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Abstract

We present The Matrix, a foundational realistic world simulator capable of gen-
erating infinitely long 720p high-fidelity real-scene video streams with real-time,
responsive control in both first- and third-person perspectives. Trained on limited
data from video games like Forza Horizon 5 and Cyberpunk 2077, complemented
by large-scale unsupervised footage from real-world settings like Tokyo streets,
The Matrix allows users to traverse diverse terrains—deserts, grasslands, water
bodies, and urban landscapes—in continuous, uncut hour-long sequences. With
speeds of up to 16 FPS, the system supports real-time interactivity and demon-
strates zero-shot generalization, translating virtual game environments to real-world
contexts where collecting continuous movement data is often infeasible. For ex-
ample, The Matrix can simulate a BMW X3 driving through an office setting—an
environment present in neither gaming data nor real-world sources. This approach
showcases the potential of game data to advance robust world models, bridg-
ing the gap between simulations and real-world applications in scenarios with
limited data. See https://github.com/MatrixTeam-AI/matrix, https://matrixteam-
ai.github.io/pages/TheMatrix/ for code data and project page.

Figure 1: The Matrix is a foundational realistic world simulator capable of generating infinitely
long 720p high-fidelity real-scene video streams with real-time, precise moving control. Due to
size limitation, we recommend you to go to the website provided in the abstract for videos.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction

Neural-interactive simulation, a concept popularized by The Matrix (1999), envisions a world fully
constructed by AI to replicate 20th-century human society. This paper takes an initial step toward
realizing this vision by developing a world model that enables neural networks to ‘dream’ visually
authentic environments. The result is an infinite-horizon, high-resolution (1280×720 pixels, 720p)
simulation that supports real-time (16 Frame Per Second, FPS) interactive exploration across diverse
landscapes, including deserts, grasslands, water terrains, and urban settings. Responding to real-time
control signals, the world model predicts future frames in these environments in a streaming and
auto-regressive fashion.

World models offer a promising solution to the overwhelming costs of video game development,
which can easily run into tens or even hundreds of millions of dollars. Traditional game creation
depends on engines such as Unity 3D, Unreal Engine, and Blender, each requiring substantial
expertise, intensive asset preparation, and meticulous hyperparameter tuning. Furthermore, games
built with these engines are often limited in reusability, as each new title demands a comprehensive
redesign. In contrast, data-driven world models tackle these issues by minimizing the need for manual
configuration, simplifying development workflows, and boosting scalability across projects.

Despite extensive research in world models [1], key challenges remain. First, prior studies have
predominantly focused on simpler or less realistic video games, such as Atari [2, 3, 4], Mario [5],
Minecraft [6, 7, 8], CS:GO [4], and DOOM [9], which fall short in replicating real-world fidelity.
Second, current video generation techniques, like Sora [10], are constrained to short sequences
of about 1 minute, forcing existing world models to assemble independently generated clips with
noticeable transitions. Finally, achieving real-time generation remains a major hurdle. For example,
state-of-the-art game generators such as Genie [11, 12] operate at speeds of 1 FPS, while Nvidia’s
Cosmos [13] is also incapable of generating real-time worlds. This paper addresses these limitations
by introducing a scalable, high-fidelity world model in real time that enhances simulation realism and
bridges the gap between virtual environments and reality. Notably, our world model is with strong
domain generalization and real-time control. For example, our foundation model allows us to control
BMW X3 driving through an indoor setting or in the sea—an environment present in neither gaming
data nor real-world sources.

Our Contributions. Our contributions are as follows:

• We introduce The Matrix, a foundational simulator for realistic environments that generates
infinitely long, high-fidelity 720p real-world video streams with real-time interactive control
and strong domain generalization. Despite its capabilities, the model is lightweight, with
only 2.7 billion parameters, and achieves a generation speed of 16 FPS on 8×A100 GPUs.

• At the core of The Matrix is a novel diffusion technique, the Shift-Window Denoising Process
Model (Swin-DPM), enabling pre-trained DiT models [14] to extrapolate seamlessly for
smooth, continuous, and infinitely extendable video creation. This technique holds potential
for broader applications in long-form video generation.

• Additionally, we introduce GameData, a platform that autonomously captures paired in-
game states—extracted from CPU memory—alongside corresponding video frames, sig-
nificantly reducing labeling costs and complexity. This platform produces Source, a new
training dataset for world models with action-frame paired data.

Technical Advantages of The Matrix. Our work advances the state-of-the-art in the following
aspects: 1) Infinite Video Generation: The Matrix generates consistent, infinitely long videos using
a streaming, auto-regressive approach. 2) High-Quality Rendering: The Matrix delivers realistic
rendering at a resolution 1280× 720. 3) Real-Time, Frame-Level Control: The Matrix operates in 16
FPS, providing real-time, frame-level control for interactive applications. 4) Domain Generalization:
Trained with small amounts of supervised game data and large amounts of unsupervised internet
videos, The Matrix achieves strong domain generalization to real-world settings.

