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Abstract

Deploying reinforcement learning (RL) safely in the real world is challenging,
as policies trained in simulators must face the inevitable ‘sim-to-real gap’. Robust
safe RL techniques are provably safe however difficult to scale, while domain ran-
domization is more practical yet prone to unsafe behaviors. We address this gap by
proposing SPiDR, short for Sim-to-real via Pessimistic Domain Randomization—a
scalable algorithm with provable guarantees for safe sim-to-real transfer. SPiDR
uses domain randomization to incorporate the uncertainty about the sim-to-real gap
into the safety constraints, making it versatile and highly compatible with existing
training pipelines. Through extensive experiments on sim-to-sim benchmarks and
two distinct real-world robotic platforms, we demonstrate that SPiDR effectively
ensures safety despite the sim-to-real gap while maintaining strong performance.

1 Introduction
Reinforcement learning (RL) has made significant strides in recent years, demonstrating remarkable
progress across a range of domains. These include achieving superhuman capabilities in games (Mnih
et al., 2015; Silver et al., 2016), fine-tuning large language models (Ouyang et al., 2022), advancing
applications in healthcare (Fox et al., 2020; Zhu et al., 2020), robotics (Lee et al., 2020; Degrave et al.,
2022; Lin et al., 2025) and autonomous driving (Cusumano-Towner et al., 2025; Cornelisse et al.,
2025). Yet despite these achievements, ensuring safety and preventing harmful behaviors remains a
critical challenge and a prerequisite for unlocking the full potential of RL as a ubiquitous element in
everyday life (Amodei et al., 2016; Gu et al., 2022).

The use of simulators has been a key component behind the success of many of the mentioned
applications (Visentin et al., 2014; Makoviychuk et al., 2021; Degrave et al., 2022; Kazemkhani
et al., 2024). Training in simulation allows agents to learn from unsafe interactions, which in reality
would lead to catastrophic outcomes. In addition, learning complex behaviors fully online can be
prohibitively time-consuming. Modern simulators accelerate training, reducing hours of real-world
experience to minutes on consumer-grade GPUs (Rudin et al., 2022). However, while being a major
driver in the development of the above examples, even state-of-the-art simulators often fall short
in precisely mirroring the real-world. Indeed, “all models are wrong” (Box, 1976)—the so-called
sim-to-real gap can make simulation-trained policies violate real-world constraints, which can be
particularly dangerous in high-stakes settings where safety must be guaranteed on first contact.

Existing literature to address this challenge often relies on tools from robust optimization (Queeney
and Benosman, 2024; Kitamura et al., 2024; Zhang et al., 2024). While being theoretically grounded,
such methods typically require practitioners to significantly alter their existing training pipelines,
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Figure 1: Uncertainty over a quadruped robot’s trajectory. The snapshots illustrate the robot’s pose at
key moments, with corresponding uncertainty levels highlighted. High-uncertainty transitions are
incorporated into the cost function to discourage the policy from entering regions where the simulator
is inaccurate and behavior is more likely to become unsafe during real-world deployment.

rendering them less prevalent in practice. In contrast, due to its simplicity, domain randomization has
become the de facto tool for sim-to-real transfer (Tobin et al., 2017; Peng et al., 2018; Lee et al., 2020;
Degrave et al., 2022). Despite its success, in problems that require adherence to safety constraints,
domain randomization lacks safety guarantees and often fails to satisfy the constraints in practice (cf.
Queeney and Benosman, 2024, and Figure 3). Therefore, a method that provably guarantees safe
sim-to-real transfer, while being highly compatible with standard training practices, is still missing.

In this work, we address this gap by presenting a simple method that builds on domain randomization
while ensuring safety under sim-to-real transfer. We theoretically show that unsafe transfer can be
associated with large uncertainty about the sim-to-real gap, quantified as the disagreement among
next-state predictions from domain-randomized dynamics models. This key idea is illustrated in
Figure 1, where spikes in uncertainty (e.g. at t = 4.6 and t = 5.3) coincide with unstable or unsafe
behaviors, such as stumbling or flipping. Motivated by this insight, we propose to penalize the cost
with the uncertainty to achieve safe sim-to-real transfer, leading to the design of SPiDR. Notably,
SPiDR seamlessly integrates with state-of-the-art RL algorithms (Schulman et al., 2017; Haarnoja
et al., 2019), delivering strong empirical performance on both in simulated and real-world safe RL
tasks while ensuring constraint satisfaction, even under severe model mismatch.

Out contribution.

• We address an important challenge to real-world adoption of RL: zero-shot safe sim-to-real
transfer, where an agent must learn a safe and effective policy using only simulated interactions.
We propose SPiDR, a practical algorithm with formal safety guarantees that integrates easily into
popular sim-to-real pipelines.

• We validate SPiDR on two real-world robotic platforms, where it achieves zero-shot constraint
satisfaction, substantially outperforming other baselines in terms of safety and performance.
These results provide empirical evidence that our theoretical guarantees translate to the real-world,
suggesting that SPiDR can be safely used in real-world deployment.

• Finally, we extensively evaluate SPiDR on well established simulated continuous control bench-
marks, including the RWRL benchmark (Dulac-Arnold et al., 2020), Safety Gym (Ray et al.,
2019) and RaceCar environments (Kabzan et al., 2020), where SPiDR consistently satisfies safety
constraints while achieving strong task performance.

2 Related Works
Safe sim-to-real transfer can be naturally framed as a constrained Markov decision process (CMDP,
Altman, 1999) under model uncertainty. A common approach is to extend CMDPs using tools
from robust optimization (Iyengar, 2005; Ben-Tal et al., 2009), which has led to a growing body
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of work spanning both theoretical and practical contributions. We refer to Appendix N for a more
comprehensive discussion of each line of work.

Provably robust algorithms. Zhang et al. (2024) build on a game-theoretic formulation to develop
a tractable primal-dual algorithm with provable non-asymptotic convergence guarantees to a safe
policy. Kitamura et al. (2024) take this further by proposing a policy gradient algorithm with formal
guarantees for safety and optimality, via an epigraph form of the robust CMDP problem. Robust
CMDPs are inherently challenging since the worst-case scenarios w.r.t. the reward and cost can
differ (see Kitamura et al., 2024); both works make notable theoretical progress on this front. While
sharing the goal of provably safe transfer, our work adopts a more scalable and modular approach
by building on domain randomization, and integrating with existing CMDP solvers, avoiding the
complexity of solving the minimax formulation, common in robust optimization.

Scalable robust algorithms. Russel et al. (2020) and Mankowitz et al. (2020) were among the
first to study robust CMDPs in the context of deep RL, proposing practical methods that scale to
continuous control tasks. Similarly, Queeney and Benosman (2024) introduce RAMU, an algorithm
that uses coherent risk measures (Shapiro, 2017) with temporal differences (TD) learning, achieving
strong empirical performance on the RWRL benchmark, though lacking formal safety guarantees.
Sun et al. (2024) extends CPO (Achiam et al., 2017) to problems with model uncertainty, providing
safety and performance guarantees. Lastly, Bossens (2024) proposes to learn an adversary policy
and show that their algorithm is robust w.r.t. L1-norm uncertainty sets. Our work differs in that it
provides safety guarantees while remaining scalable and not tied to a particular RL algorithm.

Practical methods for safe sim-to-real. While the previous works develop methods for solving
robust CMDPs—often motivated by the practical problem of safe sim-to-real transfer—other prior
works address this problem directly. Kaushik et al. (2022) use online data from the real system and
employ safe Bayesian optimization (Sui et al., 2015) to select safe and high-performing policies from
a collection of policies trained in simulation. Similarly, Hsu et al. (2023) propose a multi-fidelity
approach (Cutler et al., 2014), incorporating a fine-tuning step in a high-fidelity simulator prior to
deployment. Both works emphasize practical applicability and provide strong empirical validation in
real robotics settings. Compared to these works, in this work we focus on guaranteeing safe transfer
without access to online data or a computationally expensive intermediate simulator.

3 Problem Setting
Constrained Markov decision process. We study discounted infinite-horizon CMDPs, defined
by a tupleM = (S,A, p, r, c, γ, ρ). Here, S and A are the state and action spaces, p : S × A →
∆(S) denotes the transition probability of the system dynamics, the reward function is given by
r : S ×A → [0, rmax] and the cost is given by c : S ×A → [0, cmax]. The discount factor is γ ∈ [0, 1)
and ρ ∈ ∆(S) is a probability distribution from which initial states are drawn. We consider the class
of stationary policies Πs, where each policy is a stochastic mapping from states to actions π : S →
∆(A).2 For given dynamics p, the value function under policy π at state s is defined as V p,π

r (s) ≜
Ep,π[

∑∞
t=0 γ

trt | s]. Similarly, the cost value is given by V p,π
c (s) ≜ Ep,π[

∑∞
t=0 γ

tct | s]. We define
the expected value function of π when the initial state is sampled from ρ as Jp(π) ≜ Es∼ρ[V

p,π
r (s)],

and the expected cost value as Cp(π) ≜ Es∼ρ[V
p,π
c (s)]. The goal is to find a policy π that solves

max
π∈Πs

Jp(π) s.t. Cp(π) ≤ d, (1)

where d > 0 is a predefined budget. This formulation enables explicit decoupling of safety from
the objective. For example, in robotics, the cost can represent collisions with obstacles, while the
reward encourages reaching a goal.

Safe sim-to-real transfer. In this work, we consider a setting where the agent has access to a
simulator, capable of generating any environment M̂ξ = (S,A, p̂ξ, r, c, γ, ρ) given ξ ∈ Ξ ⊆ Rdξ .
The dynamics of each environment are parameterized by ξ, typically representing the physical
properties of the system dynamics. The agent can freely interact with any simulated environment
p̂ξ with ξ ∈ Ξ, but has no access to the unknown real environmentM⋆ = (S,A, p⋆, r, c, γ, ρ). The

2While only the class of history-dependent policies is formally complete under domain randomization, we
focus on Πs due to its simplicity. Our theoretical and empirical results can be directly extended to history-
dependent policies. See Dolgov and Durfee (2005); Kwon et al. (2021); Chen et al. (2022) for further discussions.
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objective is to learn a policy π ∈ Πs purely within the simulator such that, when deployed in the real
environmentM⋆, it satisfies the safety constraint Cp⋆(π) ≤ d. Crucially, the agent must guarantee
constraint satisfaction “zero-shot”, without any direct interaction with the real environmentM⋆.

