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Abstract

Understanding the results of deep neural networks is an essential step towards
wider acceptance of deep learning algorithms. Many approaches address the issue
of interpreting artificial neural networks, but often provide divergent explanations.
Moreover, different hyperparameters of an explanatory method can lead to con-
flicting interpretations. In this paper, we propose a technique for aggregating the
feature attributions of different explanatory algorithms using Restricted Boltzmann
Machines (RBMs) to achieve a more reliable and robust interpretation of deep
neural networks. Several challenging experiments on real-world datasets show that
the proposed RBM method outperforms popular feature attribution methods and
basic ensemble techniques.

1 Introduction

As the applications of deep neural networks (DNNs) continue to grow, the black-box nature of DNNs
creates potential trust issues [1]. Moreover, numerous life-critical (such as medical, automotive, or
financial) applications utilize DNNs for various estimation tasks. In such applications, and especially
for the long-term acceptance of artificial intelligence (AI) solutions, a deeper understanding and trust
in the produced results is crucial. Furthermore, feature attribution methods are important tools for
deep model debugging and diagnosis [2].

Explaining how the input influences the output for a given DNN is one form to interpret the black-box
nature of the DNN and bring trust to a system. These so-called feature-based explanation methods
received a lot of attention in recent years [1, 3–5]. They can be grouped into three broad categories,
(1) approaches based on gradient information [6, 7], (2) perturbation-based approaches [8, 9], and (3)
attribution-based approaches [3, 10]. Interestingly, different feature-based explanation approaches
regularly produce mixed views on the main attributes (areas of an image or variables), and in the
absence of the ground truth, it is still a challenge to verify which explanation method is the most
trustworthy. Moreover, in the AI community, there are no yet accepted quality measures for feature-
based explanations. All these difficulties resulted in a large number of different explanation methods
and in a lack of consensus on which techniques are most reliable.

Within the machine learning (ML) community, there is much work on the combination of methods
that do not always agree with each other, i.e. ensemble learning [11, 12]. Normally ensemble models
outperform the non-ensemble models and turn out to be more robust to outliers. The main idea is that
if multiple methods make mistakes in different areas, combining them in an intelligent way improves
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performance and reduces the effect of outliers as compared to the single method. Moreover, from
statistical learning theory and practical applications, it is well understood that ensemble learning is
the path of choice towards a more robust machine learning system [13], even in unsupervised learning
scenarios where the target is not available [14, 15].

In this work, utilizing ideas from [15, 11] and [16, 17], we introduce a novel approach for the unsuper-
vised ensemble learning of reliable and robust feature-based explanations for deep neural networks.
To this end, we propose using a model based on Restricted Boltzmann Machines (RBMs), which
achieves this goal by aggregating the results (saliency maps) of different feature-based explanation
methods in a principled probabilistic fashion. Also, it has been shown that an RBM can be used
in the truth discovery setting [18, 19], which is analogous to our task of finding a reliable feature
importance map from different importance maps.

The main contributions of this work are:

• We introduce a novel method for a robust and reliable feature-based explanation using
ensemble learning.

• We empirically and visually show the superior performance of the proposed method in
comparison to state-of-the-art feature attribution baselines.

• We open-source our code and make it publicly available, as an RBM ensemble framework:
(https://github.com/JohanvandenHeuvel/AggregationOfLocalExplanations), Besides, we
also developed a single Python package with various evaluation metrics for feature attribution
methods metrics: https://github.com/meier-johannes94/ExplainableAIImageMeasures

The paper is organized as follows: In Section 2 we discuss the related work and provide essential
background information. Section 3 presents the proposed ensemble method for local feature-based
explanations using an RBM. In Section 4, we present the results of various experiments. Section 5
discusses limitations of our work and ways to address them in the future. Section 6 concludes our
work with a short summary.

