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Abstract

Inference-time scaling techniques have shown promise in enhancing the reasoning1

capabilities of large language models (LLMs). While recent research has primarily2

focused on training-time optimization, our work highlights inference-time reward3

model (RM)-based reasoning as a critical yet overlooked avenue. In this paper,4

we conduct a systematic analysis of RM behavior across downstream reasoning5

tasks, revealing three key limitations: (1) RM can impair performance on simple6

questions, (2) its discriminative ability declines with increased sampling, and (3)7

high search diversity undermines RM performance. To address these issues, we8

propose CRISP (Clustered Reward Integration with Stepwise Prefixing), a novel9

inference-time algorithm that clusters generated reasoning paths by final answers,10

aggregates reward signals at the cluster level, and adaptively updates prefix prompts11

to guide generation. Experimental results demonstrate that CRISP significantly12

enhances LLM reasoning performance, achieving up to 5% accuracy improvement13

over other RM-based inference methods and an average of 10% gain over advanced14

reasoning models.15

1 Introduction16

The remarkable achievements of OpenAI’s o1 have sparked a wave of research into inference-time17

scaling techniques in reasoning tasks [21, 6, 42]. Some works aim to enhance models during the18

training phase, employing reinforcement learning (RL) [38, 23] or supervised fine-tuning (SFT)19

[41, 19] on high-quality data to equip models with the ability to generate long chains of thought20

(CoT). Other approaches focus on inference-time optimization, using reward model (RM)-based21

search strategies such as Monte Carlo Tree Search (MCTS) to guide the model toward more efficient22

solution paths [35, 29, 43].23

Driven by the great success of the DeepSeek-R1 series [6], recent efforts have predominantly24

focused on reproducing its performance from a training-centric perspective [19, 41, 38], while largely25

overlooking inference optimization methods. Although R1-style works achieve strong performance on26

tasks such as math reasoning, they have been shown to suffer from serious issues such as overthinking27

[4, 31] and limited task generalization [44, 47]. These issues, however, can be mitigated through28

RM-based inference techniques. For example, on the commonsense reasoning task CSQA [33],29

DeepSeek-R1-7B [6] achieves 64.8 accuracy with an average of 3,613 tokens. In contrast, our30

RM-based inference method, applied to its base model Qwen2.5-Math-7B [40], reaches a higher31

accuracy of 72.0 using only 1,100 tokens on average. Therefore, optimizing inference-time reasoning32

remains a critical direction, particularly for smaller models.33

How can we further improve the reasoning performance of LLMs at inference time? Revisiting34

R1-style work, one key insight is their identification of the reward hacking issue during RL training,35

which they address using rule-based reward functions, ultimately improving performances [16, 6, 7].36
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This raises a natural question: Can we similarly analyze the issues of the reward model at37

inference time and mitigate them to enhance the LLM’s reasoning ability?38

In this work, we investigate the factors affecting reward model performance at inference time and39

propose methods to mitigate its limitations. Specifically, we begin by mathematically modeling the40

RM-based inference process to identify its key influencing factors: the input questions, the number of41

sampled responses, and the search parameters. Then, we conduct targeted experiments to analyze42

the impact of each factor on RM performance: (1) Input question: We test the performance of43

BoN and MCTS across different question difficulty levels and demonstrate that RM-based inference44

significantly impairs performance on simple questions. (2) Sampling number: We analyze the RM’s45

discriminative ability under different numbers n and observe that its performance deteriorates as46

n increases. The statistical analysis attributes this degradation to an inverse long-tail phenomenon,47

wherein the RM tends to assign higher scores to low-frequency, incorrect responses. (3) Search48

parameters: We focus on parameters controlling search diversity, such as sampling temperature49

and MCTS tree structure. Our results show that RM performs best under moderate diversity, while50

excessive diversity undermines reasoning accuracy.51

To mitigate the former issues in RM-based inference, we design a novel algorithm called CRISP52

(Clustered Reward Integration with Stepwise Prefixing). CRISP operates in an iterative fashion,53

where each round begins by sampling reasoning paths conditioned on a dynamic prefix set. These54

paths are then clustered by their final answers, allowing the algorithm to aggregate reward signals55

at the cluster level and thereby attenuate the RM’s tendency to mis-rank rare but incorrect outputs.56

We further incorporate an early termination mechanism based on cluster cardinality, which enables57

efficient inference on simple questions and alleviates RM instability in such cases. Finally, high-58

scoring paths from dominant clusters inform the construction of stepwise prefixes for the next59

sampling round, enabling tighter control over search diversity by limiting the number of intermediate60

states explored. We conduct extensive experiments to compare our method with other baselines. The61

results not only indicate that our method is effective in improving RM-based reasoning abilities,62

with accuracy gains of up to 5%, but also validate the soundness of our earlier findings. Moreover,63

compared to DeepSeek-R1 models of the same scale, our method reduces average token usage by up64

to 90%, while achieving an average accuracy improvement of 10% on non-mathematical tasks.65

Our main contributions are as follows: (1) We draw three critical findings based on a systematic66

analysis of RM behavior during inference: RM degrades performance on simple questions, fails to67

effectively distinguish low-frequency incorrect samples, and performs suboptimally under excessive68

search diversity. (2) We propose CRISP, a novel inference-time algorithm that clusters generated69

reasoning paths by final answers, aggregates reward signals at the cluster level, and adaptively updates70

prefix prompts to guide generation, effectively mitigating the shortcomings of reward models at71

inference time. (3) Extensive experiments demonstrate that CRISP consistently outperforms both72

inference-time and training-time baselines, with accuracy improvements of up to 5% compared to73

other RM-based inference methods, and an average of 10% over R1 models in non-mathematical74

reasoning tasks.75

2 Overall Performance of Reward Models in Inference-Time76

We first evaluate the overall performance of the reward model in inference time as our preliminary77

experiments. Here we compare the accuracy of Best-of-N (BoN), which generates multiple responses78

and selects the best one based on the reward score.79

Experimental Setup For the policy model, we select some representative open-source mod-80

els: Gemma2-9B [24], Llama3.1-8B [25], Qwen2.5-3B and Qwen2.5-14B [39]. For the evalua-81

tion of reward models, we consider several advanced works, including two outcome reward mod-82

els (ORMs)—ArmoRM [34] and Skywork-Llama-3.1-8B [14]—and two process reward models83

(PRMs)—Shepherd-Mistral-7B-PRM [35] and Skywork-o1-PRM-Qwen-2.5-7B [20]. These models84

demonstrate commendable performance on related benchmarks (see Appendix A for details). As85

for the evaluation data, following previous works [30, 3, 22], we select MATH-500 [10, 12], which86

consists of high-school competition-level math problems. In addition to BoN, we also set two87

baselines: SC and Oracle. For the former, we select the major voting answer from n responses. For88

the latter, we directly recall the existing correct answer from the generated samples, which serves as89

the performance ceiling.90
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Figure 1: The performance of different policy models using various reward models for BoN inference
on the MATH dataset (n = 10).

Main Results Figure 1 shows the main results of the evaluation (more results, including more91

datasets and inference strategy in Appendix B). We can conclude that: Advanced reward models92

have limited performance on the downstream math reasoning task. For most LLMs, BoN only93

provides minor improvements over SC (<5%). Specifically, on Qwen2.5-3B, the BoN for all reward94

models exhibits lower accuracy than SC, indicating that the BoN inference method has limited95

reasoning performance. Besides, Oracle significantly outpaces other baselines, suggesting that the96

performance bottleneck lies in the RM’s discriminative ability rather than the LLM’s generative97

capability. Therefore, identifying and mitigating the factors that impair the RM’s performance98

during inference are crucial for enhancing LLM’s reasoning ability.99

3 Probing RM-based Inference Issues100

3.1 Mathematical Modeling101

During the inference phase, the first step is to input the question q and generate multiple responsesR:102

R = S(M(q), n; Φ) (1)
whereM(q) denotes the output distribution of the policy model after inputting the question, n denotes103

the number of samples and Φ denotes the parameters of the search strategy S (such as sampling104

temperature). After that, we use a scoring function f to select the best response r̂ fromR:105

r̂ = argmax
r∈R

f(r) (2)

