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MAPLEARN: INDOOR MAPPING USING AUDIO

ABSTRACT

Cameras and LIDARSs are established methods to generate the map (or floorplan)
of an indoor environment. This paper investigates the feasibility of using audio
to learn the map. We aim to transmit audio beacons from a mobile device (say
a smartphone) and record its reflections from the environment. Assuming known
user locations, and recordings from multiple locations along walked paths, we aim
to learn the 2D floorplan of the area. We use a conditional GAN (cGAN) archi-
tecture but prevent it from over-fitting using knowledge of indoor signal propaga-
tion. We pre-train our model on simulated data — thousands of high-fidelity audio
measurements on hundreds of synthetic floor plans — and then test on 4 real envi-
ronments in our home and office buildings. Results show that the generated maps
are fairly accurate (in terms of precision and recall) even though no training was
performed in real rooms. We have assumed clutter-free rooms; coping with clutter
remains a topic for continued research.

1 INTRODUCTION

Indoor localization and mapping are important building blocks to a range of spatial applications, in-
cluding navigation, augmented reality, digital twins, and context-aware voice assistants (like Alexa)
Thrun et al.| (2002); [Hess et al.| (2016); |Shen et al.[ (2020); |Schonberger et al.| (2018). Decades of
research has focused on localization but relatively less effort has been directed to mapping. To-
day’s mapping solutions use cameras and LIDARs to scan the environment Zhang & Singh| (2014);
Schonberger & Frahm| (2016)), and while this generates detailed and accurate maps, they incur pri-
vacy concerns, especially in homes |[Fraccaro et al.| (2020). Moreover, the detailed maps from cam-
eras/LIDARs may be an overkill for many applications; a simple floorplan contour may suffice in
most cases.

This paper aims to learn the floorplan of an environment by transmitting audio beacons from a mo-
bile device (e.g., smartphone) and recording its reflections at the same device. The audio signal
radiates in all directions, bounces off walls and objects, and echo back to the device, offering in-
formation about the surrounding geometry. We intend to gather these measurements from multiple
locations as the user walks around in her home. Assuming user locations (to the extent feasible from
today’s localization technology), we aim to learn the 2D map (or floorplan) of the place.

At the heart of our approach is a combination of signal processing and learning. Briefly, we first
estimate the room impulse response (RIR) |Habets| (2006)) and then make spatial inferences on the
RIR to outline open spaces. Walls and reflective objects can only lie outside these open spaces.
We now train a conditional generative adversarial network (cGAN) Mirza & Osindero| (2014) that
learns to erect walls around these open spaces in a manner that matches the audio measurements.
Our model, MapLearn, copes with challenges such as rotation ambiguities and room symmetry.
The final outcome is a 2D floorplan, evaluated by calculating 2D precision and recall. Results show
that even when a user walks through 60% of the grids in a 20m x 20m home, the median wall error
is less than 60cm. Visually, the estimated floorplan bears good resemblance to the ground-truth.

Figure [I] shows snapshots from the overall MapLearn pipeline. Figure [T(a) shows an example
synthetic room in which audio signal propagation is simulated; the room walls are coated with
realistic materials so the audio behavior models reality. Figure[T(b) shows an example trajectory on
which the user walks. Once training is complete, Figure [T|c) shows an example real environment
in which measurements are made from a speaker-microphone pair. Figure [[(d) and (e) show the
comparison between the true and estimated floorplans. While MapLearn’s results are robust and
fairly promising, there is room for improvement in mainly two directions. (1) Our environments
include minimal furniture and clutter. Coping with reflections from clutter is a next step to this
paper. (2) Our solution degrades once users walks through less than 60% of the grid cells in the
overall floorplan. We believe there is room to learn more effectively even from sparser measurements
of the environment.
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Figure 1: (a) 3D mesh of simulation environment, (b) an example trajectory, (c) real world experi-
mental environment, (d) groundtruth floorplan, (e) estimation result.