4 SPiDR for Safe Zero-Shot Sim-to-Real Transfer
4.1 Domain Randomization
Extending domain randomization to CMDPs. Domain randomization is particularly well-suited
for the problem setting described above, as it leverages a set {ξi}Ni=1

i.i.d∼ µ of parameterized
environments, sampled independently from some probability distribution µ. This distribution acts as
a prior for the real, yet unknown system parameters. A natural approach for tackling safe sim-to-real
problems is by formulating CMDPs over a distribution of randomized domains, i.e., solving

max
π∈Πs

Eξ∼µJp̂ξ
(π) s.t. Eξ∼µCp̂ξ

(π) ≤ d. (2)

Domain randomization can be seen as a sample average approximation of Equation (2), making
it both straightforward to implement and scalable, as massively-parallel simulators can be used to
collect data from each environment in parallel.

Domain randomization is not always safe. While Equation (2) provides a compelling formulation
from a practical standpoint, it does not guarantee safety in the real environmentM⋆. Specifically,
since simulators only approximate the real world with limited precision, as well as due to averaging
over dynamics, the costs in Equation (2) may underestimate the true costs inM⋆. This limitation
is empirically validated in Sections 5.1 and 5.2 (Figures 3 and 6, respectively) and theoretically
illustrated through an example in Appendix A. In what follows, we formally characterize constraint
underestimation and show how SPiDR is designed to mitigate it.

A pessimistic upper bound. We quantify the extent by which constraints on the real system
may be underestimated by establishing the following bound. To this end, we measure the
discrepancy between the simulated and real dynamics using the L1-Wasserstein distance, denoted
as DW (p̂ξ, p

⋆)(s, a), whose formal definition is provided in Definition C.1. While our analysis is
based on this metric, it naturally extends to other discrepancy measures. We assume this discrepancy
is finite for all ξ ∈ Ξ, which is a reasonable assumption in practice. For instance, the simulators
by Makoviychuk et al. (2021) and Zakka et al. (2025) have been successfully used for zero-shot
sim-to-real transfer across several robotic platforms, suggesting that they maintain high fidelity with
real-world systems. We now present our bound below.

Lemma 4.1. Let Pp,π,t(s) denote the probability of reaching the state s at step t under the policy
π and the dynamics p, and let dp,π ≜ (1 − γ)π(a|s)

∑∞
t=0 γ

tPp,π,t(s) denote the normalized
discounted occupancy measure of policy π under the dynamics p. The real-world cost Cp⋆(π) can be
upper-bounded by

Cp⋆(π) ≤ Eξ∼µCp̂ξ
(π)︸ ︷︷ ︸

Constraint in simulation

+Eξ∼µ

[
E(s,a)∼dp̂ξ,π

[ γLC

1− γ
DW (p̂ξ, p

⋆)(s, a)
]]
, (3)

where LC is the Lipschitz constant of the state cost function V p⋆,π
c (s).

Lemma 4.1 shows that the true safety constraint function Cp⋆(π) is upper-bounded by the constraint
evaluated during training, and the expected L1-Wasserstein distance with respect to the state-action
occupancy measure of π over the simulated dynamics p̂ξ. Importantly, it establishes that even when
the constraint is satisfied in simulation, i.e., Eξ∼µCp̂ξ

(π) ≤ d, the constraint on the real system may
be larger, depending on π and the degree of mismatch between the simulated and real dynamics.
Therefore, by bounding the r.h.s. of Equation (3) with d, we guarantee that Cp⋆(π) ≤ d, hence
safe transfer to the real system. We refer to Appendix B for the formal proof and assumptions of
Lemma 4.1. We next show how this key insight is used in our design of SPiDR.

4.2 Algorithm Design
Reduction to penalized CMDPs. Observing that by linearity of expectation, the r.h.s. of
Equation (3) can be written as

Eξ∼µ

[
E(s,a)∼dp̂ξ,π

[
c(s, a) +

γLC

1− γ
DW (p̂ξ, p

⋆)(s, a)

]]
.
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This simple insight motivates the use of

c̃(s, a) ≜ c(s, a) +
γLC

1− γ
max
ξ∈Ξ

DW (p̂ξ, p
⋆)(s, a)︸ ︷︷ ︸

penalty

(4)

as a surrogate cost function during training. Crucially, it is infeasible to estimate the model
discrepancy DW (p̂ξ, p

⋆)(s, a) for any ξ ∈ Ξ, therefore we use the worst-case one as a conservative
approximation. Using c̃(·, ·) yields a penalized CMDP (S,A, p̂ξ, r, c̃, γ, ρ). This CMDP is still fully
compatible with domain randomization, allowing us to solve

max
π∈Πs

Eξ∼µJp̂ξ
(π) s.t. Eξ∼µC̃p̂ξ

(π) ≤ d, (5)

where C̃p̂ξ
(π) denotes the constraint with c̃(·, ·) following p̂ξ. While c̃(·, ·) can be used as a

conservative approximation that in principle guarantees safe transfer, direct access to the penalty
term is generally intractable. This is due to the fact that LC and DW (·, ·) are unknown a priori and
can only be estimated using access to ground-truth data from the real system. Therefore, we propose
approximating the penalty term using only simulated data.

Approximating the penalty term. We propose using an ensemble of {p̂ξi}ni=1
i.i.d∼ µ dynamics

and measuring their disagreement in predicting the next state, as a proxy for the uncertainty about the
model discrepancy maxξ∈Ξ DW (p̂ξ, p

⋆). Specifically, when si ∼ p̂ξi(· | s, a) are n i.i.d. samples,
we define the sum of component-wise empirical variances of the ensemble next-state predictions
as the estimator

υ(s, a) ≜ ∥Var (s1, . . . , sn)∥1 =

dim(S)∑
j=1

Var (s1,j , . . . , sn,j) (6)

where dim(S) is the dimension of the state space and si,j denotes the j-th component of the i-th
sample. The empirical variance υ(s, a) measures the sensitivity of the environment in predicting
the next state w.r.t. ξ, making it an effective proxy for our uncertainty about the model discrep-
ancy maxξ∈Ξ DW (p̂ξ, p

⋆), especially when the real environment lies near the simulated ones. In
Appendix C, we formally show that for a suitable constant λ, and under bounded model mismatch,
λυ(s, a) upper-bounds γLc

1−γ maxξ∈Ξ DW (p̂ξ, p
⋆)(s, a), with the bound becoming tighter as n in-

creases. Additional practical guidance on how to pick λ empirically is provided in Appendix E. We
find this approach simple to implement, computationally efficient and effective in practice, as demon-
strated in Section 5 (Figures 3 and 7). Moreover, in Figure 8 we demonstrate how to pick n in practice.

The algorithm. With the above approximation υ(·, ·) in hand, we are ready to introduce the
entire algorithm SPiDR, summarized in Algorithm 1. Standard domain randomization typically
involves policy search methods such as policy gradients or TD learning, which require collecting
trajectory data from the simulator. These trajectories are collected independently and in parallel
for each dynamics {ξi}Ni=1. To incorporate pessimism, we modify only the procedure by which
these trajectories are obtained. This abstraction allows us to keep using domain randomization as
it is while remaining versatile w.r.t. the choice of policy search algorithm. Specifically, following
standard domain randomization, SPiDR samples a batch of dynamics {ξi}Ni=1. These dynamics are
used only to rollout the policy (Lines 2 and 7). For each sampled dynamics, we further employ an
ensemble {p̂ξij}nj=1. This ensemble is used to estimate the penalty term as υ(·, ·) (Lines 8 to 10).
These trajectories in the “penalized” CMDP using c̃ are collected and used to solve the penalized
CMDP in Equation (5). Importantly, Lines 8 to 10 represent the only modifications made relative to
standard domain randomization.

4.3 Safety Guarantee
Next, we demonstrate our theoretical guarantees for a solution to Equation (5). We first assume the
feasibility of the problem, otherwise, a solution can be recovered only by improving the simulator or
with safe online learning techniques (As et al., 2025). We show that any solution to the penalized
CMDP provably achieves safety in the real environment by the following theorem.

Theorem 4.2. Let p⋆ be the dynamics of the real environment M⋆. Let π̃ be a solution to the
penalized CMDP introduced in Equation (5), i.e., π̃ = maxπ∈Πs Eξ∼µJp̂ξ

(π) s.t. Eξ∼µC̃p̂ξ
(π) ≤ d.

Then π̃ satisfies the safety constraint in the real environment, namely, Cp⋆(π̃) ≤ d.
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Algorithm 1 SPiDR: Safe Sim-to-Real via Pessimistic Domain Randomization

1: Input: pessimism λ, initial distribution µ, behavior policy π

2: Init: Sample {ξi}Ni=1 × {ξij}nj=1
i.i.d∼ µ

3: for i = 1, . . . , N in parallel do ▷ Collect data from each ξi
4: Initialize trajectory τ (i) ← ∅
5: for t = 0, 1, . . . do ▷ Rollout policy
6: at ∼ π(· | st)
7: Simulate st+1 ∼ p̂ξi(· | st, at), obtain rt, ct
8: Simulate s

(j)
t+1 ∼ p̂ξij (· | st, at) with each {p̂ξij}nj=1 ▷ Fast parallel execution

9: Compute the penalty term υ(st, at) in Equation (6)
10: Penalize cost c̃t ← c(st, at) + λυ(st, at)
11: Append (st, at, rt, c̃t) to τ (i)

12: Set next state st ← st+1

13: end for
14: end for
15: Solve Equation (5) using {τ (i)}Ni=1 to obtain π̃ with any CMDP solver
16: return π̃

The formal proof of this theorem, including its assumptions, is provided in Appendix B. Solving the
CMDP with any penalty on the cost that dominates maxξ∈Ξ DW (p̂ξ, p

⋆) yields a more conservative
policy. Any such policy will remain safe in the real environment. The drop in performance due to cost
penalization is not captured by Theorem 4.2 as it also depends on cost and reward function. However,
our real-world experiments in Section 5 (Figure 3) demonstrate that SPiDR consistently matches or
even outperforms standard domain randomization. Adopting any penalty on the cost reduces the
set of feasible policies. Therefore, the agent may avoid high-reward regions that are in reality safe
but uncertain in simulation. However, the limited drop observed in practice suggests that our bound
υ(·, ·) provides a reasonably tight over-approximation of the worst-case model discrepancy.