While we do not claim The Matrix to be a foundational world model—since it is currently trained
only on Forza Horizon 5, Cyberpunk 2077, and humanoid control tasks—we regard it as a proof of
concept demonstrating that the aforementioned four aspects can be simultaneously achieved. With
more diverse data, The Matrix has the potential to evolve into a generalized world model.
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Figure 2: The training process of The Matrix begins with a pretrained video DiT backbone. First, the
Interactive Module is warmed up using Synthesized Observations of Unreal Rendered Contextual
Environments data with unsupervised LoRA to make subsequent training focus on movement, not
visuals. Then, we train the Interactive Module for precise frame-level control. Swin-DPM enables
infinite-length generation, and Stream Consistency Model is introduced to accelerate sampling to
real-time speeds.

2 Related Work

World Simulation. Distinct from world models designed for agent learning, world simulation
focuses on human interaction with neural networks through high-quality rendering, robust control,
and strong domain generalization to real-world scenarios. This research explores two types of control:
video-level and frame-level. In video-level control, a control signal is given at the start, and the
model generates a responsive video sequence; notable examples include UniSim [15], Pandora [16],
GameGen-X [17], MicroVGG [5], GAIA-1 [18], and Cosmos [13]. To approximate continuous
control, this approach often stitches together independently generated clips, which may result in
visible transitions. In contrast, frame-level control provides fine-grained adjustments every few
frames, enabling more precise, responsive interactions similar to gameplay, as seen in examples like
Genie [11], Genie-2 [12], DIAMOND [4], GameNGen [9], MineWorld [8], and Oasis [6]. Prior work
in world simulation has typically focused on one of three aspects—video length, high resolution, or
domain generalization—without addressing all three simultaneously. The Matrix uniquely stands out
as a foundation model capable of generating infinitely long, high-quality videos with high resolution,
frame-level real-time control, and strong generalization to real-world contexts.

3 Methods

Achieving granular control is notoriously challenging, as labeling actions at the frame level is typically
cost-prohibitive. To address this, we develop the GameData platform, which autonomously captures
paired data of in-game states (extracted directly from CPU memory) alongside corresponding video
frames, significantly reducing labeling costs and complexity. Additionally, The Matrix incorporates an
advanced Interactive Module that learns and generalizes game movement interactions from a limited
amount of labeled data combined with extensive unlabeled data from both games and real-world
environments. This enables The Matrix to deliver exceptional accuracy across diverse scenarios,
while maintaining robust performance in the gaming domain.

Generating high-quality, real-time, and generalizable video simulations for infinite sequences presents
additional technical challenges, often forcing previous simulators to compromise on one or more
essential aspects. The Matrix overcomes these limitations by adapting the world model from a
pre-trained video Diffusion Transformer (DiT) model [14], leveraging its extensive pre-existing
knowledge and generation quality. To enable infinite-length generation, The Matrix introduces a
novel diffusion approach, the Shift-Window Denoising Process Model (Swin-DPM), which allows
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Figure 3: The Interactive Module: After every two DiT blocks, the module merges the keyboard
inputs into the video token feature through a Causal Cross-Attention Layer, where each keyboard
input is limited to influence only the current and subsequent ω tokens. Here, every p frames are
condensed into a single token.

the DiT model to extrapolate for smooth, continuous, and indefinitely long video creation. Finally,
we fine-tune a Stream Consistency Model (SCM), accelerating inference to real-time.

Video DiT Backbone. As a preliminary, we introduce the video DiT backbone, adapted from the
publicly available DiT models [19]. It employs a 3D Variational Auto-Encoder (VAE) to encode
T × p video frames into T video tokens. The backbone consists of 32 attention blocks, followed
by a linear output head with LayerNorm [20]. Each attention block includes a self-attention layer
operating on network features, a cross-attention layer linking conditions with self-attention outputs,
and an FFN layer composed of two linear layers with a GELU activation [21] in between. See
Appendix Section A.1 for further details.

3.1 Model Components

The Matrix comprises three main components: a) an Interactive Module that interprets user inten-
tions (e.g., keyboard inputs) and integrates them into video token generation; b) a Shift-Window
Denoising Process Model (Swin-DPM) that enables infinite-length video generation; and c) a Stream
Consistency Model (SCM) that accelerates sampling to achieve real-time performance. As shown in
Figure 2, the model is fine-tuned from a pre-trained video DiT model through a three-stage process:
first, we fix the DiT model parameters and train the Interactive Module; next, we train the Interactive
Module and the DiT together following the Swin-DPM; finally, we optimize an SCM to accelerate
inference to real time. The first two stages leverage both labeled gaming and unlabeled video data
to enhance generalization, while the final SCM training focuses on labeled gaming data to reduce
optimization complexity.

Interactive Module. The Interactive Module consists of an Embedding block (see Figure 3) and a
cross-attention layer. Its primary function is to translate keyboard inputs into natural language that
guides video generation. For example, pressing ‘W’ is interpreted as “The car is driving forward” in
the Forza Horizon 5 scenario, or as “The man is moving forward and looking up” when combined
with an upward mouse movement in Cyberpunk 2077. For unlabeled real or game data, we apply
a default description: “The camera is moving in an unknown way.” To enhance robustness, we
randomly replace labeled keyboard inputs with this default sentence during training with probability
q = 0.1. To prepare for training, we first warmup the base DiT model for a few epochs using
collected game and real-world data, fine-tuning a LoRA weight [22]. This process ensures that the
Interactive Module focuses on learning interactions and movement patterns rather than simply fitting
the video. Once translated, these natural language descriptions are processed by a T5 encoder [23] and
transformed into a vector embedding through two linear layers and a SiLU layer [24] between them.
This vector embedding is then concatenated with its corresponding video token and the next ω video
tokens, where ω is a pre-defined causal relation range, typically set to ω = 4, as is shown in Figure
3. We perform this cross-attention operation each time the DiT model completes an odd-numbered
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Figure 4: Shift-Window Denoising Process Model: The Swin-DPM transforms the traditional
diffusion process into a streaming one, where T video tokens with different noise levels are denoised
simultaneously. After each token is fully denoised and dequeued for decoding, a new token of pure
noise is added to the queue. The dequeued token is then copied to the cache, allowing it to continue
participating in attention computations until the next token is dequeued.

self-attention step, enabling effective information exchange across frames and achieving precise,
frame-level control for video generation.

