE WEIGHTED SUMS
D.5.1 PROOF OF EQUATION (26)
Forany N = [log,(H)].t € [N], k € [K] and the given h € [H], let:

w}(LZ) =1 [Qh(5h7 ah) Qh(sha ah) [Ql 1Amma 27lAmm)] y

and then

K
w2 = maxer, < 1, [l = Y wilk

For any given i € [N] and h < h' < H and the weight {w,(f,) « }% can be defined recursively by
Equation (19). Therefore, for any j € [K], it holds that:

N ) KNh
D @ity 5 (h) ZZ(th/ ) IR = ).
=1 k=1n=1

Here for any i € [N], w,(f)k(h) = w,(f)k Then by mathematical induction on b’ € [h, H], it is
straightforward to prove that for any j € [K],

N @ 1 h' —h
> wp) ()< (14 I < 3, (104)
=1
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given that for any j € [K]
K Nf

SN k”:j]§1+%

k=1n=1
byEquationand ZZ 1wh3( ):le'vzlwi(l)j <L

Applying the weight {whl’k}k to Equation (103), since ||w||o,r, < 1, then for any ¢ € [NV], it holds
that:

i QU (sk.ab) — Qi (s, af)) £ HyJ(Q* + B2H)SAlw® el |1 e

Mx

k=1
K H
< ; 3 ; 1
+ HOUS AW |oo) (o @lla) T+ D wild ()R
k=1h'=h
On the other hand, according to the definition of w,(i)k,

thk Qh Sh? h) Qh(shvah)) 22 IAm1n|| ||

Therefore, since ||w”||» < 1, we obtain the following inequality for any i € [N]:

27 Al [0l S H% Q* + B2h)SA|w®||1 e+ H(SA) (||w][10) %

+ Z Z wpt (R REE. (105)

k=1h'=h

Then at least one of the following three inequalities holds:

2 Al [ |1 S /(@ + 2 H)S A e

2 Al ol S HA(SA)F (D10,

21 1AmmHW ||1 h S Z Z wh’ R?lse :

k=1h'=h

Solving this three inequalities, we know that:

. 4 h k
||UJ(Z)H1 h < O [ max (Q B2H) SAHQL H4SAL3 Zk 1 Zh’ h wh’ k(h)Relse
h = 4i-TA2 (201 Apin) 3 201 Amin

SO((Q* B*H) SAH2L+ H*'SAL3 +Zk Dy hwh’ (R)RhE

4i-1AZ (2Z 1Amln)% 271 Apin

min

(106)
By Equation (T04), we have:

N K H

D) I IENCLEED SO PO NTI ECEESD SIS

i=1 k=1h'= h'/=h k=1 h'=1k=1

Using this inequality, we have

N . . * 2H) SAH?, 4 4 H K
mem||w“>|1,h30<(@ + 7 H) HSAL -+ > D RLE). aon

i=1 Anin (Amm JER v
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D.5.2 PROOF OF EQUATION AND EQUATION

Next we will bound the term S S°F . R F where

h,k N Aref R,k™  {/RE™ ref y7RE™ adv YR,E" V H\IJZL He
Ree =10 " H + By (Vh+1 ~ Vi1 ) + (Ph,kvh+1 —PukViia ) + TNE ™ NF-
h h
According to equation (149) of |Li et al.| (2021}, we have:
TE N HSS Alog(T
S S H < H2SA< HZSAlog(T)e. (108)
h=1k=1 2
Sj R,k R,k
ince for any k € [K], V},7 /1 (s) — Vjr 1 (s) > 0, we have
H K H K Ny v K
Ao RET R L (ORAT SRAD n R
Z ZEh}c,k (Vh’+1 - Vh’+1) < Z Z Zunh (Vh'+1 - Vh’+1) (SI;L’-H) ZHUC = J]
h'=1k=1 h=1k=1n=1 j=1
H K , K N v
i R,j R, j n
=303 (0 e = ) (- V) ek

h=1j=1 Nk=1n=1

Here I [k™ = j] = 1ifand only if (s],,a},) = (s§,,al,), j <k —1andn = N/} (s],,al,) > 0.
Then we have:

K Ny K . Ny
SIS w LK =] = 3wt [(sheah) = (sheak)] < D0 uln SlogT
k=1n=1 k=j+1 t=NIH "
(109)
The last inequality is because for any N € N and i € [N], ul < % Therefore it holds that:
H K H K _
SO B (VT V) 108 0N (VL - VL) (b (110)
h'=1k=1 h—1j=1

To continue, we will first prove a lemma
Lemma D.4. Forany h' € [H] and k € [K],

S Vi (s) = Vil () < B, then Viii™ (s) = Vil (s) = Vit (s)
< IfVE (s) — V}{“&Bl’k(s) > f3, then we have:

k R,k CB,k
0<VEE(s) = VSE (s) S VE L (s) = VEEH(s),

and
~R,j R,K+1 LCB,k
|Vh,_{_1(s) - Vh’-s—l+ (s) < th’Jrl(S) - Vh’+1 (s)-
Proof. * If for given k € [K], Vi (s) — V,I‘,Cfl’k(s) < B, then there exists k1 € [K] such
that:

ky = min {k LV (s) — VECBR () < 6} .
Then according the algorithm, we have ufelf(s) = TRUE, or it is contradictory to the mini-
mality of k1. Therefore, in this case we have:

VS KT (s) = VEE (5) = VET1(s) = VEL L (5) S VESF 1 (5) + B < Vi (s) + B,

and
R,k R,k ks .
Vh'+1(3) = Vh'+i(5) = Vh/+1(3) > Vh'+1(5)~
According to the definition of V,ﬁ’fl(s), we have V,f,fl(s) = V,f,fl (s) = ‘A/,ﬁflﬂ(s).
Thus V£ (s) — VhL,iBl’k(s) < f is the sufficient condition of V}f,’f:l(s) = V}f,’f:l(s) =
R, K+1
Vi (8)-
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* Moreover, if V£ (s) — V}{“&Blk(s) > f, according to the algorithm, we have V'F (s)

/+1
Vil (s) and then 0 < ViIE, () = Vit () < Vi) = V(o)

+1
In this case, we also have V]“,S_Blk(s) < VR,’le(s) < ViE,1(s) and then V]‘&Bl’k(s) <
7R K R,k _ k ; tiag ] 7R, j
Vi (s) < Virdi(s) = thré(s). These two inequalities imply that [V}7],(s) —
R,K+1 k LCB,
Vien ()] < Vi (s) = Vil (s).
O
According to this lemma, the following inequality holds:
H K
Rj (oJ 7RG (od
Z Z (Vh’+1(5h’+1) - Vh’+1(5h’+1))
h'=1j=1
H K 6
. LCBk, 'R, LCB.j( j S A
< Z Z (Vh’+1(8h’+1) - Vh'+1 (sh/+1))ﬂ {Vh’+1(sh’+1) - Vh’+1 (Sh’+1) > ﬁ 5 5 .
W=1j=1
Applying this inequality to Equation (IT0), it holds that:
H K 6
Aref R,k™ ~R k™ H SA IOg(T)L
> (et - ) S e (111)
h=1k=1
. . SRk Nf,  NF,  <NfE NF,
For the third term in R;.", because >, "} un™ =Y, n, ", then
f {rR,k™ adv Y7R,k"
Py Vs — Ph Vi
NE NF,
. N’I:’]P’ PRAE" _RE - N’]j’]P’ RA" _ RE L
= Zun sﬁ,,a;‘;,,h’( R4+1 — V41 ) — Znn sﬁ,,aﬁ,,h'( R4+1 — Vhi41 )
n=1 n=1
k k
< - Nf’f’p VRAE" _ pREL - le/p PRAE" _ pREL
- Zun Sﬁ/vazmh' 41— Vh'41 + T s’fb,,aﬁ,,h’ h+1 — Vh'41
n=1 n=1
Similar to Equation (TT0), we have:
H K Nj b H K
X R kT R,K+1 R, j R,K+1
35S ¥ g [T VIS S 08(0) 323 [0, - VY
h'=1k=1n=1 h=1j=1

and

H K N;’f/

NF,
h
DD DI FITY

h'=1k=1n=1 h'=1j=1

H K
~R,k™ R,K+1
Vh’+1 _Vh’+1 ‘5 E E Psi’,,ak h | Yh'+1 = Vh'41

!