In sum, the contributions of MapLearn are:

1. Learning the map of an indoor environment by guiding a conditional GAN with spatial
hints derived from signal processing.

2. A practical solution that only uses audio beacons from a single speaker and microphone
pair, and allowing the user to walk around in random trajectories in the home.

3. Robust performance through simulated training that generalizes to real (clutter-free) homes.

Prior work closest to MapLearn is BatVision [Christensen et al| (2020). Authors use audio reflec-
tions recorded by two microphones to infer the spatial scene (including depth). However, the method
targets imaging local scenes in front of the device’s current location. In contrast, MapLearn com-
bines mobility and environmental reflections to stitch together the entire 2D floorplan of a home.
Inferring this global view with a single microphone, and from incomplete coverage of the home,
makes the problem unexplored. Section [3]discusses further on the difference with SLAM, synthetic
radars, and other imaging techniques in literature.

2 METHOD

The input to MapLearn is a set of user locations, L, the audio signal recorded from all these loca-
tions, R, and the waveform of the transmitted audio beacon, s () (the same waveform is transmitted
from all locations). MapLearn’s output is a map (or floorplan), ¥, of the indoor environment.

2.1 PROBLEM FORMULATION

We cast the floorplan estimation problem as learning a function G that transforms the sensor input
2 = (R, L) into floor plan y, i.e., y = G(z). We use the conditional generative adversarial network
(cGAN) Mirza & Osindero| (2014) as the backbone architecture for MapLearn. The conditional
GAN takes a sample x from the sensor input distribution and outputs a prediction ¥ in the floor plan’s
distribution. During the process, the discriminator learns to identify when estimated floorplans
are implausible (i.e., low likelihood given the true floorplans), and the generator attempts to fool
the discriminator by minimizing the “divergence” between estimated floorplans and the true ones.
Analytically, the network plays the classic mini-max game, ultimately learning to maximize p(y|x).

argmin argmax By [logD(y|z))| + E, [log(1 — D(G(z)|y)] (D)
G D

Here D and G are the discriminator and generator, respectively. Once training is complete, the floor
plan y is obtained from applying the generator, G(x). We attempted to train an expressive cGAN
model based on equation|[I]to verify if the floorplan estimation can be achieved. Unfortunately, given
the highly inverse nature of the problem (i.e., from received signal to indoor map), and the intrinsic
data hungry nature of cGANS, convergence was difficult; results were poor.

Based on principles of signal propagation in reflective environments, we recognize opportunities
to guide the cGAN with spatial hints. This motivates what we term as a hint-map H(x) as an
augmentation to cGAN. Thus instead of directly training on the objective function in Equation[I] we
modify the training objective to be

argénin argmax Ey[logD(y|z, H(z))] + E, [log(l — D(G(z,H(z))ly ))] )

The following sections presents the details on H (z) and it’s introduction into the architecture.
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2.2 HINT MAP H (x) GENERATION

Consider an audio beacon transmitted and received from any location [; in a room. The beacon
signal sy bounces on surrounding walls and returns to the microphone to produce a recording, 7.
The received signal r is a time convolution between sy and the room acoustic impulse response
h. Each echo received at the microphone is caused by a reflector w producing a 7(w)-delayed
and A(w)-attenuated copy of the original source signal sg. Equation [3| models the process (x is
time-domain convolution):

h= Z A(w)d(t — 7(w)) r=s80%h=spx* Z A(w)o(t — 7(w)) 3)

wev wew

To extract acoustic channel h, we perform a time-domain deconvolution between the received sig-
nal r and the source signal sg. Figure 2] (a) visualizes the acoustic channel h, composed of early
reflections from nearby objects and late reverberations from higher-order reflections. We intend to
derive robust geometric hints from h. Obviously, each peak with delay 7(w) corresponds to a re-
flecting path with a total path length of 7(w) - v, where v is the speed of sound. If this path is due
to a single reflection, then the corresponding reflector should exactly lie on the circle centered at the
measurement location [;, with radius

pi =T(w)-v/2 “4)