5 Experiments
Next, we demonstrate SPiDR’s performance in practice. Below we provide our sim-to-real ex-
periments on two robotic tasks, followed by comprehensive ablations on several tasks from three
well-established safe RL benchmarks. We refer the reader to Appendices D and E for additional
details on how λ is picked in practice and for more ablations.

Setup. Unless otherwise specified, all experiments use SAC (Haarnoja et al., 2019; Nauman et al.,
2024) in combination with either CRPO (Xu et al., 2021) or a simple primal-dual constrained
optimization method (Bertsekas, 2016). We use these CMDP solvers since they deliver strong
results while remaining easy to implement. We run each experiment with five random seeds and
report the mean and standard error. Empirical estimates of the objective and constraint on the test
environments are denoted by Ĵ(π̃) and Ĉ(π̃), respectively. We compare SPiDR with the following
baselines: (i) Nominal is a simple baseline that collects trajectories only from the nominal training
dynamics; (ii) Domain Randomization collects trajectories only from the perturbed dynamics of the
training distribution; and (iii) RAMU (Queeney and Benosman, 2024), a state-of-the-art robust safe
RL algorithm designed specifically for TD learning methods.

5.1 Real-World Deployment
We demonstrate SPiDR’s effectiveness on two real-world robotic tasks: a highly-dynamic remote-
controlled race car, and on a Unitree Go1 quadruped robot, illustrated in Figure 2. Each policy is
trained only in simulation and then evaluated in the real world: five trials for the remote-controlled
car and ten trials for Unitree Go1. These trials are used to obtain Ĉ(π̃) and Ĵ(π̃) where applicable. In
both tasks, we compare SPiDR with domain randomization evaluated on the real system. Additionally,
to demonstrate how domain randomization may underestimate the constraint in real, we compare its
performance with SPiDR, when evaluated during training in simulation. Further details about the
tasks and hardware are provided in Appendices G and H.

Experiment 1: Does SPiDR transfer safely to real systems? We present our results in Figure 3.
As shown, in both tasks, SPiDR satisfies the constraint, whereas domain randomization dramatically
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Figure 2: Example trajectories SPiDR with RaceCar and Unitree Go1.
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Figure 3: Performance on the race car and Unitree Go1. SPiDR (sim-to-sim) and SPiDR (sim-to-
real) represent evaluation in simulation and on the real system respectively. SPiDR transfers safely,
while domain randomization dramatically violates the safety constraints.

violates it, even when the constraint is satisfied in simulation. This result is consistent with
Lemma 4.1, due to constraint underestimation in simulation. Remarkably, due to the highly
dynamic behavior of the remote-control car, the performance of the objective with domain
randomization underperforms compared to SPiDR. This is because domain randomization often
overshoots the target, whereas SPiDR’s more conservative hence slower policies avoid overshooting.
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Figure 4: Performance is main-
tained on the Unitree Go1.

To evaluate the performance on the Unitree Go1 robot,
we measure the rewards on the real system are report the
performance in Figure 4. As demonstrated in Figure 4,
both domain randomization and SPiDR exhibit comparable
decrease in performance relative to their simulated counterparts.
These results demonstrate that SPiDR transfers effectively
to the real-world system without being overly conservative,
successfully solving the task. We additionally provide five
trajectories for each policy and algorithm, resulting in a total
of 75 video demonstrations, provided in the following link.
These recordings indicate that using SPiDR does not lead
to a noticeable degradation in locomotion performance. In
comparison, RAMU, trained with its default hyperparameters,
succeeds in following the commands in 12± 4.8% of the trials,
falling in the rest, while SPiDR completes all trials successfully
without falling. See Appendix G for more details. These results suggest that SPiDR works well across
different real-world robotic tasks, satisfying the constraints while maintaining strong performance.

Experiment 2: How versatile is SPiDR? We replace SAC with PPO (Schulman et al., 2017)
and a primal-dual optimizer as a CMDP solver, repeating our experiment on the Unitree Go1
robot. We present our results in Figure 5, demonstrating that SPiDR satisfies the constraints on
the real system, while domain randomization with PPO satisfies the constraint only in simulation.
We provide additional sim-to-sim experiments with PPO in Appendix I. Throughout this work,
we use three different CMDP solvers, with two different policy search methods, demonstrating
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Figure 6: Costs over training iterations, evaluated on the simulated test environments. SPiDR
consistently satisfies the constraints across all tasks.

competitive performance while remaining safe, including on real hardware. These results highlight
the versatility and broad applicability of SPiDR across different CMDP solvers and RL algorithms.
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Figure 5: Safe transfer to a real Uni-
tree Go1 with PPO.

5.2 Evaluation in the Sim-to-Sim Sandbox
Next, we demonstrate that SPiDR consistently achieves strong
task performance while adhering to safety constraints in a series
of sim-to-sim experiments. This set of experiments serves as
a controlled testbed for systematically ablating SPiDR. We
provide additional ablations on the robustness to choice of λ
empirical intuition about υ(·, ·) in Appendix D. Full learning
curves and further details on the experimental setup can be
found in Appendices F and J to L.

Experiment 3: Can SPiDR satisfy the constraints under
sim-to-sim gap? We demonstrate our results in Figure 6,
reporting the learning curves of constraint across tasks.
Figure 6 demonstrates that SPiDR satisfies the constraints on
all six tasks. This is in contrast to Nominal and Domain Randomization, which fail to satisfy the
constraints across all tasks, as expected. In the RaceCar task, where the sim-to-sim gap primarily
arises due to the training simulator failing to capture all the relevant phenomena present in the test
environment, SPiDR is the only algorithm that satisfies the constraint.

Experiment 4: What is the tradeoff between safety and performance? We study the tradeoff
between constraint satisfaction and objective performance, showing that SPiDR does not suffer
significant performance decrease. We present our results in Figure 7. As shown, SPiDR maintains
balance of high performance while satisfying the constraints across all tasks. SPiDR and RAMU
demonstrate comparable performance on the RWRL environments. On the other hand, on the
RaceCar task, which involves more realistic and challenging model discrepancies, SPiDR significantly
outperforms RAMU. Notably, in environments like HumanoidWalk, QuadrupedRun, WalkerWalk and
RaceCar, SPiDR not only meets the safety constraints but also achieves competitive performance
with respect to the optimal performance on these tasks. These results illustrate that performance is
not significantly compromised, even in the presence of large model mismatch.

Experiment 5: How does SPiDR scale? We analyze how the performance of SPiDR is affected by
the ensemble size n in terms of training wall-clock time and performance. We test SPiDR on Walker-
Walk, QuadrupedRun and HumanoidWalk while varying n ∈ {1, 2, 4, 8, 16, 32, 64, 128}. In Figure 8
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Figure 8: Runtime overhead of SPiDR is marginal even for n ≥ 8. For n ≥ 8 safety is maintained
across environments.

we report the objective, constraint and the relative training runtime compared to standard domain
randomization. As shown, for n ≥ 8, the constraint remains within budget in all environments, while
increasing n has little effect on the objective. Furthermore, on all three environment the relative run-
time for n ≤ 32 is only marginally longer compared to standard training with domain randomization.
All experiments are run using MuJoCo XLA (Freeman et al., 2021), enabling us to train SAC for
5M and PPO for 200M environment steps in under an hour on a single NVIDIA RTX 4090 GPU.