2 Background and Related Work

This part of the manuscript provides the needed background and discusses related approaches. First,
we present the basic notation used in this work and proceed by presenting two ensemble techniques
for aggregating feature importance maps.

2.1 Feature Attribution Function

Formally, a feature attribution function can be seen as φ(f, x, cx), where f is a black box model and
x is an input data point from a corresponding class cx. The output of φ is an explanation vector or
matrix ef(x), where each element of ef(x) is an importance score for the corresponding feature value
in x. A large positive or negative value in ef(x) indicates that the corresponding feature (pixel) has a
large influence on the outcome of the black-box model f .

Assumption 2.1 In the following, we assume that a true feature attribution ēf (x) for a given model f
and input x exists and can be constructed by adequately aggregating available attributions ef(x),i, i ∈
{1, ..., N}, where N is the number of baseline explanations (from N baseline methods).

For better readability and simplicity, from here we omit the index f(x).

The goal of any explanation method φ is to obtain an attribution e that is as close as possible to ē.
Note that our method naturally generalizes to probabilistic local explanation methods [20]. Given the
before-mentioned assumption, we can say that there is a joint probability distribution of the pair (e, ē)
parametrized by θ.

pθ(e, ē) = pθ(ē)pθ(e|ē).

The joint distribution pθ(e, ē) is not known, and neither are the marginals pθ(e), pθ(ē).

For the following theoretical results we require that the explanation methods give independent
explanations when conditioned on the true explanation. However, as with Naive Bayes methods, for
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practical purposes, this assumption can be violated without negatively impacting the aggregation
quality [15]. Also note that we do assume some consistency between the explanations, following the
assumption that feature attributions reflect the underlying (but unknown) importance distributions of
the feature values [21].

Assuming conditional independence between the provided baseline explanations given the (unknown)
true explanation, we have

pθ(e|ē) =

N∏
n=1

pθ(en|ē),

where en is a baseline explanation in the ensemble involving N different baseline explanations.

2.2 Ensemble Learning

As we state in the introduction, ensemble learning is a well-studied approach for improving the
performance of an ML system. One of the most basic ensemble methods employs the mean of results
of base learners [13], where a base learner is a single algorithm from the ensemble.

emean =
1

N

N∑
n=1

en. (1)

A significant drawback of the mean ensemble approach is that it still is sensitive to outliers or noisy
estimations. Furthermore, data scaling may strongly influence the aggregation. In Section 4, these
weaknesses of the mean ensemble approach are also seen in the experimental evaluation.

To mitigate these weaknesses, the authors of [22] propose to take the local uncertainty into account.
To this end, they divide the mean by the local variance plus a constant ε for stability reasons, which
results in the variance ensemble approach:

evar =
1

N

N∑
n=1

en
σ∗(ei∈{1,...,N}) + ε

,

where σ∗(ei∈{1,...,N}) is the point-wise standard deviation over all the available explanations ei, i ∈
{1, ..., N}. This method assigns less relevance to explanations that have high disagreement with the
remaining explanations.

Also, the authors of [23] proposed a novel method to aggregate Shapley values through an explanation
function that minimizes sensitivity.

3 Ensemble Learning using Restricted Boltzmann Machines

x1 x2 x3

h1 h2

Figure 1: An RBM with three visible
and two hidden units. In our work, we
use an RBM with a single hidden node.

In this section, we present an unsupervised aggregation
of feature attribution maps using a Restricted Boltzmann
Machine (RBM). Similar aggregation techniques have been
proposed in other contexts, e.g., in [15, 18].