To analyze the performance of the reward model, we define f as the score predicted by the RM. Our106

work focuses on identifying key factors that influence RM performance. To this end, we vary the107

components in Eq.1 to observe the accuracy of predicted r̂ under differentR. Specifically, we study108

three main factors through probing experiments: the input question q, the sampling number n, and109

the search parameters Φ.110

3.2 Experimental Setup111

For reward models, based on results in Figure 1, we select the best-performing Skywork and112

Skywork-o1 as the ORM and PRM for our subsequent experiments. Regarding policy models, we113

use Qwen2.5-3B and Llama3.1-8B throughout our experiments. To ensure that our findings are114

not specific to a particular strategy, we conduct all experiments using both BoN and MCTS. As for115

evaluation data, we employ the MATH-500 dataset in our main text, and provide additional results on116

GSM8K [5] and OlympiadBench [9] in the appendix.117

3.3 Input Question: Reward Model Underperforms on Easy Questions118

Question Difficulty Modeling We first investigate how different questions affect the RM’s perfor-119

mance. Following former works, we use question difficulty as a metric to classify different questions120

[12, 30]. We bin the policy model’s pass@1 rate (estimated from 10 samples) on each question into121

five quantiles, each corresponding to increasing difficulty levels. For example, If the model answers122

correctly 0 or 1 time, the question is level 5 (hardest). If it answers correctly more than 8 times, the123

question is level 1 (easiest). Besides, we also study the difficulty approximation without the ground124

truth and report results in Appendix C.125
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Figure 2: Performance of BoN inference across
different question difficulty levels.

1 2 3 4 5
difficulty

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

SC
BoN
MCTS-SC
MCTS-RM

(a) ORM

1 2 3 4 5
difficulty

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

SC
BoN
MCTS-SC
MCTS-RM

(b) PRM

Figure 3: Performance of MCTS inference across
different question difficulty levels.
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Figure 4: Two inference methods performance across difference sampling numbers.

BoN Performance After categorizing the data by difficulty, we analyze the BoN performance126

across different levels. We sample 32 examples from each question and illustrate the accuracy in127

Figure 2, from which we can conclude that: Compared to SC, BoN performs worse on simple128

but better on difficult questions. From the easiest level 1 to the hardest level 5, the accuracy of SC129

gradually declines, while BoN transitions from lagging behind SC to surpassing it. We also repeat the130

experiment on two more math reasoning benchmarks and present the results in Appendix D, further131

confirming our conclusion.132

MCTS Performance In MCTS, we use two different scoring functions f to select the final response133

for comparison: MCTS-SC and MCTS-RM (more functions in Appendix B). For the former, we134

employ a majority voting method for selection. For the latter, we choose the path with the highest135

reward score. We perform 32 rollouts over 200 questions, demonstrating the results in Figure 3.136

Although MCTS provides improvement over BoN, the accuracy of MCTS-RM still lags behind that of137

SC for low-difficulty problems (see levels 1 and 2 in Figure 3a). Besides, MCTS-SC achieves higher138

accuracy on easy questions but performs worse on harder questions compared to MCTS-RM. These139

indicate that: (Cl.1) The introduction of the RM can hinder the LLM’s reasoning performance140

on simple problems. This pattern is not limited to specific inference strategies.141

3.4 Sampling Number: RM struggles to distinguish low-frequency negatives142

Gap between Accuracy and Coverage Recent works [3] demonstrate the LLM’s coverage of143

correct answers increases as the sampling number grows, whereas the accuracy does not fully scale144

with n. Based on this, we further investigate whether introducing better RMs and inference strategies145

can reduce the gap between coverage and accuracy. The changes in accuracy and coverage are shown146

in Figure 4. The results demonstrate that: Regardless of the reward model or inference strategy147

used, the model’s accuracy does not improve as n increases. For both figures, the accuracy148

plateaus beyond a relatively small number of samples (approximately 30). In contrast, the Oracle149

setting consistently increases, leading to a persistently widening gap between accuracy and coverage.150
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Discriminative Performance In the context of increasing coverage, the policy model’s accuracy151

primarily depends on the reward model’s discriminative capacity. Therefore, the plateau observed in152

Figure 4 is likely due to the reward model selecting incorrect answers as n increases. To validate this153

claim, we begin with a case study, in which we randomly select a set of questions to examine the154

correctness of the RM’s selections under different sampling numbers (see Appendix E for detailed155

results). We observe that in some cases, the reward model assigns the highest score to newly generated156

but incorrect responses, thereby causing originally correct answers to be replaced with incorrect157

ones as n increases. Additionally, we record the number of instances in which the selected answer158

transitions from correct to incorrect and present the results in Figure 5. All methods exhibit a tendency159

for more incorrect transitions as n increases. This indicates that the model increasingly erroneous160

distinctions as the sampling size grows. Moreover, compared to SC, RM-based inference methods161

show higher transition counts in Figure 5, which suggests that incorporating reward models introduces162

more incorrect selections.163

Inverse Long-tail Phenomenon Why does the reward model perform worse as the sampling164

number grows? Reflecting on its training process [34, 14, 35], the training data primarily consists165

of paired responses (i.e., a correct one and an incorrect one). These pairs represent a constrained166

subset of the response space. We hypothesize that as n grows, more low-frequency responses (those167

outside the training distribution) are sampled. The reward model struggles to generalize to these168

unfamiliar inputs, leading to incorrect responses occasionally receiving higher scores. To validate169

this hypothesis, we perform a statistical analysis of negative responses. For each question, we select170

the incorrect response with the highest RM score and compute the frequency of its answer across171

all samples. As shown in Figures 6 and 20, the RM displays an inverse long-tail phenomenon172

when scoring incorrect responses. For most questions, the top-scoring incorrect answers tend to173

have very low frequencies (frequency < 5 in Figure 6). Conversely, incorrect answers with high174

occurrence frequencies rarely achieved the highest scores. These findings support our hypothesis:175

(Cl.2) RMs struggle to correctly score incorrect responses with low occurrence frequencies,176

making it difficult to distinguish incorrect responses from correct ones as n grows.177

3.5 Search Parameters: RM performs worse on high-diversity distributions178

Search Diversity in BoN The final influencing factor we investigate is the search parameters Φ,179

which are primarily utilized to control the diversity of the policy model’s search. For the BoN method,180

the temperature T is the key parameter controlling the search diversity. We sweep T and analyze181

its influence on the performance, as shown in Figure 7. For both policy models, BoN performance182

consistently degrades with increasing T , while SC and Oracle (i.e., coverage) remain stable except at183

high temperatures (T > 0.9 in Figure 7). These results indicate that RM is more sensitive to sampling184

diversity than the policy model. Higher diversity makes it challenging for the RM to distinguish185

between positive and negative responses. To better understand this issue, we perform additional186

statistical analyses in Appendix F, which suggest that higher sampling temperatures cause the policy187

model to produce more low-frequency incorrect responses, thereby degrading discriminative accuracy.188
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Figure 7: Performance of BoN inference across different sampling temperatures.
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Figure 8: MCTS inference performance under different tree structures.

Search Diversity in MCTS In the MCTS algorithm, search diversity is primarily governed by the189

tree structure, determined by two key parameters: width and depth. The width refers to the number190

of child nodes at each node, whereas the depth denotes the length of the longest path from the root to191

a leaf node. A larger width indicates a broader search space during exploration, while a greater depth192

implies the model can traverse more intermediate states along a single trajectory. We evaluate MCTS193

performance under varying settings and present the results in Figure 8. The findings reveal: (1) For194

width, the best performance is observed at intermediate values (width = 5), too high widths lead to a195

decline in performance. (2) For depth, the best performance is achieved under settings with a lower196

value (e.g., depth = 3 or 5). These suggest that in MCTS, exploring too many intermediate states can197

harm performance. Notably, the optimal number of intermediate steps in search does not necessarily198

align with the number of steps a human would take to solve the same problem. We also analyze the199

impact of exploration weight on the diversity of MCTS, with consistent findings (see Appendix G).200

In summary, excessive diversity, such as width, depth, or temperature, can impair the performance201

of the reward model. Thus, we conclude: (Cl.3) During inference, it is essential to constrain the202

diversity of the sampling distribution to maintain the optimal performance of the RM.203