Does SPiDR scale to vision control tasks? We investigate whether SPiDR scales to partially
observable vision-based settings, where the policy operates directly on rendered images. To evaluate
this, we implement an asymmetric teacher–student Lee et al. (2020) setup: the policy receives
only image observations, while the cost is penalized using privileged state information available
in simulation, following Equation (6). Specifically, we combine DrQ (Yarats et al., 2021) with
CRPO (Xu et al., 2021) as the penalizer and apply SPiDR on the CartpoleSwingup task. This
setup follows our previous sim-to-sim experiment on the CartpoleSwingup task, only differing in
the observation given to the agent. The policy trains on a sequence of 3 stacked grayscale 64×64
pixels images, while the cost penalty uses the true system states (not shown to the agent). We report
our results on the evaluation environment in Figure 9. These results show that even in a partially
observable setup, SPiDR satisfies the constraint by leveraging privileged information during training.
Training the vision-based policy for 1M simulation steps with SPiDR takes roughly 33 minutes
on an RTX 4090 GPU, compared to roughly 30 minutes without SPiDR. The main computational
bottleneck lies in computing critic gradients, while simulation efficiency comes from Madrona-
MJX (Rosenzweig et al., 2024), which renders rollouts from 128+ environments in parallel. This
experiment suggests that SPiDR scales effectively to vision-based control tasks.
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6 Conclusions
In this work we address safe sim-to-real transfer, a key challenge limiting the broader adoption of RL
in real-world applications. We theoretically link constraint violations upon deployment to uncertainty
about the sim-to-real gap and propose a simple and provably safe algorithm that penalizes the cost
function using an estimated gap under domain randomization. Our proposed method – SPiDR – is
theoretically sound, easy to implement and can be readily combined with popular safe RL algorithms.
We empirically show that SPiDR consistently achieves strong performance while maintaining safety
across different tasks spanning three different simulated safe RL benchmarks. Moreover, SPiDR
solves two real-world robotic tasks as it ensures safe transfer, proving its practical applicability to the
full-scale problem it aims to address. Although we focus our experiments on robotic tasks, due to
the simplicity of SPiDR, we believe that future work can extend it to other safety-critical domains.
Finally, since our method focuses on the “zero-shot” transfer setting, where access to real-world data
is restricted, proposing hybrid approaches that combine simulation-trained policies with safe online
exploration techniques is an important direction for future work.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we claim to have developed a novel algorithm with theoretical
safety guarantees and a comprehensive empirical study of it. Our theory can be found in
Section 4, with proofs in Appendices B and C. In addition, we claim to have conducted
experiments on several simulated benchmarks and on two real-world robotic platforms.
These results can be found in Section 5 and Appendices D and F to I.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly detail the limitations of our work, including possible venues for
how they can be addressed by future work in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our main theoretical results are presented in Section 4. Formal assumptions
required for these results are stated explicitly in Appendices B and C. The proofs for our main
theoretical result (Lemma 4.1 and Theorem 4.2) are presented in Appendix B. Additionally,
we further justify our practical implementation in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the open-source code used to run our experiments as well as
exhaustive details on our experimental setup in Appendices G, H and J to L. The physical
remote control car experiments are unfortunately not trivial to reproduce, since they rely
on the licensed software for the motion capture system. However, the training code for
this environment is open-sourced and the experimental setup itself is fairly simple. For the
Unitree Go1 robot, aside from providing the code used for the experiments, we provide the
policies we deployed on the real platform in https://anonymous.4open.science/r/
safe-sim2real-1EAC.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A URL with our anonymized open-source code is provided in https:
//anonymous.4open.science/r/safe-sim2real-1EAC. The link includes specific in-
stallation instructions. Furthermore, for the Unitree Go1 experiments, we provide the
policies used on hardware in onnx format, essentially allowing anyone with this robot to
evaluate the policies used in our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details for the experiments are provided in Appendices G, H and J
to L.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We explicitly mention in Section 5 that we report the mean and standard error
in all of our reported results. Our hardware experiments are evaluated across several seeds
and trials for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: We explicitly mention in Section 5 the compute used in all of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this work fully follows the “NeurIPS Code of
Ethics”.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our algorithm SPiDR, aims to make RL agents safe and trustworthy, potentially
unlocking many domains in which RL can be deployed reliably (e.g. in healthcare, Fox et al.,
2020; Zhu et al., 2020) and improve our lives. While malicious usage cannot be strictly
excluded, we believe that if SPiDR is used bona fide, its overall societal impact will be net
positive. We discuss this in furthre details in Section 1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have explicitly referenced all works upon which this research is based; for
example, we have credited the authors of MuJoCo appropriately throughout the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our open-source code includes a README file with specific instructions for
installation and usage.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We used LLMs only for language editing purposes.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Failure modes of Domain Randomization
The following example illustrates how domain randomization can fail to ensure constraint satisfaction
in practice, even if all the simulator environments are arbitrarily close to the real environment.

Example A.1. Suppose S ≥ 3, A ≥ 2, then for all 0 < ε ≤ 1/4, there exists a set of simulated
CMDPs {Mi = (S,A, p̂ξi , r, c, γ, ρ)}Ni=1, an unknown real CMDP M⋆ = (S,A, p⋆, r, c, γ, ρ)
satisfying

DW (p⋆, p̂ξi)(s, a) ≤ ε, ∀i ∈ {1, . . . , N}, (s, a) ∈ S ×A.

with a fixed budget d > 0 for all CMDPs, such that the domain randomization policy πDR returned
by Equation (2) with any µ, will be unsafe in the real environment,

Cp⋆(πDR) > d.

Proof. Consider the CMDPs given in Figure 10, where there are three states, the initial state s0, two
absorbing states s1 and s2, two actions a1 and a2. The state space is in R, and we assume s0 = 0,
s1 = 1 and s2 = 2. The reward and cost function are given by:

r(s0, a) = 0, c(s0, a) = 0, ∀a ∈ A;
r(s1, a) = 1, c(s1, a) = 1, ∀a ∈ A;
r(s2, a) = 0, c(s2, a) = 0, ∀a ∈ A;

In the i-th simulated environment, at the initial state s0, the transition probability is given by:
p̂ξi(s0 | s0, a) = 0, ∀ a ∈ A,

p̂ξi(s1 | s0, a) =
1

2
+ ε1 {a = a1} , ∀ a ∈ A,

p̂ξi(s2 | s0, a) =
1

2
− ε1 {a = a1}), ∀ a ∈ A,

In the real environment, at the initial state s0, the transition probability is given by:
p⋆(s0 | s0, a) = 0, ∀ a ∈ A,

p⋆(s1 | s0, a) =
1

2
+ ε(1 + 1 {a = a1}), ∀ a ∈ A,

p⋆(s2 | s0, a) =
1

2
− ε(1 + 1 {a = a1}), ∀ a ∈ A,

For all these environments, at the absorbing states s1 and s2, we have p(s2 | s2, a) = p(s1 |
s1, a) = 1 for ∀a ∈ A. Then the maximum Wasserstein distance can be bounded by epsilon, i.e.
DW (p⋆, p̂ξi)(s, a) ≤ ε, ∀(s, a) ∈ S × A for every simulated environment. Take the budget to be
d = γ

1−γ (
1
2 + ε).

To achieve the highest cumulative reward, the optimal domain randomization policies returned by
Equation (2) is supported only on a1 for any training distribution µ, but the cost incurred by these
policies in the real environment is ( 12 + 2ε) γ

1−γ > d, violating the constraint in the real environment.

We see that a policy trained via standard domain randomization in the example Example A.1 can still
be unsafe in the real environment. The only safe policy in the real environment is π(s0) = a2, which
cannot be learned with pure domain randomization in this example. This unsafe transfer is not only
due to the averaging cost constraint, but also due to inherent mismatch between any simulated and real
dynamics. This mismatch may lead the learned policy to frequently visit regions with underestimated
cost in simulation, but which incur high actual cost in the real world.

27



Simulated Dynamics

r = 0,
c = 0

r = 1,
c = 1

r = 0,
c = 0

1
2
+ ε1(a = a1)

1
2
− ε1(a = a1)

1 1

Real Dynamics

r = 0,
c = 0

r = 1,
c = 1

r = 0,
c = 0

1
2
+ ε(1 + 1 {a = a1}) 1

2
− ε(1 + 1 {a = a1})

1 1

sim-to-real deployment

Figure 10: Pathological unsafe transfer. Light grey states denote the initial state s0. Constraints
are prone to be violated, even under a small mismatch between the simulated and the real system
dynamics.

B Proofs
B.1 Preliminaries
We first present a well-established lemma, the proof of which can be found in many works, e.g.
Agarwal et al. (2021, Lemma 1.16).

Lemma B.1 (Telescoping lemma). Given a policy π, for different dynamics p and q, let gq,π,f (s, a) ≜
Es′∼q(·|s,a)fp,π(s′)−Es′∼p(·|s,a)fp,π(s′), where f is used to overload the notation for the constraint
function Vc. Then, we have

Cq(π)− Cp(π) =
γ

1− γ
E(s,a)∼dq,π

gq,π,C(s, a).

Starting from this point, we assume the following Lipschitz continuity condition holds throughout
the remainder of this section:

Assumption B.2 (Continuity). For any π ∈ Πs, the state cost value V p,π
c (s) and state reward value

V p,π
r (s) are LC - and LJ -Lipschitz continuous in s ∈ S w.r.t. the 1-norm respectively, over bothM⋆

and M̂ξ for all ξ ∈ Ξ.

Assumption B.3 (Finite Discrepancy). We assume that the worst-case model discrepancy between
the real and all simulated environments for all (s, a) ∈ S ×A is finite, i.e.,

max
ξ∈Ξ

DW (p̂ξ, p
⋆)(s, a) <∞, ∀(s, a) ∈ S ×A.

B.2 Proof of Lemma 4.1

Proof. Given a policy π, for dynamics p⋆ and p̂ξ, let gp̂ξ,π,C(s, a) ≜ Es′∼p̂ξ(·|s,a)V
p⋆,π
c (s′) −

Es′∼p⋆(·|s,a)V p⋆,π
c (s′). Let || · ||Lip denote the Lipschitz constant of a function. Under the assumption

that the state cost function is Lipschitz, by the Kantorovich-Rubinstein representation (Dudley, 2002,
Section 11.8) for L1 Wasserstein distance, we have:

gp̂ξ,π,C ≤ LC sup
||f ||Lip≤1

|Es′∼p⋆(·|s,a)f(s
′)− Es′∼p̂ξ(·|s,a)f(s

′)|

≤ LC ·DW (p̂ξ, p
⋆)(s, a). (7)

By Lemma B.1, we have∣∣Cp⋆(π)− Eξ∼µCp̂ξ
(π)

∣∣ ≤ ∣∣Eξ∼µ[Cp⋆(π)− Cp̂ξ
(π)]

∣∣
=

∣∣∣∣ γ

1− γ
Eξ∼µ

[
E(s,a)∼dp̂ξ,π

[gp̂ξ,π,C(s, a)]

]∣∣∣∣ (Lemma B.1)

≤ γLC

(1− γ)
Eξ∼µ

[
E(s,a)∼dp̂ξ,π

[DW (p̂ξ, p
⋆)(s, a)]

]
. (Equation (7))

This ends the proof of Lemma 4.1.
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B.3 Proof of Theorem 4.2

Proof. We first prove that Eξ∼µ[C̃p̂ξ
(π)] ≥ Cp⋆(π) for any policy π ∈ Πs. By definition of the

penalized cost C̃p̂ξ
(π) and using Lemma 4.1, we have

Eξ∼µ[C̃p̂ξ
(π)]− Cp⋆(π)

= Eξ∼µ[Cp̂ξ
(π)]− Cp⋆(π)

+ Eξ∼µ

[
γLC

1− γ
E(s,a)∼dp̂ξ,π

[max
ξ′∈Ξ

DW (p̂ξ′ , p
⋆)(s, a)]

]
≥ − γLC

(1− γ)
Eξ∼µ

[
E(s,a)∼dp̂ξ,π

[DW (p̂ξ, p
⋆)(s, a)]

]
+

γLC

(1− γ)
Eξ∼µ

[
E(s,a)∼dp̂ξ,π

[max
ξ′∈Ξ

DW (p̂ξ′ , p
⋆)(s, a)]

]
(Lemma 4.1)

≥ 0. (8)

Where in the last inequality we used that DW (p̂ξ, p
⋆)(s, a) ≤ maxξ′∈Ξ DW (p̂ξ′ , p

⋆)(s, a). Next,
since Eξ∼µ[C̃p̂ξ

(π̃)] ≤ d, and with Equation (Lemma 4.1) directly gives us:

Cp⋆(π̃) ≤ Eξ∼µ[C̃p̂ξ
(π̃)] ≤ d.