3.1 The Restricted Boltzmann Machine

An RBM is an undirected bipartite graph that can be
parametrized by a neural network. It is a variant of the
Boltzmann Machine, with the additional property that there
are no connections within both the group of visible nodes or
the group of hidden nodes. The advantage of this property
is that nodes in one group are conditionally independent of
each other, given that we know the state of the nodes in the other group. One of the main charac-
teristics of an RBM is that it can learn a probability distribution over its set of inputs. A graphical
representation of an example RBM is shown in Figure 1.
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The formal definition of an RBM is as follows. There is a set X of n visible binary random variables
and a set H of m hidden binary random variables. The RBM has parameters λ = (W, a,b). W is
the weight matrix of the connections between the nodes, a is the bias of the visible layer and b is
the bias of the hidden layer. Each possible state of the RBM, i.e. the particular values of (X,H), is
associated with the following energy function (in matrix notation):

Eλ(x,h) = −(aT x + bTh + xTWh),

which then can also be used to define the joint probability distribution for the visible and hidden
vectors is defined in terms of the energy function:

Pλ(x,h) =
1

Z
e−E(x,h),

where Z is the sum over e−E(x,h) for all possible configurations x,h, which can be seen as a
normalization constant to ensure that all probabilities sum to 1, also known as the partition function.

The optimization objective of the RBM is to maximize the expected log probability of a training
sample x:

argmax
λ

E[logPλ(X = x)] =

argmax
λ

E[log
∑

h

Pλ(X = x, H = h)].
(2)

To train an RBM, a gradient-based optimization can be applied using the contrastive divergence
algorithm [24, 25].

3.2 Aggregation of Local Explanations using an RBM

Given an RBM with N visible nodes and one hidden node, with input x, where N is the number of
baseline explanations in our ensemble, it can be shown that the true posterior probability of y can be
efficiently estimated (Lemma 4.1, Lemma 4.2 from [15]). Furthermore, given the previously discussed
mild assumptions on the input data (which are in line with those in [15]), the maximum likelihood
estimate λ̄MLE for the parameters of the RBM, the RBM posterior probability Pλ̄MLE

(H = 1|X =
x) converges to true posterior Pθ(Y = 1|X = x).

Hence, we are able to apply the RBM to the unsupervised aggregation of N available feature-based
explanations. We assume a joint distribution pθ(e, ē), and that the ei’s are conditionally independent
from each other given ē. By fitting the RBM we learn the parameters θ and thus obtain the relationship
between our known explanations ei and the true explanation ē. The ensemble pipeline of the proposed
method is depicted in Fig. 2.

In order to preserve the spatial information for visual data using the RBM-based ensemble, we do a
pixel-wise aggregation. Therefore, for each pixel we train a Bernoulli RBM with a single hidden unit.

A known limitation of an RBM is the so-called flipping issue [15, 18, 19], which arises from the
RBM parametrization symmetry. That is, the weights of the RBM can be flipped symmetrically
without changing the behavior of the RBM. In order to avoid this unwanted effect, we propose two
approaches: flip detection and metric optimization. The flip detection algorithm extends the idea from
Remark 4.3 in [15], by comparing the top 5 % of most important and 5 % of less important pixels to
the mean baseline. The algorithm inverts the current important scores if there is a strong disagreement
between the proposed approach and the mean baseline. The metric optimization method utilizes the
chosen metric to overcome the flipping issue. It compares two versions of the RBM ensemble results
and selects the one with a better performance according to the selected metric.

4 Experiments

To demonstrate the effectiveness of the proposed ensemble algorithm we conduct various visual
and quantitative experiments. First, we present the visual inspection results on the MNIST [27] and
ImageNet [26] datasets in two settings, with and without noisy explanation maps in our ensemble.
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Figure 2: An overview on the ensemble of feature attribution maps from three different local
explanation algorithms using an RBM for an image from the ImageNet dataset [26].

Despite a growing body of research focusing on explainable ML, the fair quantitative comparison of
local explanation (or saliency-based) algorithms is still an open question, since the existing methods
mostly utilize the pixel perturbation strategy (e.g., removing the most or least important pixels and
reporting the change in recognition quality) [28, 29]. Also, such evaluations have a significant
drawback, replacing image pixels with black or "mean" or any other pixel values may lead to artifacts
affecting the data distribution [29, 30]. Nevertheless, since pixel perturbation analyses are employed
in many related works, for our quantitative analysis we select the following approaches: the pixel
perturbation for insertion (IAUC) and deletion (DAUC). Furthermore, we utilize the iterative removal
of features (IROF) analysis [31]. We explain each evaluation method in detail in the corresponding
subsections.