4 Mitigating RM-based Inference Issues204

4.1 Our Methodology205

In the preceding sections, we uncover key patterns that affect the RM’s performance and identify serval206

issues in RM-based reasoning. To mitigate these issues, we propose a novel RM-based inference207

algorithm called Clustered Reward Integration with Stepwise Prefixing (CRISP). Figure 9 and208

Algorithm 1 demonstrate the main process of our method, which comprises five modules:209

Path Generation Given a question q, during each iteration, we generate new reasoning paths based210

on the existing prefix set P:211

R = R∪M(q, n,P) (3)
In the generation process, the policy model generates n complete sequences of remaining reasoning212

steps conditioned on P (P = ∅ in the init iteration), rather than generating intermediate nodes step213
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Figure 9: Main process of our CRISP method.

by step as in approaches like MCTS. This helps control the diversity of the search space and reduces214

the negative impact of excessive diversity on the reward model, as discussed in Cl.3.215

State Aggregation To further reduce the complexity of the state space and mitigate the impact216

of low-frequency negative examples on the reward model’s performance (as discussed in Cl.2), we217

define a final-answer-based state aggregation function ψ:218

ψ : R −→ C (4)

where C is the set of final answer clusters (i.e., all responses leading to the same answer), and for any219

path r1, r2 ∈ R, we have:220

ψ(r1) = ψ(r2) ⇐⇒ Answer(r1) = Answer(r2) (5)

All paths that produce the same final answer are mapped to the same cluster Cj ∈ C. As an example,221

in Module 2 of Figure 9, paths 1 and 3, both with the answer of -50, are assigned to the same cluster.222

Reward Evaluation After clustering the responses, we can convert the reward scores f for each223

path into scores F for the corresponding clusters Cj (i.e., lines 17-20 in Algorithm 1):224

F(Cj) =
∑
x∈Cj

f(x) (6)

In the implementation, we normalize f(x) before summing. By additionally considering the frequency225

of the answers associated with each path during scoring, we can prevent the reward model from226

assigning excessively high scores to low-frequency responses, thereby mitigating the issue identified227

in Cl.2. Although this may reduce the scores for some low-frequency correct responses, we will later228

demonstrate through ablation experiments that this design overall improves performance (see §4.4).229

Early Termination This module controls when to exit the loop and return the final response. In230

addition to the standard exit condition of reaching the maximum number of iterations, we also control231

early termination by monitoring the number of clusters. If the number falls below a certain threshold232

(set to 2 in our work), it indicates that the question is relatively simple (as evidenced and discussed in233

Appendix C). In this case, the algorithm terminates, returning the answer corresponding to the most234

populated cluster, which is equivalent to SC. This not only reduces inference costs but also mitigates235

the issue of the reward model underperforming on simple questions (see Cl.1).236
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Table 1: Accuracy comparison in main experiments, the best results are highlighted in bold.

Methods Qwen2.5-3B Llama3.1-8B
GSM8K MATH Olympiad GSM8K MATH Olympiad

CoT 0.78 0.46 0.24 0.85 0.38 0.11
Self-Consistency 0.83 0.64 0.31 0.91 0.57 0.16

Best-of-N + ORM 0.83 0.65 0.31 0.91 0.47 0.18
+ PRM 0.87 0.61 0.34 0.95 0.62 0.23

BoN Weighted + ORM 0.83 0.67 0.31 0.89 0.53 0.20
+ PRM 0.86 0.60 0.36 0.94 0.62 0.24

MCTS + ORM 0.92 0.67 0.34 0.90 0.43 0.13
+ PRM 0.95 0.71 0.31 0.95 0.57 0.19

Beam Search 0.95 0.73 0.34 0.94 0.56 0.15

Ours + ORM 0.91 0.70 0.36 0.89 0.49 0.18
+ PRM 0.96 0.76 0.39 0.95 0.67 0.26

Prefix Extraction In this module, we extract the top multiple prefixes as the new prefix set P for237

the next iteration, based on the scores of the paths and clusters. As illustrated in Module 5 of Figure238

9, we first select the top-k clusters with the highest scores (here, k=1, so we select Cluster 1). Then,239

from the selected cluster(s), we choose the path with the highest score (in this case, 0.8 > 0.7, so we240

select Path 3) to extract the prefix. Specifically, at the i-th generation, we extract the first i steps of all241

paths as P , and repeat the process until termination.242

4.2 Main Experiments243

Experimental Setup We compare the reasoning performance of our method with other advanced244

baselines, including: CoT [37], Self-Consistency [36], Best-of-N, BoN Weighted [30], MCTS245

[8] and Beam Search [30]. For datasets, in addition to MATH-500 [10, 12], we also validate our246

methods on GSM8K [5] and OlympiadBench [9]. For models, we continue to select Qwen2.5-3B247

and Llama3.1-8B as the policy model, while using Skywork-Llama-3.1-8B (ORM) and Skywork-o1-248

PRM-Qwen-2.5-7B (PRM) as the reward model. We present more details in Appendix H.249

Main Results We demonstrate the result in Table 1, from which we can get the following conclu-250

sions: (1) Our proposed CRISP method significantly improves RM’s performance in reasoning251

tasks. Across all benchmarks and both model backbones, CRISP consistently outperforms existing252

RM-based inference approaches. Notably, on the Llama3.1-8B model, CRISP achieves a performance253

gain of up to 5.0% on the MATH dataset over the best-competing method. (2) The findings from254

the preceding analysis are reasonable. CRISP is specifically crafted to overcome the key issues255

of reward modeling revealed in §3. Its consistent and significant performance improvements pro-256

vide strong empirical evidence that CRISP effectively mitigates these limitations, which are critical257

bottlenecks affecting the model’s reasoning performance.258

4.3 Training-Time vs. Inference-Time Optimization259

To demonstrate the continued necessity of our inference-time optimization approach amid the rising260

dominance of RL and SFT techniques represented by the DeepSeek-R1 series, we compare our261

method against the R1 model across different reasoning tasks, including math reasoning (MATH-262

500), commonsense reasoning (CSQA [33]), social reasoning (SIQA [27]) and logical reasoning263

(LogiQA [15]). Specifically, given the same base model, we evaluate the accuracy and token264

consumption among its chat version (using CoT), the R1 distilled version, and our proposed method.265

From the results in Table 2, we can observe that: (1) Our method enables more efficient reasoning266

across all tasks. It achieves comparable reasoning tokens to the CoT method, while reducing output267

length by over 90% compared to the R1 model in the best case. (2) Our method exhibits stronger268

generalization capabilities. Although it underperforms the R1 model on math tasks, it consistently269

outperforms R1 on other reasoning benchmarks, with average gains of 10% and 5% accuracy across270

two backbones. This highlights the advantage of our inference-time optimization in generalizing271

across diverse scenarios.272
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Table 2: Comparison between R1 models and our method, the best accuracy are highlighted in bold.

Base Models Methods Math Commonsense Social Logical

Acc Length Acc Length Acc Length Acc Length

Qwen2.5-Math-1.5B
Chat 0.52 1470 0.40 1400 0.46 1204 0.40 2790

R1-Distill 0.79 13421 0.47 6066 0.52 6407 0.35 12352
Ours 0.59 943 0.58 1004 0.61 1144 0.44 1143

Qwen2.5-Math-7B
Chat 0.74 1855 0.58 1479 0.58 1388 0.49 2133

R1-Distill 0.88 9626 0.65 3612 0.66 2920 0.50 6492
Ours 0.79 987 0.72 1100 0.66 1059 0.59 2058

4.4 Discussion and Future Work273

Ablation Study We perform ablation experiments to validate the contribution of each module in274

the CRISP framework, with results summarized in Figure 23 of Appendix I. The results show that275

removing any single module leads to a decline in performance. As our design is informed by the276

analysis presented in §3 (i.e., Cl.1-Cl.3), the results provide further empirical support for our findings.277

Cost Analysis As an inference-time method, in addition to accuracy, reasoning cost is also an278

important factor to consider. We therefore measure computational cost (e.g., number of generated279

tokens and inference time) in our evaluations and report the results in Figure 24 of Appendix J. It280

demonstrates that our CRISP method incurs lower costs compared to other advanced methods.281

