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ABSTRACT

Reinforcement Learning algorithms that learn from human feedback (RLHF) need
to be efficient in terms of statistical complexity, computational complexity, and
query complexity. In this work, we consider the RLHF setting where the feedback
is given in the format of preferences over pairs of trajectories. In the linear MDP
model, using randomization in algorithm design, we present an algorithm that is
sample efficient (i.e., has near-optimal worst-case regret bounds) and has poly-
nomial running time (i.e., computational complexity is polynomial with respect
to relevant parameters). Our algorithm further minimizes the query complexity
through a novel randomized active learning procedure. In particular, our algo-
rithm demonstrates a near-optimal tradeoff between the regret bound and the query
complexity. To extend the results to more general nonlinear function approxi-
mation, we design a model-based randomized algorithm inspired by the idea of
Thompson sampling. Our algorithm minimizes Bayesian regret bound and query
complexity, again achieving a near-optimal tradeoff between these two quantities.
Computation-wise, similar to the prior Thompson sampling algorithms under the
regular RL setting, the main computation primitives of our algorithm are Bayesian
supervised learning oracles which have been heavily investigated on the empirical
side when applying Thompson sampling algorithms to RL benchmark problems.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has been widely used across various do-
mains, including robotics (Jain et al., 2013; 2015) and natural language processing (Stiennon et al.,
2020; Ouyang et al., 2022). Unlike standard RL, RLHF requires the agent to learn from feedback in
the format of preferences between pairs of trajectories instead of per-step reward since assigning a
dense reward function for each state is challenging in many tasks. For instance, in natural language
generation, rating each generated token individually is challenging. Hence, it is more realistic to ask
humans to compare two pieces of text and indicate their preference. Recent works have shown that,
by integrating preference-based feedback into the training process, we can align models with human
intention and enable high-quality human-machine interaction.

Despite the existing empirical applications of RLHF, its theoretical foundation remains far from
satisfactory. Empirically, researchers first learn reward models from preference-based feedback and
then optimize the reward models via policy gradient-based algorithms such as PPO (Schulman et al.,
2017). Questions such as whether or not the learned reward model is accurate, whether PPO is suf-
ficient for deep exploration, and how to strategically collect more feedback on the fly are often
ignored. Theoretically, prior works study the regret bound for RL with preference-based feedback
(Saha et al., 2023; Chen et al., 2022). Despite achieving sublinear worst-case regret, these algo-
rithms are computationally intractable even for simplified models such as tabular Markov Decision
Processes (MDPs). This means that we cannot easily leverage the algorithmic ideas in prior work to
guide or improve how we perform RLHF in practice.

In addition to maximizing reward, another important metric in RLHF is the query complexity since
human feedback is expensive to collect. To illustrate, we note that InstructGPT’s training data com-
prises a mere 30K instances of human feedback (Ouyang et al., 2022), which is significantly fewer
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than the internet-scale dataset for training the GPT-3 base model. This underscores the challenge
of scaling up the size of human feedback datasets. Ross et al. (2013); Laskey et al. (2016) also
pointed out that extensively querying for feedback puts too much burden on human experts. Empir-
ically, Lightman et al. (2023) observes that active learning reduces query complexity and improves
the learned reward model. In theory, query complexity is mostly studied in the settings of active
learning, online learning, and bandits (Cesa-Bianchi et al., 2005; Dekel et al., 2012; Agarwal, 2013;
Hanneke & Yang, 2021; Zhu & Nowak, 2022; Sekhari et al., 2023a;b), but overlooked in RL.

In this work, we aim to design new RL algorithms that can learn from preference-based feedback
and can be efficient in statistical complexity (i.e., regret), computational complexity, and query
complexity. In particular, we strike a near-optimal balance between regret minimization and query
complexity minimization. To achieve this goal, our key idea is to use randomization in algorithm
design. We summarize our new algorithmic ideas and key contributions as follows.

1. For MDPs with linear structure (i.e., linear MDP (Jin et al., 2020)), we propose the first RL
algorithm that achieves sublinear worst-case regret and computational efficiency simultaneously
with preference-based feedback. Even when reduced to tabular MDPs, it is still the first to
achieve a no-regret guarantee and computational efficiency. Moreover, it has an active learning
procedure and attains a near-optimal tradeoff between the regret and the query complexity. Our
algorithm adds random Gaussian noises to the learned state-action-wise reward model and the
least-squares value iteration (LSVI) procedure. Using random noise instead of the UCB-style
technique (Azar et al., 2017) preserves the Markovian property in the reward model and allows
one to use dynamic programming to achieve computation efficiency.

2. For function approximation beyond linear, we present a model-based Thompson-sampling (TS)
algorithm that forms posterior distributions over the transitions and reward models. Assuming
the transition and the reward model class both have small ℓ1-norm eluder dimension – a structural
condition introduced in Liu et al. (2022a) that is more general than the common ℓ2-norm eluder
dimension (Russo & Van Roy, 2013), we show that our algorithm again achieves a near-optimal
tradeoff between the Bayesian regret and the Bayesian query complexity. Computation-wise,
similar to previous TS algorithms for regular RL (e.g., Osband et al. (2013)), the primary com-
putation primitives are Bayesian supervised learning oracles for transition and reward learning.

3. Our query conditions for both algorithms are based on variance-style uncertainty quantification
of the preference induced by the randomness of the reward model. We query for preference feed-
back only when the uncertainty of the preference on a pair of trajectories is large. Approximately
computing the uncertainty can be easily done using i.i.d. random reward models drawn from the
reward model distribution, which makes the active query procedure computationally tractable.

Overall, while our main contribution is on the theoretical side, our theoretical investigation provides
several new practical insights. For instance, for regret minimization, our algorithms propose to draw
a pair of trajectories with one from the latest policy and the other from an older policy instead of
drawing two trajectories from the same policy (e.g., Christiano et al. (2017)), avoiding the situation
of drawing two similar trajectories when the policy becomes more and more deterministic. Our
theory shows that drawing two trajectories from a combination of new and older policies balances
exploration and exploitation better. Another practical insight is the variance-style uncertainty
measure for designing the query condition. Compared to more standard active learning procedure
that relies on constructing version space and confidence intervals (Dekel et al., 2012; Puchkin &
Zhivotovskiy, 2021; Zhu & Nowak, 2022; Sekhari et al., 2023a;b), our new approach comes with
strong theoretical guarantees and is more computationally tractable. It is also amenable to existing
implementations of Thompson sampling RL algorithms (e.g., using bootstrapping to approximate
the posterior sampling (Osband et al., 2016a; 2023)).

2 COMPARISON TO PRIOR WORK

RL with preference-based feedback. Many recent works have obtained statistically efficient algo-
rithms but are computationally inefficient even for tabular MDPs due to intractable policy search and
version space construction (Chen et al., 2022; Zhan et al., 2023a;b; Saha et al., 2023). For example,
Zhan et al. (2023b); Saha et al. (2023) use the idea from optimal design and rely on the computation
oracle: argmaxπ,π′∈Π ∥Es,a∼πϕ(s, a) − Es,a∼π′ϕ(s, a)∥A with some positive definite matrix A.
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Here ∥x∥2A := x⊤Ax, and ϕ is some state-action feature.1 It is unclear how to implement this ora-
cle since standard planning approaches based on dynamic programming cannot be applied here. In
addition, these methods also actively maintain a policy space by eliminating potentially sub-optimal
policies. The policy class can be exponentially large even in tabular settings, so how to maintain it
computationally efficiently is unclear. We provide a more detailed discussion on the challenges in
achieving computational efficiency in RLHF in Appendix A.

While the work mentioned above is intractable even for tabular MDPs, there are some other works
that could be computationally efficient but have weaker statistical results. For instance, very recently,
Wang et al. (2023) proposed a reduction framework that can be computationally efficient (depending
on the base algorithm used in the reduction). However, their algorithms have PAC bounds while we
focus on regret minimization. Moreover, we achieve a near-optimal balance between regret and
query complexity. Novoseller et al. (2020) proposed a posterior sampling algorithm for tabular
MDP but their analysis is asymptotic (i.e., they do not address exploration, exploitation, and query
complexity tradeoff). Xu et al. (2020) proposed efficient algorithms that do reward-free exploration.
However, it is limited to tabular MDPs and PAC bounds.

In contrast to the above works, our algorithms aim to achieve efficiency in statistical, computa-
tional, and query complexities simultaneously. Our algorithms leverage randomization to balance
exploration, exploitation, and feedback query. Randomization allows us to avoid non-standard
computational oracles and only use standard Dynamic Programming (DP) based oracles (e.g.,
value iteration), which makes our algorithm computationally more tractable. Prior works that
simultaneously achieve efficiency in all three aspects are often restricted in the bandit and imitation
learning settings where the exploration problem is much easier (Sekhari et al., 2023a).

RL via randomization. There are two lines of work that study RL via randomization. The first
injects random noise into the learning object to encourage exploration. A typical example is the
randomized least-squares value iteration (RLSVI) (Osband et al., 2016b), which adds Gaussian noise
into the least-squares estimation and achieves near-optimal worst-case regret (Zanette et al., 2020;
Agrawal et al., 2021) for linear MDPs. The other line of work is Bayesian RL and uses Thompson
sampling (TS) (Osband et al., 2013; Osband & Van Roy, 2014b;a; Gopalan & Mannor, 2015;
Agrawal & Jia, 2017; Efroni et al., 2021; Zhong et al., 2022; Agarwal & Zhang, 2022). They
achieve provable Bayesian regret upper bound by maintaining posterior distributions over models.

Active learning. Numerous studies have studied active learning across various settings (Cesa-
Bianchi et al., 2005; Dekel et al., 2012; Agarwal, 2013; Hanneke & Yang, 2015; 2021; Zhu &
Nowak, 2022; Sekhari et al., 2023b;a). However, most of them focus on the bandits and online
learning settings, and their active learning procedures are usually computationally intractable due to
computing version spaces or upper and lower confidence bounds. In contrast, we design a variance-
style uncertainty quantification for our query condition, which can be easily estimated by random
samples of reward model. This makes our active learning procedure more computationally tractable.

3 PRELIMINARY

Notations. For two real numbers a and b, we denote [a, b] := {x : a ≤ x ≤ b}. For an integer N ,
we denote [N ] := {1, 2, . . . , N}. For a set S, we denote ∆(S) as the set of distributions over S. Let
dTV(·, ·) denote the total variation distance.

We consider a finite-horizon Markov decision process (MDP), which is a tuple M(S,A, r⋆, P ⋆, H)
where S is the state space, A is the action space, P ⋆ : S × A → ∆(S) is the transition kernel,
r⋆ : S × A → [0, 1] is the reward function, and H is the length of the episode. The interaction
proceeds for T rounds. At each round t ∈ [T ], we need to select two policies π0

t and π1
t and execute

them separately, which generates two trajectories τ0t and τ1t where τ it = (sit,1, a
i
t,1, . . . , s

i
t,H , ait,H)

for i ∈ {0, 1}. For the ease of notation, we assume a fixed initial state s1. Then, we need to decide
whether to make a query for the preference between τ0t and τ1t . If making a query, we obtain a
preference feedback ot ∈ {0, 1} that is sampled from the Bernoulli distribution:

Pr(ot = 1 | τ1t , τ0t , r⋆) = Pr(τ1t is preferred to τ0t | r⋆) = Φ
(
r⋆(τ1t )− r⋆(τ0t )

)
1These works typically assume trajectory-wise feature ϕ(τ) for a trajectory τ . However, even when speci-

fied to state-action-wise features, these algorithms are still computationally intractable, even in tabular MDPs.
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where r⋆(τ it ) =
∑H

h=1 r
⋆(sit,h, a

i
t,h) for i ∈ {0, 1} is the trajectory reward, and Φ : R → [0, 1] is a

monotonically increasing link function. We note that, by symmetry, we have Φ(r⋆(τ0t )− r⋆(τ1t )) +
Φ(r⋆(τ1t )− r⋆(τ0t )) = 1. If not making a query, we receive no feedback.

This feedback model is weaker than the standard RL where the per-step reward signal is revealed.
We impose the following assumption on the link function Φ, which has appeared in many existing
works of RLHF (Saha et al., 2023; Zhu et al., 2023; Zhan et al., 2023a).
Assumption 3.1. We assume Φ is differentiable and there exists constants κ, κ > 0 such that κ−1 ≤
Φ′(x) ≤ κ−1 for any x ∈ [−H,H].

The constants κ and κ characterize the non-linearity of Φ and determine the difficulty of estimating
the reward from preference feedback. It is noteworthy that, in the theoretical results of our algo-
rithms, the bounds depend polynomially on κ but logarithmically on κ. Some typical examples of
the link functions are provided below.
Example 3.2 (Link functions). It is common to have Φ(x) = 1/(1 + exp(−x)), which recovers the
Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952), and we have κ = 2+exp(−H)+exp(H)
and κ = 4. Additionally, if the trajectory-wise reward is scaled within the interval of [0, 1], then the
difference in reward will be within the range of [−1, 1]. In this case, another common choice of the
link function is Φ(x) = (x+ 1)/2, which results in κ = κ = 2.

The goal is to minimize the worst-case regret and the query complexity simultaneously:

RegretT :=

T∑
t=1

(
2V ⋆(s1)− V π0

t (s1)− V π1
t (s1)

)
, QueriesT :=

T∑
t=1

Zt.

Here V π(s1) := Eπ[
∑H

h=1 r
⋆(sh, ah)] denotes the state-value function of policy π, and we define

V ⋆(s1) := V π⋆

(s1) where π⋆ is the optimal policy that maximizes the state-value function. The
variable Zt ∈ {0, 1} indicates whether a query is made at round t. Note that the regret looks at the
sum of the performance gaps between two pairs of policies: (π⋆, π0

t ) and (π⋆, π1
t ). This is standard

in dueling bandits (Yue & Joachims, 2011; Yue et al., 2012; Dudı́k et al., 2015; Bengs et al., 2022;
Wu et al., 2023b) and RL with preference-based feedback (Saha et al., 2023; Chen et al., 2022).

Bayesian RL. We also consider Bayesian RL in this work when learning with general function
approximation. In the Bayesian setting, P ⋆ and r⋆ are sampled from some known prior distributions
ρP and ρr. The goal is to minimize the Bayesian regret and the Bayesian query complexity:

BayesRegretT := E

[
T∑

t=1

(
2V ⋆(s1)− V π0

t (s1)− V π1
t (s1)

)]
, BayesQueriesT := E

[
T∑

t=1

Zt

]
.

Here the expectation is taken with respect to the prior distribution over P ⋆ and r⋆. We will use
Bayesian supervised learning oracles to compute posteriors over the transition and reward model.

4 A MODEL-FREE RANDOMIZED ALGORITHM FOR LINEAR MDPS

In this section, we present a model-free algorithm for linear MDPs which is defined as follows.
Assumption 4.1 (Linear MDP (Jin et al., 2020)). We assume a known feature map ϕ : S × A →
Rd, an unknown (signed) measure µ : S → Rd, and an unknown vector θ⋆r such that for any
(s, a) ∈ S × A, we have P ⋆(s′ | s, a) = ϕ⊤(s, a) · µ(s′) and r⋆(s, a) = ϕ⊤(s, a) · θ⋆r . We assume
∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S×A,

∫
S ∥µ(s)∥2 ds ≤

√
d, and ∥θ⋆r ∥2 ≤ B for some B > 0. For a

trajectory τ = (s1, a1, . . . , sH , aH), we define ϕ(τ) =
∑H

h=1 ϕ(sh, ah) and assume ∥ϕ(τ)∥2 ≤ 1.