R, j R,K+1
VJ V,+‘

by Equation (99). Combining these two inequalities, we have:

H K H X
f 7R, k™ adv Y7R, k"™
S (BRI — BV ) S10g(1) 30 " Pop, ot

h'=1k=1 h'=1j=1

/41 /41

VR —VR’K“‘. (112)

According to Lemma|[D.4] the following inequality holds:

H K ]
S 3 VR0 - VRESG)

h'=1j=1
H K
; . . ; P HSS A,
: LCB,k LCB,
= Z Z (Vh]iJrl(warl) = Vit (5?141))}1 {Vliurl(s;z”rl) - Vh/+1J(Sﬁ'+1) > B < 75 .
h'=1j=1
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Combining Equation (TT2) with the event £7 in Lemma[D.2] we have:

H K
> (BRI — B ) £ HGSA;Og(T)L- (113)
h'=1k=1
Now we move to the fourth term in Relse By Lemma we have:
NF,
W (shoab) = 30 (Vi (b = Vit ()
n=1

e LCB,k™ / k™ I LCB,k" ; k"
<Z Vh’+1 5h’+1 Vh’+1 (Sh’+1)) [Vh’+1(5h’+1) Vh/+1 (Sh’+1)>ﬁ}

£ @k/(ShuaZ/)
Then it holds that:
\/ wshnay) K \/ OF, (5. aps) "/(qa) D7 (s, a)
NEGE aE) S 2 NEGE ah) —
k < Np(spoap) = NE(skag) " n

n= 1
<logTZ\/ K(s,a) <logT /SAZ@h, 5,a) (114)

The first inequality is because of the mononicity of ®, (s, a). The second inequality is by Cauchy’s
inequality. To continue, note that:

3 Zw“ “(s,a)

h'=1
H K
; LCB,k LCB,k
= Z Z (th’+1(52'+1) Vit (5§'+1)) -1 [Vi5+1(82’+1) Vit (52%1) > 5}
h'=1 \ k=1
H K
<G| 7 Z Z (th’+1(52’+1) VibCB k(Sh'H)) I [th’+1(82’+1) VhL'CB k(slfuﬂ) > 5}
h=1k=1
H7S AL
<
B

Together with Equation (IT4), it holds:
I & Y HYj,( Sh ah NE 3
\Spry Qs <(s, a) Hz2S5Alog(T)
" < log T SAS @y a) < 208t (1)
PRI TN DO 7
By Lemma [D.3|with o = 1, we have:

ZZNk

h'=1k=1 Sh”ah’)

By summing Equation (I08), Equation (ITI), Equation (T13)), Equation (IT3)) and Equation (TT6),
since 8 € (0, H], we can conclude that:

L& HOSAL
>3 R g AL

h'=1k=1

< H?*SAlog(T). (116)

Then we have

K
> clip[(QF; — Q1) (sh,af) | Awin] = O

k=1

(Q* + B*H) SAH*.  H*'SA/5  HSSAlog(T):
+ — +
Amin (Amin) 3 B
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Amin B (1 17)

* 2 2 6 2
<O<(@ +F2H) SAH*L | HOSA: )
The last inequality is because
H*SA3  B2H3SA. HSSA. HS5SAZ
< + +
(Amin)§ Amin B B

by AM-GM inequality.

D.6 STEP 4: BOUNDING THE EXPECTED GAP-DEPENDENT REGRET
By Equation (EI), QF(s¥,ak) = VF(sk) > V*(sF). Thus, for any episode-step pair (k, k)
An(xy, ap) = clip[Vy (z5) = Q5 (2}, ak) | Amin] < clip[(Q — Q4) (@}, ay) | Aumin]-

By Equation (4)in [Yang et al. (2021), we have E (Regret(K)) = E {Zszl Zle Ap(zk,af) |,
which further implies

E (Regret(K)) < E [Z S clipl(Qf — Qi) (ak, ak) | Auwa)

k=1h=1

Finally, let6 = (%T and £ = ﬂ?zl &;. Then the event £ holds with probability at least 1 —65 = 1— %
Then we have:

K H
E (Regret(K)) < E [ clip[(QF; — Q1) (@}, af) | Amin] 5] P(E)
k=1h=1
K H
+E DD clipl(QF — Qi) (@f, af) | Aminl[E°| P(E°)
k=1h=1
(Q*+?H) H3SA.  HSSA? 1
<0 ( A + 3 +(1- f)HT
* 2 3
O((@ —I—ﬁAI{)H SALJFHG;AB). (118)