This ends the proof of Theorem 4.2.

C Designing υ(s, a)

In this section we provide additional theoretical intuition for the variance estimator introduced in
Equation (6). Next, we show that, under that under the assumptions stated below, υ(·, ·) upper-bounds
the true sim-to-real discrepancy, measured by the L1-Wasserstein distance, with high probability,
using data collected in simulation. Importantly, when υ(·, ·) is indeed an upper bound for the true
model discrepancy, SPiDR is provably guaranteed to be safe, as described above in Appendix B.

C.1 Modeling Assumptions
Let d(·, ·) be the Euclidean 2-norm on S, and let pµ ≜ Eξ∼µ[pξ] denote the domain-randomization
kernel.

Definition C.1 (L1-Wasserstein distance (Givens and Shortt, 1984)). Given a σ-algebra F , for any
two probability measures P1, P2 ∈M(S,F), the L1-Wasserstein distance between them is defined
as:

DW (P1, P2) ≜ inf
γ∈Γ(P1,P2)

∫
S×S

d(s1, s2)γ(ds1 × ds2), (9)

where Γ(P1, P2) ≜ {γ ∈M(S × S,F × F) : γ(A× S) = P1(A), γ(S ×A) = P2(A),∀A ∈ F}
is the set of all couplings of P1 and P2, and d(·, ·) is a F × F-measurable metric defined on Ξ. In
our setting, we assume this metric is given by a 2-norm || · ||2.

Assumption C.2 (Mild sim-to-real gap). There exists a constant ε > 0, such that for any (s, a) ∈
S ×A, KL(p⋆, pµ) ≤ ε and maxξ∈Ξ KL(pξ, pµ) ≤ ε.

This assumption states that the real dynamics are close to the domain-randomization kernel and
that the domain-randomization support Ξ is not overly large. In practice, practitioners design Ξ
using the domain knowledge of the real system; the uniform KL radius formalizes this intuition.
Additionally, assuming that KL(p⋆, pµ) ≤ ε ensures that the simulator provides a reasonably accurate
approximation of the real system. While the Wasserstein distance DW serves as the primary metric
for model mismatch in our analysis, we use the KL divergence as it yields tighter concentration
bounds, which we use below.

Assumption C.3 (Bounded state space). The state space S is compact with diameter ds.

This is a fairly mild assumption in many physical problems, common for example in robotics. We
next assume the sample average distance to the average next state in Algorithm 1 is uniformly lower
bounded.
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Assumption C.4 (Non-degenerate variance). Let si be n i.i.d. draws from pµ(· | s, a) and ss,a ≜
1
n

∑n
i=1 si their empirical average. Furthermore, let p̂µ(s′ | s, a) ≜ 1

n

∑n
i=1 1[s

′ = si] denote the
empirical measure associated with the sample set. We assume the expected distance between si and
ss,a is uniformly lower bounded by a constant c3, i.e.,

Es′∼p̂µ(·|s,a)[d(s
′, ss,a)] ≥ c3, ∀(s, a) ∈ S ×A.

If the next-state distribution collapses to a point (c3≈0) the empirical variance trivially underestimates
any model mismatch. Requiring a minimal spread rules out this degenerate case. In addition, many
real systems are not fully deterministic and exhibit process and sensor noise. Hence a uniform lower
bound c3 is both mild and practically satisfiable.

C.2 Auxiliary Lemmas
The following lemmas are used in our analysis below.

Lemma C.5 (Bernstein transportation (Talebi and Maillard, 2018)). Let p, q ∈ ΣS , where ΣS denotes
the probability simplex of dimension S − 1. For all α > 0, for all functions f defined on S with
0 ≤ f(k) ≤ b, for all s ∈ S, if KL(p, q) ≤ α then

|pf − qf | ≤
√

2Varq(f)α+
2

3
bα,

where we use the expectation operator defined as pf ≜ Es∼pf(s) and the variance operator defined
as Varp(f) ≜ Es∼p(f(s)− Es′∼pf(s

′))2 = p(f − pf)2.

Lemma C.6 (Variance bound for change of measure (Ménard et al., 2021)). Let p, q ∈ ΣS and f is a
function defined on S such that 0 ≤ f(s) ≤ b for all s ∈ S. If KL(p, q) ≤ β then

Varq(f) ≤ 2Varp(f) + 4b2β and Varp(f) ≤ 2Varq(f) + 4b2β.

Lemma C.7 (Jonsson et al. (2020, Proposition 1)). For all p ∈ Σm and for all α ∈ [0, 1],

P
(
∀n ∈ N+, nKL(p̂n, p) ≤ log

(
1

α

)
+ (m− 1) log

(
e

(
1 +

n

m− 1

)))
≥ 1− α.

C.3 A High-probability Wasserstein bound
We are now ready to state the theoretical guarantee for υ(·, ·), showing that it upper-bounds the
worst-case L1-Wasserstein distance between the simulated and real dynamics.

Theorem C.8. Under Assumptions C.2-C.4, given a confidence level α ∈ (0, 1), for any (s, a) ∈
S ×A, there exist constants C1, C2, C3, C4 > 0 that contain only S,A, α, ds, ε and log factor of n,
such that with probability at least 1− α, we have:

max
ξ∈Ξ

DW (pξ, p
⋆)(s, a) ≤ C1υ(s, a) + C2ε+

√
C3

n
+

C4

n
.

The leading term C1υ(s, a) captures how the local spread of simulated transitions bounds the worst-
case Wasserstein gap. The ε term reflects irreducible model mismatch, and the remaining terms are
standard finite-sample corrections. The key insight lies in the first term, which uses the variance in
our algorithm. We note that while the design of υ(·, ·) is not necessarily the tightest possible, it is
easy to implement, making it more widely applicable. Our proof for Theorem C.8 is stated below.

Proof. We first establish an upper bound on DW (pξ, p
⋆)(s, a) using the 2-norm. Specifically, for

each (s, a), consider the coupling between pξ(· | s, a) and p⋆(· | s, a), defined by:

γ(s1, s2)s,a = pξ(s1 | s, a) · p⋆(s2 | s, a).

By the definition of the L1-Wasserstein distance given in Equation (9), we have:

DW (pξ, p
⋆)(s, a) ≤ Es1∼pξ(·|s,a)

[
Es2∼p⋆(·|s,a)[d(s1, s2)]

]
. (10)
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Recall that ss,a ≜ 1
n

∑n
i=1 si, where si are i.i.d. drawn from pµ(· | s, a). By the triangle inequality

of the 2-norm, we have:

d(s1, s2) ≤ d(s1, ss,a) + d(s2, ss,a).

Substituting this into Equation (10) yields:

DW (pξ, p
⋆)(s, a) ≤ Es1∼pξ(·|s,a)[d(s1, ss,a)] + Es2∼p⋆(·|s,a)[d(s2, ss,a)]. (11)

Since pξ and p⋆ are unknown, we approximate them using pµ via Lemma C.5. Under Assumption C.2
and Assumption C.3, we obtain:

Es1∼pξ(·|s,a)[d(s1, ss,a)] ≤ Es1∼pµ(·|s,a)[d(s1, ss,a)] +
√
2Varpµ(d(s1, ss,a))ε+

2

3
ds · ε,

Es2∼p⋆(·|s,a)[d(s2, ss,a)] ≤ Es2∼pµ(·|s,a)[d(s2, ss,a)] +
√
2Varpµ(d(s2, ss,a))ε+

2

3
ds · ε.

Substituting into Equation (11) gives:

DW (pξ, p
⋆)(s, a) ≤ 2Es′∼pµ(·|s,a)[d(s

′, ss,a)] + 2
√
2Varpµ(d(s

′, ss,a))ε+
4

3
ds · ε (12)

Recall that p̂µ(s′ | s, a) ≜ 1
n

∑n
i=1 1[s

′ = si] denote the empirical measure. By Lemma C.7, we
have w.p. 1− α, for any (s, a), the following inequality holds:

KL(p̂µ, pµ)(s, a) ≤
1

n

(
log

(
1

α

)
+ (S − 1) log

(
e

(
1 +

n

S − 1

)))

Define g(S,A, n, α) ≜ log
(
1
α

)
+(S−1) log

(
e
(
1 + n

S−1

))
. Applying Lemma C.5 and Lemma C.6

to the terms appearing in Equation (12) gives:

Es′∼pµ(·|s,a)[d(s
′, ss,a)] ≤ Es′∼p̂µ(·|s,a)[d(s

′, ss,a)] +

√
2Varp̂µ

[d(s′, ss,a)]
g(S,A, n, α)

n

+
2dsg(S,A, n, α)

3n
(Lemma C.5)

≤ Es′∼p̂µ(·|s,a)[d(s
′, ss,a)] +

√
2d2sg(S,A, n, α)

n
+

2dsg(S,A, n, α)

3n
,

(Varp[f ] ≤ Ep[f
2])

and

√
2Varpµ

(d(s′, ss,a))ε ≤ 2

√
Varp̂µ

(d(s′, ss,a))ε+ 2d2sε
g(S,A, n, α)

n
(Lemma C.6)

≤ 2
√
Varp̂µ

(d(s′, ss,a))ε+ 2

√
2d2sε

g(S,A, n, α)

n
.