Limitations & Future Work While our work provides a thorough investigation of RM behavior282

during inference, it does not address potential issues that may arise during the training of models. In283

future work, we aim to extend our study to the training phase of reward models. Understanding how284

training dynamics (such as reward signal design and data sampling strategies) impact downstream285

reasoning performance could offer deeper insights and help improve the overall reliability of LLM.286

5 Related Work287

Inference-time Optimization Technique in LLM’s Reasoning Recent studies have demonstrated288

that large language models (LLMs) can be effectively enhanced through search-based optimization at289

inference time [21, 42, 45]. These works primarily follow two approaches: optimizing the strategy290

for LLMs to search for answers [8, 30, 2, 22] or improving the reward model’s ability to evaluate291

response quality [35, 43, 29]. However, most studies explore these two approaches separately, with292

limited research analyzing the impact of search factors on RM performance. Our work addresses this293

gap and proposes a new search strategy to mitigate RM’s deficiencies.294

Reward Model in LLM’s Reasoning The reward model plays a crucial role in complex reasoning295

tasks of LLMs [42, 29, 35]. Existing works mainly investigate the RM from two perspectives:296

evaluation and optimization. For the former, researchers design various datasets to evaluate the RM’s297

ability to distinguish between positive and negative responses [11, 17, 46]. For the latter, researchers298

focus on the training phase, improving the RM’s ability by synthesizing high-quality data [35, 14]299

or optimizing the training algorithm [43, 1, 18]. There is a lack of in-depth analysis of the potential300

issues RM faces during inference, as well as methods to optimize RM’s performance in the inference301

stage. Our work addresses the gaps left by these related studies.302

6 Conclusion303

In this work, we focus on analyzing key factors that influence the reward model’s performance304

in reasoning tasks. We find that low question difficulty, large sampling number, and high search305

diversity can lead to issues in RM-based inference, with in-depth explanations provided. To address306

these issues, we propose CRISP, a cluster-based, prefix-guided inference algorithm that enhances the307

robustness and efficiency of the reward model. Experimental results demonstrate that our method is308

effective in enhancing LLM reasoning capabilities.309
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A Performance of Selected RMs497

To demonstrate that the RM issues identified in our experiments in Section §2 are not due to the498

selected RM’s inherently low discriminative abilities, here we present the performance of our RM.499

For the two ORMs (e.g. ArmoRM-Llama3-8B and Skywork-Reward-Llama-3.1-8B), we report500

their performance on RewardBench [11] compared to other baselines in Table 3. For the two PRMs501

(e.g. Math-Shepherd-Mistral-7B-PRM and Skywork-o1-Open-PRM-Qwen-2.5-7B), we report their502

performance on ProcessBench [11] compared to other baselines in Table 4. From them, we can get503

that the performance of these models on relevant benchmarks is comparable to the advanced LLMs504

(e.g. gpt4), hence they are representative.505

B Additional Overall Experiments506

In addition to the experiments in the main text, we also conduct the experiments in other settings.507

Firstly, while the main text compares different RMs using BoN methods, we now replicate this508

comparison using the MCTS approach. Our settings are as follows:509

• SC: Using the self-consistency method for comparison;510

• Reward: Using the reward score as f in MCTS (e.g. MCTS-Reward in §3.3);511

• Maj_vote: Using the major voting as f in MCTS (e.g. MCTS-SC in §3.3);512

• Q_value: Using the sum of Q-value in each path as f in MCTS;513

• N_greedy: At each step, select the node with the most frequent visits N and perform a514

top-down greedy search on the tree to obtain the final selected path;515

• Q_greedy: At each step, select the node with the highest Q-value and perform a top-down516

greedy search on the tree to obtain the final selected path;517

• Oracle: The coverage of the MCTS method.518

In addition, we also use the consistency of the final answer output by the policy model itself as the519

source of the reward, denoted as ‘Self’. The results are demonstrated in Figure 10. We can conclude520

that: (1) Even with the MCTS framework, the improvement in model reasoning brought by the RM is521

still minimal, further validating our conclusions in §2. (2) In Skywork and Skyworko1, the average522

performance of Reward is the best among all scoring functions. Therefore, in the MCTS-related523

experiments presented in the main text, we default to using it as the scoring function f .524

Secondly, we focus on math reasoning in the main text, here we repeat our experiments on other525

types of reasoning tasks. Specifically, for math reasoning, we select another dataset: AQuA [13]. For526

commonsense reasoning, we select WinoGrande (WINO) [26] and CSQA [33]; For logical reasoning,527

we select ProofWriter [32] and ProntoQA [28] The results are demonstrated in Figure 11, 12, 13, 14528

and 15. Lastly, we only use discriminative RM in the main text. All of these results are consistent529

with the conclusion in the main text.530

C Additional Experiments on Question Difficulty Approximation531

In the main text, we calculate the question difficulty with assuming oracle access to a ground truth.532

However, in real-world applications, we are only given access to test prompts and do not know the533

true answers. Thus, we need to find a function that effectively estimates the problem difficulty without534

requiring ground truth. Specifically, we propose the following functions:535

• Length: The average length of all responses to the question;536

• Count: The count of different answers to the question;537

• Null: The number of responses that fail to correctly generate the answer.538

We classify the problems according to the difficulty levels as outlined in the main text and calculate the539

above three metrics across different levels of problem difficulty to compare the degree of correlation.540

The results are illustrated in Figure 16, 17 and 18. We can observe that, comparatively, the Count541

function is most directly proportional to difficulty. Therefore, we use this function to estimate542

difficulty when designing the CRISP method in §4.1.543
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D Additional Experiments across Different Difficulty Levels544

In the main text, we only analyze the impact of question difficulty on the MATH dataset. To545

demonstrate the generalizability of our conclusions, we repeat this experiment on GSM8K [5] and546

Olympiadbench [9]. The former dataset contains 8.5K linguistically diverse elementary school math547

problems designed to evaluate arithmetic reasoning consistency, while the latter is an Olympiad-level548

bilingual multimodal scientific benchmark. Compared to MATH, the former is simpler, while the549

latter is more challenging. The results are illustrated in Table 5, 6 and 7. We can observe that the550

issues identified in Cl.1 are prevalent across various reasoning datasets.551

E Case Analysis of Sampling Numbers Experiment552

We start with a case analysis to uncover the issues inherent in the reward model. In the analysis, we553

randomly select five questions from different methods and examine the correctness of answers as n554

scales. If a question is answered correctly, it indicates that the RM can accurately distinguish the555

positive examples from the negative ones, otherwise, it cannot. The results of this experiment are556

demonstrated in Figure 19, from which we can deduce that: As n increases, LLMs can generate557

incorrect responses that become increasingly challenging for the reward model to differentiate.558

For some cases (like index 3 and 4 in Figure 19), RM assigns the highest score to newly generated559

incorrect responses, transforming the originally correct answers into incorrect ones.560

F Cause Analysis of Temperature-Induced Accuracy Drop561

We further conduct statistical analyses to uncover the reasons for this issue. For each T , we calculate562

the information entropy of incorrect answers across 16 samplings and report the distribution over563

200 questions in Figure 21. As the temperature rises, the entropy for both models shows a gradually564

increasing trend, hence, the distribution of these negative samples becomes more random. This565

indicates that the policy model generates a greater number of low-frequency incorrect answers at566

higher temperatures. According to Cl.2, RM struggles to differentiate these negative examples from567

correct ones, leading to lower inference accuracy. This result not only elucidates the reasons behind568

the subpar performance of BoN under high diversity conditions but also further corroborates the569

inverse long-tail phenomenon of the RM.570

G Diversity Experiment on Exploration Constant571

In MCTS, apart from the tree structure, the explore weight c also plays a crucial role in balancing572

the trade-off between exploitation (i.e. choosing actions that are known to yield high rewards) and573

exploration. A higher value of c encourages more exploration, increasing the weight of the uncertain574

actions in the UCB formula. A lower value of c favors exploitation, as it prioritizes actions with575

known higher rewards. We compare the MCTS performance under different c and present the result in576

Figure 22. We can observe that an excessively large c reduces performance (e.g. c = 10.0), indicating577

that overly high sampling diversity impairs reasoning accuracy, which is consistent with Cl.3 in our578

main text.579

H Implementation Details in the Main Experiments580

Here we provide a detailed account of the implementation specifics from the main experiments:581