Linear MDPs can capture tabular MDPs by setting d = |S||A| and ϕ(s, a) to be the one-hot encoding
of (s, a). In this case, we have ∥ϕ(τ)∥2 ≤ H . However, we can scale it down to get ∥ϕ(τ)∥2 ≤ 1 at
the expense of scaling B up by H . We define ΘB = {θ ∈ Rd : ∥θ∥2 ≤ B}, which contains θ⋆r .

4.1 ALGORITHM

The algorithm, called PR-LSVI, is presented in Algorithm 1. At the beginning of episode k, it first
computes the maximum likelihood estimate θ̂r,t (Line 3). Computation-wise, while the likelihood
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objective is not guaranteed to be concave due to the generality of Φ, efficient algorithms exist in
certain common scenarios. For example, if Φ(x) = 1/(1 + exp(−x)), it recovers the BTL model
(Example 3.2). In this case, the MLE objective is concave in θ and thus can be solved in polynomial
running time. Moreover, we emphasize that the reward is learned under trajectory-wise features,
which is different from the standard RL setting where it is learned under state-action features.

Given the MLE θ̂r,t, it next samples θr,t from a Gaussian distribution centered at θ̂r,t (Line 4). Note
that the covariance matrix Σ−1

t−1 uses trajectory-wise features (Line 16) which allows the random-
ized Gaussian vector to capture trajectory-wise uncertainty of the learned reward. The noise aims
to encourage exploration. Then, it computes the least-squares estimate of the state-action value
function θ̂P,t,h for each h ∈ [H] and samples θP,t,h from a Gaussian distribution centered at θ̂P,t,h

(Lines 7-8). Similar to the reward model, the noise is added to the state-value function to encourage
exploration. We then define the value function Qt,h and V t,h as

Qt,h(s, a) := ϕ(s, a)⊤θr,t + ωt,h(s, a), V t,h(s) := max
a

Qt,h(s, a) (1)

and the function ω : S ×A → R is defined as

ωt,h(s, a) =


ϕ(s, a)⊤θP,t,h if ∥ϕ(s, a)∥Σ−1

t−1,h
≤ αL

ρ(s, a)
(
ϕ(s, a)⊤θP,t,h

)
+ (1− ρ(s, a))(H − h) if αL < ∥ϕ(s, a)∥Σ−1

t−1,h
≤ αU

H − h if ∥ϕ(s, a)∥Σ−1
t−1,h

> αU

where ρ(s, a) = (αU − ∥ϕ(s, a)∥Σ−1
t−1,h

)/(αU − αL) interpolates between the two regimes to en-
sure continuity. This truncation trick is from Zanette et al. (2020) and is crucial. It controls the
abnormally high value estimates. Specifically, when ∥ϕ(s, a)∥Σ−1

t−1,h
is large, the uncertainty in the

direction of ϕ(s, a) is large, which makes the estimate ϕ(s, a)⊤θP,t,h abnormally large. In this case,
we have to truncate it to H −h. Moreover, we note that the usual “value clipping” trick (i.e., simply
constraining the value function within the range of [0, H − h + 1] by clipping) cannot easily work
here since it introduces bias to the random walk analysis, also pointed out by Zanette et al. (2020).

Then, the algorithm computes the greedy policy π0
t with respect to Qt,h. The comparator policy π1

t is
simply set to the greedy policy from the previous episode, π0

t−1 . In other words, we are comparing
the two most recent greedy policies. This is different from previous work, which compares the
current greedy policy with a fixed comparator (Wang et al., 2023). Analytically, for our algorithm,
the cumulative regret incurred by π1

t for all t ∈ [T ] is equivalent to that incurred by π0
t for all t ∈ [T ].

Hence, it suffices to compute the regret for one of them and multiply it by two to get the total regret.

Given the trajectories τ0t and τ1t generated by π0
t and π1

t , we compute the expected absolute reward
difference between the trajectories under the same noisy distribution of the reward parameter:

E
θ0,θ1∼N (θ̂r,t,σ2

rΣ
−1
t−1)

[∣∣(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)

∣∣]. (2)

This represents the uncertainty of the preference between the two trajectories, and we make a
query only when it is larger than a threshold ϵ (Line 13). Intuitively, we only make a query on
two trajectories when we are uncertain about the preference (e.g., the expected disagreement
between two randomly sampled reward models is large). Computationally, we can estimate this
expectation by drawing polynomially many reward models from the distribution N (θ̂r,t, σ

2
rΣ

−1
t−1)

and computing the empirical average. The deviation of the empirical average to the true mean
can be easily bounded by standard concentration inequalities. We simply use expectation here for
analytical simplicity. If the query condition is triggered, we make a query for feedback on τ0t , τ

1
t ,

and update the trajectory-wise feature covariance matrix accordingly.

4.2 ANALYSIS

The theoretical results of Algorithm 1 are stated in Theorem 4.2. The detailed assignment of hyper-
parameters can be found in Table 1, and the proof is provided in Appendix B.

Theorem 4.2. Define γ =
√
κ+B2, which characterizes the difficulty of estimating the reward

model. Set σr = Θ̃(γ
√
d), σP = Θ̃(H3/2d2γ), αU = (d5/2H3/2γ)−1, αL = αU/2, and λ = 1.
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Algorithm 1 Preference-based and Randomized Least-Squares Value Iteration (PR-LSVI)
Require: STD σr, σP, threshold ϵ, value cutoff parameters αL, αU, and regularization parameter λ.

1: Let π0
0 be an arbitrary policy, Σ0 ← λI , Σ0,h ← λI (∀h ∈ [H]).

2: for t = 1, . . . , T do
3: θ̂r,t ← argmaxθ∈ΘB

∑t−1
s=1 Zs ln(osΦ((ϕ(τ

1
s )−ϕ(τ0s ))⊤θ)+(1−os)Φ((ϕ(τ0s )−ϕ(τ1s ))⊤θ))

4: θr,t ∼ N (θ̂r,t, σ
2
rΣ

−1
t−1)

5: θ̂P,t,H ← 0, θP,t,H ← 0
6: for h = H − 1, . . . , 1 do
7: θ̂P,t,h ← Σ−1

t−1,h(
∑t−1

i=1 ϕ(s
0
i,h, a

0
i,h)V t,h+1(s

0
i,h+1))

8: θP,t,h ∼ N (θ̂P,t,h, σ
2
PΣ

−1
t−1,h)

9: Define Qt,h and V t,h as in (1).
10: end for
11: Set π0

t ← {π0
t,h : π0

t,h(s) = argmaxa Qt,h(s, a), ∀s ∈ S, h ∈ [H]} and π1
t ← π0

t−1.
12: Sample τ0t ∼ π0

t and τ1t ∼ π1
t .

13: Zt ← 1{Eθ0,θ1∼N (θ̂r,t,σ2
rΣ

−1
t−1)

[|(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)|] > ϵ}

14: if Zt = 1 then
15: Query preference feedback ot on {τ0t , τ1t }
16: Σt ← Σt−1 + (ϕ(τ0t )− ϕ(τ1t ))(ϕ(τ

0
t )− ϕ(τ1t ))

⊤

17: else
18: Σt ← Σt−1

19: end if
20: Σt,h ← Σt−1,h + ϕ(s0t,h, a

0
t,h)ϕ

⊤(s0t,h, a
0
t,h) (∀h ∈ [H]).

21: end for

Then, PR-LSVI (Algorithm 1) guarantees the following with probability at least 1− δ:

RegretT = Õ
(
ϵTd1/2 +

√
T · d3H5/2γ + d17/2H11/2γ3

)
, QueriesT = Õ

(
d4γ4/ϵ2

)
.

To further study the balance between the regret and the query complexity, we let ϵ = T−β for some
β ≤ 1/2. Then, the upper bounds in Theorem 4.2 can be rewritten as

RegretT = Õ(T 1−β), QueriesT = Õ(T 2β)

where we only focus on the dependence on T and omit any other factors for simplicity. We see
that there is a tradeoff in T between the regret and the query complexity — the smaller regret we
want, the more queries we need to make. For example, when β = 0, the regret is Õ(T ), and the
query complexity is Õ(1), meaning that we will incur linear regret if we don’t make any query. If
we increase β to 1/2, the regret decreases to Õ(

√
T ) while the query complexity increases to Õ(T ),

meaning that the regret bound is optimal in T but we make queries every episode.

We emphasize that this tradeoff in T is optimal, as evidenced by a lower bound result established by
Sekhari et al. (2023a). Their lower bound was originally proposed for contextual dueling bandits,
which is a special case of our setting. Their results are stated below.
Theorem 4.3. (Sekhari et al., 2023a, Theorem 5) The following two claims hold: (1) For any algo-
rithm, there exists an instance that leads to RegretT = Ω(

√
T ); (2) For any algorithm achieving an

expected regret upper bound in the form of E[RegretT ] = O(T 1−β) for some β > 0, there exists an
instance that results in E[QueriesT ] = Ω(T 2β).

However, the dependence on other parameters (e.g., d and H) can be loose, and further improvement
may be possible. We leave further investigation of these factors as future work.

Although injecting random noise is inspired by RLSVI (Zanette et al., 2020), we highlight five key
differences between ours and theirs: (1) Since the feedback is trajectory-wise, we need to design ran-
dom noise that preserves the state-action-wise format (so that it can be used in DP) but captures the
trajectory-wise uncertainty. We do this by maintaining Σt, which uses trajectory-wise feature differ-
ences; (2) Since the preference feedback is generated from some probabilistic model, we learn the
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reward model via MLE and use MLE generalization bound (Geer, 2000) to capture the uncertainty in
learning. This allows us to use a more general link function Φ; (3) We design a new regret decompo-
sition technique to accommodate preference-based feedback. Particularly, we decompose regret to
characterizes the reward difference between π0

t and π1
t : RegretT ≲

∑T
t=1(V t− Ṽt)− (V π0

t −V π1
t )

where V t is an estimate of V π0
t , and Ṽt := Eτ∼π1

t
[
∑H

h=1 ϕ(sh, ah)
⊤θr,t] is an estimate of V π1

t

under the real transition and the learned reward model. This is different from standard RL (Zanette
et al., 2020), and is necessary since we cannot guarantee the learned reward model will be accurate
in a state-action-wise manner under the preference-based feedback. (4) Our algorithms have a new
randomized active learning procedure for reducing the number of queries, and our analysis achieves
a near-optimal tradeoff between regret and query complexity; (5) In every round t, we propose to
draw a pair of trajectories where one is from the current greedy policy π0

t and the other is from
the greedy policy of the previous round, π0

t−1. This ensures π1
t is conditionally independent of the

Gaussian noises at round t, which is the key to optimism (with a constant probability).

Running time. To assess the time complexity of Algorithm 1, assuming finite number of actions2,
all steps can be computed in polynomial running time (i.e., polynomial in d,H,A) except the MLE
of the reward model (Line 3), which depends on the link function Φ. For the popular BTL model
where Φ(x) = 1/(1 + exp(−x)), the MLE objective is concave with respect to θ and θ belongs
to a convex set ΘB . In this case, we can use any convex programming algorithms for the MLE
procedure (e.g., projected gradient ascent).

5 A MODEL-BASED THOMPSON SAMPLING ALGORITHM

In this section, we aim to extend to nonlinear function approximation. We do so in a model-based
framework with Thompson sampling (TS). The motivation is that TS is often considered a compu-
tationally more tractable alternative to UCB-style algorithms.

5.1 ALGORITHM

The algorithm, called PbTS, is presented in Algorithm 2. At the beginning of episode k, it computes
the reward model posterior ρr,t and the transition model posterior ρP,t (Line 3). Then, it samples Pt

and rt from the posteriors and computes the optimal policy π0
t assuming the true reward function

is rt and the true model is Pt (Line 5). Here we denote V π
r,P as the state-value function of π under

reward function r and model P . Note that this oracle is a standard planning oracle. The comparator
policy π1

t is simply set to be the policy from the previous episode, π0
t−1, as we did in Algorithm 1.

The two policies then generate respective trajectories τ0t and τ1t . To decide whether we should
make a query, we compute the uncertainty quantity under the posterior distribution of the reward:
Er,r′∼ρr,t

[|r(τ0t )− r(τ1t )− (r′(τ0t )− r′(τ1t ))|], which is analogous to (2) in Algorithm 1. We make
a query only when it is larger than a threshold ϵ. Similar to Algorithm 1, we can approximate this
expectation by sampling polynomial many pairs of r and r′ and then compute the empirical average.

5.2 ANALYSIS

The theoretical results of Algorithm 2 should rely on the complexity of the reward and the transition
model. In our analysis, we employ two complexity measures — eluder dimension and bracketing
number. We start by introducing a generic notion of ℓp-eluder dimension (Russo & Van Roy, 2013).

Definition 5.1 (ℓp-norm ϵ-dependence). Let p > 0. Let X and Y be two sets and d(·, ·) be a
distance function on Y . Let F ⊆ X → Y be a function class. We say an element x ∈ X is ℓp-norm
ϵ-dependent on {x1, x2, . . . , xn} ⊆ X with respect to F and d if any pair of functions f, f ′ ∈ F
satisfying

∑n
i=1 d

p(f(xi), f
′(xi)) ≤ ϵp also satisfies d(f(x), f ′(x)) ≤ ϵ. Otherwise, we say x is

ℓp-norm ϵ-independent of {x1, x2, . . . , xn}.
Definition 5.2 (ℓp-norm eluder dimension). The ℓp-norm ϵ-eluder dimension of function class F ⊆
X → Y , denoted by dimp(F , ϵ, d), is the length of the longest sequence of elements in X satisfying
that there exists ϵ′ ≥ ϵ such that every element in the sequence is ℓp-norm ϵ′-independent of its
predecessors.

2This is to ensure that argmaxa Q(s, a) can be computed efficiently.
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Algorithm 2 Preference-based Thompson Sampling (PbTS)
Require: priors ρP and ρr, threshold ϵ.

1: Let π0
0 be an arbitrary policy.

2: for t = 1, . . . , T do
3: Compute posteriors:

ρP,t(P ) ∝ ρP(P )

t−1∏
i=1

H∏
h=1

P (s0i,h+1 | s0i,h, a0i,h),

ρr,t(r) ∝ ρr(r)

t−1∏
i=1

(
oiΦ
(
r(τ1i )− r(τ0i )

)
+ (1− oi)Φ

(
r(τ0i )− r(τ1i )

))Zi

.

4: Sample Pt ∼ ρP,t and rt ∼ ρr,t.
5: Compute π0

t ← argmaxπ V
π
rt,Pt

(s1) and π1
t ← π0

t−1.
6: Sample τ0t ∼ π0

t and τ1t ∼ π1
t .