(
√
x+ y ≤

√
x+
√
y)
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Substituting these into Equation (12) yields that with probability at least 1−α, for any (s, a) and any
ξ ∈ Ξ, the following inequality holds:

DW (pξ, p
⋆)(s, a) ≤ 2Es′∼p̂µ(·|s,a)[d(s

′, ss,a)] + 2

√
2d2sg(S,A, n, α)

n
+

4dsg(S,A, n, α)

3n

+ 4
√

Varp̂µ
(d(s′, ss,a))ε+ 4

√
2d2sε

g(S,A, n, α)

n
+

4

3
ds · ε

≤ 2

c3
(Es′∼p̂µ(·|s,a)[d(s

′, ss,a)])
2 + 2

√
2d2sg(S,A, n, α)

n
+

4dsg(S,A, n, α)

3n

+ 4
√
Varp̂µ

(d(s′, ss,a))ε+ 4

√
2d2sε

g(S,A, n, α)

n
+

4

3
ds · ε

(Assumption C.4)

≤ 2

c3
(Es′∼p̂µ(·|s,a)[d(s

′, ss,a)])
2 + 2

√
2d2sg(S,A, n, α)

n
+

4dsg(S,A, n, α)

3n

+
2

c3
Varp̂µ

(d(s′, ss,a)) + 4

√
2d2sε

g(S,A, n, α)

n
+ (

4

3
ds + 2c3) · ε

(Young’s inequality)

=
2

c3
υ(s, a) + 2

√
2d2sg(S,A, n, α)

n
+

4dsg(S,A, n, α)

3n

+ 4

√
2d2sε

g(S,A, n, α)

n
+ (

4

3
ds + 2c3) · ε, (13)

where the last equality utilizes that E[f2] = (E[f ])2 +Var[f ] and the fact that

υ(s, a) =

dim(S)∑
j=1

Var (s1,j , . . . , sn,j) = Es′∼p̂µ(·|s,a)

[
[d(s′, ss,a)]

2

]
This ends the proof.
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D Additional Sim-to-Sim Ablations
We conduct further empirical analysis of SPiDR, focusing on the following key aspects: (i) sensitivity
to the penalty parameter λ, (ii) further analysis of standard domain randomization, (iii) empirical
validation of Lemma 4.1 and, (iv) behavior of the uncertainty approximation υ(s, a) Through these
ablations, we highlight SPiDR’s robustness to the choice of λ, its efficiency in scaling to larger
domain ensembles, and its principled handling of uncertainty in challenging state-action regions.

How robust is SPiDR to the choice of λ? We study the performance of SPiDR across varying values
of λ and under different magnitudes of distribution shifts in the CartpoleBalance task. To this end, we
vary the magnitude of the actuator’s gear parameter, denoted as |Ξ|, with a slight abuse of notation.
We ablate λ ∈ {0.85, 0.95, 0.75, 0.6, 0.5, 0.25, 0.35, 0.1, 0} and |Ξ| across {350, 400, 500, 500}. We
present our results in Figure 11, where we compare the objective and constraint for different λ
values. Notably, for λ = 0.6, while some performance is sacrificed in the objective, depending on the
magnitude of |Ξ|, the constraint is satisfied across all settings of |Ξ|.

0.2 0.4 0.6 0.8
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Figure 11: SPiDR’s performance under different values of motor gear parameter. One choice of λ
consistently maintains constraint satisfaction.

Can domain randomization still be safe if we enlarge the set Ξ? We study the dependence
of standard domain randomization on the size of the set Ξ, presenting an example where even
significantly increasing this set, and therefore the “diversity” of training environments, fails to enable
safe transfer. To this end, we use the simulated RaceCar environment and vary the lower and upper
limits of the car’s throttle parameter. This parameter controls how fast can the car drive, directly
relating to its ability to operate safely upon deployment. Specifically, we use the following values
{(0.4, 0.6), (0.3, 0.7), (0.2, 0.8), (0.1, 0.9)}, where each tuple defines the minimum and maximum
throttle values. The default range used in our experiments (including sim-to-real experiments) is
(0.4, 0.6). As in the previous experiment, we slightly abuse notation and refer to the diameter of Ξ
as |Ξ|, computed as the difference between the upper and lower bounds. We report our results in
Figure 12, demonstrating that for this task, safety upon transfer is not maintained, even when using
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Figure 12: Constraint and objective of domain randomization when varying the size of the car’s
throttle parameter. Constraints are violated even when increasing the range of paramteres.

a wide range of parameters with domain randomization. More generally, we argue that for some
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problems, simply enlarging Ξ could generally improve safety, however when safety must be ensured,
pessimism is necessary.

Can we quantify constraint underestimation? We investigate the degree of constraint underesti-
mation from Lemma 4.1. To this end, we measure the difference in the constraint measured in the
training environment against the evaluation environment. Concretely, we collect empirical estimates
of C⋆(π̃) and Eξ∼µCp̂ξ

(π̃) and report C⋆(π) − Eξ∼µCp̂ξ
(π̃) for SPiDR and standard domain ran-

domization in Figure 13. As shown, in all tasks, compared to SPiDR, standard domain randomization
underestimates the cost, leading to unsafe behavior on the test tasks (cf. Figure 6).
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Figure 13: Constraint performance gap between training and test (lower is better). Domain random-
ization underestimates the constraint on the test tasks.

Does υ(s, a) upper-bounds the discrepancy in practice? We continue our previous study and
demonstrate that E(s,a)∼dp̂ξ,π

[λυ(s, a)] −
∣∣C⋆(π)− Eξ∼µCp̂ξ

(π)
∣∣ ≳ 0, namely, that our estimate

υ(·, ·) can be used to sufficiently penalize the cost. In Figure 14 we report this error across all six
simulated tasks. As shown, in all tasks, our approximation error is positive, suggesting that λυ indeed
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Figure 14: Our estimator υ(s, a) upper bounds the model discrepancy.

upper-bounds the gap in constraint. Notably, in the HumanoidWalk environment, the error of λυ(s, a)
w.r.t. the constraint gap is close to zero. This result is in line with the performance-safety tradeoff
shown in Figure 7, were SPiDR is both safe and achieving strong performance compared to the best
solution onM⋆.

How does υ(s, a) vary across states? We analyze υ(s, a) measured across different states and
actions in the CartpoleSwingup environment. The state space consists of the linear cart position and
velocity, along with the angular position (θ) and angular velocity (θ̇) of the pole. The continuous
action space lies in [−1, 1], and due to the symmetry of the system, we restrict our analysis to
a ∈ [0, 1]. Figure 15 visualizes the uncertainty over the angular position and velocity dimensions for
representative actions a ∈ {0.0, 0.3, 0.7, 1.0}. We note the following observations: (i) uncertainty
generally increases with action magnitude, and, (ii) for a ̸= 0, uncertainty peaks when the pole is
near the upright position (θ ≈ π), which corresponds to an inherently unstable equilibrium. This
observation aligns with intuition: near the unstable upright position, small perturbations can lead to
significantly different outcomes, making these regions harder to model. From a safety perspective,
this analysis motivates penalizing high-uncertainty regions during policy learning, particularly when
deploying on real systems where model inaccuracies may have significant consequences.
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Figure 15: Uncertainty υ(s, a) across angular states for actions a ∈ {0.0, 0.3, 0.7, 1.0}. Uncertainty
increases with action magnitude and is highest near the upright position (θ ≈ π), highlighting states
where the simulator’s predictions are less reliable.

E Picking λ in Practice
We demonstrate our ablations on λ when deploying SPiDR in real, providing guidance on how to
pick it effectively in practice. We describe below the procedure we use in our sim-to-real experiments
for selecting λ.

Step 1: Estimate the magnitude of υ(·, ·). Evaluate and record υ(·, ·) in training, aggregated over
state-action pairs and across time. This estimate is not required to be precise, its purpose is
to determine the general order of magnitude. This can be done purely in simulation.

Step 2: Select an appropriate range for λ. Choose a candidate range of λ values such that 1/υ ≈ 1.
This heuristic ensures that the penalty term has roughly the same magnitude of cost function,
assuming cmax ≈ 1.

Step 3: Iteratively refine λ. On the real system, begin testing with the largest value in the selected
range and iteratively decrease it until the constraint satisfaction on the real system closely
matches the desired budget.

In Figure 16 we report the performance of SPiDR across different values of λ. Importantly, for a
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Figure 16: Safety performance under different λ values in real-world robotic tasks. The blue
horizontal line represents the value of the constraint measured in simulation under λ = 0. SPiDR
satisfies the constraints on both of the physical systems.

large enough initial choice of λ, which can be obtained in practice using prior domain knowledge
(e.g. degree of of simulator fidelity), the very first deployment of SPiDR is safe. In Step 3, online data
is used to improve performance, while maintaining safety. With this procedure, safety is maintained
zero-shot, while performance can be improved with online rollouts, in line with our safety guarantee
in Section 4.3.

F Learning Curves for Simulated Environments
In Figure 17 we provide the full learning curves of the experiment trials used for Section 5.2, including
the standard error intervals across five random seeds.
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Figure 17: Learning curves used in Section 5.2. SPiDR consistently satisfies the constraints while
maintaining good performance on the objective. Domain Randomization and Nominal fail to satisfy
the constraints.

Simulating the sim-to-sim gap. We simulate the sim-to-sim gap as follows. In PointGoal2 and
the RWRL tasks, we follow a similar approach to Queeney and Benosman (2024) and introduce
in evaluation an additional dynamics parameter (e.g., mass or motor gains) that is not encountered
during training. In the RaceCar environment, the agent is trained using a simplified bicycle model,
but evaluated on a more realistic variant that incorporates tire forces and detailed motor dynamics.
Further details on the tasks and their sim-to-sim gap design can be found in Appendices J to L.
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G Locomotion Experiments with Unitree Go1
We train policies using the FlatTerrainGo1Joystick environment from MuJoCo Playground (Zakka
et al., 2025). In this environment, the agent is tasked with following randomly sampled velocity
commands in the forward, lateral, and yaw directions. Excessive joint motion can cause the legs
to self-collide, even when joint limits are not reached. These collisions can lead to falls or serious
hardware damage.

Constraints. To prevent these joint limit violations we define a cost function to measure the number
of joint violations. The cost function is defined by the indicator function of any joint being outside
the soft limit. More formally, the cost is defined as

c(s, a) ≜

{
1 if any of j ∈ J such that qj > 0.75 · qmax

j or qj < 0.75 · qmin
j

0 otherwise

where J is the set of joint indices, qj is the joint angle and qmax
j , qmin

j are the angle limits of
joint angle j. The soft factor limit of 0.75 is applied meaning that if a joint enters the outermost
25% of its feasible range of motion, the cost is set to 1. We choose this constraint since joint-
position measurements are accurate and reliable on the real system, without relying on indirect
filtering/estimation methods.