The last inequality is because under the event £, we have proved that

( (@ +3°H) H3S A HGSAﬂ)

K H
SO clip[(QF - Q5 (k. af) | Amin] <O

k=1h=1
by Equation (IT7) and under the event £°,

Amin /8

K H
S5 clipl(@F — @3)(eh,af) | Auwin] < HT.

k=1 h=1
E RELATED WORK

On-policy RL for finite-horizon tabular MDPs with worst-case regret. There are mainly two
types of algorithms for reinforcement learning: model-based and model-free learning. Model-
based algorithms learn a model from past experience and make decisions based on this model,
while model-free algorithms only maintain a group of value functions and take the induced opti-
mal actions. Due to these differences, model-free algorithms are usually more space-efficient and
time-efficient compared to model-based algorithms. However, model-based algorithms may achieve
better learning performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular
MDPs with worst-case regret. |Auer et al.| (2008), |Agrawal & Jial (2017), |Azar et al.|(2017), Kakade|
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let al] (2018), [Agarwal et al| (2020), [Dann et al,| (2019), [Zanette & Brunskill| (2019)/Zhang et al|
(2021a)/Zhou et al.| (2023) and [Zhang et al| (2023) worked on model-based algorithms. Notably,
|Zhang et a1.| (]2023|) provided an algorithm that achieves a regret of O(min{v/SAH?2T,T}), which
matches the information lower bound. [Jin et al| (2018)), [Yang et al] (2021)), [Zhang et al. (2020),
Li et al| (2021)) and Ménard et al.| (2021) work on model-free algorithms. The latter three have

introduced algorithms that achieve minimax regret of O(v/.SAH2T).

Suboptimality Gap. When there is a strictly positive suboptimality gap, it is possible to achieve log-
arithmic regret bounds. In RL, earlier work obtained asymptotic logarithmic regret bounds
[Ortner] (2007); [Tewari & Bartlett| (2008). Recently, non-asymptotic logarithmic regret bounds were
obtained (Jaksch et al.| (2010); Ok et al| (2018)); [Simchowitz & Jamieson| (2019); [He et al.| (2021)).
Specifically, Jaksch et al| (2010) developed a model-based algorithm, and their bound depends on
the policy gap instead of the action gap studied in this paper. derived problem-
specific logarithmic type lower bounds for both structured and unstructured MDPs.
extended the model-based algorithm by [Zanette & Brunskilll (2019) and obtained
logarithmic regret bounds. Logarithmic regret bounds are obtained in linear function approximation
settings (He et al} 2021). Nguyen-Tang et al.| (2023) also provides a gap-dependent regret bounds
for offline RL with linear funciton approximation.

Specifically, for model free algorithm, |Yang et al|(2021) showed that the optimistic Q-learning

algorithm by [Jin et al.| (2018) enjoyed a logarithmic regret O(%), which was subsequently

refined by (2021). In their work, @021)) introduced the Adaptive Multi-step
Bootstrap (AMB) algorithm.

There are also some other works focusing on gap-dependent sample complexity bounds (Jonsson

et al.| 2020; Marjani & Proutiere| [2020; (Al Marjani et al.| 2021} [Tirinzoni et al.| 2022} [Wagenmaker,
et al.,2022b; Wagenmaker & Jamieson, 2022} [Wang et al., [2022; [Tirinzoni et al., 2023).

Variance reduction in RL. The reference-advantage decomposition used in [Zhang et al.| (2020)
and is a technique of variance reduction that was originally proposed for finite-
sum stochastic optimization (see e.g. [Gower et al.| (2020); Johnson & Zhang| (2013)); Nguyen et al.
(2017)). Later on, model-free RL algorithms also used variance reduction to improve the sample
efficiency. For example, it was used in learning with generative models Sidford et al| (2018} 2023);
Wainwright| (2019), policy evaluationDu et al.|(2017); Khamaru et al.| (2021);Waz et al.| (2019); Xu]
et al.| (2020), offline RL [Shi et al| (2022)); Yin et al.| (2021), and Q-learning |Li et al.| (2020); [Zhang
et al.|(2020); |L1 et al.| (2021));|Yan et al.| (2023)).