7: Zt ← 1{Er,r′∼ρr,t
[|r(τ0t )− r(τ1t )− (r′(τ0t )− r′(τ1t ))|] > ϵ}

8: if Zt = 1 then
9: Query preference feedback ot on {τ0t , τ1t }

10: end if
11: end for

The eluder dimension is non-decreasing in p, i.e., dimp(F , ϵ, d) ≤ dimq(F , ϵ, d) for any p ≤ q. In
the analysis, we will focus on ℓ1- and ℓ2-norm eluder dimension, which have been used in nonlinear
bandits and RL extensively (Wen & Van Roy, 2013; Osband & Van Roy, 2014a; Jain et al., 2015;
Wang et al., 2020; Ayoub et al., 2020; Foster et al., 2021; Ishfaq et al., 2021; Chen et al., 2022;
Liu et al., 2022a; Sekhari et al., 2023a;b). Examples where eluder dimension is small include linear
functions, generalized linear models, and functions in Reproducing Kernel Hilbert Space (RKHS).

The other complexity measure we use is the bracketing number (Van de Geer, 2000).
Definition 5.3 (Bracketing number). Consider a function class F ⊆ X → R. Given two functions
l, u : X → R, the bracket [l, u] is defined as the set of functions f ∈ F with l(x) ≤ f(x) ≤ u(x)
for all x ∈ X . It is called an ω-bracket if ∥l−u∥ ≤ ω. The bracketing number of F w.r.t. the metric
∥ · ∥, denoted by N[](ω,F , ∥ · ∥), is the minimum number of ω-brackets needed to cover F .

The logarithm of the bracketing number is small in many common scenarios, which has been ex-
tensively examined by previous studies (e.g., Van de Geer (2000)) for deriving MLE generalization
bound (Agarwal et al., 2020; Uehara & Sun, 2021; Liu et al., 2022b; 2023). For example, when F
is finite, the bracketing number is bounded by its size. When F is a d-dimensional linear function
class, the logarithm of the bracketing number is upper bounded by d up to logarithmic factors.

It is worth noting that while we will employ both measures to the model classP , we can not similarly
apply them to the reward class R. Instead, we have to rely on the complexity of the following
function class, which comprises functions mapping pairs of trajectories to reward differences:

R̃ :=

{
r̃ : r̃(τ0, τ1) =

H∑
h=1

r(s0h, a
0
h)− r(s1h, a

1
h), ∀τ i = {sih, aih}h, i ∈ {0, 1}, r ∈ R

}
. (3)

We have to use R̃ instead of R because we only receive preference feedback, and thus we cannot
guarantee that the learned reward model is accurate state-action-wise. Now we are ready to state our
main results. The proofs are provided in Appendix C.
Theorem 5.4. PbTS (Algorithm 2) guarantees that

BayesRegretT = Õ

(
Tϵ+H2 · dim1

(
P, 1/T

)
·
√

T · ιP + κ · dim1

(
R̃, 1/T

)
·
√
T · ιR

)
,

BayesQueriesT = Õ

(
min

{
κ
√
T · ιR
ϵ

· dim1

(
R̃, ϵ/2

)
,
κ2 · ιR
ϵ2

· dim2

(
R̃, ϵ/2

)})
where we denote ιP := log(N[]((HT |S|)−1,P, ∥ · ∥∞)) and ιR := log(N[](κ(2T )

−1, R̃, ∥ · ∥∞)).
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Similar to the analysis of Algorithm 1, we study the balance between the Bayesian regret and the
query complexity by setting ϵ = T−β for some β ≤ 1/2. Then, we can simplify the bounds into
BayesRegretT = Õ(T 1−β) and

BayesQueriesT = Õ

(
min

{
T β+ 1

2 · dim1

(
R̃, ϵ/2

)
︸ ︷︷ ︸

(i)

, T 2β · dim2

(
R̃, ϵ/2

)
︸ ︷︷ ︸

(ii)

})

where we have hidden factors except T and the eluder dimension for brevity. We see that there is
again a tradeoff in T between the Bayesian regret and the query complexity, similar to the one in
Theorem 4.2. Term (ii) demonstrates that the tradeoff in T is again optimal, evidenced by the lower
bound (Theorem 4.3). Moreover, term (i) further improves the dependence on the eluder dimension
(recalling that ℓ1-norm version is smaller than the ℓ2-norm version). However, the T -dependence is
worse. It is desired to derive a query complexity upper bound that scales as Õ(T 2β ·dim1(R̃, ϵ/2)),
attaining the favorable dependence on both T and the eluder dimension. We leave it as future work.

We emphasize that the Bayesian regret analysis in Theorem 5.4 is not a simple extension of pre-
vious TS works. We highlight four main differences: (1) The feedback is preference-based, which
necessitates a new Bayesian regret decomposition:

BayesRegretT =

T∑
t=0

E
[
V

π0
t

rt,Pt
− V

π0
t

rt,P⋆

]
︸ ︷︷ ︸

Tmodel

+

T∑
t=0

E
[(

V
π0
t

rt,P⋆ − V
π1
t

rt,P⋆

)
−
(
V

π0
t

r⋆,P⋆ − V
π1
t

r⋆,P⋆

)]
︸ ︷︷ ︸

Treward

.

Here Tmodel and Treward are the respective regret incurred due to model and reward misspecification.
We highlight that Treward characterizes the misspecification in terms of the reward difference be-
tween π0

t and π1
t , which is different from the standard Bayesian RL. (2) Unlike prior works (Russo

& Van Roy, 2014), we do not rely on upper confidence bounds (UCB) or optimism. Instead, we
construct version spaces by classic MLE generalization bound. Taking the reward learning as an
example, given the preference data {τ0i , τ1i , oi}

t−1
i=1 , we construct the version space at round t as

Vt =

{
r ∈ R :

t−1∑
i=1

d2TV

(
Pr(· | τ1i , τ0i , r̂t), Pr(· | τ1i , τ0i , r)

)
≤ β

}
where r̂t := argmaxr log

∑t−1
i=1 Pr(oi | τ1i , τ0i , r) is the MLE from the preference data and β is

tuned appropriately to ensure r⋆ ∈ Vt with high probability. We then show the posterior probability
of rt and r⋆ not belonging to Vt is small. (3) Our analysis uses the tighter ℓ1-norm eluder dimension,
which is strictly better than the ℓ2-norm eluder dimension used in prior work. (4) We also equipped
it with a randomized active learning procedure for query complexity minimization.

Computation. The computational bottleneck of Algorithm 2 lies in the computation of the posterior
distribution (Line 3). Prior TS works have used Bootstrapping to approximate posterior sampling
(Osband et al., 2016a; 2023) and achieved competitive performance in common RL benchmarks.

Non-Markovian reward. Algorithm 2 can also be applied to non-Markovian reward (i.e., reward
model is trajectory-wise) without any change. Here we consider Markovian reward for the consis-
tency with Algorithm 1 and for the purpose of using a standard planning oracle for computing an
optimal policy from a reward and transition model. While non-Markovian reward is more general, it
is unclear how to solve the planning problem efficiently even in tabular MDPs. This computational
intractability makes non-Markovian rewards not easily applicable in practice.

Extension to SEC. In Appendix C.4, we extend the eluder dimension in Theorem 5.4 to the Se-
quential Extrapolation Coefficient (SEC) (Xie et al., 2022), which is more general.

6 CONCLUSION

We use randomization to design algorithms for RL with preference-based feedback. Randomization
allows us to minimize regret and query complexity while at the same time maintaining computation
efficiency. For linear models, our algorithms achieve a near-optimal balance between the worst-case
reward regret and query complexity with computational efficiency. For models beyond linear, using
eluder dimension, we present a TS-inspired algorithm that balances Bayesian regret and Bayesian
query complexity nearly optimally.
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Viktor Bengs, Aadirupa Saha, and Eyke Hüllermeier. Stochastic contextual dueling bandits under
linear stochastic transitivity models. In International Conference on Machine Learning, pp. 1764–
1786. PMLR, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.
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A COMPUTATIONAL CHALLENGES IN RL WITH PREFERENCE-BASED
FEEDBACK

For RL with preference-based feedback, there is currently no algorithm that achieves sublinear
worst-case regret and computational efficiency simultaneously, even for tabular MDPs. In this sec-
tion, we discuss the challenges that hindered previous works from being computationally efficient.
Specifically, the reasons are twofold:

(1) Trajectory-wise information. The feedback is trajectory-wise, meaning that we only receive in-
formation about cumulative rewards instead of per-step rewards. In this case, there is no longer a
ground truth per-step reward signal. To see this, consider an MDP with two steps and a trajectory
with a cumulative reward of 1. Then, we cannot decide the respective per-step reward for the two
steps — it could be that the first step has reward 1 and the second has reward 0, or both have reward
0.5. The preference-based feedback is strictly harder than trajectory-wise reward feedback, and
thus the same issue persists. This invalidates all algorithms relying on per-step reward information
(e.g., UCBVI (Azar et al., 2017)) and necessitates leveraging feedback signal at a trajectory level.
However, trajectory-level approaches typically entail maintaining a version space via trajectory con-
straints (Saha et al., 2023; Chen et al., 2022; Zhan et al., 2023a), and the computational complexity
of searching within this version space is at least exponential in the length of the episode. Some
works circumvent this computational obstacle by additional assumptions (e.g., explorability (Chat-
terji et al., 2021)), which are restrictive and do not generally hold even in tabular MDPs.

(2) Preference-based information. The feedback relies on a pair of policies. Standard algorithms
based on a single policy become computationally intractable when adapting to this setting since
optimizing over a pair of policies simultaneously is qualitatively different. For example, Zhan
et al. (2023b); Saha et al. (2023) use the idea from optimal design and need the computation or-
acle: argmaxπ,π′∈Π ∥Es,a∼πϕ(s, a)− Es,a∼π′ϕ(s, a)∥A for some positive definite matrix A. Here
∥x∥2A := x⊤Ax, and ϕ is some state-action wise feature.3 It is unclear how to implement this oracle
since standard planning approaches relying on dynamic programming cannot be applied here. Addi-
tionally, these methods also require actively maintaining a policy space Π by eliminating potentially
sub-optimal policies. The policy class can be exponentially large even in tabular settings, so it is
unclear how to maintain a valid policy space in a computationally tractable manner.

These challenges motivate us to devise a novel algorithm using a technique distinct from previous
approaches. Our solution centers around the concept of randomization, which allows us to balance
exploration and exploitation and thus enable standard efficient computation oracles (e.g., DP-style
planning oracle like value iteration).

B PROOF OF THEOREM 4.2

B.1 NOTATIONS

We define some symbols and their values in Table 1. We have categorized them into four classes for
the ease of reference.

The concept of covering number is defined below, which will be used to bound the statistical error
of our algorithm.

Definition B.1 (Covering number). Consider a function class F ⊆ X → R. The ω-cover of a
function f̂ ∈ F is defined as the set of functions f ∈ F for which ∥f − f̂∥ ≤ ω. The covering
number of F w.r.t. the metric ∥ · ∥ denoted by N(ω,F , ∥ · ∥) is the minimum number of ω-covers
needed to cover F .

3These prior work typically assume trajectory wise feature ϕ(τ) for a state-action wise trajectory τ .
However, even when specializing to state-action-wise features, these algorithms are still not computationally
tractable even in tabular MDPs.
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Table 1: Symbols and their respective values.

Symbol Value
(1) Error components

ξr,t θr,t − θ̂r,t
ξP,t,h θP,t,h − θ̂P,t,h

λt,h λΣ−1
t−1,h

∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′

ηr,t θ̂r,t − θ⋆r
ηP,t,h Σ−1

t−1,h

(∑t−1
i=1 ϕ(si,h, ai,h)

(
V t,h+1(si,h+1)− Esi,h+1

[
V t,h+1(si,h+1)

∣∣ si,h, ai,h]))
θ⋆P,t,h

∫
s′
µ⋆
h(s

′)
[
V t,h+1(s

′)
]
ds′

(2) Statistical upper bounds

ϵr,ξ σr

√
2d log(2dT/δ)

ϵr,η

√
80κd log

(
24BT 2/(κδ)

)
+ 168B2d log(6BT 2/δ) + 4λB2

Vmax H(2 + (ϵr,ξ + ϵr,η)/
√
λ)

ϵλ Vmax

√
λd

ϵP,ξ σP

√
2d log(2dHT/δ)

ιϵ log
(
12HT 2(T + λ)Vmax

(
B +

2Vmax

√
dt+ϵP,ξ+ϵr,ξ√

λ

))
χ (defined in Lemma B.3)

ϵ′P,η
6√
λ
+ 16dVmax

√
ιϵ − log

(
(αU − αL)δλ

)
ϵP,η χ ·

(
6√
λ
+ 16dVmax

√
ιϵ − log

(
δλ
))

(3) Value cutoff

Lt,h(s) 1{∥ϕ(s, πt,h(s))∥Σ−1
t−1,h

≤ αL}
L∁

t,h(s) 1{∥ϕ(s, πt,h(s))∥Σ−1
t−1,h

> αL}
Lmax

2dH
α2

L
· log

(
λ+T
λ

)
(4) Hyperparameters

σr ϵr,η
σP (ϵP,η + ϵλ)

√
H

αU (ϵP,ξ + ϵP,η + ϵλ)
−1

αL (ϵP,ξ + ϵP,η + ϵλ)
−1/2

λ 1
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B.2 SUPPORTING LEMMAS

Lemma B.2 (Covering number of Euclidean balls). (Pollard, 1990) Let ΘB := {θ ∈ Rd : ∥θ∥2 ≤
B}. Then we have

N(ω,ΘB , ∥ · ∥2) ≤ (3B/ω)d.

Lemma B.3. There exists χ = O(log(ϵP,ξ + ϵP,η + ϵλ)) such that ϵ′P,η ≤ ϵP,η (recalling that χ is
in the definition of ϵP,η).

Proof of Lemma B.3. By definition, we have

ϵ′P,η =
6√
λ
+ 16dVmax

√
ιϵ − log

(
(αU − αL)δλ

)
=

6√
λ
+ 16dVmax

√
ιϵ − log(δλ)− log(αU − αL)

=
6√
λ
+ 16dVmax

√
ιϵ − log(δλ) + log 2(ϵP,ξ + ϵP,η + ϵλ)

≤ χ

(
6√
λ
+ 16dVmax

√
ιϵ − log(δλ)

)
= ϵP,η.

Here the third equality is by the definition of αL and αU. The inequality holds by setting χ =
O(log(ϵP,ξ + ϵP,η + ϵλ)) to be large enough.

Lemma B.4. It holds that ηP,t,h + λt,h = θ̂P,t,h − θ⋆P,t,h for any t ∈ [T ] and h ∈ [H].

Proof of Lemma B.4. By definition, we have
ηP,t,h + λt,h

= Σ−1
t−1,h

(
t−1∑
i=1

ϕ(si,h, ai,h)

(
V t,h+1(si,h+1)− E

sh+1

[
V t,h+1(si,h+1)

∣∣ si,h, ai,h]))

+ λΣ−1
t−1,h

∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′

= θ̂P,t,h − Σ−1
t−1,h

(
t−1∑
i=1

ϕ(si,h, ai,h)ϕ(si,h, ai,h) + λI

)⊤ ∫
s′
µ⋆
h(s

′)
[
V t,h+1(s

′)
]
ds′

= θ̂P,t,h −
∫
s′
µ⋆
h(s

′)
[
V t,h+1(s

′)
]
ds′

= θ̂P,t,h − θ⋆P,t,h.