Training in simulation. Each policy is trained for roughly one hour on an NVIDIA RTX4090
GPU. For both SAC and PPO, we train policies with a primal-dual solver, using different values of λ
to penalize the uncertainty. Each λ value is trained across five different random seeds.

Command distribution. Target commands are uniformly sampled from the ranges
[±0.45,±0.2,±1.3], corresponding to the forward velocity, lateral velocity, and yaw rate, respec-
tively. Each sampled command is applied for a fixed number of 1000 control steps. After this period,
the command is reversed, perturbed with additive noise, and then reapplied for the same duration,
after which a new command is sampled from the same distribution as stated above.

Real-world evaluation. We evaluate the trained policies on the Unitree Go1 quadruped robot. To
ensure that all policies are evaluated under identical conditions, the same sequences of commands are
sampled for each episode. Every policy is tested across 10 independent trials. We provide .onnx
files for the policies used in this experiment, as well as the code to port simulation-trained policies to
.onnx format in the following link.

Comparison with RAMU. In Figure 18 we demonstrate a comparison of SPiDR and RAMU, con-
ditioned on the same sequence of commands. We note that RAMU uses only a single “nominal”
environment, together with robust estimation value function estimation as means for robust transfer.
We believe that RAMU fails to follow the commands mainly because using only the nominal environ-
ment, without incorporating domain randomization, might not be sufficient for robust sim-to-real
transfer. We note that conceptually RAMU and domain randomization are not mutually exclusive,
therefore RAMU could in principle transfer better if used with domain randomization. However,
combining the two goes beyond the proposed algorithmic solution and official implementation of
RAMU, and therefore not considered in this experiment. Despite that, we believe that combining the
two approach is an interesting direction for future work.

H RaceCar Experiments
In this task we implement the simulated RaceCar environment on a real remote-controlled car,
illustrated in Figure 2. Please see Appendix L for further details about the reward and cost functions.

Real-world implementation. We measure the position and orientation of the car using a motion-
capture system. Velocities are estimated using a first-order low pass filter. These measurements
are sufficient to recover the full state of the system as the goal and obstacle positions are fixed. All
trajectory measurements start from the roughly same initial position in the world frame. The goal
position is at the origin. Further details, regarding the parameters used for domain randomization and
training hyper-parameters, can be found in our open-source implementation.

Additional results. In Figure 19 we provide the objective and constraint measured on the real
system in this experiment. As shown, for λ = 45, SPiDR is able to satisfy the constraint, while
finding a performant policy.
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Figure 18: Comparison of RAMU and SPiDR on the Unitree Go1 robot. SPiDR follows the given
commadns without falling.
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Figure 19: Safety and objective performance for λ ∈ {0, 45, 55, 60, 65} on the real system. We report
the mean and standard error across five seeds. SPiDR transfers safely to the real system while solving
the task, i.e., reaching to the goal position.

Comparison with constraint tightening. We additionally compare SPiDR with a simple baseline
that tightens the constraint budget d in simulation. To this end, we evaluate “constraint tightening”
on the real-world RaceCar, ablating it when using budgets d ∈ {0, 7.5} when training in simulation.
We present our results in Figure 20. As shown, while reducing the budget d in simulation indeed
reduces the degree of accumulated costs on the real system, it might still not be sufficient to maintain
safety, opposed to SPiDR. While this approach is even simpler than SPiDR, there are two main
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Figure 20: Comparison of SPiDR with constraint tightening on the real RaceCar. Constraint tightening
fails to satisfy the constraint.

challenges with it. First, severe tightening may yield a “zero budget” training regime that CMDP
solvers like CRPO and primal-dual methods struggle to solve in practice (Huang et al., 2023; He
et al., 2023). This behavior is observerd in Figure 20; even though the budget is set to d = 0, the
primal-dual CMDP solver we use fails to converge to a constraint satisfying solution. Second, as
hinted, reducing the budget is equivalent to finding a uniform upper-bound to the penalty term in
Equation (4), that does not depend on state-actions. Therefore, in order to achieve the same level of
penalty required to satisfy the constraint, this for of “uniform pessimism” can degrade performance
by being over-pessimistic in those states where the uncertainty about the sim-to-real gap might in
fact be low, effectively penalizing the “wrong” states. We visualize such state-action-dependent
uncertainty in Figure 15.
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I Additional Experiments with PPO
To further study SPiDR’s performance with CMDP solvers that utilize policy gradients, we use PPO
(Schulman et al., 2017). PPO is a common choice used in many robotics tasks (for instance, see Lee
et al., 2020). We use SauteRL as a CMDP solver (Sootla et al., 2022). SuateRL augments the state
with a counter of the online accumulated cost, and penalizes the reward once this counter exceeds
the budget. We ablate λ ∈ {0, 0.001, 0.01, 1} and report the performance on the CartpoleBalance
task from RWRL in Figure 21. As shown, the constraints are violated for λ = 0, corresponding to
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Ĉ
(π̃

)

λ = 1 λ = 0.01 λ = 0.001 λ = 0

Figure 21: PPO with SauteRL as a CMDP solver. Domain randomization fails to satisfy the
constraints, while for λ ≥ 0.01 constraints are satisfied with minor performance drop.

standard domain randomization. In contrast, the constraints are satisfied as λ increases. We note that,
while SauteRL is designed for constraint satisfaction with high probability, instead of bounding the
expectation of the cumulative costs, and thus in principle it adds additional conservatism, this might
still not guarantee safe transfer under modeling mismatches. Figure 21 demonstrates that SPiDR
mitigates this issue.

J Safety Gym
To compare policies in environments from OpenAI Safety Gym by Ray et al. (2019), we port the
PointGoal2 environment from standard MuJoCo to MJX (MuJoCo XLA). MJX is a JAX-compiled
MuJoCo backend that is tightly integrated with Brax (Freeman et al., 2021). This port enables us to
massively parallelize training by collecting trajectories from thousands of environments in parallel
on a single GPU, accelerating training by several orders of magnitude compared to the original
implementation. This contribution is of independent interest to the safe RL community. Extending
our work to additional Safety Gym environments is left for future work.

PointGoal2 environment. In this environment, the agent must navigate to a target location while
avoiding hazards which include free-moving vases and designated hazard zones. The environment is
depicted in Figure 22. The initial positions of the agent, goal, vases, and hazards are randomized at
the beginning of training. The environment reward is defined as the change in Euclidean distance to
the goal between successive steps

rt(st, at) ≜ dt−1 − dt + 1[dt ≤ ϵ],

where dt = ∥xt − xgoal∥2 is the Euclidean distance from the robot to the goal. The term 1[dt ≤ ϵ]
is an indicator function that gives a reward bonus when the agent reaches the goal, i.e., when it is
within ϵ = 0.3 of the center of the goal. The goal position is resampled to another free position in the
environment once reached.

A cost of 1 is incurred when the agent collides with a vase v, when one of the vases crosses a linear
velocity threshold (after collision), or when the agent is inside a hazard zone h:

ct(st, at) ≜ 1[∃v ∈ V : collides(xt,xv)] + 1[∃v ∈ V : x′
v ≥ γ] + 1[∃h ∈ H : dt ≤ ρ],

where γ = 5e−2 and ρ = 0.2. Please see the implementation of Ray et al. (2019) for more specific
details and our open-source implementation.
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Sim-to-sim gap. During evaluation, we uniformly sample three key parameters of the environment’s
dynamics: multiplicative joint damping and mass factors and additive values for the actuator gear
ratio. The precise training and evaluation ranges are given in Table 1. Note that the z-joint is a
hinge joint that allows the agent to rotate around the z-axis and the x-joint is a slide joint that allows
translation in the xy-plane.

Figure 22: Visualization of a random initial-
ization of the PointGoal2 environment. The
red pointmass is the agent, the green transpar-
ent cylinder is the goal, the cyan boxes are
vases and the blue circles are hazard zones.

Table 1: Domain randomization parameters and
ranges used during training and evaluation. + and ×
denote additive and multiplicative terms respectively.
By fixing the damping and mass parameters in train-
ing, but not in evaluation, we simulate both lack of
knowledge of ξ⋆, but also modeling mismatch due to
imperfect simulation.

Parameter Train Eval

Damping (x, y) × 1.0 (fixed) [0.6, 1.0]

Damping (z) × 1.0 (fixed) [0.7, 1.0]

Gear (x) + [–0.2, 0.2] [0, 0.1]

Gear (z) + [–0.1, 0.1] [0, 0.05]

Mass × 1.0 (fixed) [1.0, 1.05]

K RWRL Benchmark
We evaluate SPiDR on four robotic tasks using the RWRL benchmark (Dulac-Arnold et al., 2020),
which adds safety constraints and distribution shifts to DeepMind Control suite tasks. We build
on MuJoCo Playground (Zakka et al., 2025), an MJX-based reimplementation that enables faster,
parallelized training, by incorporating RWRL’s modifications. See our open-source implementation
for details.

Figure 23: RWRL tasks.

Constraints. We use the joint position limits constraint for HumanoidWalk and QuadrupedRun,
joint velocity limits for WalkerWalk, and slider position limits for CartpoleSwingup. These are the
standard constraints proposed by Dulac-Arnold et al. (2020).

Sim-to-sim gap. We follow a similar experimental setup as Queeney and Benosman (2024) and
introduce additional variability in the evaluation task to simulate modeling mismatches. In Table 2
we provide the specific parameters we perturb for the RWRL environments.

L RaceCar Environment
Reward and cost. The reward at timestep t is given by

rt(st, at) ≜ dt−1 − dt + 1[dt ≤ ϵ]− λc∥at∥2 − λl∥at − at−1∥22,

where dt = ∥xt − xgoal∥2 is the Euclidean distance to the goal, and at ∈ R2 denotes the action
applied at time t (consisting of steering and throttle). The term 1[dt ≤ ϵ] is an indicator function that
gives a reward bonus when the agent is within ϵ = 0.3 of the goal. The penalties λc and λl weight
the control effort (magnitude of the action) and the change in action between consecutive timesteps,
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Table 2: Domain randomization parameters and ranges used during training and evaluation across
tasks from RWLR. + and × denote additive and multiplicative terms respectively.