Shift-Window Denoising Process Model. Typical DiT models are limited to generating only a
few seconds of video, even when substantial spatial and temporal compression is applied via VAEs.
This limitation is largely due to the high computational cost and memory demands of attention
mechanisms over extended time durations. To address this, it becomes crucial to assume that temporal
dependencies are confined within a limited time window, beyond which attention computations
are unnecessary. Building on this idea, we propose the Shift-Window Denoising Process Model
(Swin-DPM), which leverages a sliding temporal window to manage dependencies effectively and
enables the generation of long or even infinite videos by producing tokens with a stride of s = 1. As
is shown in Figure 4, within each window, a queue of video tokens undergoes denoising at various
noise levels. After k denoising steps (where k × T is the number of diffusion solver steps), the
leftmost, lowest-noisy token is dequeued into a cache. To maintain the queue length, a new token
with Gaussian noise will be then added to the rightmost position. Each cached token is re-appended
to the window’s token queue at noise level 0 until the next token is cached, allowing it to continue
participating in denoising and ensuring continuity between different windows. The network of
Swin-DPM is fine-tuned from a pre-trained DiT model. During training, we sample 2w video tokens,
where w is the window size. We usually set w = T . The first w tokens are used solely for warming
up Swin-DPM and do not participate in backpropagation; loss is computed only on the last w tokens.
At inference time, we follow the same setup: the first w tokens are for warmup and are discarded,
with the generated video starting from the (w + 1)-th token.

Stream Consistency Model. After extending the DiT model to Swin-DPM, we further address the
need for achieving real-time rendering of the simulated world. A promising approach is to combine
Swin-DPM with Consistency Models [25, 26], a leading method for accelerating diffusion. We
use the Stream Consistency Model (SCM) [27], which distills the original diffusion process and its
class-free guidance into a four-step consistency model while incorporating the denoising window
design from Swin-DPM. The training procedure is illustrated in Figure 2. This integration results in a
10 - 20× acceleration in inference speed, reaching a rendering rate of 16 FPS.

3.2 Construction of the Source Dataset
To train The Matrix model, we construct the Synthesized Observations of Unreal Rendered Contextual
Environments (Source) dataset, which consists of two components: synthetic game data from Unreal
Engine and real-world, unlabeled footage. The synthetic game data, collected using the GameData
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Figure 5: The results demonstrate frame-level precise control achieved by the Interactive Mod-
uleacross diverse scenes, weather conditions, and movement modes. Due to size limitation, we
recommend you to go to the website provided in the abstract for videos.

Platform, serves as supervised training data for precise motion control, while the real-world footage
improves the model’s visual quality and generalization to real-world scenarios.

After collection, the data is segmented into 6-second clips of continuous scenes and captioned using
GPT-4o [28], resulting in a dataset of 750k labeled samples and 1.2 million unlabeled samples, all
with 60 FPS. The labeled game data is further refined to ensure a balanced distribution of all possible
game states. For more details on the dataset, see Appendix Section B.2.

The GameData Platform. The GameData Platform is built on open-source tools: Cheat Engine
software [29], the Reshade plugin [30] for DirectX, and OBS Recording software [31]. Cheat
Engine is used to capture in-game world status data, such as character (x, y, z) positions and camera
movements. This status data is aligned with recorded video frames to create per-frame action-video
pairs and is also used to check if the character or camera is stuck and requires a reboot. We employ the
Reshade plugin to remove all game UIs and HUDs and to standardize shading styles, providing a more
consistent, low-complexity data source. Data for Forza Horizon 5 is collected using autonomous
scripts with random walking algorithms, while Cyberpunk 2077 data is gathered manually with
human operators running the GameData Platform. See Appendix Section B.1 for more details on the
GameData Platform.

4 Experiments
Since existing world models are not trained on Forza Horizon 5 or Cyberpunk 2077, it is unfair to
compare The Matrix against prior world models both qualitatively and quantitatively. Therefore, we
focus on experiments only testing the properties of The Matrix. The Matrix is trained on 32x A100
GPUs in one week. All inference processes are conducted on 8x A100 GPUs.

Training Details. We train The Matrix on the Source dataset, using a pre-trained 2.3B parameter DiT
model as the backbone, which generates 4 video tokens per second, each decoded into 4 frames by
the VAE decoder [32]. To match this generation rate, we downsample the videos and keyboard inputs
in the Source dataset accordingly. For all training cases, we first warm up the base DiT model on
unlabeled Source data for 20,000 steps with a batch size of 32. Following this, we train the Interactive
Module on labeled Source data for an additional 20,000 steps with the same batch size, introducing
another 0.4B parameter. Next, we fine-tune The Matrix model using Swin-DPM over 60,000 steps,
also with a batch size of 32. For the final Consistency Model distillation, we use the Swin-DPM
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(a) Long 1-minute video generated by The Matrix.