In our last experiment, we demonstrate that our ensemble approach can be also used within a singe
feature attribution framework to achieve more robust and stable explanations. Since, it has been
shown that hyperparameters choice can significantly affect the saliency maps [32].

4.1 Visual Inspection for Image Data

In our first experiment, a visual evaluation on images from ImageNet [26] and MNIST [27] is
performed for several baseline and ensemble methods. We provide benchmark outcomes for two
settings, with and without fifteen noisy baseline explanations in an ensemble. The results are depicted
in Table 1.

Without artificial noise in the ensemble. We select four samples from ImageNet dataset [26] and
five baseline explanation methods for the ensemble models: LIME [8], Guided Backpropagation
(GB) [33], Integrated Gradients (IG) [34], Gradient SHAP (GS) [9], and SmoothGrad (SG) [35]. We
compare the proposed RBM ensemble strategy to simple mean and variance ensembles [22]. The
results in Table 1 show that our approach produces sharp and visually appealing saliency maps in
comparison to other ensemble baselines. In comparison to the baseline explanation methods, the
proposed ensemble technique seems to produce more reliable and robust results by highlighting
commonalities among the baseline methods and by mitigating the noise coming from the single
baseline methods.

With artificial noise in the ensemble. We challenge the discussed approaches by adding fifteen
baselines with random noise sampled from the standard normal distribution erand ∼ N (0, 1) to the
ensemble. The results in Table 1 reveal that the proposed RBM-based aggregation method mitigates
noise and hence results in more robust saliency maps in comparison to the other ensemble baselines.
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Original LIME [8] GB [33] IG [34] GS [9] SG [35] Mean Variance RBM
ensemble ensemble ensemble

Without noisy feature attribution maps in the ensemble

With noisy feature attribution maps in the ensemble

Table 1: A visual comparison between baseline methods and ensemble methods on ImageNet [26]
and MNIST [27] datasets.
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Method Insertion (IAUC) Deletion (DAUC) IROF [31]

Gradient SHAP [9] 0.61 ± 0.42 0.22 ± 0.29 0.73 ± 0.24
DeepLIFT [3] 0.62 ± 0.42 0.23 ± 0.30 0.73 ± 0.23
LIME [8] 0.80 ± 0.31 0.23 ± 0.23 0.76 ± 0.22
Saliency map [38] 0.50 ± 0.35 0.37 ± 0.32 0.65 ± 0.25
SmoothGrad [35] 0.60 ± 0.26 0.38 ± 0.29 0.63 ± 0.26
Integrated Gradients [34] 0.66 ± 0.42 0.19 ± 0.27 0.75 ± 0.23
Guided Backpropagation [33] 0.54 ± 0.38 0.49 ± 0.36 0.65 ± 0.25
Original Image 0.52 ± 0.32 0.53 ± 0.34 0.47 ± 0.30

Mean Ensemble 0.79 ± 0.33 0.25 ± 0.28 0.70 ± 0.26
Variance Ensemble [22] 0.62 ± 0.36 0.39 ± 0.31 0.71 ± 0.26
RBM ensemble with the flip detection 0.76 ± 0.38 0.19 ± 0.26 0.76 ± 0.22
RBM ensemble with the metric optimization 0.77 ± 0.37 0.18 ± 0.24 0.76 ± 0.22

Table 2: A quantitative comparison between single and ensemble methods for the pixel perturbation:
IAUC (higher is better), DAUC (lower is better), and IROF (higher is better) experiments on 10,000
samples from the CIFAR10 validation dataset [36].