We spatially encode the acoustic channel A to the 2D floor plan based off Equation [ Figure [2(b)
illustrates this visually where each white circle corresponds to an echo; the radius of the circle
models the distance traversed by that echo. Observe the nearest wall exactly lies on the smallest
circle corresponding to the first peak in h. We know there will be no obstacles within this circle
C(l;, pi) because any reflector within this circle should have created an earlier echo with smaller
delay.
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Figure 2: (a) Deconvolved acoustic channel &. (b) Spatially encoding the acoustic channel h to the

2D floor plan. The closest obstacle exactly corresponds to the first peak in early reflection. (c) Union
of the first peak circle for all measurement locations along a certain trajectory forms the hint-map.

As users walk along a random trajectory, each measurement from a distinct location produces a
circle C. We define the hint map H () as the union of all the first peak circles along the trajectory:

H(z) = Ui C(ls, pi) (5)

Figure [2[ (c) plots the hint map H(x) for a trajectory. We believe H(x) is robust across various
settings and use it as a reliable guidance for training the cGAN.

2.3  GENERATOR DESIGN

The generator G(x) is a two step process. In (step 1), we learn the room structure based on local
audio measurements; in (step 2), we stitch the rooms together, and combine with hint map H () to
globally optimize for the final floorplan. This design is motivated from the weak audio penetration
through walls; since most of the signal remains inside a room (as opposed to penetrating and reflect-
ing back from adjacent rooms), we leverage the opportunity to learn each room separately and then
stitch them appropriately. This extends robustness since we can only build off strong reflections (as
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opposed to weak reflections returning from other rooms). We sacrifice some ability to understand
the adjacency of rooms, but we rely on the mini-max game to learn that (relatively easier) pattern.

Step 1: Individual room estimation. Given the noisy nature of the room’s impulse response (RIR),
directly learning on RIR is highly prone to over-fitting. To alleviate this, we again turn to signal
propagation models. As shown in figure2] the acoustic RIR £ is composed of a few early reflections
followed by a long tail of reverberation Bradley et al.| (2003). The reverberation decay is closely
related to the shape of the room, while timings of the early peaks are a function of the user’s location
inside the room. Thus, instead of inputting RIR A into the network, we input the envelop E(h)
which is far less noisy. Figure a) shows both & and the envelop E(h). The first few peaks of h
have been preserved well by the envelope whereas the later (less important) peaks are only captured
through a decaying tail. Hence, E(h) preserves the salient spatial information necessary to learn
the low resolution contours of the environment; this reduces over-fitting and aids in robustness and
generalization to real-world environments.

Next, we fit a rectangle to each room and train a MLP network that regresses the corners of the room
from the envelop E(h). At this time, we assume the measurement location as origin < 0,0 > in
the room’s local reference frame (we will transform all predictions to the global frame in step 2).
Figure [3[b) shows a measurement location in red and the true room around it; Figure 3c) plots the
corresponding MLP-predicted room with the red point as origin.
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Figure 3: (a) Raw RIR h and the envelope F(h) capture spatial features of the room. (b) Groundtruth
room with measurement from the red location. (c) The MLP-predicted room from the red location.

Due to the omni-directional gain patterns of speakers and microphones, the RIR £ is rotation invari-
ant, i.e., all rotations of the same room, around the measurement location [;, will produce the same
RIR h. Figure [4(a) helps understand this invariance. With 2 measurements however, the rotation
invariance is mitigated, however, 2 rooms are still possible that produce the given h. These 2 rooms
are the reflections along the straight line joining the 2 measurement points (see Figure [d[b)). To
resolve all ambiguity, we input 4 nearby measurements into the MLP encoder, as shown in Figure
Elkc). While 3 measurements are adequate, we use 4 measurements to over-determine the system for
better reliability and easier integration into our grid-based pipeline.