(b) A continuous 2.5-minute video generated by The Matrix, spanning multiple diverse scenes controlled
through DiT text prompts.

Figure 6: Long world generation results by The Matrix.

checkpoints as a teacher model and train the student network for 10,000 steps with a batch size of 32.
More details can be found in Appendix Section A.2.

Metrics. We evaluate performance using metrics for both general visual quality and movement
control precision. For general visual quality, we use Fréchet Inception Distance (FID) [33], Fréchet
Video Distance (FVD) [34], and CLIP Score [35] to assess text alignment. All metrics are evaluated
on 2,048 seconds of randomly generated videos. To evaluate movement control precision, we generate
2,048 seconds of video based on keyboard inputs and text prompts from a fixed test set, then measure
the Peak Signal-to-Noise Ratio (Move-PSNR) [36] and Learned Perceptual Image Patch Similarity
(Move-LPIPS) [37] between the generated videos and real videos with ground truth movements.

4.1 Precise Frame-Level Interactions
In this section, we evaluate the effectiveness of the Interactive Module by testing its performance in
three distinct scenarios: the Forza Horizon 5 car driving scenario, the Cyberpunk 2077 city walking
scenario, and a robotic arm task from the DROID dataset [38]. We select 50,000 6-second clips from
the DROID dataset, along with per-frame action labels of joint angles for seven joints, to form the
training dataset. More details can be found in Appendix Section B.3. The third scenario is specifically
designed to assess the effectiveness of The Matrix in embodied AI tasks. For all scenarios, we follow
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(a) The Matrix can generalize its precise movement control to unlabeled scenes and objects, such as driving
indoors or making people move as instructed. Go to the website for videos

(b) The Matrix can also generate long, general videos by disabling the Interactive Module, acting as a powerful
video generator.

Figure 7: Generalization ability of The Matrix on unseen scenes and objects.

the same training strategy: starting with a pre-trained DiT model, we first perform a warm-up using
unlabeled data, followed by fine-tuning the Interactive Module with labeled data.

Qualitative Results. Figure 5 illustrates examples of The Matrix’s generated outputs across all sce-
narios. The Matrix demonstrates the ability to create vivid and dynamic worlds, accurately reflecting
user interactions and intentions. It also models the physical behaviors within these environments,
such as dust being kicked up when a car drives through a dry desert, or water splashing when it
travels through a river. Additional examples of The Matrix’s generation capabilities are provided in
Appendix Section C.1.

Quantitative Results. The last two columns of Table 1 present the quantitative evaluation of
interaction precision, using LPIPS and PSNR metrics. The results demonstrate that Interactive
Module significantly improves control precision, and this enhancement is maintained throughout the
subsequent Swin-DPM and SCM processes.

4.2 Infinite-Horizon World Generation
Traditional world simulators focused on precise control often rely on small, auto-regressive generators
trained from scratch to minimize the significant memory and time costs associated with pre-trained
DiT models. However, this approach compromises visual quality and limits the full potential of
world simulators. In this work, we introduce a world simulator leveraging pre-trained video diffusion
models, enabling infinite-length world generation with real-time rendering capabilities. In this section,
we present our evaluation of these advancements.

Generating Infinitely Long Videos. Figure 6 showcases examples of generating 1-minute long
worlds across diverse scenarios, including desert, river, grassland, snow, and day-to-night transitions.
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Table 1: Ablation study on the components of The Matrix. Note that there is a trade-off between
inference speed, control precision, and rendering quality. Move-LPIPS and Move-PSNR are
computed between the generated videos and test videos with ground truth movements.

Component Scene Size Speed FVD↓ FID↓ CLIP↑ Move-LPIPS↓ Move-PSNR↑
DiT Backbone - 2.3B 1.41 FPS 1016.30 318.10 0.30 - -

+ Warmup
Cyberpunk 2.3B 1.88 FPS 1429.45 183.24 0.28 0.125 27.80

DROID 2.3B 1.41 FPS 1133.16 224.98 0.29 0.191 27.72
Horizon 5 2.3B 1.41 FPS 1891.67 141.11 0.31 0.128 26.89

+ Interactive Module
Cyberpunk 2.7B 0.87 FPS 1112.49 173.31 0.28 0.129 28.24

DROID 2.7B 0.87 FPS 1200.82 237.66 0.30 0.180 27.90
Horizon 5 2.7B 0.87 FPS 1211.30 119.20 0.27 0.125 28.98

+ Swin-DPM Horizon 5 2.7B 0.8 FPS 1651.50 163.27 0.24 0.113 29.90
+ SCM Horizon 5 2.7B 16 FPS 1936.79 153.80 0.23 0.109 29.73

During generation, we switch the DiT prompt to adapt the environment, as shown in Figure 6b. The
Matrix’s capability extends beyond this; it can generate truly infinite-length videos, with additional
15-minute examples available in Supplementary Videos. Table 1 reports the video quality and control
precision of The Matrix after training with Swin-DPM. While some visual quality is sacrificed,
control precision remains strong, and the visual quality still surpasses previous world simulators.