RL with low switching cost. Research in RL with low switching costs aims to minimize the number
of policy switches while maintaining comparable regret bounds to fully adaptive counterparts.
first introduced the problem of RL with low-switching cost and proposed a (Q-learning
algorithm with lazy updates, achieving O(SAH 31og T') switching costs. This work was advanced
by[Zhang et al.|(2020), which improved the regret upper bound and the switching cost. Additionally,
Wang et al.| (2021) studied RL under the adaptivity constraint. Recently,|Qiao et al.| (2022)) proposed

a model-based algorithm with O(log log T') switching costs.

Other problem-dependent performance. In practice, RL algorithms often perform far more ap-
pealingly than what their worst-case performance guarantees would suggest. This motivates a re-
cent line of works that investigate optimal performance in various problem-dependent settings (Fruit

et al.| 2018} Jin et al| 2020} Talebi & Maillard, 2018; [Wagenmaker et al., [2022a; [Zhao et al.| 2023}
Zhou et al | [2023).

F NUMERICAL EXPERIMENTS

In this section, we conduct experimentsﬂ All the experiments are conducted in a synthetic envi-
ronment to demonstrate the better gap-dependent regret of UCB-Advantage and Q-EarlySettled-
Advantage compared to other two model-free algorithms: UCB-Hoeffding 2018) and

'All the experiments are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100 cores. Each replica-
tion is limited to a single core and 4GB RAM. The total execution time is less than 2 hours. The code for the
numerical experiments is included in the supplementary materials along with the submission.
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AMB (Xu et al [2021). We will consider two different scales of experiments across two cases: a
general MDP and a deterministic MDP.

We first set H = 5, S = 3, and A = 2. The reward (s, a) for each (s, a,h) is generated in-
dependently and uniformly at random from [0, 1]. For general MDP, Py, (- | s,a) is generated on
the S-dimensional simplex independently and uniformly at random for (s, a, h). For deterministic
MDP, Py (- | s,a) is a randomly generated vector with only one element equal to 1, and all others
equal to O for each (s, a, h). Under the given MDP, we generate 3 x 10° episodes. For each episode,
we randomly choose the initial state uniformly from the S states. For all four algorithms, we set
¢ = 1 and the hyper-parameter c; in the Hoeffding-type bonus to v/2. Here, c; represents the only
undefined constant in the bonus terms of the UCB-Hoeffding and AMB algorithms, as well as the
multipliers in the bonus expressions in line 10 of Algorithm [T] (UCB-Advantage) and lines 2 and
4 of Algorithm [2] (Q-EarlySettled-Advantage). In both the UCB-Advantage and Q-EarlySettled-
Advantage algorithms, we set the hyper-parameters co to 2. Here, co denotes the constant in the
variance estimators of the advantage-type bonus, which is the undefined constant in line 16 of Al-
gorithm 2} In addition, we set c3 to 1. Here, ¢z denotes the multiplier in the last term in line 9 of
Algorithm[T]and the last term in line 8 of Algorithm 2] For UCB-Advantage, we set N = 200, and
for Q-EarlySettled-Advantage, we set 5 = 0.05.

To show error bars, we collect 10 sample paths for all algorithms under the same MDP environment
and show the relationship between Regret(T")/log(K + 1) and the total number of episodes K in
Figure [T} For both panels, the solid line represents the median of the 10 sample paths, while the
shaded area shows the 10th and 90th percentiles.
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Figure 1: Numerical comparison of regrets with H =5, S = 3, and A = 2

We also conduct a larger scale experiment with H = 10, S = 5, and A = 5 for 3 x 10° episodes in
both types of MDPs. With all other settings unchanged, the result is shown in the following Figure 2}
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Figure 2: Numerical comparison of regrets with H = 10, .S = 5,and A =5
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Next, we discuss the results. From the two figures, we observe that both UCB-Advantage and Q-
EarlySettled-Advantage enjoy lower regret compared to UCB-Hoeffding and AMB. The y-axis rep-
resents Regret(7") / log(K +1), and we note that the curves for UCB-Advantage and Q-EarlySettled-
Advantage approach horizontal lines as K becomes sufficiently large. This suggests that the regret
for these two algorithms grows logarithmically with K. In particular, Q-EarlySettled-Advantage
achieves even lower regret than UCB-Advantage when K is large. These features are consistent
with our theoretical results.