Figure 4: Ambiguity exists in acoustic measurement due to the omni-directional nature of our sensor.
(a) rotational ambiguity for a single measurement. (b) flipping ambiguity for two measurements. (c)
we use four measurements for one estimation to resolve ambiguity.

Step 2: Stitching rooms into a floorplan. Given we know the user’s location/trajectory in an
absolute reference frame, we now shift each room to be around that absolute location. We use a
UNet architecture Ronneberger et al.|(2015)) to fuse the shifted rooms (in the global frame) and the
hint map. Together they should help learn the final floorplan.
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2.4 NEURAL NETWORK IMPLEMENTATION

Figure [ shows MapLearn’s complete architecture. Users walk along random trajectories — audio
recordings from these locations are input to the generator. For generator step 1, we use a MSE loss
on the corner coordinates of the room. We use a patch GAN discriminator to distinguish the real
floor plan from the generated floor plan with the conditional inputs. Inspired by (2017),
when training step 2 of the generator, we use a cGAN loss and a L1 loss on the generated floor plan
to reduce blurring effects. The final objective function is:

argmin argmax L.gan (G, D) + N|G(z, H(x)) — y|]1 (6)
G D
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Figure 5: MapLearn architecture: locations and RIRs are input to cGAN, along with hint maps.
The generator is a two step process composed of (1) per room estimation and (2) global optimization.

3 DATASET CREATION

Simulation. Due to the need for substantive training data, and the challenge in collecting data
from real environments, we aim to train on simulation data. This approach is gaining popularity
and proving successful in massive training-data generation. We use the simulation engine from
SoundSpace 2 (20205 2022) to generate sound ray-tracing on Zillow’s indoor dataset
(Zind) (2021). The Zind dataset includes 1000+ RGB scans of real floor plans. For each
scan, we generate the 3D mesh of the environment using the tool associated to Zind. We added
ceilings to the 3D reconstruction and scaled the dataset to ensure that the rooms have realistic sizes.
We created 1m x 1m grids in all the environments and performed audio simulation on the grid
points, i.e., by inserting speakers and probe microphones co-located at each measurement location.
We then generated a number of random trajectories (with random start and end grid points). Figure

[B] plots samples from our simulation pipeline.
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Figure 6: Simulation pipeline: (a) raw 3D mesh from Zind, (b) added roughness and ceiling to the
meshes, (c) navigation graph and trajectory generation, (d) acoustic simulation along the trajectories
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To model scattering of audio signals after reflections, we add white Gaussian noises to the walls,
ceilings, and floors of the environment — this introduces roughness in the 3D mesh. Figure[7]shows
a comparison between (a) the real RIR from a real 3m x 3m empty room, (b) the RIR simulated
with the off-the-shelf ZIND dataset, and (c) the RIR generated after our updates. Our simulated RIR
bears good similarity to the real channel model. We simulate a total of > 40k audio measurements
at a sample rate of 96k H 2.

Real indoor data. For test data, we performed real-world measurements using ultrasound beacons
(20 to 40 kH z) in a university building and two home environments. This data set contains ~ 200
meters of trajectories, with > 10k RIRs; the audio data is sampled at 96k H z and the audio beacons
are scheduled at 10Hz. For user localization, we also collect the IMU sensor data from the user’s
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Figure 7: Comparison between (a) acoustic channel measured in real room. (b) Simulation result
when we directly run SoundSpace on Zind mesh. (c) After our updates to the simulator.

Samsung Galaxy S21 smartphone, at a sampling rate of 100H z. We implemented an existing IMU-
based localization method — the code is available. The ground-truth floor plans
were collected from the building administrators. Figure [8| shows sample indoor environments: the
first one from simulations and the remaining from university buildings and residential apartments.

Figure 8: Sample environments for evaluation; (a) is a simulated environment from the ZIND dataset
while (b) - (d) are real environments from homes and offices.