Real-Time Rendering. We further investigate integrating SCM with The Matrix. As reported in
Table 1, this integration highlights The Matrix’s real-time rendering capability, with a slight trade-off
in visual quality and minimal loss in control precision, while significantly improving rendering speed
from 0.8 FPS to 16 FPS.

4.3 Generalization to Out-of-Distribution Worlds
In addition to superior visual quality, a key advantage of using pre-trained video DiTs is their inherent
ability to generalize across diverse scenes. We observe impressive generalization in The Matrix,
showcasing the potential of future research into building world simulators with pre-trained DiTs.

Generating Unseen Scenes. With The Matrix, we can control a car in previously unseen scenes by
describing the scenario in the prompt. The first two rows of Figure 7a demonstrate this capability,
where the car is driven through indoor environments, which were not part of the Source dataset.

Interacting with Unseen Objects. A remarkable feature is The Matrix’s ability to generalize
interaction with real-world objects. As shown in the last two rows of Figure 7a, by specifying a
human as the center object in the prompt, we move the person in response to keyboard input.

Generating Long Videos without Moving Control. Though The Matrix is trained on the Source
dataset, it can also function as a general long video generator. By disabling the Interactive Mod-
uleand using only the DiT backbone trained after Swin-DPM, The Matrix can generate long videos
corresponding to ordinary prompts. Figure 7b shows such an example, further proving The Matrix’s
strength as a realistic world simulator.

5 Conclusion
We introduce The Matrix, a world simulator capable of generating infinitely long, high-fidelity video
streams with precise real-time control. Trained on a blend of game data and real-world footage, The
Matrix supports immersive exploration of dynamic environments, with zero-shot generalization to
unseen scenarios. Operating at 16 FPS, it enables continuous, interactive simulations across diverse
terrains, bridging the gap between virtual and real-world applications. This work highlights the
potential of using game data to build robust world models with minimal supervision, and showcases
the power of pre-trained video DiTs in enabling realistic, large-scale simulations.

Limitations. The Matrix requires 8 GPUs for deployment, making it resource-intensive. While it
achieves a generation speed of 16 FPS, this is still slower than the originl frame rates. Moreover, the
synthesized videos may occasionally exhibit physical implausibilities or temporal inconsistencies.
Currently, The Matrix is trained on only two labeled games as a proof of concept. We leave the
exploration of these limitations to future work. See more discussions in Appendix Section E.1.

Broader Impacts. We envision The Matrix as a foundational approach for AI-driven game generation,
with the potential to transform the future of the gaming industry. The generated content blends real-
world and synthetic game assets, enabling novel and immersive experiences.
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A More Related Works

World Model for Agent Learning. Developing world models for training agents has been a long-
standing research focus, aimed at enhancing policy learning within simulated environments rather
than solely achieving high-fidelity reconstructions of observations. This research involves two
primary stages: 1) modeling the training environment by reconstructing observations, rewards, and
continuation signals, often through a recurrent state-space model; and 2) utilizing this model to predict
future states, enabling reinforcement learning to optimize robust policy functions. Studies indicate
that this method provides sample efficiency gain of over 1000% compared to directly learning policies
from real environments, shows resilience across diverse domains, and can outperform fine-tuned
expert agents on a range of benchmarks and data budgets [7]. Key contributions in this area include
Recurrent World Models [39], Dreamer (v1 [40], v2 [3], and v3 [7]), TD-MPC (v1 [41] and v2 [42]),
DayDreamer [43], SafeDreamer [44], and MuDreamer [45]. Notably, MuZero [2] runs the self-play
of Monte Carlo tree search to build world models for Atari, Go, chess and shogi, without external
data.

B Details in Experiments

B.1 DiT Backbone

The DiT backbone is adapted from the publicly available DiT models [19]. It consists of a patch
embedding module, a caption embedding module, a timestep embedding module, 32 DiT blocks,
followed by a linear output head with LayerNorm [20]. The followings provide details of each
module within the DiT backbone.

The Patch Embedding Module. The patch embedding module employs a 3D convolution with a
kernel size of 1×2×2, followed by a reshape operation. Thus, the convolution can effectively process
the video latent from the VAE encoder, and the reshape operation can further transform the feature
into a sequence of tokens with 2,048 feature size. By using a 3D convolution, the module captures
both spatial and temporal features, ensuring that the token sequence retains essential information
from the video data.

Caption Embedding Module. The caption embedding module takes the caption token sequence
encoded by the T5 model and further processes it through a two-layer FFN. Both the hidden feature
size and the output feature size are set to 2,048, allowing the module to generate rich and high-
dimensional representations of the caption data.

Timestep Embedding Module. The timestep embedding module is implemented as a sinusoidal
embedding module followed by a two-layer FFN. Both the hidden feature size and the output feature
size of this FFN are set to 2,048.

DiT Block. Each DiT block includes a self-attention layer operating on network features, a cross-
attention layer linking conditions with self-attention outputs, and an FFN layer composed of two
linear layers with a GELU activation [21] in between.

B.2 Training Details

Upon obtaining the base DiT model, the training process consists of four distinct stages: (1) warm-up
on unlabeled Source, (2) training of the Interactive Module, (3) fine-tuning using Swin-DPM, and (4)
Stream Consistency Model distillation. Below, we first outline the common training configurations
utilized across all stages, followed by a detailed description of each individual phase.