For Self-Consistency, we generate 32 samples and choose the major voting answer as the final582

prediction. For BoN, we set the temperature to 0.7 to control the diversity and choose the best answer583

from 32 samples. For BoN Weighted, we normalize the RM’s scoring and use this score as a weight584

to conduct a weighted vote among different answers, selecting the final prediction. For MCTS, we585

set the rollout number to 16, the width to 5, the max depth to 5, and the explore weight to 0.1. For586

Beam Search, we set the Beam numbers to 8, the beam width to 5, and the max depth to 5.587

For our method, we generate 16 samples with a temperature setting of 0.7 in the first iteration. In588

subsequent iterations, we set the sampling numbers to 8 for ORM, 4 for PRM, and the max depth to589
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3. In prefix extraction, for ORM, we select the top-1 path, for PRM, we select the top-2 paths. For590

the evaluation data, we sample 500 questions from GSM8K and MATH-500, while sampling 200591

questions from OlympiadBench.592

We release the prompts we use in Table 8, 9, 10, 11, 12 and 13. All experiments were conducted on593

NVIDIA A100 GPUs.594

I Ablation Study595

To verify the effectiveness of each module of CRSIP, we conduct ablation experiments using 200596

samples from GSM8K and MATH generated by Qwen2.5-3B. The experimental settings are as597

follows:598

• w/o Termination: Disable the early termination condition based on the number of clusters;599

• w/o Aggregation: Eliminate the clustering operation and use the score of each path instead600

of cluster scores for selection (similar to MCTS);601

• w/o Prefixing: Cancel the operation of directly generating the remaining steps according to602

the prefix set, and instead generate intermediate nodes layer by layer (similar to MCTS and603

Beam).604

Figure 23 shows the result of the ablation study. Removing each component leads to a decline in605

performance. Specifically, although w/o termination causes only a small drop, its inclusion not only606

improves performance but also reduces inference time.607

J Cost Analysis608

We use Qwen2.5-3B as the policy model and Shepherd-PRM [35] as the reward model, and compare609

the inference time and token usage of different algorithms across various tasks. Each algorithm610

is required to perform 5 rollouts on the same devices, and the average is computed across all test611

instances. The results in Figure 24 demonstrate that our method is highly efficient. It achieves up to612

a 66% reduction in inference time compared to advanced RM-integrated methods like MCTS and613

Beam Search, while preserving the runtime and token efficiency of the basic BoN method.614
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Reward Model Score Chat Chat Hard Safety Reasoning
Skywork-Reward-Llama-3.1-8B 93.1 94.7 88.4 92.7 96.7
ArmoRM-Llama3-8B-v0.1 89.0 96.9 76.8 92.2 97.3
Gemini-1.5-pro-0514 88.1 92.3 80.6 87.5 92.0
gpt-4-0125-preview 84.3 95.3 74.3 87.2 86.9
Meta-Llama-3-70B-Instruct 75.4 97.6 58.9 69.2 78.5

Table 3: Comparison of RM’s performance on RewardBench.

Model GSM8K MATH OlympiadBench OmniMATH Average
Shepherd-PRM-7B 47.9 29.5 24.8 23.8 31.5
Skyworko1-PRM-7B 70.8 53.6 22.9 21.0 42.1
Meta-Llama-3-70B-Instruct 52.2 22.8 21.2 20.0 29.1
Llama-3.1-70B-Instruct 74.9 48.2 46.7 41.0 52.7
Qwen2-72B-Instruct 67.6 49.2 42.1 40.2 49.8

Table 4: Comparison of RM’s performance on ProcessBench.

Self ArmoRM Skywork Skyworko1
reward model
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Figure 10: The performance of different reward models using the MCTS inference on the MATH
dataset (n = 16, Qwen-2.5-3B).
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Figure 11: The performance of different policy models using various reward models for BoN inference
on the AQuA dataset (n = 10).
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Figure 12: The performance of different policy models using various reward models for BoN inference
on the WinoGrande dataset (n = 10).
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Figure 13: The performance of different policy models using various reward models for BoN inference
on the CSQA dataset (n = 10).

Llama2-13B Mistral-7B Gemma2-9B Llama3.1-8B Qwen2.5-3B Qwen2.5-14B
model

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

SC
Shepherd
ArmoRM
Skywork
Oracle

Figure 14: The performance of different policy models using various reward models for BoN inference
on the ProofWriter dataset (n = 10).
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Figure 15: The performance of different policy models using various reward models for BoN inference
on the ProntoQA dataset (n = 10).
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Figure 16: The correlation between output length and the question difficulty.
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Figure 17: The correlation between the count of answers and the question difficulty.
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Figure 18: The correlation between the count of no answers and the question difficulty.
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Figure 19: The variation in question answering correctness as the sampling number changes. Blue
indicates a correct answer, while red indicates an incorrect answer.
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Figure 20: Frequency statistics of the highest-scored negative responses in MCTS.
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Table 5: Comparison of performance across different difficulty levels on 500 samples of GSM8K
(Qwen2.5-3B).

Method Level 1 Level 2 Level 3 Level 4 Level 5 All
Self-Consistency(@128) 99.7 96.8 80.0 34.6 3.2 83.2

Best-of-128 + ORM 98.0 87.1 72.0 65.4 12.9 83.8
- SC -1.7 -9.7 -8.0 30.8 9.7 0.6

Best-of-128 + PRM 98.3 100.0 96.0 57.7 30.6 87.8
- SC -1.4 3.2 16.0 23.1 27.4 4.6

Count 356 31 25 26 62 500

Table 6: Comparison of performance across different difficulty levels on MATH-500 (Qwen2.5-3B).

Method Level 1 Level 2 Level 3 Level 4 Level 5 All
Self-Consistency(@128) 98.8 98.8 80.4 49.2 5.3 65.4

Best-of-128 + ORM 99.4 92.8 69.6 58.5 17.3 67.8
- SC 0.6 -6.0 -9.8 9.3 12.0 2.4

Best-of-128 + PRM 88.3 71.1 78.6 53.8 21.8 62.2
- SC -10.5 -27.7 -1.8 4.6 16.5 -3.2

Count 163 83 56 65 133 500
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Figure 21: Information entropy of incorrect answers under different sampling temperatures.
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Table 7: Comparison of performance across different difficulty levels on 200 samples of Olympiad-
Bench (Qwen2.5-3B).

Method Level 1 Level 2 Level 3 Level 4 Level 5 All
Self-Consistency(@32) 100.0 100.0 64.3 50.0 0.8 30.5

Best-of-32 + ORM 100.0 80.0 78.6 40.0 3.8 31.5
- SC 0.0 -20.0 14.3 -10.0 3.0 1.0

Best-of-32 + PRM 100.0 100.0 78.6 50.0 6.9 34.0
- SC 0.0 0.0 14.3 0.0 6.1 3.5

Count 31 15 14 10 130 200
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Figure 22: Performance comparison across different explore weight c on Qwen2.5-3B.
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Algorithm 1 Clustered Reward Integration with Stepwise Prefixing

Require: Policy modelM, reward score f , question q, max steps m, sampling numbers n, top-k
parameter k

1: i← 0
2: R ← ∅ ▷ All responses
3: P ← ∅ ▷ Response prefixes
4: F ← ∅ ▷ Score map
5: C ← ∅ ▷ Clusters
6: while i < n do
7: if i = 0 then
8: R ←M(q, n) ▷ Generate n initial responses
9: if |Cluster(R)| = 1 then

10: returnR[0] ▷ Early exit if only one cluster
11: end if
12: else
13: Rtop ←

{
argmaxr∈Cj

f(r)
∣∣ Cj ∈ Ctop

}
14: P ← {r[:i+1] | r ∈ Rtop} ▷ Truncate top responses
15: R ← R∪M(q, n,P) ▷ Decode more based on prefixes
16: end if
17: C ← Cluster(R) ▷ Cluster current responses
18: for all Cj ∈ C do
19: F(Cj)←

∑
x∈Cj

f(x) ▷ Assign cluster-wise reward
20: end for
21: Ctop ← top-k responses in C by F
22: i← i+ 1
23: end while
24: returnRtop[0]
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Figure 23: Results of our ablation study.
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Figure 24: Results of our cost analysis.