We also conduct an experiment to evaluate the policy switching cost of the UCB-Advantage algo-
rithm for these two different scales of (H, S, A), under the same experimental setting. The results
are presented in the following figures:
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Figure 3: Policy switching cost of UCB-Advantage algorithm with H =5, S = 3, and A = 2
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Figure 4: Policy switching cost of UCB-Advantage algorithm with H = 10, S =5,and A =5

In these two figures, the y-axis represents the ratio of policy switching cost to log(K + 1). We
note that all these four curves approach horizontal lines as K becomes sufficiently large, which is
consistent with our logarithmic policy switching cost shown in Equation ().

G MATHEMATICAL EXPLANATION OF THE SURROGATE FUNCTION

Next, we explain the surrogate function in a more mathematical manner.

Our proof rehes on relating the regret to multlple groups of estimation error sums that take the
form Sr, w (Qh Q5)(s¥,aF). Here {wh k}k are nonnegative weights and ¢ represents the
group. Boundmg the weighted sum via controlling each individual Q% (s¥,a¥) — Q% (sF,af) by
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recursion on h is a common technique for model-free optimism-based algorithms, which was used

by all of |[Zhang et al.|(2020); [Li et al.[ (2021);|Yang et al.|(2021). |Yang et al.|(2021]) used it on gap-
dependent regret analysis, and|Zhang et al. |(2020) and|Li et al.|(2021])) used it to control the reference

setting errors Zszl (Véz (g Ky — V}i{ Krls *)). However, their techniques are only limited to the
Hoeffding-type update. In detail, the Hoeffdmg type update in (Q-function is given by

k+1

h
NFE+1 n n ~
k+1(5haah) —rh(sﬁ,aﬁ)+ " Vf+1(5§+1)+0 (\/ Hg/Nf]fH) )

n=1

which is the key update of (2021), and the update of Q}LJCB’}“H for [2, 3]. Accordingly,
we can find that

(QF — Q1) (sk.ab) < Huyg" Jann (Vi — V{+1)(5§11)+O(\/ HB/NLC),

k
which is the event in Definition 4.1 of Yang et al.[( 02 ). Here, 77(1)\7 " = (0 when N} > 0. After taking
the weighted sum with regard to k € on both sides, we can establlsh recursmns on h where the

. K ) k n n
main terms are >, wi(zl)lc (QF —Qj)(s, aj) and Zk:l wh,k Znﬁl n o (Viﬁl = Vi) sk )-
k
With Zle H név " being easily controlled, the error generated by the recursion is mainly dominated

by the weighted sum regarding the simple term 0 (\ /H3/N }lf H) , which obviously vanishes when

k is large so that N} (the number of visit to (s¥, a¥, h) is large.

Here, We explain why [Zhang et al| (2020) and |Li et al.| (2021) only rely on the weighted sum
SE W b D (QF — Qr)(sk,ak) with simple Hoeffding-type errors though their algorithms in-
volve reference advantage decomposition. Both methods incorporate a Hoeffding-type update
(see QECB”“H in Equation ), with which they bound the reference settling error by control-
ling the weighted sum. When analyzing the worst-case regret, they only need to relate the regret to
Zszl (QF —Q7)(sF,ak), i.e., the sum instead of the weighted sum. However, in our gap-dependent
regret analysis, because the weights do not adapt to the learning process (see our proof sketch for
more details), we have to analyze each item (QF — Q7)(sF, af) individually in the weighted sum
with complicated errors with new technical tools when we consider the reference-advantage update

(Equation (8)).

The reference-advantage update is listed as follows

NjF!
R+l k kY _ k(k k Ny ok R, K" Ny ORE™ ( k Bhk+1
W sk k) = rh(skyaf) + Y (Vi - V) et VR ) (s + R
n=1
k 1 Nk+l k+1 Nk'+1
Here, {nn ney are the corresponding nonnegative weights that sum to 1. {un noy that

sum to 1 are nonnegative weights for the reference function. RM*+1 is the cumulative bonus that
contains variance estimators and dominates the variances in reference estimations and advantage
estimations. Accordingly, we can find that