Common Settings. All training procedures were executed with an overall batch size of 32 and
a learning rate of 1 × 10−5. Mixed-precision training was employed using bfloat16 to enhance
computational efficiency. During preprocessing, all video inputs were resized to a resolution of
1280× 720 pixels and set to 16 FPS. For sequences exceeding 25,200 frames in length, we used the
Deepspeed Ulysses sequence parallelism strategy [46], distributing the sequence across 8 GPUs to
manage memory and computational demands effectively.
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Warm-Up on Unlabeled Source Dataset. In the initial warm-up stage, we fine-tuned all linear
layers of the base DiT model using Low-Rank Adaptation (LoRA) to tailor the model to the source
data distribution [22]. The LoRA rank was set to 128, and the model was trained for 20,000 steps.
This adaptation ensures that the model parameters are suitably adjusted to the characteristics of the
unlabeled source dataset before advancing to subsequent training phases.

Training of Interactive Module. The second stage focuses on training the Interactive Module, each
of which is integrated after every two consecutive DiT blocks, totaling 16 Interactive Module. During
this phase, the parameters of the base DiT model were frozen to concentrate the training solely on the
Interactive Module. This stage was conducted over 20,000 training steps, enabling the Interactive
Module to effectively interface with the base model without altering its foundational parameters.

Fine-Tuning Using Swin-DPM. The third stage involves comprehensive fine-tuning of all model
parameters, including both the base DiT model and the Interactive Module, utilizing the Swin-
DPMapproach. This extensive fine-tuning was carried out over 60,000 steps, allowing for the
refinement and optimization of the entire model to better capture data intricacies and enhance overall
performance.

Consistency Model Distillation. In the final stage, consistency model distillation was performed
using the model from the preceding fine-tuning phase as the teacher model. The student model
was initialized with the teacher’s weights to facilitate knowledge transfer. During distillation, we
employed a one-stage guided distillation technique [47], incorporating Classifier-Free Guidance
(CFG) into the student model. For the Ordinary Differential Equation (ODE) solver within the
consistency distillation framework, we utilized the Euler solver with a single-step size of 25/1000.
This distillation process was conducted over 10,000 training steps.

C The Source Dataset

C.1 The GameData Platform

We build a framework, GameData Platform, for data collection. The framework consists of three
components: Controlling, Simulation, and Observation.

Controling. In most games, we need to control a character to go to different scenes and make
interactions. Intrinsically, the collected data can be reconstructed with initial states of game worlds
and a series of control signal. In order to make the collected data clean and meaningful, instead of
being stuck in one corner, we designed two different control systems, namely the automatic one and
the manual one. For the automatic control system, we use Cheat Engine for pivotal data access, such
as XYZ coordinates in games. These data can be used to determine whether the game has been stuck
for some time. We detect the coordinates of a past period of time and determine whether they are
covered in a circle of a given size. If the game is detected as stuck, we will reset the game state and
restart the recording. Generally, the automatically generated control signals will move randomly,
change direction, and change perspective. This is good enough for games that move on a 2D-like
surface. However, for games moving in a 3D space, random signals will struggle with generating
meaningful content, so we have to change to the manual system. Since our game is running and
captured on cloud servers, human data collectors will observe the game through a low-definition
streaming and control manually. Signals (from keyboards, mice, and gamepads) are translated and
delivered through the socket server, and cloud servers will generate keyboard events through the
virtual keyboard. Here, the latency between the control signals and the OBS screen recording is
crucial. We eventually found that the control signals recorded on the cloud sever and the actual action
responses in the recorded videos were generally no more than three frames apart. and in general, this
delay is stable and can be subtracted directly from the timeline.

Simulation. The game runs directly on the cloud servers. we can directly copy the server images to
get a large number of running instances. The recorded videos and control signals will be uploaded to
the data center. We set up a series of video quality checks to filter out samples of low quality (still or
overly noisy videos, and some undefined scenes). All games run at the highest quality while ensure
the OBS screen recording does not get stuck. In order to avoid overly complicated situations, we
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removed the NPCs and running vehicles in the game. We use the Reshade to adjust the game scenes
to make it more reality-like.

Observation. We use OBS as the screen recorder. One can use scripts to control OBS for automatic
recording. We recorded the game at native resolution of 2560× 1600 (higher resolutions may cause
the game and recording to lag). For the reality of the recorded videos, we removed GUIs and texts
in the game through a Reshade plugin, namely ReshaderEffectShaderToggler.1 It can turn off the
rendering of GUI related shaders in the game while left the native video untouched.

Forza Horizon 5. In Forza Horizon 5, a telemetry mechanism can be used for game status retrieving.
We can access the real-time game data through socket after checking on the telemetry option in
settings. An example script for data listening can be found here.2 We can access XYZ coordinates,
velocities and accelerations. We use these data for stuck detection and sample filtering. Since Forza
Horizon 5 is a game that mainly takes on 2D area, we apply automatic pipeline that randomly walking
on different game scenes (like dessert, grassland, the watery and the snowy areas). Control signals are
simplified to going forward, turning left and turning right. During the data collection stage, if XYZ of
is still for several seconds, the controller will try to move back. And if the 40 position points collected
during the last 40 seconds can be covered with a circle with radius of 80 meters, the controller will
try to teleport the car to a random position. After raw sample collection, we apply some strategies to
filter out samples of low quality. We use the acceleration data to detect if the car has collided with
anything, and drop these video clips with collision. Sometimes the car is moving backward while
the controlling input is moving forward, this is because the direction of movement in the game is to
provide acceleration. We filter out data with a large angle between acceleration and velocity. Due to
some problems in the game itself, the video often changes suddenly at some time. We filter out video
clips with large average error between any two adjacent frames.