Table 8: Prompts used to sample reasoning paths on the GSM8K dataset.
Prompt
Please act as a math teacher and solve the math problem step by step. At the final step, a conclusive
answer is given in the format of “The answer is: \boxed{<ANSWER>}.”, where <ANSWER> should
be a numeric answer.

# Question:
Mr. Ruther sold 3

5 of his land and had 12.8 hectares left. How much land did he have at first?
# Reasoning:
Step 1: Mr. Ruther is left with 1− 3

5 = 2
5 of his land.

Step 2: Since 2
5 equals 12.8 hectares, then 1

5 = 12.8
2 = 6.4 hectares.

Step 3: Total land = 6.4× 5 = 32 hectares.
Step 4: The answer is: 32

# Question:
The Doubtfire sisters are driving home with 7 kittens adopted from the local animal shelter when
their mother calls to inform them that their two house cats have just had kittens. She says that Patchy,
the first cat, has had thrice the number of adopted kittens, while Trixie, the other cat, has had 12.
How many kittens does the Doubtfire family now have?
# Reasoning:
Step 1: Patchy has had 3× 7 = 21 kittens.
Step 2: Trixie has had 12 kittens. Total from both cats = 21 + 12 = 33.
Step 3: Total kittens including adopted = 7 + 33 = 40.
Step 4: The answer is: 40

# Question:
After transferring to a new school, Amy made 20 more friends than Lily. If Lily made 50 friends,
how many friends do Lily and Amy have together?
# Reasoning:
Step 1: Amy made 50 + 20 = 70 friends.
Step 2: Total friends = 70 + 50 = 120.
Step 3: The answer is: 120
# Question:
{current question}
# Reasoning:
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Table 9: Prompts used to sample reasoning paths on the MATH dataset.
Prompt
Please act as a math teacher and give step-by-step solutions to the user’s questions. At the final step,
a conclusive answer is given in the format of "The answer is: <ANSWER>.", where <ANSWER>
should be a numeric answer.
# Question:
How many 3-letter words can we make from the letters A, B, C, and D, if we are allowed to repeat
letters, and we must use the letter A at least once? (Here, a word is an arbitrary sequence of letters.)
# Reasoning:
Step 1: There are 43 three-letter words from A, B, C, and D, and there are 33 three-letter words from
just B, C, and D.
Step 2: There must, then, be 43 − 33 = 64 − 27 = 37 words from A, B, C, and D containing at
least one A.
Step 3: The answer is: 37
# Question:
In the diagram, square ABCD has sides of length 4, and△ABE is equilateral. Line segments BE
and AC intersect at P . Point Q is on BC so that PQ is perpendicular to BC and PQ = x.
# Reasoning:
Step 1: Since△ABE is equilateral, we know that ∠ABE = 60◦.
Step 2: Therefore,

∠PBC = ∠ABC − ∠ABE

= 90◦ − 60◦ = 30◦.

Step 3: SinceAB = BC, we know that△ABC is a right isosceles triangle and ∠BAC = ∠BCA =
45◦.
Step 4: Then, ∠BCP = ∠BCA = 45◦ and

∠BPC = 180◦ − ∠PBC − ∠BCP

= 180◦ − 30◦ − 45◦ = 105◦ .

Step 5: The answer is: 105

# Question:
Find the positive real number(s) x such that

1

2
(3x2 − 1) = (x2 − 50x− 10)(x2 + 25x+ 5).

# Reasoning:
Step 1: Write a = x2 − 50x− 10 and b = x2 + 25x+ 5.
Step 2: Then the equation given becomes

a+ 2b− 1

2
= ab,

so 0 = 2ab− a− 2b+ 1 = (a− 1)(2b− 1).
Step 3: Then a− 1 = x2 − 50x− 11 = 0 or 2b− 1 = 2x2 + 50x+ 9 = 0.

Step 4: The former has a positive root, x = 25 + 2
√
159 , while the latter does not.

Step 5: The answer is: 25 + 2
√
159

# Question:
{current question}
# Reasoning:
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Table 10: Prompts used to sample reasoning paths on the Olympiadbench dataset.
Prompt
Please act as a math teacher and give step-by-step solutions to the user’s questions. At the final
step, a conclusive answer is given in the format of “The answer is: \boxed{<ANSWER>}.”, where
<ANSWER> should be a numeric answer.

# Question:
Let T be a rational number. Compute sin2 Tπ

2 + sin2 (5−T )π
2 .

# Reasoning:
Step 1: Note that sin (5−T )π

2 = cos
(

π
2 −

(5−T )π
2

)
= cos

(
Tπ
2 − 2π

)
= cos Tπ

2 .

Step 2: Thus the desired quantity is sin2 Tπ
2 + cos2 Tπ

2 = 1 .
Step 3: The answer is: 1

# Question:
Let T = 11. Compute the value of x that satisfies

√
20 +

√
T + x = 5.

# Reasoning:
Step 1: Squaring both sides gives 20 +

√
T + x = 25, so

√
T + x = 5.

Step 2: Squaring again gives T + x = 25, so x = 25− T = 14.
Step 3: The answer is: 14

# Question:
The sum of the interior angles of an n-gon equals the sum of the interior angles of a pentagon plus
the sum of the interior angles of an octagon. Compute n.
# Reasoning:
Step 1: The sum of interior angles of an n-gon is 180◦(n− 2).
Step 2: A pentagon has sum 180◦(5− 2) = 540◦, and an octagon has sum 180◦(8− 2) = 1080◦.
Step 3: So 180(n− 2) = 540 + 1080 = 1620, hence n− 2 = 9, so n = 11.
Step 4: The answer is: 11
# Question:
{current question}
# Reasoning:
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Table 11: Prompts used to sample reasoning paths on the CSQA dataset.
Prompt
Please act as a commonsense teacher and solve the commonsense reasoning problem step by step.

# Question:
Google Maps and other highway and street GPS services have replaced what?
# Options:
(A) atlas (B) mexico (C) countryside (D) united states (E) oceans
# Reasoning:
Step 1: Electronic maps and GPS services are the modern version of paper atlas.
Step 2: In that case, the atlas have been replaced by Google Maps and other highway and street GPS
services.
Step 3: The answer is: A

# Question:
You can share files with someone if you have a connection to a what?
# Options:
(A) freeway (B) radio (C) wires (D) computer network (E) electrical circuit
# Reasoning:
Step 1: Files usually can be stored in the computers.
Step 2: In that case, we can share them over the Internet.
Step 3: Thus, if we connect to a computer network, we can share the file with others.
Step 4: The answer is: D

# Question:
The fox walked from the city into the forest, what was it looking for?
# Options:
(A) pretty flowers (B) hen house (C) natural habitat (D) storybook (E) dense forest
# Reasoning:
Step 1: Since the fox walk from the city into the forest, he may looks for something in the forest but
not in the city.
Step 2: From all of the options, the natural habitat are usually away from cities.
Step 3: The answer is: C
# Question:
{current question}
# Options:
{current options}
# Reasoning:
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Table 12: Prompts used to sample reasoning paths on the SIQA dataset.
Prompt
Please act as a commonsense teacher and solve the commonsense reasoning problem step by step.

# Question:
Quinn wanted to help me clean my room up because it was so messy. What will Quinn want to do
next?
# Options:
(A) Eat messy snacks (B) help out a friend (C) Pick up the dirty clothes
# Reasoning:
Step 1: Quinn wants to clean the room up.
Step 2: Picking up the dirty clothes is one way to clean the room.
Step 3: Thus, Quinn will want to pick up the dirty clothes next.
Step 4: The answer is: C

# Question:
Sydney had so much pent up emotion, they burst into tears at work. How would Sydney feel
afterwards?
# Options:
(A) affected (B) like they released their tension (C) worse
# Reasoning:
Step 1: Crying is often a way to release tension.
Step 2: Sydney burst into tears at work.
Step 3: Thus, she would release the tension.
Step 4: The answer is: B

# Question:
Their cat kept trying to escape out of the window, so Jan placed an obstacle in the way. How would
Jan feel afterwards?
# Options:
(A) scared of losing the cat (B) normal (C) relieved for fixing the problem
# Reasoning:
Step 1: The cat tried to escape so Jan needed to stop it to avoid losing the cat.
Step 2: Jan placed an obstacle in the way so the cat could not escape.
Step 3: The problem has been solved.
Step 4: Thus, Jan will feel relieved for fixing the problem.
Step 5: The answer is: C
# Question:
{current question}
# Options:
{current options}
# Reasoning:
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Table 13: Prompts used to sample reasoning paths on the LogiQA dataset.
Prompt
Please act as a logical teacher and reason step by step to solve the logical reasoning problem.