4.2 Pixel Perturbation Experiment

In the first quantitative experiments, we compare multiple baseline models and ensemble methods on
the CIFAR10 dataset [36] by removing the most important pixels (according to a scoring function) and
reporting the area under a curve score (DAUC). In addition, we also follow the approach of inserting
the most important pixels into an empty image and again report the area under a curve (IAUC). Thus,
an ideal feature scoring function has a large IAUC and low DAUC. These benchmark methods well
accepted by the research community [37]. For this experiment, we select the following algorithms as
baseline explanation methods: Gradient SHAP [9], DeepLIFT [3], LIME [8], Saliency maps [38],
SmoothGrad [35], Integrated Gradients [34], Guided Backpropagation [33]. As suggested in [11],
we add the original image as a baseline to the ensemble. However, according to our experiments,
adding th original image to the ensemble does improve the overall ensemble performance. We report
all scores for the baseline approaches and the ensemble methods in Table 2.

4.3 IROF Experiment

In [22] the authors propose the IROF measure as an extension to the work [39]. The main idea of the
IROF benchmark is as follows: the image is divided into superpixels using the SLIC algorithm [40].
Superpixels are regional blocks of pixels within an image where the contained pixels share a high
similarity measure among each other. The relevancy for each superpixel is calculated by averaging
over the attribution scores over all contained pixels (inside the superpixel). After, the superpixels are
sorted descending by their relevancy. The entire superpixels are gradually replaced by a baseline and
sent through the network again to measure the new recognition quality for the modified image wrt. to
the target label. For more accurate attribution methods, the recognition quality decreases faster, and
thus the area under the curve is lower. The IROF score is defined as the area over the curve (AOC):
AOC = 1−AUC. Higher values, therefore, indicate a better attribution. We use the same baseline
methods as in the pixel perturbation experiment (Sec. 4.2). The results are listed in Table 2.

4.4 An RBM Ensemble Within a Singe Explanation Framework

In this experiment, we demonstrate that even for multiple baseline explanations of the same explana-
tion method, the unsupervised ensemble with an RBM can lead to an improvement. To this end, we
select the LIME [8] method with a different hyperparameter - the number of superpixels in the image.
For the baselines (LIME-0, LIME-1, and LIME-2), we used 10, 100, and 1000 superpixels per image,
respectively. The results can be seen in Fig. 4. The main idea is that each lime method has a different
granularity level, thus highlighting distinct detail levels, and the proposed method’s aggregation may
help improve the reliability and robustness of feature attributions.
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Original LIME-0 LIME-1 LIME-2 RBM-ensemble

# of superpixels: 10 50 100

Figure 3: Three local feature attribution maps for a single data sample from CIFAR10 dataset [36]
using the LIME algorithm [8] with different number of superpixels and the proposed RBM ensemble
of the selected feature attribution maps.

4.5 Reproducibility

For reproducibility reasons, we describe the data preprocessing step used for all the experiments
and provide information about packages used in this work. Also, the code for every experiment is
publicly available online (see the links provided in Section 1).

To achieve a fair comparison, the image data from all datasets was preprocessed in the same way
for each baseline. We performed a per saliency map normalization before the aggregation. In every
experiment, we used the ResNet18 neural network architecture [41], except for the experiment on
the MNIST dataset where we utilized a simple five layers convolutional neural network. We use a
pre-trained model for ImageNet dataset [26] from torchvision library [42].

For the experiments we used the Bernoulli RBM implementation from the Scikit-Learn library [43]
with following hyperparameters for each experiment: for the MNIST dataset we set the batch size to
5, the learning rate to 0.01, and the number of iterations to 100. For CIFAR10 and ImageNet datasets
we use the following hyperparameters: a batch size of 35, a learning rate of 0.001, and a number of
iterations is 250. The rest of hyperparameters are default to the scikit-learn package. For all baseline
explanation techniques we use the publicly available open-source implementations from the captum
library [44] with their default hyperparameters.