Cyberpunk 2077. Cyberpunk 2077 is a game that offers realistic visuals and lighting effects. Due
to the complexity of the game terrain, we have to choose the manual pipeline. For simplicity, the
actions in game are reduced to two separated inputs. The first one makes the character move forward
or stop. And the second one makes the direction of the character’s sight move up, down, left and
right. We disable the NPCs and moving vehicles with game mod. During the data collection, players
observe the game through low-definition OBS streaming and send control signals. The signals are
then mapped into “W” (moving forward) / “U” “D” “L” “R” (up, down, left and right) on the cloud
servers. We access and record the XYZ coordinates of player through Cheat Engine. These coordinate
sequences are then used for filtering out video clips where collisions occur between the character and
the game scene.

C.2 The Source Dataset

We present the Source dataset from three perspectives: basic information, the annotation method
used to convert the original data from GameData Platform to our desired format, and the filtering
method applied to remove undesirable data.

C.2.1 Basic Information

The Source comprises data from both Forza Horizon 5 and Cyberpunk 2077. For Forza Horizon 5,
we collected approximately 1,200,000 pairs of video and control signals, while for Cyberpunk 2077,
we gathered around 1,000,000 such pairs. All collected videos have a duration of approximately
6 seconds, recorded at 60 FPS. For Forza Horizon 5, we specifically collected data from multiple
scenes, including deserts, oceans, water bodies, grasslands, and fields. The videos from different
scenes are illustrated in Figure A1, along with the distribution of data volume for each scene Figure
A2 (a). For Cyberpunk 2077, we focused on gathering data from urban environments that feature a
significant number of tall buildings.

In Forza Horizon 5, the dataset includes only three distinct control signals: “moving forward”
(denoted by “D”), “moving forward and turning left” (denoted by “DL”), and “moving forward and
turning right” (denoted by “DR”). In contrast, the data for Cyberpunk 2077 encompasses five different

1https://github.com/4lex4nder/ReshadeEffectShaderToggler
2https://github.com/jasperan/forza-horizon-5-telemetry-listener
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Figure A1: Examples of Horizon5 across different scenarios.
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Figure A2: (a) The statistics for Horizon5 across different scenarios include woods, grass, desert,
sea, fields, rivers, and others. The results indicate that the quantity of data across these scenarios is
relatively balanced. (b) The statistics of different control signals for Cyberpunk 2077 and Horizon5.
In Cyberpunk 2077, the percentage of the "move forward" signal is relatively high, while other
steering control signals are distributed more evenly. In Horizon5, all three control signals are evenly
distributed.

control signals: “moving forward” (denoted by “W”), “turning left” (denoted by “L”), “turning right”
(denoted by “R”), “looking upward” (denoted by “U”), and “looking downward” (denoted by “D”).

C.2.2 Annotation Methods

The original data from GameData Platform typically has a duration of around 10 minutes, which is
excessively long for training The Matrix. Therefore, we use FFmpeg [48] to segment these videos
into 6-second clips. Next, we extract the corresponding control signals from the complete set of
signals. We then use InternVL [49] to generate captions based on 12 uniformly extracted key frames
from the videos. After the captioning process with InternVL, we perform manual corrections on the
generated captions to eliminate obvious errors.

C.2.3 Filtering Methods

After the annotation step, a significant amount of undesired data remains, which could disrupt
the training of The Matrix. To address this, we employ five filtering methods to eliminate these
problematic data points, which we introduce as follows. Note that for Cyberpunk 2077, since we
utilize human data collection rather than automatic methods, many of the following issues do not
exist.

Balance Control Signals. Balancing the number of different control signals is beneficial for the
training of The Matrix. The process of balancing control signals consists of three steps: 1) First,
we analyze the distribution of control signals for each 6-second video and record the results. 2)
Next, we assess the overall distribution of control signals across the entire dataset to identify the
most frequently occurring control signal. 3) Finally, we remove some data points that contain the
highest proportion of this predominant control signal. We repeatedly implement the second and third
steps until the distribution is relatively balanced. The distribution results for Forza Horizon 5 and
Cyberpunk 2077 are reported in Figure A2 (b). We provide the pseudocode for the algorithm in
Algorithm 1.
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Algorithm 1 Control Signal Balancing Algorithm

Require: Dataset D containing control signals from 6-second videos
Ensure: Balanced Dataset B

1: Initialize B as an empty set
2: for each video v in D do
3: Analyze the distribution of control signals in v
4: Record the results for v
5: end for
6: while not isBalanced(B) do
7: overallDistribution← Assess the overall distribution of control signals in D
8: mostFrequentSignal← Identify the most frequently occurring control signal from overallDis-

tribution
9: D ← Remove data points from D that contain mostFrequentSignal

10: end while
11: Set B ← D
12: return B

Detect and Remove the Data with Collisions. In Forza Horizon 5, randomly generated control
signals often cause the car to collide with walls or rocks. Additionally, the car may be struck by other
vehicles. These collisions can severely disrupt the training process, making it essential to identify
and remove collision-affected data. Our analysis revealed that collisions consistently result in abrupt
changes in acceleration over a very short time. Thus, we use significant variations in acceleration as a
reliable indicator of collision events and discard any corresponding data to maintain the integrity of
the training process.