Parameter Train Eval

CartpoleSwingup

Pole Length + [0.0, 0.0] [–0.25, 0.25]

Gear + [0.0, 5.0] [0.0, 5.0]

QuadrupedRun

Torso Density + [0.0, 0.0] [–300.0, 300.0]

Friction + [0.0, 0.0] [–0.95, 0.0]

Lift Gear × [0.75, 1.5] [0.75, 1.5]

Yaw Gear × [1.0, 1.0] (fixed) [0.5, 2.0]

Extend Gear × [0.75, 1.5] [0.75, 1.5]

HumanoidWalk

Friction + [0.0, 0.0] [-0.05, 0.05]

Hip Gear (x) + [-20., 20.] [-20., 20.]

Hip Gear (y) + [-20., 20.] [-20., 20.]

Hip Gear (z) + [-60., 60.] [-60., 60.]

Knee Gear + [0, 0] [-40., 40.]

WalkerWalk

Torso Length + [0.0, 0.0] (fixed) [–0.75, 0.75]

Gear + [0.0, 20.0] [0.0, 20.0]

respectively. The cost function at time t is defined as

ct ≜
3∑

i=1

1 [∥xt − pi∥ < ρi]E
k
t + 1[xt /∈ V],

where xt ∈ R2 is the agent’s position, pi and ρi are the position and radius of the i-th obstacle and Ek
t

is the kinetic energy of the car at time t, simulating a plastic collision between the car and obstacles.
This choice of cost function allows us to penalize more severely collisions in which the car smashes
into obstacles, as opposed to softly touching them. The second term penalizes the agent for leaving
the valid area V , which corresponds to a bounded rectangular arena.

Sim-to-sim gap. In the previous sim-to-sim environments, we model the sim-to-sim gap by intro-
ducing an auxiliary dynamics parameter (e.g., pendulum length) that is not observed during training.
In contrast, in the RaceCar environment, the car dynamics in the training environments are governed
by a semi-kinematic bicycle model that does not account for interactions between the tire and the
ground. On the other hand, in evaluation, we use the dynamical bicycle model of Kabzan et al. (2020).
We refer the reader to Kabzan et al. (2020) for the detailed equations of motion as well as to our
open-source implementation for more details.

M Additional Details on our CMDP Solvers
CRPO. CRPO (Xu et al., 2021) is a CMDP solver that uses a primal subgradient switching method
to solve the constraint optimization problem. By doing so, CRPO is not tied to any specific RL
algorithm and can be used with different policy search methods. For instance, Xu et al. (2021) use this
technique with TRPO (Schulman et al., 2015) and Queeney and Benosman (2024) use it with MPO
Abdolmaleki et al. (2018). In our experiments, we mainly use CRPO together with SAC (Haarnoja
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et al., 2019). To apply CRPO with SAC, we learn a cost critic Qc(s, a), trained similarly to the
reward critic but without the standard entropy term of SAC. To update the policy, we estimate the
constraint with Ĉ, and if it exceeds the budget d, we switch from a reward-maximizing update to a
cost-minimizing one. The procedure is detailed in Algorithm 2.

Algorithm 2 CRPO with SAC

1: Input: Constraint budget d, replay buffer D
2: Initialize: Policy πθ, reward critic Qr, cost critic Qc

3: for each environment interaction step do
4: Collect action a ∼ πθ(· | s)
5: Observe reward r, cost c, next state s′

6: Store transition (s, a, r, c, s′) in D
7: end for
8: for each gradient update step do
9: Sample batch {(si, ai, ri, ci, s′i)}Ni=1 from D

10: Update reward critic Qr using SAC critic loss
11: Update cost critic Qc using TD error (no entropy bonus)
12: Estimate constraint Ĉ ← 1

N

∑N
i=1 Qc(si, πθ(si)) ▷ Draw an action from πθ

13: if Ĉ > d then ▷ Constraint violated: prioritize cost minimization
14: Update policy πθ using gradient of Ĉ
15: else ▷ Constraint satisfied: optimize for reward
16: Update policy πθ using SAC policy loss
17: end if
18: end for
19: return Policy πθ

Primal-dual solvers. The primal-dual approach solves CMDPs by augmenting the standard loss
used in PPO or SAC with a penalty term derived from the constraint using Lagrangian duality.
Specifically, we define the Lagrangian as

L(θ, λPD) = J(πθ)− λPD (C(πθ)− d) ,

where λPD ≥ 0 is the Lagrange multiplier. The goal is to find a saddle point of the Lagrangian by
performing gradient descent on the policy parameters θ (primal variables) while performing gradient
ascent on λPD (dual variable) to enforce the constraint.

When integrating this method with SAC, we learn a cost critic together with the reward critic. When
computing the policy loss, we evaluate the policy in a same way on the cost critic as we do in the
reward critic to evaluate the constraint. The loss is computed via πθ = Es,a[log πθ + Qr(s, π() +
λTDQc(s, π()]. The same estimate Qc(s, π is used to update the dual

λ← [λ+ ηλPD (C(πθ)− d)]+ ,

where ηλPD is the dual learning rate.

For methods that rely on policy gradient estimators like PPO, we use a value-based estimate of the
constraint via a learned cost value function Vc(s), and compute advantage estimates accordingly. The
policy update then follows the same principle, where the objective is penalized by the constraint
estimate weighted by λPD, ensuring that constraint violations are actively discouraged during training.

More specific implementation details can be found in our open-source implementation.
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N Additional Related Work
Safe reinforcement learning. A prominent line of work addressing safety in RL utilizes
constrained Markov decision processes. In CMDPs, agents optimize cumulative rewards while
satisfying constraints on cumulative costs (Altman, 1999). To solve CMDPs, two main algorithm
categories are used: primal-dual and primal methods. Primal-dual approaches leverage the
Lagrangian form, aiming to find a saddle-point of it. This is typically done by iteratively updating
policy parameters and dual multipliers to balance rewards and constraints (Chow et al., 2018; Achiam
et al., 2017; Yang et al., 2020, 2022). On the other hand, primal methods bypass dual variables
entirely, focusing on directly optimizing the primal problem by embedding constraints through
gradient combination (Xu et al., 2021; Gu et al., 2024). Other works use the CMDP formulation
but propose alternative methods to satisfy the safety constraints. Srinivasan et al. (2020) learn a
safety actor-critic together with a behavior policy, Thananjeyan et al. (2021) use a recovery backup
policy, Bharadhwaj et al. (2020) propose a conservative safety critic together with online rejection
sampling of actions. Further discussions on alternative formulations of safety in RL are provided by
Garcıa and Fernández (2015); Gu et al. (2022); Brunke et al. (2022). This work differs from standard
CMDPs in that it focuses on addressing additional model mismatch within the CMDP framework.

Model uncertainty in reinforcement learning. Various works address model uncertainty or
model mismatch of the environment (e.g., reward function, dynamics, or task itself) during train- and
test-time. This challenge is particularly relevant in sim-to-real transfer, which typically serves as a
natural motivation for these works. Within this context, a line of research applies robust optimization
to optimize worst-case performance, known as robust RL (Iyengar, 2005; Xu and Mannor, 2012;
Wolff et al., 2012; Kaufman and Schaefer, 2013; Tamar et al., 2014; Pinto et al., 2017; Pattanaik
et al., 2017; Ho et al., 2018; Tessler et al., 2019; Smirnova et al., 2019; Derman and Mannor, 2020;
Ho et al., 2021; Badrinath and Kalathil, 2021; Curi et al., 2021; Tanabe et al., 2022; Goyal and
Grand-Clement, 2022; Ding et al., 2023; Wang et al., 2023; Sundhar Ramesh et al., 2024). Robust RL
algorithms often employ a minimax formulation, significantly increasing design and implementation
complexity. Similar to our approach, Gadot et al. (2024) propose an algorithm that avoids explicitly
solving the minimax problem, instead relying entirely on how trajectories are sampled. Their key
result demonstrates that by sampling next states pessimistically with respect to a reward value
function, one can derive a robust policy under a rectangular KL-divergence uncertainty set. In
addition, Thomas et al. (2021); As et al. (2022); Zanger et al. (2021) use ensembles and pessimism
to enforce safety constraints under model uncertainty as done in SPiDR. This work differs in that
our models are not learned from data but are derived via domain randomization. In addition, we
formally show that by only using domain randomization, one can achieve safe transfer to the real
system. Finally, similar to this work, Yu et al. (2020) propose to penalize rewards based on model
uncertainty. However, their focus is in unconstrained offline RL problems. Model uncertainty is
also addressed in other formulations such as risk-sensitive RL (Zhang et al., 2023; Kim et al., 2023),
domain adaptation in RL (Chen et al., 2024), and curriculum RL (Narvekar et al., 2020). Although
these do not focus directly on safety, our work can potentially be adapted to these settings.

Domain randomization. Domain randomization enhances policy robustness by training across
a variety of environmental scenarios and optimizing average performance. It is widely used in
robotics (Sadeghi and Levine, 2016; Tobin et al., 2017; Peng et al., 2018; Andrychowicz et al., 2020).
This work utilizes domain randomization as a key component for robustness, integrating it into the
constrained RL framework by adding a robust penalty term to the cost function. Given the limited the-
oretical analysis on domain randomization (Chen et al., 2022), we theoretically study it when facing
with additional safety requirements, highlighting its limitations and addressing them. Further, similar
to our work, Lee et al. (2023) and Kim et al. (2024) combine CMDPs with domain randomization.
However, these works apply CMDPs primarily to legged locomotion, using constraints to shape stylis-
tic gait qualities, rather than ensuring safety. Additionally, their evaluations are largely qualitative and
assess constraint satisfaction in simulation. Lastly, a comprehensive survey on domain randomization,
and other methods for sim-to-real transfer is discussed in more details by Zhao et al. (2020).
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