(QF — Qi) (sh.af) < Hn)™ +Z77n (Ve = Ve (sh40)

n=1

R,E" NFRE™ g Nf * ,
+ Z ( "V = Viga ) Fun" Vi )(SZH) (L =15 " Pt at iy Vi + B

To establlsh the recursion on A in the same way, when keeping the main terms unchanged and
. NE . . . . .
neglecting the term H 7, ", the error term in our iteration becomes the weighted summation for

Nk,
Zh: Ny (Ve — VRE™Y LNy RET) () (1 = piyp Vi + RME.
Mn h+1 h+1 Un ™ Vi1 (3h+1) ( 770 ) (sk.ak,h) Vh+1 +

n=1
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It is much more complicated than O(y/ H3 /N ) for the Hoeffding-type update.

To handle this error, we propose a decomposition method following the reference advantage struc-
ture. Naively, we can move towards advantage estimation errors (the first term), reference estimation
errors (the second term), reference settling errors (the third term), the cumulative bonus (the fourth
term), and a negative term (the last term), i.e.

R,K+1 R,K+1, k"
Z’r] (Psf,a} h 1 k" ) (‘/}L+1+ Vthl —+ Zun (IL kn — ]P)S;”;,aﬁ,h> Vh+1+ (SZ+1)

Sh41
n=1 n=1

Nh
N,L R,k™ R,K+1v, k" N,L PRE+L R,k™\ k™
+§ :u Vir — Vi )(5h+1)+R + E Vi = Vi1 )(Shi1)
n=1

because the properties of the settled reference function fof“ is well-studied in [Zhang et al.
(2020) and [L1 et al.| (2021). However, it will cause a non-martingale issue when we try to ap-

ply concentration inequalities as V,ﬁf“ depends on the whole learning process. To solve this

. . RE

issue, we propose our surrogate reference function V," and decompose the error above as
N R k™ * N R E™

Gri=2 2 177n (]Ps;;,ah,h Lo Y(Viiy — Vh+1) g2 =2n 1“n (]1 K _Ps’; ah,h)VhH ’

Sh+1
g3 = Z]ryhl(uiyh ) sﬁ,ah, VhRJrkl + Zn lu” ( f?+k1 - VhRJ,rkl )(824-1)’ the bonus term

NE n n
G4 = R"*_ and a negative negligible term S| n,iV g (th — VAT (sF",). The first three terms

correspond to advantage estimation error, reference estimation error, and reference settling error, re-
spectively. Here, we creatively use the surrogate V}f J’rkl as it is determined before the start of episode
k. Thus, G1,Go are martingale sums and can be controlled by concentration inequalities that are
given in Equation (I6), so the non-martingale challenge can be addressed. G3 corresponds to the
reference settling error and can also be controlled given the settling conditions and properties of
V,fk(s) The bonus G, is controlled using the same idea of bounding G1, G2, G3.

Our decomposition above expands the technique of bounding the weighted sum of estimation errors
to reference-advantage type estimations. In addition, we are the first to use the novel construction
of the reference surrogates for reference-advantage decomposition in the literature, which makes a
separate contribution to future work on off-policy methods and offline methods.

54



	Introduction
	Preliminaries
	Main results
	Gap-dependent Regrets
	blueOur Technical Tool: Surrogate Reference Functions
	Gap-Dependent Policy Switching Cost for UCB-Advantage

	Key steps for proving Theorem 3.2
	Conclusion
	General Lemmas
	Proof of Theorem 3.1
	Algorithm details
	Key lemmas
	Proof sketch of Theorem 3.1
	Bounding the term Q-Q*
	Bounding the term G1
	Bounding the term G2
	Bounding the term bonus

	Rearrange the weighted sum of G3
	Bounding the term sum of Y

	Proof of Theorem 3.3
	Proof of Theorem 3.2
	Algorithm details
	Auxiliary lemmas
	Step 1: Bounding Q-Q* 
	Bounding the empirical estimation errors
	Bounding the bonus

	Step 2: Bounding the weighted sum
	Rearranging the summation
	Proof of Equation (22)

	Step 3: Integrating multiple weighted sums
	Proof of Equation (26)
	Proof of Equation (27) and Equation (28)

	Step 4: Bounding the expected gap-dependent regret

	blueRelated work
	blueNumerical Experiments
	blueMathematical explanation of the surrogate function