The following lemma is adapted from Zanette et al. (2020, Lemma 1) to our setting.
Lemma B.5 (One-step decomposition). For any t ∈ [T ], h ∈ [H], s ∈ S, a ∈ A, and policy π, we
have
ϕ(s, a)⊤

(
θr,t + θP,t,h

)
−Qπ

h(s, a)

= ϕ(s, a)⊤(ξr,t + ξP,t,h + ηr,t + ηP,t,h − λt,h) + E
s′

[
V t,h+1(s

′)− V π
h+1(s

′)
∣∣ s, a] .

Proof. We have

ϕ(s, a)⊤
(
θr,t + θP,t,h

)
−Qπ

h(s, a)

= ϕ(s, a)⊤
(
θr,t + θP,t,h

)
− ϕ(s, a)⊤θ⋆r − E

s′
[V π

h+1(s
′) | s, a]

= ϕ(s, a)⊤(θr,t − θ̂r,t) + ϕ(s, a)⊤(θP,t,h − θ̂P,t,h) + ϕ(s, a)⊤(θ̂r,t − θ⋆r )

+ ϕ(s, a)⊤θ̂P,t,h − E
s′
[V π

h+1(s
′) | s, a].
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For the last but one term, we note that

ϕ(s, a)⊤θ̂P,t,h

= ϕ(s, a)⊤Σ−1
t−1,h

(
t−1∑
i=1

ϕ(si,h, ai,h)V t,h+1(si,h+1)

)

= ϕ(s, a)⊤Σ−1
t−1,h

(
t−1∑
i=1

ϕ(si,h, ai,h) E
sh+1

[
V t,h+1(si,h+1)

∣∣ si,h, ai,h])+ ϕ(s, a)⊤ηP,t,h

= ϕ(s, a)⊤Σ−1
t−1,h

(
t−1∑
i=1

ϕ(si,h, ai,h)ϕ(si,h, ai,h)
⊤
∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′

)
+ ϕ(s, a)⊤ηP,t,h

= ϕ(s, a)⊤
∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′ − λϕ(s, a)⊤Σ−1

t−1,h

∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′ + ϕ(s, a)⊤ηP,t,h

= E
s′

[
V t,h+1(s

′)
∣∣ s, a]− ϕ(s, a)⊤λt,h + ϕ(s, a)⊤ηP,t,h.

Plugging this back, we get

ϕ(s, a)⊤
(
θr,t + θP,t,h

)
−Qπ

h(s, a)

= ϕ(s, a)⊤(θr,t − θ̂r,t) + ϕ(s, a)⊤(θP,t,h − θ̂P,t,h) + ϕ(s, a)⊤(θ̂r,t − θ⋆r )

+ E
s′

[
V t,h+1(s

′)− V π
h+1(s

′)
∣∣ s, a]− ϕ(s, a)⊤λt,h + ϕ(s, a)⊤ηP,t,h

= ϕ(s, a)⊤(ξr,t + ξP,t,h + ηr,t + ηP,t,h − λt,h) + E
s′

[
V t,h+1(s

′)− V π
h+1(s

′)
∣∣ s, a] .

This completes the proof.

Lemma B.6. For any t ∈ [T ], if Zt = 0, then we have

∥ϕ(τ0t )− ϕ(τ1t )∥Σ−1
t−1
≤ ϵ
√
π/(2σr).

Proof. By the definition of Zt, we have

ϵ ≥ E
θ0,θ1∼N (θ̂r,t,σ2

rΣ
−1
t−1)

|(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)|

= E
u0,u1∼N (0,Id)

|(ϕ(τ0t )− ϕ(τ1t ))
⊤σrΣ

−1/2
t−1 (u0 − u1)|

= E
u∼N (0,Id)

|(ϕ(τ0t )− ϕ(τ1t ))
⊤√2σrΣ

−1/2
t−1 u|

= σr

√
2 E
u∼N (0,Id)

√
u⊤Σ

−1/2
t−1 (ϕ(τ0t )− ϕ(τ1t ))(ϕ(τ

0
t )− ϕ(τ1t ))

⊤Σ
−1/2
t−1 u

= σr

√
2 E
u∼N (0,Id)

∥u∥
Σ

−1/2
t−1 (ϕ(τ0

t )−ϕ(τ1
t ))(ϕ(τ

0
t )−ϕ(τ1

t ))
⊤Σ

−1/2
t−1

.

We then apply Lemma D.9 and obtain

ϵ ≥ σr

√
2 ·

√√√√2 tr
(
Σ

−1/2
t−1 (ϕ(τ0t )− ϕ(τ1t ))(ϕ(τ

0
t )− ϕ(τ1t ))

⊤Σ
−1/2
t−1

)
π

= 2σr ·

√
(ϕ(τ0t )− ϕ(τ1t ))

⊤Σ
−1/2
t−1 Σ

−1/2
t−1 (ϕ(τ0t )− ϕ(τ1t ))

π

=
2σr√
π
· ∥ϕ(τ0t )− ϕ(τ1t )∥Σ−1

t−1
.

Hence, we complete the proof.
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B.3 STATISTICAL UPPER BOUNDS

Lemma B.7 (Gaussian noise). Each of the following holds with probability at least 1− δ:

1. ∥ξr,t∥Σt−1
≤ ϵr,ξ for all t ∈ [T ],

2. ∥ξP,t,h∥Σt−1,h
≤ ϵP,ξ for all t ∈ [T ] and h ∈ [H].

Proof of Lemma B.7. It simply follows from Lemma D.3 and the union bound.

Lemma B.8. Fix t ∈ [T ]. It holds with probability at least 1− δ that

t−1∑
s=1

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̂r,t

)∣∣∣2
≤8

t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̂r,t

)∣∣∣2 + 168B2d log(3TB/δ).

Here the expectation is taken over the randomness of sampling τ0s and τ1s from π0
s and π1

s , respec-
tively.

Proof of Lemma B.8. Let Θ̃B denote an ω-covering of ΘB with respect to ∥ · ∥2 for some ω > 0.
By Lemma B.2, we have |Θ̃B | ≤ (3B/ω)d. Moreover, for any s ∈ [t − 1], by Cauchy-Schwarz
inequality, it holds that∣∣∣(ϕ(τ0s )− ϕ(τ1s )

)⊤ (
θ⋆r − θ̃

)∣∣∣2 ≤ ∥∥ϕ(τ0s )− ϕ(τ1s )
∥∥2
2
·
∥∥θ⋆r − θ̃

∥∥2
2
≤ 16B2.

Then, by Lemma D.4 and union bound over Θ̃B , it holds that

t−1∑
s=1

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̃
)∣∣∣2

≤2
t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̃
)∣∣∣2 + 64B2d log(3B/(ωδ)) (4)

for all θ̃ ∈ Θ̃B with probability at least 1 − δ. Now we consider an arbitrary θ ∈ ΘB and let
θ̃ ∈ Θ̃B be the closest to θ. Then, by triangle inequality and Cauchy-Schwarz inequality, we have
the following two ineuqalities:∣∣∣(ϕ(τ0s )− ϕ(τ1s )

)⊤
(θ⋆r − θ)

∣∣∣2
≤ 2

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̃
)∣∣∣2 + 2∥ϕ(τ0s )− ϕ(τ1s )∥22∥θ − θ̃∥22

≤ 2
∣∣∣(ϕ(τ0s )− ϕ(τ1s )

)⊤ (
θ⋆r − θ̃

)∣∣∣2 + 8ω2,

and ∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̃
)∣∣∣2

≤ 2
∣∣∣(ϕ(τ0s )− ϕ(τ1s )

)⊤
(θ⋆r − θ)

∣∣∣2 + 2∥ϕ(τ0s )− ϕ(τ1s )∥22∥θ − θ̃∥22

≤ 2
∣∣∣(ϕ(τ0s )− ϕ(τ1s )

)⊤
(θ⋆r − θ)

∣∣∣2 + 8ω2
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Applying these inequalities and (4), we get

t−1∑
s=1

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤

(θ⋆r − θ)
∣∣∣2

≤2
t−1∑
s=1

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̃
)∣∣∣2 + 8ω2t

≤4
t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̃
)∣∣∣2 + 128B2d log(3B/(ωδ)) + 8ω2t

≤8
t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤

(θ⋆r − θ)
∣∣∣2 + 128B2d log(3B/(ωδ)) + 40ω2t

≤8
t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤

(θ⋆r − θ)
∣∣∣2 + 168B2d log(3TB/δ)

where the last step holds by setting ω = 1/t.

Lemma B.9 (Reward estimation error). It holds with probability at least 1−δ that ∥ηr,t∥Σt−1
≤ ϵr,η

for all t ∈ [T ].

Proof of Lemma B.9. Since θ̂r,t is the MLE, by Lemma D.10, we have

t−1∑
s=1

E
τ0
s ,τ

1
s

d2TV

(
Pr
(
·
∣∣ τ0s , τ1s , θ⋆r ) ,Pr(· ∣∣∣ τ0s , τ1s , θ̂r,t)) ≤ 10 log

(
N[]

(
(2T )−1,R, ∥ · ∥∞

)
/δ
)
(5)

with probability at least 1 − δ, where R denotes the set of probability distributions of preference
feedback and Pr(·) denotes the preference feedback generating probability. Now we upper bound
the covering number ofR by the covering number of ΘB . We notice the following:

sup
o,τ0,τ1

∣∣∣Pr (o ∣∣ τ0, τ1, θ⋆r )− Pr
(
o
∣∣∣ τ0, τ1, θ̂r,t)∣∣∣

= sup
τ0,τ1

∣∣∣Φ((ϕ(τ0)− ϕ(τ1)
)⊤

θ⋆r

)
− Φ

((
ϕ(τ0)− ϕ(τ1)

)⊤
θ̂r,t

)∣∣∣
≤κ−1 sup

τ0,τ1

∣∣∣(ϕ(τ0)− ϕ(τ1)
)⊤(

θ⋆r − θ̂r,t
)∣∣∣

≤κ−1 sup
τ0,τ1

∥ϕ(τ0)− ϕ(τ1)∥2∥θ⋆r − θ̂r,t∥2

≤2κ−1∥θ⋆r − θ̂r,t∥2

where the equality holds since the feedback o is binary, the first inequality is Lemma D.1, and the last
inequality is by the condition that ∥ϕ(τ)∥2 ≤ 1 for any trajectory τ . This means that an ω-covering
of the space of parameter θ implies a 2ωκ−1-covering of the space of the probability distribution of
the preference feedbacks. Hence, (5) can be further upper bounded by

t−1∑
s=1

E
τ0
s ,τ

1
s

d2TV

(
Pr
(
·
∣∣ τ0s , τ1s , θ⋆r ) ,Pr(· ∣∣∣ τ0s , τ1s , θ̂r,t))

≤ 10 log
(
N[]

(
(2T )−1,R, ∥ · ∥∞

)
/δ
)

≤ 10 log
(
N
(
κ/(4T ),ΘB , ∥ · ∥2

)
/δ
)

≤ 10d log
(
12BT/(κδ)

)
(6)
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where the last inequality is Lemma B.2. For the left side, we note that

t−1∑
s=1

E
τ0
s ,τ

1
s

d2TV

(
Pr
(
·
∣∣ τ0s , τ1s , θ⋆r ) ,Pr(· ∣∣∣ τ0s , τ1s , θ̂r,t))

=

t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣Φ((ϕ(τ0s )− ϕ(τ1s )
)⊤

θ⋆r

)
− Φ

((
ϕ(τ0s )− ϕ(τ1s )

)⊤
θ̂r,t

)∣∣∣2
≥κ−1

t−1∑
s=1

E
τ0
s ,τ

1
s

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̂r,t

)∣∣∣2
≥1

8
κ−1

t−1∑
s=1

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̂r,t

)∣∣∣2 − 21κ−1B2d log(3TB/δ) (7)

with probability at least 1− δ, where the first inequality is by Lemma D.1 and the last inequality is
by Lemma B.8. Furthermore, we have

t−1∑
s=1

∣∣∣(ϕ(τ0s )− ϕ(τ1s )
)⊤ (

θ⋆r − θ̂r,t

)∣∣∣2
=
(
θ⋆r − θ̂r,t

)⊤ t−1∑
s=1

(
ϕ(τ0s )− ϕ(τ1s )

)(
ϕ(τ0s )− ϕ(τ1s )

)⊤ (
θ⋆r − θ̂r,t

)
=
(
θ⋆r − θ̂r,t

)⊤
Σt−1

(
θ⋆r − θ̂r,t

)
−
(
θ⋆r − θ̂r,t

)⊤
λI
(
θ⋆r − θ̂r,t

)
≥ ∥ηr,t∥2Σt−1

− 4λB2 (8)

Putting (6), (7), and (8) together, we get

∥ηr,t∥2Σt−1
≤ 80κd log

(
12BT/(κδ)

)
+ 168B2d log(3TB/δ) + 4λB2

with probability at least 1 − 2δ. Adjusting δ to δ/2 and taking the union bound over t ∈ [T ] yields
the desired result.

Lemma B.10 (One-step transition estimation error). Assume the events defined in Lemma B.7 hold.
Then, the following claim holds for all t ∈ [T ] and h ∈ [H] with probability at least 1 − δ: if
maxs |V t,h+1(s)| ≤ Vmax, it holds that ∥ηP,t,h∥Σt−1,h

≤ ϵP,η.

Proof of Lemma B.10. By definition, we have

∥ηP,t,h∥Σt−1,h
=

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)

(
V t,h+1(si,h+1)− E

si,h+1

[
V t,h+1(si,h+1)

∣∣ si,h, ai,h])
∥∥∥∥∥
Σ−1

t−1,h

.

Towards an upper bound of the above, we will conduct some covering arguments. To that end, we
first derive the upper bounds of norms of θr,t and θP,t,h.

Bounding the ℓ2-norms of θr,t and θP,t,h. For θr,t, applying triangle inequality, we have
∥θr,t∥2 ≤ ∥ξr,t∥2 + ∥θ̂r,t∥2 ≤ ∥ξr,t∥2 +B. For ∥ξr,t∥2, we have

∥ξr,t∥2 =

√
ξ⊤r,tΣ

−1/2
t−1 Σ

1/2
t−1ξr,t ≤

√
∥ξr,t∥Σt−1

∥ξr,t∥Σ−1
t−1
≤
√
ϵr,ξ · ∥ξr,t∥2/

√
λ

where in the last step we applied Lemma B.7 and the fact that ∥ξr,t∥Σ−1
t−1
≤ ∥ξr,t∥2∥Σ−1/2

t−1 ∥2 ≤
∥ξr,t∥2/

√
λ. This implies that ∥ξr,t∥2 ≤ ϵr,ξ/

√
λ, and thus, ∥θr,t∥2 ≤ ϵr,ξ/

√
λ+B.