4 EVALUATION

Evaluation metric. To compare the estimated map against the ground-truth, we define a metric
similar to precision and recall. Note that any wall is a contiguous sequence of pixels (Figure
shows true walls in black and estimated walls in red). Our main idea is to expand the width of
all true walls by d cms and count the fraction of estimated pixels that fall inside the wider true
walls. We call this precision (d). Figure Eka) visualizes the idea for only a single wall, where
precision (d=20cm) is 0.8 since 80% of the estimated (red) wall are within 20cm expansion of
the true (black) wall.

20em

Figure 9: Visualizing evaluation metrics: precision (d=20cm) and recall (d=40cm)

We also define recall (d) where the estimated red walls are expanded by d cms, and we com-
pute the fraction of true black pixels that fall within these wider red walls. Figure P[b) shows
an example where recall (d=40cm) is 0.5. We report precision (d) and recall (d) for
d = 20, 30, 40, 60, and 80cm.

Baseline / Ablation / Sensitivity. Prior work has reported ranging errors for individual walls
but we were not able to find a clear baseline for the whole map estimation. Hence, we report
precision (d) and recall (d) against the ground-truth, but perform ablation studies with only
the hint map as an input to the cGAN (i.e., eliminating the contribution of the RIR). We also report
sensitivity of the performance to varying amount of coverage, i.e., the fraction of the floorplan area
that the user walks for audio measurements. We also show the performance sensitivity to user local-
ization error, given that a real system will not know the accurate user location along the trajectories.

4.1 MAPLEARN EVALUATION: SIMULATION RESULTS

We evaluate the performance of MapLearn on 16 unseen floor plans, each drawn from real
floorplan datasets and modeled through detailed simulation. Table [T] reports the results com-
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paring MapLearn with the hint-map only based solution. Evidently, MapLearn achieves
precision (d=40cm) of 0.567 implying that 56.7% of estimated walls are within 40cm of the
true walls in the actual floorplan. The recall (d=40cm) is also similar: 0.505. The hint-map
based solution performs worse, achieving precision (d=40cm) of 0.471. This captures the
contribution of room reverberations that help estimate corners and other protruding partitions in the
environment. Overall, MapLearn offers a 5% gain over only using the hint-map.

d(cm) 20 30 40 60 80

Prec/Rec. | P(d) R(d) | P(d) R(d) | P(d) R@) | P(d) R(d) | P[d) R

MapLearn | 0.365 0.336 | 0.457 0.398 | 0.567 0.505 | 0.659 0.588 | 0.761 0.675
Hint Map | 0.312 0.377 | 0.372 0.439 | 0.471 0.539 | 0.553 0.622 | 0.666 0.705

Table 1: Quantitative results for MapLearn and hint map only comparison on simulation data for
precision P(d) and recall R(d), with different error margins d.

Figure [T0] presents qualitative visualization of 6 different samples estimated by MapLearn. The
top row shows the original 3D mesh followed by the ground-truth 2D floorplan in the next row. The
third row shows the hint-map only solution, while the fourth row is the output from MapLearn.
MapLearn and hint-map, both tend to infer the contour of the floorplan well, however, MapLearn
learns the corners and finer structures better. The actual positions of the walls are also learnt better
in MapLearn since the reverberations embed spatial information about the environment through
it’s amplitude and time-differences between successive echoes.
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Figure 10: Qualitative results for MapLearn on simulation data. Row (a) 3D mesh of experimental
environment, (b) floor plan ground-truth, (c) floor plan estimation for ablation study, hint map only,
(d) floor plan estimation for MapLearn.
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Sensitivity to coverage. MapLearn’s performance will depend on the amount of measurements
available from different parts of the indoor environment. Assuming the whole floorplan is divided
into grid cells, we define coverage as the percentage of grid cells from which audio measure-
ments were made. Table 2] shows MapLearn’s performance for varying coverage; naturally, the
performance degrades when coverage is smaller. The degradation is reasonably graceful because
the reverberations still offer information about the wall locations and sizes of rooms even if the user
is not walking near them. Of course, the performance below 70% is unimpressive and part of the
reason is that audio signals were transmitted at low power in view of practical usage. Speakers in
mobile devices like smartphones have limited power; this low power attenuates the third and fourth
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order reflections substantively, allowing little geometric information to be preserved in the returning
echoes, especially when the user is walking far away from the walls.