5 Discussion and Future Work

The results of multiple experiments with the proposed RBM ensemble show its competitive perfor-
mance compared to base explanation techniques and other ensemble approaches. We hypothesize
moderate performance of the RBM ensemble on the insertion (IAUC) benchmark is connected to our
data preparation step since we filter the negative values for every saliency map in the ensemble.

The computational complexity of an ensemble method primarily depends on the base learner. In our
case, the base explanation techniques are relatively fast, especially on specialized hardware (GPU or
TPU), where an RBM has low computational complexity.

The gradient-based methods frequently produce noisy explanations. We empirically demonstrated
that our approach reduces the noise in the final ensemble (Tab. 1). Therefore, we believe that the
RBM aggregation of multiple saliency maps from gradient-based feature attributions is a powerful
tool for improving the overall reliability of local explanations.

As part of our future work, we aim to evaluate our aggregation approach on larger datasets. Fur-
thermore, methods for selecting a few quite reliable base explanations for aggregation might lead to
efficient explanations ensembles for larger datasets.

Finally we expect that the proposed approach can be easily adapted to handle local explanations over
structured tabular data, where the explanation of deep neural networks is an essential task for many
crucial applications such as healthcare and finance [45].

8



0 1 2 3
0

50

100

150

200

in
se

rt

LIME-0

49.4%

50.6%

0.0 0.5 1.0 1.5
0

50

100

150

200

250

LIME-1

39.6%

60.4%

0.5 1.0 1.5 2.0 2.5
0

100

200

300

LIME-2

77.0%

23.0%

0.0 0.5 1.0 1.5 2.0 2.5
0

50

100

150

200

de
le

te

79.0%

21.0%

0.5 1.0 1.5
0

100

200

300 62.4%

37.6%

0.5 1.0 1.5 2.0
0

100

200

300

400 62.6%

37.4%

−0.5 0.0 0.5 1.0 1.5
0

50

100

150

200

IR
O

F

67.6%

32.4%

0.0 0.5 1.0 1.5 2.0
0

100

200

300 45.5%

54.5%

0.5 1.0 1.5 2.0
0

50

100

150

200 75.6%

24.4%

Figure 4: Distributions of differences where the proposed RBM ensemble shows better (green)
and inferior (red) results in comparison to a baseline explanation technique according to insertion,
deletion, and IROF metrics (score 1 means them being equal). The ensemble consists of the feature
attributions from the same algorithm - LIME, but different hyperparameters. We randomly sampled
2000 images from CIFAR10 [36] for this experiment.

6 Conclusion

In this work, we presented a novel approach to unsupervised aggregation of feature-based explanations
using Restricted Boltzmann Machines with the aim of reliably interpreting the influence of inputs
on the output of deep neural networks. In addition to explanatory reasons, the latter is also essential
for debugging and diagnostic purposes and serves the long-term acceptance of deep learning in
real-world applications.

Using the proposed approach, we demonstrated through visual and quantitative experiments its ability
to obtain more robust and reliable explanations than other existing ensemble methods. In a setting
with noisy attribution maps in an ensemble, the proposed approach successfully selects only the
valuable information, mitigating noise. Moreover, our work illuminates and mitigates the problem of
possible contradictory results that may be obtained by different explanation and evaluation methods.
Finally, we note that our approach can also be used within a single interpretability framework to
reduce the sensitivity of a feature-based explanatory approach to its hyperparameters.
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Original LIME [8] GB [33] IG [34] GS [9] SG [35] Mean Variance RBM
ensemble ensemble ensemble

With noisy feature attribution maps in the ensemble

Without noisy feature attribution maps in the ensemble

Table 3: A visual comparison between base learners and ensemble methods on ImageNet [26] and
MNIST [27] datasets.

A Additional Experiments

Table 3 presents extended experimental results for the compression with or without noisy feature
attribution maps in the ensemble.
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