For θP,t,h, we have ∥θP,t,h∥2 ≤ ∥ξP,t,h∥2 + ∥θ̂P,t,h∥2. For ∥ξP,t,h∥2, following a similar argument
as above, we have

∥ξP,t,h∥2 ≤
√
∥ξP,t,h∥Σt−1,h

∥ξP,t,h∥Σ−1
t−1,h

≤
√
ϵP,ξ · ∥ξP,t,h∥2/

√
λ,
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which implies that ∥ξP,t,h∥2 ≤ ϵP,ξ/
√
λ. For ∥θ̂P,t,h∥2, we have

∥θ̂P,t,h∥2 =

∥∥∥∥∥Σ−1/2
t−1,hΣ

−1/2
t−1,h

(
t−1∑
i=1

ϕ(si,h, ai,h)V t,h+1(si,h+1)

)∥∥∥∥∥
2

≤∥Σ−1/2
t−1,h∥2 ·

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)V t,h+1(si,h+1)

∥∥∥∥∥
Σ−1

t−1,h

≤
√
λ−1 ·

√
t ·

√√√√t−1∑
i=1

∥∥ϕ(si,h, ai,h)V t,h+1(si,h+1)
∥∥2
Σ−1

t−1,h

≤
√
λ−1 ·

√
t · Vmax ·

√√√√t−1∑
i=1

∥ϕ(si,h, ai,h)∥2Σ−1
t−1,h

≤Vmax

√
dt√

λ

where the second inequality is by the Jensen’s inequality, the third inequality is by the condition that
maxs |V t,h(s)| ≤ Vmax, and the last inequality is by Lemma D.7. Putting these together, we get
∥θP,t,h∥2 ≤ ϵP,ξ/

√
λ+ Vmax

√
dt/
√
λ.

Covering construction. With these bounds in hand, we can now proceed with a covering con-
struction. First define

Qθr,θP,Σ(s, a)

:= ϕ(s, a)⊤θr +


ϕ(s, a)⊤θP if ∥ϕ(s, a)∥Σ ≤ αL

ρ(s, a)
(
ϕ(s, a)⊤θP

)
+ (1− ρ(s, a))(H − h) if αL < ∥ϕ(s, a)∥Σ ≤ αU

H − h if ∥ϕ(s, a)∥Σ > αU

,

Vθr,θP,Σ(s) := max
a

Qθr,θP,Σ(s, a). (9)

where ρ(s, a) := αU−∥ϕ(s,a)∥Σ

αU−αL
. This definition aims to mimic the behavior of Algorithm 1. Then,

we define the space of parameters as follows

U :=
{
(θr, θP,Σ) : ∥θr∥2 ≤ B + ϵr,ξ/

√
λ, ∥θP∥2 ≤ (Vmax

√
dt+ ϵP,ξ)/

√
λ,

∥Σ∥F ≤
√
d/λ, Σ = Σ⊤, Σ ⪰ 0, ∥Vθr,θP,Σ∥∞ ≤ Vmax

}
.

Clearly, θr,t and θP,t,h satisfy the constraints of θr and θP. Moreover, ∥Σ−1
t−1∥F ≤

√
d∥Σ−1

t−1∥2 ≤√
d/λ, and thus Σ−1

t−1 satisfies the constraint of Σ. Hence, we have (θr,t, θP,t,h,Σt−1) ∈ U .

By Lemma B.2, the size of an ω-covering of U by treating it as a subset of R2d+d2

can be bounded
by

N(ω,U , ∥ · ∥2) ≤

3
(
(B + ϵr,ξ/

√
λ) + (Vmax

√
dt+ ϵP,ξ)/

√
λ+
√
d/λ

)
ω

2d+d2

We denote the covering set by Ũ . We will write N := N(ω,U , ∥ ·∥2) for simplicity when there is no
ambiguity. We note that it is possible that not all points in Ũ belong to U . However, we can project
all points to U so it becomes a 2ω-covering of U . We will omit this subtlety.

Covering argument. For any (θr, θP,Σ) ∈ U , we define

xi,θr,θP,Σ := Vθr,θP,Σ(si,h+1)− E
s′
[Vθr,θP,Σ(s

′) | si,h, ai,h] .
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By construction, we have |xi,θr,θP,Σ| ≤ 2Vmax, so it is 4Vmax-subgaussian conditioning on
(si,h, ai,h). Hence, for all (θr, θP,Σ) ∈ Ũ , we have∥∥∥∥∥

t−1∑
i=1

ϕ(si,h, ai,h)xi,θr,θP,Σ

∥∥∥∥∥
Σ−1

t−1,h

≤

√
32V 2

max

(
d log

(
1 +

t

λ

)
+ log(N/δ)

)
(10)

with probability at least 1−δ by Lemma D.5 and the union bound over Ũ . Now consider an arbitrary
tuple (θr, θP,Σ) ∈ U and the nearest point (θ̃r, θ̃P, Σ̃) ∈ Ũ . Then, we have∥∥∥∥∥

t−1∑
i=1

ϕ(si,h, ai,h)xi,θr,θP,Σ

∥∥∥∥∥
Σ−1

t−1,h

≤

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)xi,θ̃r,θ̃P,Σ̃

∥∥∥∥∥
Σ−1

t−1,h

+

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)(xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ̃)

∥∥∥∥∥
Σ−1

t−1,h

≤

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)xi,θ̃r,θ̃P,Σ̃

∥∥∥∥∥
Σ−1

t−1,h

+

t−1∑
i=1

∥ϕ(si,h, ai,h)∥Σ−1
t−1,h

·max
i
|xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ̃

|

≤

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)xi,θ̃r,θ̃P,Σ̃

∥∥∥∥∥
Σ−1

t−1,h

+
√
λ−1 · t ·max

i
|xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ̃|

where the last step is by the fact that ∥ϕ(si,h, ai,h)∥Σ−1
t−1,h

≤
√
λ−1. Observing the derived upper

bound above, the first term is already bounded by (10) since (θ̃r, θ̃P, Σ̃) ∈ Ũ . To bound the second
term, we note that, by the definiton of xi,θr,θP,Σ and xi,θ̃r,θ̃P,Σ̃,

|xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ̃
| ≤2max

s

∣∣∣Vθr,θP,Σ(s)− Vθ̃r,θ̃P,Σ̃(s)
∣∣∣

=2max
s

∣∣∣max
a

Qθr,θP,Σ(s, a)−max
a

Qθ̃r,θ̃P,Σ̃(s, a)
∣∣∣

≤2max
s,a

∣∣∣Qθr,θP,Σ(s, a)−Qθ̃r,θ̃P,Σ̃(s, a)
∣∣∣

We assume ω ≤ (αU − αL)
2 (and this will be satisfied later when we specify the value of ω).

Recall that we have three cases in the definition of Qθr,θP,Σ(s, a) (see (9)), and we will refer to them
as Case L, Case M, and Case U. There are in total 6 possible combinations of cases for the pair
Qθr,θP,Σ(s, a), Qθ̃r,θ̃P,Σ̃(s, a), and we will discuss them one by one below. For the ease of notation,

we denote Q(s, a) and Q̃(s, a) as shorthand for Qθr,θP,Σ(s, a) and Qθ̃r,θ̃P,Σ̃(s, a).

(1) Case L + Case U. This is impossible, because, in this case, we have |∥ϕ∥Σ − ∥ϕ∥Σ̃| >

αU − αL, but we also have |∥ϕ∥Σ − ∥ϕ∥Σ̃| = |
√
ϕ⊤Σϕ −

√
ϕ⊤Σ̃ϕ| ≤

√
|ϕ⊤(Σ− Σ̃)ϕ| ≤√

∥ϕ∥2∥Σ− Σ̃∥F∥ϕ∥2 ≤
√
ω < αU − αL.

(2) Both are Case L. Then we immediately have

|Q(s, a)− Q̃(s, a)| =
∣∣∣ϕ(s, a)⊤(θr + θP − θ̃r − θ̃P)

∣∣∣ ≤ ∥ϕ(s, a)∥2(∥θr − θ̃r∥2 + ∥θP − θ̃P∥2
)
≤ 2ω.

(3) Both are Case U. Then we immediately have

|Q(s, a)− Q̃(s, a)| =
∣∣∣ϕ(s, a)⊤(θr − θ̃r)

∣∣∣ ≤ |ϕ(s, a)∥2 · ∥θr − θ̃r∥2 ≤ ω.
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(4) Case L + Case M. Without loss of generality, we assume Q(s, a) is in Case M and Q̃(s, a) is
in Case L. Then we have

|Q(s, a)− Q̃(s, a)| ≤ρ(s, a)
∣∣∣ϕ(s, a)⊤(θr + θP − θ̃r − θ̃P)

∣∣∣
+ (1− ρ(s, a))

∣∣∣ϕ(s, a)⊤(θ̃r + θ̃P)− (H − h)
∣∣∣

≤ρ(s, a) · 2ω + (1− ρ(s, a)) · 2Vmax

Recall that ρ(s, a) := αU−∥ϕ(s,a)∥Σ

αU−αL
, so 1− ρ(s, a) := ∥ϕ(s,a)∥Σ−αL

αU−αL
. Futhermore,

1− ρ(s, a) =
∥ϕ(s, a)∥Σ − αL

αU − αL
=
∥ϕ(s, a)∥Σ − ∥ϕ(s, a)∥Σ̃ + ∥ϕ(s, a)∥Σ̃ − αL

αU − αL

≤
∥ϕ(s, a)∥Σ − ∥ϕ(s, a)∥Σ̃

αU − αL
=

√
ϕ⊤Σϕ−

√
ϕ⊤Σ̃ϕ

αU − αL

≤

√
|ϕ⊤(Σ− Σ̃)ϕ|
αU − αL

≤

√
∥ϕ∥2∥Σ− Σ̃∥2∥ϕ∥2

αU − αL
≤

√
ω

αU − αL

where the first inequality is by the condition that Q̃ is in Case L. Inserting this back, we get |Q(s, a)−
Q̃(s, a)| ≤ 2ω + 2Vmax

√
ω

αU−αL
.

(5) Case M + Case U. Without loss of generality, we assume Q(s, a) is in Case M and Q̃(s, a) is
in Case U. Then we have
|Q(s, a)− Q̃(s, a)| ≤ρ(s, a)

∣∣ϕ(s, a)⊤(θr + θP − (H − h))
∣∣+ (1− ρ(s, a)) |(H − h)− (H − h)|

=ρ(s, a)
∣∣ϕ(s, a)⊤(θr + θP − (H − h))

∣∣ ≤ ρ(s, a) · 2Vmax ≤
2Vmax

√
ω

αU − αL

where the last inequality is from

ρ(s, a) =
αU − ∥ϕ(s, a)∥Σ

αU − αL
=

αU − ∥ϕ(s, a)∥Σ − ∥ϕ(s, a)∥Σ̃ + ∥ϕ(s, a)∥Σ̃
αU − αL

≤
∥ϕ(s, a)∥Σ̃ − ∥ϕ(s, a)∥Σ

αU − αL
=

√
ϕ⊤Σ̃ϕ−

√
ϕ⊤Σϕ

αU − αL

≤

√
|ϕ⊤(Σ− Σ̃)ϕ|
αU − αL

≤

√
∥ϕ∥2∥Σ− Σ̃∥2∥ϕ∥2

αU − αL
≤

√
ω

αU − αL
.

where the first inequality is by the condition that Q̃ is in Case U.

(6) Both are Case M. Denote ρ(s, a) = αU−∥ϕ(s,a)∥Σ

αU−αL
and ρ̃(s, a) =

αU−∥ϕ(s,a)∥Σ̃

αU−αL
. Then, we

have

|ρ(s, a)− ρ̃(s, a)| =

∣∣∣∥ϕ(s, a)∥Σ̃ − ∥ϕ(s, a)∥Σ∣∣∣
αU − αL

≤

√
∥ϕ∥2∥Σ̃− Σ∥F∥ϕ∥2

αU − αL
≤

√
ω

αU − αL
,

which also implies |(1− ρ(s, a))− (1− ρ̃(s, a))| ≤
√
ω

αU−αL
. Hence, we have

|Q(s, a)− Q̃(s, a)| ≤
∣∣∣ρ(s, a)ϕ(s, a)⊤(θr + θP)− ρ̃(s, a)ϕ(s, a)⊤(θ̃r + θ̃P)

∣∣∣
+ |(1− ρ(s, a))(H − h)− (1− ρ̃(s, a))(H − h)|

≤
∣∣∣ρ(s, a)ϕ(s, a)⊤(θr + θP)− ρ(s, a)ϕ(s, a)⊤(θ̃r + θ̃P)

∣∣∣
+
∣∣∣ρ(s, a)ϕ(s, a)⊤(θ̃r + θ̃P)− ρ̃(s, a)ϕ(s, a)⊤(θ̃r + θ̃P)

∣∣∣
+ |(1− ρ(s, a))(H − h)− (1− ρ̃(s, a))(H − h)|

≤2ω +
Vmax

√
ω

αU − αL
+

H
√
ω

αU − αL
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Putting Everything Together. Taking the maximum of the six cases, we conclude that

|Q(s, a)− Q̃(s, a)| ≤ 2ω +
2Vmax

√
ω

αU − αL

We set ω =
(

αU−αL

2tVmax

)2
and obtain

|Q(s, a)− Q̃(s, a)| ≤ 2

(
αU − αL

2tVmax

)2

+
1

t
≤ 3

t

where we leverage the condition that αL, αU ≤ 1. Thus, we have

|xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ̃
| ≤ 2max

s,a

∣∣∣Q(s, a)− Q̃(s, a)
∣∣∣ ≤ 6

t
.

Final Bound. The covering argument is now complete, and we can use it to derive an upper bound
for ∥ηP,t,h∥Σt−1,h

. To that end, we note that, for ηP,t,h, there must exists (θr, θP,Σ) ∈ U and its
closest element (θ̃r, θ̃P, Σ̃) ∈ Ũ such that

∥ηP,t,h∥Σt−1,h

=

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)

(
V t,h+1(si,h+1)− E

si,h+1

[V t,h+1(si,h+1) | si,h, ai,h]
)∥∥∥∥∥

Σ−1
t−1,h

=

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)xi,θr,θP,Σ

∥∥∥∥∥
Σ−1

t−1,h

=

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)xi,θ̃r,θ̃P,Σ

∥∥∥∥∥
Σ−1

t−1,h

+

∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)
(
xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ

)∥∥∥∥∥
Σ−1

t−1,h

where the second term is bounded by∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)
(
xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ

)∥∥∥∥∥
Σ−1

t−1,h

≤
t−1∑
i=1

∥∥∥ϕ(si,h, ai,h)(xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ

)∥∥∥
Σ−1

t−1,h

≤
√
λ−1 · t ·max

i
|xi,θr,θP,Σ − xi,θ̃r,θ̃P,Σ

|

≤6/
√
λ,

and, applying (10), the first term is bounded by∥∥∥∥∥
t−1∑
i=1

ϕ(si,h, ai,h)xi,θ̃r,θ̃P,Σ

∥∥∥∥∥
Σ−1

t−1,h

≤

√
32V 2

max

(
d log

(
1 +

t

λ

)
+ log(N/δ)

)

≤

√√√√√32V 2
max

d log

(
1 +

t

λ

)
+ (2d+ d2) log

3
(
(B + ϵr,ξ/

√
λ) + (Vmax

√
dt+ ϵP,ξ)/

√
λ+

√
d/λ

)
ωδ



=Vmax

√√√√√32d log

(
1 +

t

λ

)
+ 32(2d+ d2) log

12V 2
maxt2

(
(B + ϵr,ξ/

√
λ) + (Vmax

√
dt+ ϵP,ξ)/

√
λ+

√
d/λ

)
(αU − αL)2δ


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where the second inequality is by inserting the upper bound of the covering number N , and the
equality is by inserting the value of ω. The last line looks complicated and we can further simplify
it and get∥∥∥∥∥

t−1∑
i=1

ϕ(si,h, ai,h)xi,θ̃r,θ̃P,Σ

∥∥∥∥∥
Σ−1

t−1,h

≤16dVmax

√√√√√log

12Vmaxt(t+ λ)
(
(B + ϵr,ξ/

√
λ) + (Vmax

√
dt+ ϵP,ξ)/

√
λ+
√
d/λ

)
(αU − αL)δλ

.