d(cm) 20 30 40 60 80

Prec/Rec. | P(d) R(d) | P(d) R(d) | P(d) R(d) | P(d) R@) | P{d) _R(d)

Cov=>50% | 0232 0.268 | 0.276 0.322 | 0.353 0.407 | 0415 0.469 | 0.491 0.544
Cov =60% | 0.245 0.299 | 0.289 0.357 | 0.376 0.451 | 0.451 0.522 | 0.528 0.606
Cov =170% | 0.254 0.330 | 0.303 0.392 | 0.389 0.491 | 0.461 0.566 | 0.538 0.649
Cov =80% | 0.272 0.353 | 0.320 0.425 | 0427 0.531 | 0.520 0.610 | 0.610 0.697
Cov =90% | 0.335 0.393 | 0.397 0.468 | 0.517 0.577 | 0.612 0.653 | 0.710 0.738

Table 2: Effect of decreasing coverage C'ov on MapLearn’s precision P(d) and recall R(d).
Sensitivity to user location error. Simulations so far assume accurate measurement locations. In
reality, indoor localization methods will incur errors (as will be the case in our real-world exper-
iments). To assess sensitivity to localization error, we inject random Gaussian noise around the
user’s location, [;, i.e., the 2D noise vector n is sampled as N'(n;;, o] ). Tablereports the effect
of varying o at 85% coverage. MapLearn’s performance degrades especially when o = 40cm or
more. However, even with ¢ = 80cm, the precision and recall are still around 50%, meaning that
half of the walls are correctly positioned within d = 80cm from the true walls. Given floorplans are
around 20m x 20m in area, we believe this level of mapping error is tolerable to many applications.

d(cm) 20 30 40 60 80

Prec/Rec. | P(d) R(d) | P(d) R(d) | P(d) R(d) | P{d) R(d) | Pd) R
o = 20cm | 0355 0318 | 0428 0.380 | 0.551 0.480 | 0.032 0.561 | 0.723 0.654
o=40cm | 0.325 0271 | 0.385 0.322 | 0487 0.401 | 0.565 0.462 | 0.657 0.549
o =60cm | 0.304 0.239 | 0.355 0.282 | 0.447 0.349 | 0.523 0.400 | 0.606 0.472
o=80cm | 0284 0245 | 0.341 0.285 | 0.420 0352 | 0.487 0405 | 0.581 0.473

Table 3: Effect of localization error (modeled by Gaussian noise parameter o) on P(d) and R(d).

4.2 MAPLEARN EVALUATION: REAL-WORLD EXPERIMENTS

We evaluate MapLearn in the real world by transmitting audio beacons from an omnidirectional
speaker and simultaneously recording using a microphone. We pre-process the recorded audio data
to remove the direct signal from the speaker to the microphone; the residue signal contains the reflec-
tions from walls and is fed as input to MapLearn. Observe that MapLearn is trained on simulated
data, and even though we modeled walls with roughness of materials, there is still an understandable
gap between simulation and reality. Moreover, simulated rooms were free of furniture, while real
environments unavoidably had sparse furniture. We also implemented an indoor localization method
from a past work; this method also incurred error in tracking the user’s motion.