Detect and Remove Stuck Data. In Forza Horizon 5, after colliding with walls or rocks, the car often
gets stuck; even when the “D” key is pressed, the car fails to move. This stuck situation complicates
the training data and negatively impacts the performance of The Matrix. Therefore, we need to detect
and remove such instances. Detecting when the car is stuck is relatively straightforward—we simply
calculate the distance the car has traveled within the video. If this distance falls below a certain
threshold, we conclude that the car is stuck and discard the corresponding data.

Detect and Remove the Data with Mismatched Motion and Control. As introduced in ap-
pendix C.1, to quickly resolve a stuck situation, the car will move backward when stuck. As a result,
it is possible for the car to still move backward at a slower speed even when the “D,” “DL,” or “DR”
keys are pressed. Similar situations may arise when “DL/DR” is pressed for a long period and then
switched to “DR/DL.” Although the acceleration is directed to the right/left, the car may continue to
move in the opposite direction for a brief period. We refer to this as mismatched motion and control,
which complicates the training process. To address this issue, we calculate the directions of both
the acceleration and the car’s movement. If the angle between these two directions is too large, we
discard the corresponding data.

Detect and Remove Artifacts. In Forza Horizon 5, visual artifacts can occur when a car collides
with obstacles like trees, introducing distortions into the generated videos. To filter out such corrupted
data, we detect variations in pixel values across consecutive frames. Our analysis shows that applying
a high threshold effectively identifies all videos containing these artifacts, enabling their removal.

C.3 The DROID dataset

C.3.1 Basic Information

DROID is a large, diverse robot manipulation dataset containing 76k demonstration trajectories
(350 hours of interaction) collected across 564 scenes and 86 tasks over 12 months by 50 collectors
worldwide. It aims to improve the performance, robustness, and generalization of robotic manipulation
policies. DROID uses the same hardware setup across all 13 institutions to streamline data collection
while maximizing portability and flexibility. The setup consists of a Franka Panda 7DoF robot arm,
two adjustable Zed 2 stereo cameras, a wristmounted Zed Mini stereo camera, and an Oculus Quest 2
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headset with controllers for teleoperation. Everything is mounted on a portable, height-adjustable
desk for quick scene changes.

C.3.2 Filtering Methods

Remove Overly Complex Scenes and Balance Different Scenes. DROID is a collaborative effort
involving multiple laboratories and contains data from 11 different environments, including domestic
scenes like kitchens and bedrooms, as well as industrial settings such as factories and laboratories.
Due to the complexity of these scenes, which poses challenges for subsequent captioning and video
learning, we first classify the data based on scene labels. For each category, we manually select 50
less complex scenes. We then use DINO to encode and extract semantic features to calculate the
mean, removing outliers within each scene based on this semantic mean. To balance the number
of training samples across scenes, we ensure that the final dataset contains an approximately equal
number of samples from each scene after outlier removal.

Filtering Frames Without Arm Presence and Removing Failed Executions. Since some frames
in the videos do not contain the robotic arm or have only a small visible area, we use Grounding
DINOv2 [50] to remove such frames. If more than 20% of the frames in a video meet this condition,
the entire video is discarded. Additionally, to ensure accuracy in control, we remove data where the
robotic arm fails to follow the intended trajectory successfully. Finally, we use the spatial position of
the robot gripper as a condition for each frame in the training.

D More Examples

D.1 Generalization

We provide more results on the generalization ability of The Matrix in Figure A3.

D.2 Long Video Generation

We provide several long video generation demos in the Supplementary Video files. Please check them
after Unzip. All videos are heavily compressed to satisfy the supplementary file size limit.

E Discussions

E.1 Limitations

While The Matrix shows strong potential, there are several areas that remain challenging and should
be the focus of future research and development:

• Physical Implausibilities and Temporal Inconsistencies: While the model generates visually
impressive videos, there are occasional physical implausibilities and temporal inconsisten-
cies. These aspects highlight opportunities for enhancing realism in future iterations.

• Limited Training Scope: Currently, The Matrix has been trained on only two labeled games
(Forza Horizon and BMW). While these initial results show great promise, broadening
the model’s training across a wider variety of games and environments will be crucial for
improving generalization and real-world transferability.

• Handling of Dynamic Objects: The Matrix performs well with static objects, such as the
BMW car, but handling dynamic objects that exhibit complex behaviors remains an ongoing
challenge. Addressing this limitation will be essential for expanding the model’s capabilities
in more dynamic, real-world scenarios.

These limitations reflect important areas for future study and refinement. While The Matrix is a
strong proof of concept, overcoming these challenges will enhance its applicability and performance
in diverse environments and more complex scenarios.
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Figure A3: More generalization results of The Matrix on unseen scenes and objects.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We will release the data and code in the camera-ready version.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The sources of data and models have been explicitly acknowledged and cited
in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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