Plugging these upper bounds back, we obtain

∥ηP,t,h∥Σt−1,h

≤ 6√
λ
+ 16dVmax

√√√√√log

12Vmaxt(t+ λ)
(
(B + ϵr,ξ/

√
λ) + (Vmax

√
dt+ ϵP,ξ)/

√
λ+
√
d/λ

)
(αU − αL)δλ

.

Applying union bound over all t ∈ [T ] and h ∈ [H], the upper bound exactly becomes ϵ′P,η . Further
invoking Lemma B.3 finishes the proof.

Lemma B.11 (Boundness of value functions and transition estimation Error). Assume the events
define in Lemmas B.7 and B.9 hold. Then, the following holds with probability at least 1− δ:

1. maxs,a |Qt,h(s, a)| ≤ Vmax for all t ∈ [T ] and h ∈ [H].

2. ∥ηP,t,h∥Σt−1,h
≤ ϵP,η for all t ∈ [T ] and h ∈ [H].

3. ∥λt,h∥Σt−1,h
≤ ϵλ for all t ∈ [T ] and h ∈ [H].

The first statement implies maxs |V t,h(s)| ≤ Vmax for all t ∈ [T ] and h ∈ [H].

Proof. We prove the three statements together by induction.

For the first statement, we define Vmax,h := (H−h+1)(1+(ϵr,ξ+ ϵr,η)/
√
λ), and we will actually

show that maxs,a |Qt,h(s, a) − Q⋆
h(s, a)| ≤ Vmax,h in the induction, which immediately leads to

maxs,a |Qt,h(s, a)| ≤ Vmax,h + (H − h+ 1) ≤ Vmax.

Base. For h = H , we can directly apply Lemma B.10 without the transition argument, which
leads to the desired upper bound of ∥ηP,t,H∥Σt−1,h

. Moreover, the upper bound of ∥λt,h∥Σt−1,h
also

trivially holds. For an upper bound on the value function, we immediately have∣∣Qt,H(s, a)−Q⋆
H(s, a)

∣∣ = ∣∣ϕ(s, a)⊤(θr,t − θ⋆r )
∣∣ ≤ ∥ϕ(s, a)∥Σ−1

t−1
∥θr,t − θ⋆r ∥Σt−1

by Cauchy-Schwarz inequality. We note that ∥ϕ(s, a)∥Σ−1
t−1
≤
√
λ−1 and ∥θr,t− θ⋆r ∥Σt−1 ≤ ∥ξr,t+

ηr,t∥Σt−1
≤ ∥ξr,t∥Σt−1

+ ∥ηr,t∥Σt−1
≤ ϵr,ξ + ϵr,η . Hence, we have∣∣Qt,H(s, a)−Q⋆
H(s, a)

∣∣ ≤ (ϵr,ξ + ϵr,η)/
√
λ ≤ Vmax,H .

Inductive Steps. Now consider h < H . By induction hypothesis, we have maxt,s |V t,h+1(s)| ≤
Vmax. Thus, we can apply Lemma B.10 and get ∥ηP,t,h∥Σt−1,h

≤ ϵP,η . For the upper bound of
∥λt,h∥Σt−1,h

, by definition, we have

∥λt,h∥Σt−1,h
=

∥∥∥∥λ ∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′

∥∥∥∥
Σ−1

t−1,h

≤
√
λ

∥∥∥∥∫
s′
µ⋆
h(s

′)V t,h+1(s
′) ds′

∥∥∥∥
2

≤Vmax

√
λd = ϵλ
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where the second inequality is by ∥Σ−1/2
t−1,h∥2 ≤

√
λ, and the last inequality is by Assumption 4.1.

For the upper bound on the value function, consider the following three cases.

Case 1: ∥ϕ(s, a)∥Σ−1
t−1,h

≤ αL. We apply Lemma B.5 and get

|ϕ(s, a)⊤
(
θr,t + θP,t,h

)
−Q⋆

h(s, a)|

=

∣∣∣∣ϕ(s, a)⊤(ξr,t + ξP,t,h + ηr,t + ηP,t,h − λt,h) + E
s′

[
V t,h+1(s

′)− V ⋆
h+1(s

′)
∣∣ s, a]∣∣∣∣

≤
∣∣ϕ(s, a)⊤(ξr,t + ηr,t)

∣∣+ ∣∣ϕ(s, a)⊤(ξP,t,h + ηP,t,h − λt,h)
∣∣+ ∣∣∣∣E

s′

[
V t,h+1(s

′)− V ⋆
h+1(s

′)
∣∣ s, a]∣∣∣∣

≤(ϵr,ξ + ϵr,η)/
√
λ+ ∥ϕ(s, a)∥Σ−1

t−1,h
(ϵP,ξ + ϵP,η + ϵλ) +

(
(H − h)(1 +

(
ϵr,ξ + ϵr,η)/

√
λ
))

≤(ϵr,ξ + ϵr,η)/
√
λ+ 1 +

(
(H − h)(1 +

(
ϵr,ξ + ϵr,η)/

√
λ
))

=(H − h+ 1)(1 +
(
ϵr,ξ + ϵr,η)/

√
λ
)

=Vmax,h

where the second inequality is by Cauchy-Schwarz inequality, Lemmas B.7 and B.9, and the induc-
tion hypothesis. The third inequality is by the condition that ∥ϕ(s, a)∥Σ−1

t−1,h
≤ αL and the definition

of αL.

Case 2: ∥ϕ(s, a)∥Σ−1
t−1,h

> αU. We have

|Qt,h(s, a)−Q⋆
h(s, a)

∣∣∣ ≤|ϕ(s, a)⊤θr,t +H − h−Q⋆
h(s, a)|

=|ϕ(s, a)⊤(ξr,t + ηr,t) +H − h+ ϕ(s, a)⊤θ⋆r −Q⋆
h(s, a)|

≤(ϵr,ξ + ϵr,η)/
√
λ+ (H − h+ 1)

≤Vmax,h

where we used the fact that 0 ≤ ϕ(s, a)⊤θ⋆r ≤ 1 and 0 ≤ Q⋆
h(s, a) ≤ H − h + 1, which leads to

−(H − h+ 1) ≤ ϕ(s, a)⊤θ⋆r −Q⋆
h(s, a) ≤ 1.

Case 3: αL < ∥ϕ(s, a)∥Σ−1
t−1,h

≤ αU. Denoting ρ := ρ(s, a) for simplicity, we have∣∣∣Qt,h(s, a)−Q⋆
h(s, a)

∣∣∣
≤ρ
∣∣∣ϕ(s, a)⊤ (θr,t + θP,t,h

)
−Q⋆

h(s, a)
∣∣∣+ (1− ρ)

∣∣∣ϕ(s, a)⊤θr,t +H − h−Q⋆
h(s, a)

∣∣∣
≤ρ(H − h+ 1)

(
1 + (ϵr,ξ + ϵr,η)/

√
λ
)
+ (1− ρ)

∣∣∣ϕ(s, a)⊤(ξr,t + ηr,t) +H − h+ ϕ(s, a)⊤θ⋆r −Q⋆
h(s, a)

∣∣∣
≤ρ(H − h+ 1)

(
1 + (ϵr,ξ + ϵr,η)/

√
λ
)
+ (1− ρ)

(
(ϵr,ξ + ϵr,η)/

√
λ+ (H − h+ 1)

)
≤Vmax,h

where we have used the similar arguments from Case 1 and 2.

Taking the maximum over the three cases, we conclude that

|Qt,h(s, a)−Q⋆
h(s, a)| ≤ Vmax,h

which implies maxs,a |Qt,h(s, a)| ≤ Vmax.

Lemma B.12 (High probability bounds – summary). All of the following events hold simultaneously
with probability at least 1− δ:

1. ∥ξr,t∥Σt−1
≤ ϵr,ξ for all t ∈ [T ]

2. ∥ξP,t,h∥Σt−1,h
≤ ϵP,ξ for all t ∈ [T ] and h ∈ [H].

26



Published as a conference paper at ICLR 2024

3. ∥ηr,t∥Σt−1
≤ ϵr,η for all t ∈ [T ].

4. ∥ηP,t,h∥Σt−1,h
≤ ϵP,η for all t ∈ [T ] and h ∈ [H].

5. ∥λt,h∥Σt−1,h
≤ ϵλ for all t ∈ [T ] and h ∈ [H].

6. |Qt,h(s, a)| ≤ Vmax and |V t,h(s)| ≤ Vmax for all (s, a) ∈ S ×A, t ∈ [T ], and h ∈ [H].

Proof of Lemma B.12. The first and second statements are by Lemma B.7. The third is by
Lemma B.9. The last three are by Lemma B.11. Then we take a union bound over all of them.

B.4 BOUNDING REGRET

We define

Ṽt = E
τ∼π1

t

[
H∑

h=1

ϕ(sh, ah)
⊤θr,t

]
.

Lemma B.13. Assume all events listed in Lemma B.12 hold. Fix t ∈ [T ]. Then, we have (V ⋆ −
V t) + (Ṽ − V π1

t ) ≤ 0 with probability at least F2(−1) where F denotes the CDF of a standard
normal distribution (i.e., N (0, 1)).

Proof. Define the indicators

L⋆
t,h(s) :=1

{
∥ϕ(s, π⋆(s))∥Σ−1

t−1,h
≤ αL

}
,

M⋆
t,h(s) :=1

{
αL < ∥ϕ(s, π⋆(s))∥Σ−1

t−1,h
≤ αU

}
,

U⋆
t,h(s) :=1

{
∥ϕ(s, π⋆(s))∥Σ−1

t−1,h
> αU

}
.

We note that they are independent of the random noises at episode t and only depends on the infor-
mation up to episode t− 1. Then, we can decompose V ⋆ − V t:

V ⋆ − V t = E
s1

[
V ⋆
1 (s1)− V t,1(s1)

]
= E

s1

[
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

0
t,1(s1))

]
≤ E

s1

[
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
]

= E
s1

[
L⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
)]

+ E
s1

[
M⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
)]

+ E
s1

[
U⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
)]

=:TL + TM,+TU.

Now we establish upper bounds for each term. For TU, we have

E
s1

[
U⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
)]

= E
s1

[
U⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))− ϕ(s1, π

⋆(s1))
⊤θr,t − (H − 1)

)]
= E

s1

[
U⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))− ϕ(s1, π

⋆(s1))
⊤θ⋆r − ϕ(s1, π

⋆(s1))
⊤(ηr,t + ξr,t)− (H − 1)

)]
≤ E

s1

[(
−U⋆

t,1(s1)ϕ(s1, π
⋆(s1))

)⊤
(ηr,t + ξr,t)

]
where the inequality holds since

Q⋆
1(s1, π

⋆(s1))− ϕ(s1, π
⋆(s1))

⊤θ⋆r − (H − 1)

=ϕ(s1, π
⋆(s1))

⊤θ⋆r + E
s2
[V ⋆

2 (s2) | s1, π⋆(s1)]− ϕ(s1, π
⋆(s1))

⊤θ⋆r − (H − 1) ≤ 0.
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For TL, we have

E
s1

[
L⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
)]

= E
s1

[
L⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))− ϕ(s1, π

⋆(s1))
⊤(θr,t + θP,t,h)

)]
= E

s1

[
L⋆

t,1(s1)

(
−ϕ(s1, π⋆(s1))

⊤(ξr,t + ξP,t,1 + ηr,t + ηP,t,1 − λt,1) + E
s2

[
V ⋆
2 (s2)− V t,2(s

′)
∣∣ s1, π⋆(s1)

])]
where the last equality is by Lemma B.5.

For TM, we have

E
s1

[
M⋆

t,1(s1)
(
Q⋆

1(s1, π
⋆(s1))−Qt,1(s1, π

⋆(s1))
)]

= E
s1

[
M⋆

t,1(s1)

(
ρ(s1, π

⋆(s1))
(
Q⋆

1(s1, π
⋆(s1))− ϕ(s1, π

⋆(s1))
⊤(θr,t + θP,t,1)

)
+
(
1− ρ(s1, π

⋆(s1))
)(

Q⋆
1(s1, π

⋆(s1))− ϕ(s1, π
⋆(s1))

⊤θr,t − (H − h)
))]

≤ E
s1

[
M⋆

t,1(s1)

(
ρ(s1, π

⋆(s1))

(
− ϕ(s1, π

⋆(s1))
⊤(ξr,t + ξP,t,1 + ηr,t + ηP,t,1 − λt,1)

+ E
s2

[
V ⋆
2 (s2)− V t,2(s

′)
∣∣ s1, π⋆(s1)

])
+
(
1− ρ(s1, π

⋆(s1))
)
(−ϕ(s1, π⋆(s1)))

⊤
(ηr,t + ξr,t)

)]
where the inequality is by similar arguments as in the case of TU and TL.

So putting TL, TM, TU together, we have

V ⋆ − V t

≤ E
s1

[(
U⋆

t,1(s1) +M⋆
t,1(s1)(1− ρ(s1, π

⋆(s1)))
)

︸ ︷︷ ︸
=:UM⋆

t,1(s1)

(−ϕ(s1, π⋆(s1)))
⊤(ηr,t + ξr,t)

+
(
L⋆

t,1(s1) +M⋆
t,1(s1)ρ(s1, π

⋆(s1))
)

︸ ︷︷ ︸
=:LM⋆

t,1(s1)

(
− ϕ(s1, π

⋆(s1))
⊤(ξr,t + ξP,t,1 + ηr,t + ηP,t,1 − λt,1)

+ E
s2

[
V ⋆
2 (s2)− V t,2(s

′)
∣∣ s1, π⋆(s1)

] )]
Keeping expanding the last term, we arrive at

V ⋆ − V t ≤ E
τ∼π⋆

[
H∑

h=1

(
UM⋆

t,h(sh)

h−1∏
i=1

LM⋆
t,i(si)

)(
−ϕ(sh, ah)⊤(ξr,t + ηr,t)

)
+

H∑
h=1

(
h∏

i=1

LM⋆
t,i(si)

)(
−ϕ(sh, ah)⊤(ξr,t + ξP,t,h + ηr,t + ηP,t,h − λt,h)

) ]

= E
τ∼π⋆

[
H∑

h=1

(
UM⋆

t,h(sh)

h−1∏
i=1

LM⋆
t,i(si) +

h∏
i=1

LM⋆
t,i(si)

)(
−ϕ(sh, ah)⊤(ξr,t + ηr,t)

)
+

H∑
h=1

(
h∏

i=1

LM⋆
t,i(si)

)(
−ϕ(sh, ah)⊤(ξP,t,h + ηP,t,h − λt,h)

) ]

=:(−ϕ⋆
r )

⊤(ξr,t + ηr,t) +

H∑
h=1

(−ϕ⋆
P,h)

⊤(ξP,t,h + ηP,t,h − λt,h)
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where in the last step we defined ϕ⋆
r and ϕ⋆

P,h as

ϕ⋆
r := E

τ∼π⋆

[
H∑

h=1

(
UM⋆

t,h(sh)

h−1∏
i=1

LM⋆
t,i(si) +

h∏
i=1

LM⋆
t,i(si)

)
ϕ(sh, ah)

]
,

ϕ⋆
P,h := E

τ∼π⋆

[(
h∏

i=1

LM⋆
t,i(si)

)
ϕ(sh, ah)

]
.