Figure |1 1| shows the final maps learnt by both MapLearn and hint-map. The measurements were
made from 10 minutes of slow walking in indoor areas of around 15m X 15m. The precision and
recall values are reported in Table 4] and align with the outcomes of simulations. This is promising
(and somewhat surprising) in how the simulated training generalizes to the real world despite various
sources of errors. Of course, with increasing clutter the reverberations are far more complex and the
results degrade sharply. We leave the treatment with furniture for future work.

d(cm) 20 30 40 60 80

Prec/Rec. | P(d) R(d) | P(d) R(d) | P(d) R@) | P(d) R(d) | P[d) R
MapLearn | 0.197 0.196 | 0236 0249 | 0.325 0341 | 0421 0.435 | 0.581 0.559
Hint Map | 0.179 0.151 | 0223 0.192 | 0.336 0.276 | 0429 0.352 | 0.525 0.455

Table 4: Quantitative results for MapLearn and hint map only comparison on real world data for
precision P(d) and recall R(d), with different error margins d.

5 RELATED WORK

B Image sensors: The vast majority of indoor mapping methods are built on imaging sensors, such
as cameras, LIDARSs, etc. [Liu et al.| (2015); Ito et al.| (2014); |Cruz et al.| (2021)); Chan et al.| (2021));
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Figure 11: Real world results for MapLearn. Top row: indoor place image. Second row: ground-
truth map. Third row: Hint-map’s result. Fourth row: MapLearn’s result

Karam et al.|(2020). As mentioned earlier, this incurs privacy concerns in places like homes|Fraccaro|
et al.[(2020). MapLearn alleviates this concern by essentially sensing a contour of the environment

and filtering out the “high-frequency” details. Contour maps are helpful to many applications

Sheimy & Lil (2021)). B SLAM: WiFi and audio SLAM [Huang et al.| (2011)); [Krekovié et al.| (2016)

methods have also been popular, however, mapping in such scenarios refer to landmarks, i.e., lo-
calizing the WiFi access points or audio speaker locations |Ferris et al.| (2007); [Liu et al.| (2019).
Imaging the contour of walls and large reflective objects entails different set of challenges. As an
aside, Rhoomba robots perform visual SLAM, i.e., uses cameras to identify and localize landmarks
in the home; naturally, research has reported privacy concerns through such vacuum cleaners |[Sami
let al.| (2020); Suryaprabha et al.|(2022). l RF Imaging and Synthetic Radar: A rich body of work
has developed algorithms for imaging the surroundings in the context of autonomous cars, or even in
indoors, using drones or precisely moving robots that use special high-bandwidth transceivers (Guan
et al (2020); [Korany et al| (2019); [Karanam & Mostofi| (2017); [Adib & Katabil (2013); [Risbgl &
Gustavsen| (2018)); [Wang et al.|(2017). Moreover, such RF techniques image a certain object in iso-
lation, and get derailed when multipath reflections return from many other objects
[2019). For the problem of indoor mapping, RF reflections from adjacent rooms severely complicate
this (inverse) problem Sen et al.| (2013). MapLearn’s audio based approach naturally sidesteps that
since audio signals get absorbed by walls. Moreover, using everyday mobile devices adds to the
challenge. B Audio based room shape estimation: Mapping from audio has been investigated by
Dokmanic’s series of work where arrays of microphones are precisely calibrated; signal processing
algorithms are proposed to solve inverse problems [Dokmani¢ & Tashev| (2014); [Dokmanic¢ et al.
(2011); |[Krekovid et al| (2016)); [Dokmanic et al.| (2016). Lay home users are not capable of such pre-
cisely calibrated measurements in each room; walking around is much more feasible but the location
errors render Dokmanic’s approaches incompatible. MapLearn fills these practical gaps.

6 CONCLUSION

We find that a cGAN architecture, guided by spatial information from measured signals, can learn
contour maps of indoor environments. The training of our model was performed on simulated data
and yet the results from the real world was robust, generalizable. Our system MapLearn was
evaluated on clutter-free environments; learning maps even in the presence of clutter is a natural
next step. If successful, a solution can enable a host of societal applications.
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