# Context:
There are 90 patients with a disease T that is very difficult to treat and has taken the same routine
drug. The patients were divided into two equal groups. The first group was given an experimental
drug W, which is used to treat T, and the second group was given a placebo without W. Statistics ten
years later showed that 44 people died in both groups, so the experimental drug was ineffective.
# Question:
Based on the above information, which of the following options, if correct, will best weaken the
above argument?
# Options:
(A) Among the patients who died above, the average year of death in the second group was two years
earlier than that in the first group. (B) Among the patients who died, the average life span of the
second group was two years younger than that of the first group. (C) Among the above-mentioned
living patients, the condition of the second group was more serious than that of the first group. (D)
Among the above-mentioned living patients, those in the second group were older than those in the
first group.
# Reasoning:
Step 1: Analyzing each option: A suggests drug W might extend life since the average death year in
the drug W group is later than the placebo, directly challenging the drug’s perceived ineffectiveness.
Step 2: B, similar to A, implies longer life in the drug W group but doesn’t directly link to post-
treatment lifespan.
Step 3: C indicates drug W may reduce disease severity but doesn’t address lifespan or mortality, the
main focus.
Step 4: D, about age differences, lacks direct relevance to drug effectiveness.
Step 5: Therefore, A most effectively weakens the argument against drug W’s effectiveness.
Step 6: The answer is: A
# Question:
{current question}
# Options:
{current options}
# Reasoning:
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paper’s contributions and scope?618

Answer: [Yes]619

Justification: Please refer to the last paragraph of the Introduction.620

Guidelines:621

• The answer NA means that the abstract and introduction do not include the claims622

made in the paper.623

• The abstract and/or introduction should clearly state the claims made, including the624

contributions made in the paper and important assumptions and limitations. A No or625

NA answer to this question will not be perceived well by the reviewers.626

• The claims made should match theoretical and experimental results, and reflect how627

much the results can be expected to generalize to other settings.628

• It is fine to include aspirational goals as motivation as long as it is clear that these goals629

are not attained by the paper.630

2. Limitations631

Question: Does the paper discuss the limitations of the work performed by the authors?632

Answer: [Yes]633

Justification: Please refer to the ‘Limitations & Future Work’ paragraph in §4.4.634

Guidelines:635

• The answer NA means that the paper has no limitation while the answer No means that636

the paper has limitations, but those are not discussed in the paper.637

• The authors are encouraged to create a separate "Limitations" section in their paper.638

• The paper should point out any strong assumptions and how robust the results are to639

violations of these assumptions (e.g., independence assumptions, noiseless settings,640

model well-specification, asymptotic approximations only holding locally). The authors641

should reflect on how these assumptions might be violated in practice and what the642

implications would be.643

• The authors should reflect on the scope of the claims made, e.g., if the approach was644

only tested on a few datasets or with a few runs. In general, empirical results often645
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• The authors should reflect on the factors that influence the performance of the approach.647
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used reliably to provide closed captions for online lectures because it fails to handle650
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• The authors should discuss the computational efficiency of the proposed algorithms652

and how they scale with dataset size.653

• If applicable, the authors should discuss possible limitations of their approach to654

address problems of privacy and fairness.655

• While the authors might fear that complete honesty about limitations might be used by656

reviewers as grounds for rejection, a worse outcome might be that reviewers discover657

limitations that aren’t acknowledged in the paper. The authors should use their best658

judgment and recognize that individual actions in favor of transparency play an impor-659

tant role in developing norms that preserve the integrity of the community. Reviewers660

will be specifically instructed to not penalize honesty concerning limitations.661

3. Theory assumptions and proofs662

Question: For each theoretical result, does the paper provide the full set of assumptions and663

a complete (and correct) proof?664

Answer: [NA]665
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Justification: This paper primarily relies on empirical studies rather than theoretical proofs.666

Guidelines:667

• The answer NA means that the paper does not include theoretical results.668

• All the theorems, formulas, and proofs in the paper should be numbered and cross-669

referenced.670

• All assumptions should be clearly stated or referenced in the statement of any theorems.671

• The proofs can either appear in the main paper or the supplemental material, but if672

they appear in the supplemental material, the authors are encouraged to provide a short673

proof sketch to provide intuition.674

• Inversely, any informal proof provided in the core of the paper should be complemented675

by formal proofs provided in appendix or supplemental material.676

• Theorems and Lemmas that the proof relies upon should be properly referenced.677

4. Experimental result reproducibility678

Question: Does the paper fully disclose all the information needed to reproduce the main ex-679

perimental results of the paper to the extent that it affects the main claims and/or conclusions680

of the paper (regardless of whether the code and data are provided or not)?681

Answer: [Yes]682

Justification: We provide a detailed discussion of the implementation details for each683

experiment in the Appendix, including the datasets, model versions, and experimental684

parameters, etc.685

Guidelines:686

• The answer NA means that the paper does not include experiments.687

• If the paper includes experiments, a No answer to this question will not be perceived688

well by the reviewers: Making the paper reproducible is important, regardless of689

whether the code and data are provided or not.690

• If the contribution is a dataset and/or model, the authors should describe the steps taken691

to make their results reproducible or verifiable.692

• Depending on the contribution, reproducibility can be accomplished in various ways.693

For example, if the contribution is a novel architecture, describing the architecture fully694

might suffice, or if the contribution is a specific model and empirical evaluation, it may695

be necessary to either make it possible for others to replicate the model with the same696

dataset, or provide access to the model. In general. releasing code and data is often697

one good way to accomplish this, but reproducibility can also be provided via detailed698

instructions for how to replicate the results, access to a hosted model (e.g., in the case699

of a large language model), releasing of a model checkpoint, or other means that are700

appropriate to the research performed.701

• While NeurIPS does not require releasing code, the conference does require all submis-702

sions to provide some reasonable avenue for reproducibility, which may depend on the703

nature of the contribution. For example704

(a) If the contribution is primarily a new algorithm, the paper should make it clear how705

to reproduce that algorithm.706

(b) If the contribution is primarily a new model architecture, the paper should describe707

the architecture clearly and fully.708

(c) If the contribution is a new model (e.g., a large language model), then there should709

either be a way to access this model for reproducing the results or a way to reproduce710

the model (e.g., with an open-source dataset or instructions for how to construct711

the dataset).712

(d) We recognize that reproducibility may be tricky in some cases, in which case713

authors are welcome to describe the particular way they provide for reproducibility.714

In the case of closed-source models, it may be that access to the model is limited in715

some way (e.g., to registered users), but it should be possible for other researchers716

to have some path to reproducing or verifying the results.717

5. Open access to data and code718
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Question: Does the paper provide open access to the data and code, with sufficient instruc-719

tions to faithfully reproduce the main experimental results, as described in supplemental720

material?721

Answer: [Yes]722

Justification: We include our experimental code in the supplementary materials (note that no723

new dataset was constructed in this work).724
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public/guides/CodeSubmissionPolicy) for more details.728

• While we encourage the release of code and data, we understand that this might not be729

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not730
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• The instructions should contain the exact command and environment needed to run to733

reproduce the results. See the NeurIPS code and data submission guidelines (https:734

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.735

• The authors should provide instructions on data access and preparation, including how736

to access the raw data, preprocessed data, intermediate data, and generated data, etc.737

• The authors should provide scripts to reproduce all experimental results for the new738

proposed method and baselines. If only a subset of experiments are reproducible, they739

should state which ones are omitted from the script and why.740

• At submission time, to preserve anonymity, the authors should release anonymized741

versions (if applicable).742

• Providing as much information as possible in supplemental material (appended to the743

paper) is recommended, but including URLs to data and code is permitted.744

6. Experimental setting/details745

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-746

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the747

results?748

Answer: [Yes]749

Justification: We provide a detailed discussion of the experimental settings of each experi-750

ment in the Appendix.751
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• The answer NA means that the paper does not include experiments.753