Now we also decompose Ṽt − V π1
t and get

Ṽt − V π1
t = E

τ∼π1
t

[
H∑

h=1

ϕ(sh, ah)

]⊤ (
θr,t − θ⋆r

)
= E

τ∼π1
t

[
H∑

h=1

ϕ(sh, ah)

]⊤
(ξr,t + ηr,t)

=:(ϕ̃t)
⊤ (ξr,t + ηr,t) .

Combining the decomposition together, we obtain

(V ⋆ − V t) + (Ṽ − V π1
t )

≤

(
(−ϕ⋆

r )
⊤(ξr,t + ηr,t) +

H∑
h=1

(−ϕ⋆
P,h)

⊤(ξP,t,h + ηP,t,h − λt,h)

)
+ ϕ̃⊤

t (ξr,t + ηr,t)

=
(
ϕ̃t − ϕ⋆

)⊤
(ξr,t + ηr,t) +

H∑
h=1

(−ϕ⋆
P,h)

⊤ (ξP,t,h + ηP,t,h − λt,h)

≤∥ϕ̃t − ϕ⋆∥Σ−1
t−1
∥ηr,t∥Σt−1 + (ϕ̃t − ϕ⋆)⊤ξr,t

+

H∑
h=1

∥ϕ⋆
P,h∥Σ−1

t−1,h

(
∥ηP,t,h∥Σt−1,h

+ ∥λt,h∥Σt−1,h

)
−

H∑
h=1

ϕ⋆
P,h

⊤ξP,t,h

≤∥ϕ̃t − ϕ⋆∥Σ−1
t−1

ϵr,η − (ϕ̃t − ϕ⋆)⊤ξr,t +

√√√√ H∑
h=1

∥ϕ⋆
P,h∥2Σ−1

t−1,h

·
√
H(ϵP,η + ϵλ)2 −

H∑
h=1

ϕ⋆
P,h

⊤ξP,t,h

= ∥ϕ̃t − ϕ⋆∥Σ−1
t−1

ϵr,η − (ϕ̃t − ϕ⋆)⊤ξr,t︸ ︷︷ ︸
(a)

+

√√√√ H∑
h=1

min

{
1, ∥ϕ⋆

P,h∥2Σ−1
t−1,h

}
·
√
H(ϵP,η + ϵλ)2 −

H∑
h=1

ϕ⋆
P,h

⊤ξP,t,h︸ ︷︷ ︸
(b)

where the second inequality is by Cauchy-Schwarz inequality, the third inequality is Lemma B.12
and Cauchy-Schwarz inequality again, and the last step is by the fact that ∥ϕ⋆

P,h∥2Σ−1
t−1,h

≤ 1/λ ≤ 1.

For (a), we note that (ϕ̃t−ϕ⋆)⊤ξr,t ∼ N (0, σ2
r ∥ϕ̃t−ϕ⋆∥2

Σ−1
t−1

). So by setting σr ≥ ϵr,η , we have

(a) ≤ 0 with probability at least F(−1).

For (b), similarly, we note that
∑H

h=1 ϕ
⋆
P,h

⊤ξP,t,h ∼ N (0, σ2
P

∑H
h=1 ∥ϕ⋆

P,h∥2Σ−1
t−1,h

). So by set-

ting σP ≥
√
H(ϵP,η + ϵλ)2, we have (b) ≤ 0 with probability at least F(−1).

Conclusion. Finally, we note that (a) and (b) are independent, so the probability that both (a) and
(b) hold is at least F2(−1).
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Lemma B.14. It holds that

T∑
t=1

H∑
h=1

L∁
t,h(st,h) ≤ Lmax.

Proof. Denote at,h = πt(st,h). Then, we have

T∑
t=1

H∑
h=1

L∁
t,h(st,h) =

T∑
t=1

H∑
h=1

1
{
∥ϕ(st,h, at,h)∥2Σ−1

t−1,h

> α2
L

}

≤
T∑

t=1

H∑
h=1

min

∥ϕ(st,h, at,h)∥
2
Σ−1

t−1,h

α2
L

, 1


≤ 1

α2
L

H∑
h=1

T∑
t=1

min
{
∥ϕ(st,h, at,h)∥2Σ−1

t−1,h

, 1
}

≤ H

α2
L

· 2d log
(
λ+ T

λ

)
= Lmax

where the second inequality uses the fact that αL < 1, and the last inequality is by Lemma D.6.

Lemma B.15. Assume all events listed in Lemma B.12 hold. Then, the following holds∣∣∣∣∣∑
t

(
(V t − V π0

t )− (Ṽt − V π1
t )
)∣∣∣∣∣ =Õ

(
VmaxLmax + Vmax

√
HT

+ (ϵr,ξ + ϵr,η)

(√
dT + Lmax +

√
HT +

ϵT
√
π

2σr

)
+ (ϵP,ξ + ϵP,η + ϵλ)

(
H
√
dT + Lmax +

√
HT

)
.

)

Proof. By definition, we have∣∣∣∣∣
T∑

t=1

(
(V t − V π0

t )− (Ṽt − V π1
t )
)∣∣∣∣∣

=

∣∣∣∣∣
T∑

t=1

E
s1,a1∼π0

t

[
Qt,1(s1, a1)−Q

π0
t

1 (s1, a1)
]
−

T∑
t=1

H∑
h=1

E
sh,ah∼π1

t

ϕ(sh, ah)
(
θr,t − θ⋆r

)∣∣∣∣∣
By triangle inequality, we have

≤

∣∣∣∣∣
T∑

t=1

E
s1,a1∼π0

t

[
Lt,1(st,1)

(
Qt,1(s1, a1)−Q

π0
t

1 (s1, a1)
)]
−

T∑
t=1

H∑
h=1

E
sh,ah∼π1

t

ϕ(sh, ah) (ξr,t + ηr,t)

∣∣∣∣∣
+ 2Vmax

T∑
t=1

E
s1,a1∼π0

t

[
L∁

t,1(st,1)
]

For the first term, conditioning on Lt,1(st,1), we have

=

∣∣∣∣∣
T∑

t=1

E
s1,a1∼π0

t

[
Lt,1(st,1)

(
ϕ(s1, a1)

⊤(θr,t + θP,t,1)−Q
π0
t

1 (s1, a1)
)]

−
T∑

t=1

H∑
h=1

E
sh,ah∼π1

t

ϕ(sh, ah) (ξr,t + ηr,t)

∣∣∣∣∣+ 2Vmax

T∑
t=1

E
s1,a1∼π0

t

[
L∁

t,1(st,1)
]

30



Published as a conference paper at ICLR 2024

Applying triangle inequality again, we get

≤

∣∣∣∣∣
T∑

t=1

E
s1,a1∼π0

t

[(
ϕ(s1, a1)

⊤(θr,t + θP,t,1)−Q
π0
t

1 (s1, a1)
)]
−

T∑
t=1

H∑
h=1

E
sh,ah∼π1

t

ϕ(sh, ah) (ξr,t + ηr,t)

∣∣∣∣∣
+ 2Vmax

T∑
t=1

E
s1,a1∼π0

t

[
L∁

t,1(st,1)
]

+

∣∣∣∣∣
T∑

t=1

E
s1,a1∼π0

t

[
L∁

t,1(st,1)
(
ϕ(s1, a1)

⊤(θr,t + θP,t,1)−Q
π0
t

1 (s1, a1)
)]∣∣∣∣∣

Applying Lemma B.5 and the triangle inequality, we get

≤

∣∣∣∣∣
T∑

t=1

E
s2∼π0

t

[
V t,2(s2)− V

π0
t

2 (s2)
]
−

T∑
t=1

H∑
h=2

E
sh,ah∼π1

t

ϕ(sh, ah) (ξr,t + ηr,t)

+

T∑
t=1

(
E

s1,a1∼π0
t

ϕ⊤(s1, a1)(ξr,t + ξP,t,1 + ηr,t + ηP,t,1 − λt,1)− E
s1,a1∼π1

t

ϕ⊤(s1, a1)(ξr,t + ηr,t)

)∣∣∣∣∣
+ 2Vmax

T∑
t=1

E
s1,a1∼π0

t

[
L∁

t,1(st,1)
]

+

∣∣∣∣∣
T∑

t=1

E
s1,a1∼π0

t

[
L∁

t,1(st,1)
(
ϕ(s1, a1)

⊤(θr,t + θP,t,1)−Q
π0
t

1 (s1, a1)
)]∣∣∣∣∣

Keep expanding the first term, we get∣∣∣∣∣
T∑

t=1

(
(V t − V π0

t )− (Ṽt − V π1
t )
)∣∣∣∣∣

≤ 2Vmax

H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)
]

+

H∑
h=1

∣∣∣∣∣
T∑

t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)
(
ϕ(sh, ah)

⊤(θr,t + θP,t,h)−Q
π0
t

h (sh, ah)
)]∣∣∣∣∣

+

∣∣∣∣∣
T∑

t=1

H∑
h=1

(
E

sh,ah∼π0
t

E
s̃h,ãh∼π1

t

(
ϕ(sh, ah)− ϕ(s̃h, ãh)

)⊤
(ξr,t + ηr,t)

)∣∣∣∣∣
+

∣∣∣∣∣
T∑

t=1

H∑
h=1

E
sh,ah∼π0

t

ϕ⊤(sh, ah)
(
ξP,t,h + ηP,t,h − λt,h

)∣∣∣∣∣
=: T1 + T2 + T3 + T4.

We bound each term separately.

Bounding T1. By Hoeffding’s inequality and Lemma B.14, we have

T1 ≤ 2Vmax

H∑
h=1

T∑
t=1

[
L∁

t,h(st,h)
]
+ 2Vmax

√
HT

2
log(1/δ)

≤ 2Vmax

(
Lmax +

√
HT

2
log(1/δ)

)
.

with probability at least 1− δ.
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Bounding T2. By definition and Lemma B.4, we have

T2 =

H∑
h=1

∣∣∣∣∣
T∑

t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)
(
ϕ(sh, ah)

⊤(ξr,t + ηr,t + θ⋆r + ξP,t,h + ηP,t,h + λt,h + θ⋆P,t,h)

−Q
π0
t

h (sh, ah)
)]∣∣∣∣∣

≤
H∑

h=1

∣∣∣∣∣
T∑

t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)

(
ϕ(sh, ah)

⊤(θ⋆r + θ⋆P,t,h)−Q
π0
t

h (sh, ah)

+ ϕ⊤(sh, ah)(ξr,t + ηr,t) + ϕ⊤(sh, ah)(ξP,t,h + ηP,t,h + λt,h)

)]∣∣∣∣∣
≤

H∑
h=1

∣∣∣∣∣
T∑

t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)

(
ϕ(sh, ah)

⊤(θ⋆r + θ⋆P,t,h)−Q
π0
t

h (sh, ah)

+ ∥ϕ(sh, ah)∥Σ−1
t−1

(∥ξr,t∥Σt−1
+ ∥ηr,t∥Σt−1

)

+ ∥ϕ(sh, ah)∥Σ−1
t−1,h

(∥ξP,t,h∥Σt−1,h
+ ∥ηP,t,h∥Σt−1,h

+ ∥λt,h∥Σt−1,h
)

)]∣∣∣∣∣.
We note that |ϕ(sh, ah)⊤(θ⋆r + θ⋆P,t,h)| ≤ Vmax and |Qπ0

t

h (sh, ah)| ≤ Vmax. Moreover, we have
∥ϕ(sh, ah)∥Σ−1

t−1
≤ 1/

√
λ and ∥ϕ(sh, ah)∥Σ−1

t−1,h
≤ 1/

√
λ. Apply triangle inequality and inserting

these upper bounds back, we obtain

T2 ≤
H∑

h=1

∣∣∣∣∣
T∑

t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)

(
ϕ(sh, ah)

⊤(θ⋆r + θ⋆P,t,h)−Q
π0
t

h (sh, ah)

)]∣∣∣∣∣
+

H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)∥ϕ(sh, ah)∥Σ−1
t−1

(∥ξr,t∥Σt−1 + ∥ηr,t∥Σt−1)

]

+

H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)∥ϕ(sh, ah)∥Σ−1
t−1,h

(∥ξP,t,h∥Σt−1,h
+ ∥ηP,t,h∥Σt−1,h

+ ∥λt,h∥Σt−1,h
)

]

≤ 2Vmax

H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)

]

+
√
λ−1

H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)(ϵr,ξ + ϵr,η + ϵP,ξ + ϵP,η + ϵλ)

]

=

H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

[
L∁

t,h(st,h)

]
︸ ︷︷ ︸

(∗)

(
2Vmax +

ϵr,ξ + ϵr,η + ϵP,ξ + ϵP,η + ϵλ√
λ

)
.

We notice that (∗) can be bounded by Hoeffding’s inequality and Lemma B.14, as we did similarly
for T1:

(∗) ≤ Lmax +

√
HT

2
log(1/δ)

Hence, we have

T2 ≤

(
Lmax +

√
HT

2
log(1/δ)

)(
2Vmax +

ϵr,ξ + ϵr,η + ϵP,ξ + ϵP,η + ϵλ√
λ

)
with probability at least 1− δ.
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Bounding T3. By definition, we have

T3 =

∣∣∣∣∣
T∑

t=1

E
τ∼π0

t

E
τ̃∼π1

t

(
ϕ(τ)− ϕ(τ̃)

)
(ξr,t + ηr,t)

∣∣∣∣∣
By Cauchy-Schwarz inequality, we have

≤
T∑

t=1

E
τ∼π0

t

E
τ̃∼π1

t

∥∥∥ϕ(τ)− ϕ(τ̃)
∥∥∥
Σ−1

t−1

(
∥ξr,t∥Σt−1 + ∥ηr,t∥Σt−1

)
≤
(
ϵr,ξ + ϵr,η

) T∑
t=1

E
τ∼π0

t

E
τ̃∼π1

t

∥∥∥ϕ(τ)− ϕ(τ̃)
∥∥∥
Σ−1

t−1

Since ∥ϕ(τ)− ϕ(τ̃)∥Σ−1
t−1
≤ 2/

√
λ, by Hoeffding’s inequality, we have

≤
(
ϵr,ξ + ϵr,η

)( T∑
t=1

∥∥∥ϕ(τ)− ϕ(τ̃)
∥∥∥
Σ−1

t−1

+

√
2T log(1/δ)

λ

)

=
(
ϵr,ξ + ϵr,η

)( T∑
t=1

Zt

∥∥∥ϕ(τ)− ϕ(τ̃)
∥∥∥
Σ−1

t−1︸ ︷︷ ︸
(i)

+

T∑
t=1

(1− Zt)
∥∥∥ϕ(τ)− ϕ(τ̃)

∥∥∥
Σ−1

t−1︸ ︷︷ ︸
(ii)

+

√
2T log(1/δ)

λ

)
.