• The experimental setting should be presented in the core of the paper to a level of detail754

that is necessary to appreciate the results and make sense of them.755

• The full details can be provided either with the code, in appendix, or as supplemental756

material.757

7. Experiment statistical significance758

Question: Does the paper report error bars suitably and correctly defined or other appropriate759

information about the statistical significance of the experiments?760

Answer: [Yes]761

Justification: We report confidence intervals for some experiments in our paper, such as the762

results in Figure 5.763
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• The answer NA means that the paper does not include experiments.765

• The authors should answer "Yes" if the results are accompanied by error bars, confi-766

dence intervals, or statistical significance tests, at least for the experiments that support767

the main claims of the paper.768
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• The factors of variability that the error bars are capturing should be clearly stated (for769

example, train/test split, initialization, random drawing of some parameter, or overall770

run with given experimental conditions).771

• The method for calculating the error bars should be explained (closed form formula,772

call to a library function, bootstrap, etc.)773

• The assumptions made should be given (e.g., Normally distributed errors).774
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of the mean.776

• It is OK to report 1-sigma error bars, but one should state it. The authors should777

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis778

of Normality of errors is not verified.779

• For asymmetric distributions, the authors should be careful not to show in tables or780

figures symmetric error bars that would yield results that are out of range (e.g. negative781

error rates).782

• If error bars are reported in tables or plots, The authors should explain in the text how783

they were calculated and reference the corresponding figures or tables in the text.784

8. Experiments compute resources785

Question: For each experiment, does the paper provide sufficient information on the com-786

puter resources (type of compute workers, memory, time of execution) needed to reproduce787

the experiments?788

Answer: [Yes]789

Justification: We discuss the devices used in our work in Appendix H.790

Guidelines:791

• The answer NA means that the paper does not include experiments.792

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,793

or cloud provider, including relevant memory and storage.794

• The paper should provide the amount of compute required for each of the individual795

experimental runs as well as estimate the total compute.796

• The paper should disclose whether the full research project required more compute797

than the experiments reported in the paper (e.g., preliminary or failed experiments that798

didn’t make it into the paper).799

9. Code of ethics800

Question: Does the research conducted in the paper conform, in every respect, with the801

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?802

Answer: [Yes]803

Justification: The research conducted in this paper conforms in every respect to the NeurIPS804

Code of Ethics.805

Guidelines:806

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.807

• If the authors answer No, they should explain the special circumstances that require a808

deviation from the Code of Ethics.809

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-810

eration due to laws or regulations in their jurisdiction).811

10. Broader impacts812

Question: Does the paper discuss both potential positive societal impacts and negative813

societal impacts of the work performed?814

Answer: [NA]815

Justification: This work focuses on algorithmic improvements to reward-model-based816

inference and does not involve deployment, user interaction, or real-world data, thus posing817

no direct societal impact.818
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• The answer NA means that there is no societal impact of the work performed.820

• If the authors answer NA or No, they should explain why their work has no societal821

impact or why the paper does not address societal impact.822

• Examples of negative societal impacts include potential malicious or unintended uses823

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations824

(e.g., deployment of technologies that could make decisions that unfairly impact specific825

groups), privacy considerations, and security considerations.826

• The conference expects that many papers will be foundational research and not tied827

to particular applications, let alone deployments. However, if there is a direct path to828

any negative applications, the authors should point it out. For example, it is legitimate829

to point out that an improvement in the quality of generative models could be used to830

generate deepfakes for disinformation. On the other hand, it is not needed to point out831

that a generic algorithm for optimizing neural networks could enable people to train832

models that generate Deepfakes faster.833

• The authors should consider possible harms that could arise when the technology is834

being used as intended and functioning correctly, harms that could arise when the835

technology is being used as intended but gives incorrect results, and harms following836

from (intentional or unintentional) misuse of the technology.837

• If there are negative societal impacts, the authors could also discuss possible mitigation838

strategies (e.g., gated release of models, providing defenses in addition to attacks,839

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from840

feedback over time, improving the efficiency and accessibility of ML).841

11. Safeguards842

Question: Does the paper describe safeguards that have been put in place for responsible843

release of data or models that have a high risk for misuse (e.g., pretrained language models,844

image generators, or scraped datasets)?845

Answer: [NA]846

Justification: This paper does not involve the release of any models or datasets that pose a847

high risk of misuse. All experiments are conducted using standard benchmarks.848

Guidelines:849

• The answer NA means that the paper poses no such risks.850

• Released models that have a high risk for misuse or dual-use should be released with851

necessary safeguards to allow for controlled use of the model, for example by requiring852

that users adhere to usage guidelines or restrictions to access the model or implementing853

safety filters.854

• Datasets that have been scraped from the Internet could pose safety risks. The authors855

should describe how they avoided releasing unsafe images.856

• We recognize that providing effective safeguards is challenging, and many papers do857

not require this, but we encourage authors to take this into account and make a best858

faith effort.859

12. Licenses for existing assets860

Question: Are the creators or original owners of assets (e.g., code, data, models), used in861

the paper, properly credited and are the license and terms of use explicitly mentioned and862

properly respected?863

Answer: [Yes]864

Justification: We cite all the original papers that produced the dataset we use for evaluation.865
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• The answer NA means that the paper does not use existing assets.867

• The authors should cite the original paper that produced the code package or dataset.868

• The authors should state which version of the asset is used and, if possible, include a869

URL.870

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.871
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• For scraped data from a particular source (e.g., website), the copyright and terms of872

service of that source should be provided.873

• If assets are released, the license, copyright information, and terms of use in the874
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has curated licenses for some datasets. Their licensing guide can help determine the876

license of a dataset.877

• For existing datasets that are re-packaged, both the original license and the license of878

the derived asset (if it has changed) should be provided.879

• If this information is not available online, the authors are encouraged to reach out to880

the asset’s creators.881

13. New assets882

Question: Are new assets introduced in the paper well documented and is the documentation883

provided alongside the assets?884

Answer: [NA]885

Justification: The paper does not release new assets.886
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• The answer NA means that the paper does not release new assets.888

• Researchers should communicate the details of the dataset/code/model as part of their889

submissions via structured templates. This includes details about training, license,890

limitations, etc.891

• The paper should discuss whether and how consent was obtained from people whose892

asset is used.893

• At submission time, remember to anonymize your assets (if applicable). You can either894

create an anonymized URL or include an anonymized zip file.895

14. Crowdsourcing and research with human subjects896

Question: For crowdsourcing experiments and research with human subjects, does the paper897

include the full text of instructions given to participants and screenshots, if applicable, as898

well as details about compensation (if any)?899

Answer: [NA]900

Justification: The paper does not involve crowdsourcing nor research with human subjects.901

Guidelines:902

• The answer NA means that the paper does not involve crowdsourcing nor research with903

human subjects.904

• Including this information in the supplemental material is fine, but if the main contribu-905

tion of the paper involves human subjects, then as much detail as possible should be906

included in the main paper.907

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,908

or other labor should be paid at least the minimum wage in the country of the data909

collector.910

15. Institutional review board (IRB) approvals or equivalent for research with human911

subjects912
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)914

approvals (or an equivalent approval/review based on the requirements of your country or915
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• Depending on the country in which research is conducted, IRB approval (or equivalent)922

may be required for any human subjects research. If you obtained IRB approval, you923

should clearly state this in the paper.924

• We recognize that the procedures for this may vary significantly between institutions925

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the926

guidelines for their institution.927

• For initial submissions, do not include any information that would break anonymity (if928

applicable), such as the institution conducting the review.929

16. Declaration of LLM usage930

Question: Does the paper describe the usage of LLMs if it is an important, original, or931

non-standard component of the core methods in this research? Note that if the LLM is used932

only for writing, editing, or formatting purposes and does not impact the core methodology,933

scientific rigorousness, or originality of the research, declaration is not required.934

Answer: [Yes]935

Justification: Since our work focuses on enhancing reasoning with LLMs, we explicitly936

specify the LLMs and their corresponding versions used in our experiments (see §2, §3.2937

and §4.2).938

Guidelines:939

• The answer NA means that the core method development in this research does not940

involve LLMs as any important, original, or non-standard components.941
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for what should or should not be described.943
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