To bound (i), we have

(i) =

T∑
t=1

Zt min

{
2/
√
λ,
∥∥∥ϕ(τ)− ϕ(τ̃)

∥∥∥
Σ−1

t−1

}

≤

√√√√T

T∑
t=1

Zt min

{
4/λ,

∥∥∥ϕ(τ)− ϕ(τ̃)
∥∥∥2
Σ−1

t−1

}

≤2

√√√√T

T∑
t=1

Zt min

{
1,
∥∥∥ϕ(τ)− ϕ(τ̃)

∥∥∥2
Σ−1

t−1

}

≤2

√
T · 2d log

(
λ+ 4T

λ

)
where the last inequality is Lemma D.6. To bound (ii), we have

(ii) =

T∑
t=1

(1− Zt)
∥∥∥ϕ(τ)− ϕ(τ̃)

∥∥∥
Σ−1

t−1

≤
T∑

t=1

(1− Zt) · ϵ
√
π/(2σr)

≤ϵT
√
π/(2σr)

where the first inequality is by Lemma B.6. Putting the two upper bounds together, we have

T3 ≤
(
ϵr,ξ + ϵr,η

)(
2

√
T · 2d log

(
λ+ 4T

λ

)
+ ϵT

√
π/(2σr) +

√
2T log(1/δ)

λ

)
.

Bounding T4. By Cauchy-Schwarz inequality, we have

T4 ≤

∣∣∣∣∣
T∑

t=1

H∑
h=1

E
sh,ah∼π0

t

∥ϕ(sh, ah)∥Σ−1
t−1,h

(
∥ξP,t,h∥Σt−1,h

+ ∥ηP,t,h∥Σt−1,h
+ ∥λt,h∥Σt−1,h

)∣∣∣∣∣
≤
(
ϵP,ξ + ϵP,η + ϵλ

) H∑
h=1

T∑
t=1

E
sh,ah∼π0

t

∥ϕ(sh, ah)∥Σ−1
t−1,h
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Since ∥ϕ(sh, ah)∥Σ−1
t−1,h

≤ 1/
√
λ, by Hoeffding’s inequality, we have

≤
(
ϵP,ξ + ϵP,η + ϵλ

)( H∑
h=1

T∑
t=1

∥ϕ(sh, ah)∥Σ−1
t−1,h

+

√
TH log(1/δ)

2λ

)

=
(
ϵP,ξ + ϵP,η + ϵλ

)( H∑
h=1

T∑
t=1

min
{
1/
√
λ, ∥ϕ(sh, ah)∥Σ−1

t−1,h

}
+

√
TH log(1/δ)

2λ

)

≤
(
ϵP,ξ + ϵP,η + ϵλ

) H∑
h=1

√√√√T

T∑
t=1

min

{
1/λ, ∥ϕ(sh, ah)∥2Σ−1

t−1,h

}
+

√
TH log(1/δ)

2λ


Since λ ≥ 1, we have

≤
(
ϵP,ξ + ϵP,η + ϵλ

) H∑
h=1

√√√√T

T∑
t=1

min

{
1, ∥ϕ(sh, ah)∥2Σ−1

t−1,h

}
+

√
TH log(1/δ)

2λ


≤
(
ϵP,ξ + ϵP,η + ϵλ

)(
H

√
T · 2d log

(
λ+ T

λ

)
+

√
TH log(1/δ)

2λ

)
where the last inequality is Lemma D.6.

Conclusion. Combining the above bounds, we have∣∣∣∣∣
T∑

t=1

(
(V t − V π0

t )− (Ṽt − V π1
t )
)∣∣∣∣∣

≤ 2Vmax

(
Lmax +

√
HT

2
log(1/δ)

)

+

(
Lmax +

√
HT

2
log(1/δ)

)(
2Vmax +

ϵr,ξ + ϵr,η + ϵP,ξ + ϵP,η + ϵλ√
λ

)

+
(
ϵr,ξ + ϵr,η

)(
2

√
T · 2d log

(
λ+ 4T

λ

)
+

ϵT
√
π

2σr
+

√
2T log(1/δ)

λ

)

+
(
ϵP,ξ + ϵP,η + ϵλ

)(
H

√
T · 2d log

(
λ+ T

λ

)
+

√
TH log(1/δ)

2λ

)

≤ 4Vmax

(
Lmax +

√
HT

2
log(1/δ)

)

+
(
ϵr,ξ + ϵr,η

)(
2

√
T · 2d log

(
λ+ 4T

λ

)
+

ϵT
√
π

2σr
+

Lmax + 2
√

TH log(1/δ)/2√
λ

)

+
(
ϵP,ξ + ϵP,η + ϵλ

)(
H

√
T · 2d log

(
λ+ T

λ

)
+

Lmax + 2
√
TH log(1/δ)/2√
λ

)

= Õ

(
VmaxLmax + Vmax

√
HT

+ (ϵr,ξ + ϵr,η)

(√
dT + Lmax +

√
HT +

ϵT
√
π

2σr

)
+ (ϵP,ξ + ϵP,η + ϵλ)

(
H
√
dT + Lmax +

√
HT

))
.

34



Published as a conference paper at ICLR 2024

Lemma B.16 (Regret decomposition). Assume all events listed in Lemma B.12 hold. Then, we have
T∑

t=1

(V ⋆ − V t) + (Ṽt − V π1
t )

≤ 1

F2(−1)

T∑
t=1

(
(V t − V π0

t )− (Ṽt − V π1
t ) + (V π0

t − V
−
t )− (V π1

t − Ṽ −
t )
)

+
2Vmax

F2(−1)

(√
T log(1/δ)

2
+ 4δ

)
with probability at least 1− δ.

Proof. We note that, at any round t ∈ [T ], conditioning on all information collected up to round
t − 1, the randomness of V t and Ṽt only comes from the randomness of Gaussian noise vari-
ables ξr,t, ξP,t,1, . . . , ξP,t,H . In other words, the values of V t and Ṽt are determined once given
these Gaussian noise variables. In light of this, we write out the dependence on the Gaussian
noise variables explicitly: we treat V t and Ṽt as functions of ξr,t, ξP,t,1, · · · , ξP,t,H and define
V t[ξr,t, ξP,t,1, · · · , ξP,t,H ] and Ṽt[ξ

−
r,t, ξ

−
P,t,1, · · · , ξ

−
P,t,H ] as the values of V t and Ṽt obtained at

round t with the Gaussian noise variables ξr,t, ξP,1, · · · , ξP,H . Then, we define a notion of “worst-
case” Gaussian noise variables as follows:

ξ−r,t, ξ
−
P,t,1, · · · , ξ

−
P,t,H := argmin

ξ−r,t,ξ
−
P,t,1,··· ,ξ

−
P,t,H

V t[ξ
−
r,t, ξ

−
P,t,1, · · · , ξ

−
P,t,H ]− Ṽt[ξ

−
r,t, ξ

−
P,t,1, · · · , ξ

−
P,t,H ]

s.t. ∥ξ−r,t∥Σt−1 ≤ ϵr,ξ and ∀h ∈ [H] : ∥ξ−P,t,h∥Σt−1,h
≤ ϵP,ξ.

And we denote V
−
t and Ṽ −

t as the value functions specified by ξ−r,t, ξ
−
P,t,1, · · · , ξ

−
P,t,H :

V
−
t := V t[ξ

−
r,t, ξ

−
P,t,1, · · · , ξ

−
P,t,H ], Ṽ −

t := Ṽt[ξ
−
r,t, ξ

−
P,t,1, · · · , ξ

−
P,t,H ].

In other words, V
−
t and Ṽ −

t are counterparts of V t and Ṽt that attain the smallest difference, V t−Ṽt,
while the noise variables still satisfy the high probability bounds. By Lemma B.12, we immediately
have

Pr(Elow) := Pr
(
V

−
t − Ṽ −

t ≤ V t − Ṽt

)
≥ 1− δ/T. (11)

We note that here we have δ/T instead of δ because we are considering a fixed t and the results of
Lemma B.12 are derived by the union bound over all t ∈ [T ] — thus, the probability of the event
Elow is at least 1− δ/T for a single t.

Then, we denote Eopt as the event that V t − Ṽt ≥ V ⋆ − V π1
t . Thus, by Lemma B.13, we have

Pr(Eopt) ≥ F2(−1). Moreover, we denote palg as the randomness of the algorithm. Then, we
define the joint distribution popt of V t and Ṽt by restricting palg to the event Eopt. Specifically, it is
defined as

popt(V t, Ṽt) :=

{
palg(V t, Ṽt)/Pr(Eopt) if Eopt
0 otherwise

Let z := V t − Ṽt. Then, we have

(V ⋆ − V t) + (Ṽt − V π1
t ) ≤V ⋆ − V

−
t + Ṽ −

t − V π1
t

= E
z∼popt

[
V ⋆ − V

−
t − z + z + Ṽ −

t − V π1
t

]
≤ E

z∼popt

[
z − V

−
t + Ṽ −

t

]
=

∫
z

1{Eopt} · palg(z)
Pr(Eopt)

· (z − V
−
t + Ṽ −

t ) dz

= E
z∼palg

[
1{Eopt}

(
z − V

−
t + Ṽ −

t

)]
/Pr(Eopt)
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where the second inequality is by the definition of popt, which rules out the case that Eopt does not
hold. Considering the event Elow, we have

(V ⋆ − V t) + (Ṽt − V π1
t )

≤
(

E
z∼palg

[
1{Eopt}1{Elow}

(
z − V

−
t + Ṽ −

t

)]
+ E

z∼palg

[
1{Eopt}1{E∁low}

(
z − V

−
t + Ṽ −

t

)])
/Pr(Eopt)

≤
(

E
z∼palg

[
1{Eopt}1{Elow}

(
z − V

−
t + Ṽ −

t

)]
+ E

z∼palg

[
1{Eopt}1{E∁low}4Vmax

])
/Pr(Eopt)

≤
(

E
z∼palg

[
1{Eopt}1{Elow}

(
z − V

−
t + Ṽ −

t

)]
+ 4Vmaxδ/T

)
/Pr(Eopt)

where the last inequality is by (11). For the first term, we have

E
z∼palg

[
1{Eopt}1{Elow}

(
z − V

−
t + Ṽ −

t

)]
≤ E

z∼palg

[
1{Elow}

(
z − V

−
t + Ṽ −

t

)]
= E

z∼palg

[(
z − V

−
t + Ṽ −

t

)]
+ E

z∼palg

[
1{E∁low}

(
z − V

−
t + Ṽ −

t

)]
≤ E

z∼palg

[(
z − V

−
t + Ṽ −

t

)]
+ 4Vmaxδ/T

= E
[
V t − Ṽt − V

−
t + Ṽ −

t

]
+ 4Vmaxδ/T

= E
[
(V t − V π0

t )− (Ṽt − V π1
t )
]
+ E

[
(V π0

t − V
−
t )− (V π1

t − Ṽ −
t )
]
+ 4Vmaxδ/T.

where the first inequality holds since z − V
−
t + Ṽ −

t ≥ 0 conditioning on Elow, and the second
inequality is by (11) again.

Recall that Pr(Eopt) ≥ F2(−1). Inserting all of these back, we obtain

T∑
t=1

(V ⋆ − V t) + (Ṽt − V π1
t )

≤ F−2(−1)

(
8Vmaxδ +

T∑
t=1

(
E
[
(V t − V π0

t )− (Ṽt − V π1
t )
]
+ E

[
(V π0

t − V
−
t )− (V π1

t − Ṽ −
t )
]))

≤ F−2(−1)

(
8Vmaxδ +

T∑
t=1

(
(V t − V π0

t )− (Ṽt − V π1
t ) + (V π0

t − V
−
t )− (V π1

t − Ṽ −
t )
)

+ 2Vmax

√
T log(1/δ)

2

)
.

where the last inequality is the Hoeffding’s inequality.

Given all these lemmas, we are ready to establish an upper bound of regret. We first note that, since
π1
t = π0

t−1 for all t, the regret incurred by π1
t for all t is equivalent to that incurred by π0

t for all t.
Hence, it suffices to compute the regret incurred by π0

t for t ∈ [T ] and multiply it by two to get the
total regret.

We start with the following regret decomposition:

RegretT ≤
T∑

t=1

(
V ⋆ − V π0

t

)
=

T∑
t=1

(
V ⋆ − V t + Ṽt − V π1

t

)
︸ ︷︷ ︸

(∗)

+

T∑
t=1

(
V t − V π0

t + V π1
t − Ṽt

)
.
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By Lemma B.16, we can further decompose (∗) and obtain

RegretT ≤
1

F2(−1)

T∑
t=1

(
V π0

t − V
−
t + Ṽ −

t − V
π1
t

t

)
︸ ︷︷ ︸

(i)

+

(
1 +

1

F2(−1)

) T∑
t=1

(
V t − V π0

t + V π1
t − Ṽt

)
︸ ︷︷ ︸

(ii)

+
2Vmax

F2(−1)

(√
T log(1/δ)

2
+ 4δ

)
.

We note that both (i) and (ii) can be bounded by Lemma B.15:

(i), (ii) ≤ Õ

(
VmaxLmax + Vmax

√
HT

+ (ϵr,ξ + ϵr,η)

(√
dT + Lmax +

√
HT +

ϵT
√
π

2σr

)
+ (ϵP,ξ + ϵP,η + ϵλ)

(
H
√
dT + Lmax +

√
HT

))
Inserting this back, we obtain

RegretT = Õ

(
VmaxLmax + Vmax

√
HT

+ (ϵr,ξ + ϵr,η)

(√
dT + Lmax +

√
HT +

ϵT
√
π

2σr

)
+ (ϵP,ξ + ϵP,η + ϵλ)

(
H
√
dT + Lmax +

√
HT

)
+ Vmax

√
T

)
To compute this quantity, we note the following asymptotic rate:

• ϵr,ξ + ϵr,η = Õ
(
d
√
κ+B2

)
• ϵP,ξ + ϵP,η + ϵλ = Õ

(
d5/2H3/2

√
κ+B2

)
• Lmax = Õ

(
d6H4(κ+B2)

)
Hence, we have

RegretT = Õ

(
ϵT
√
d+
√
T · d3H5/2

√
κ+B2 + d17/2H11/2(κ+B2)3/2

)
.

B.5 BOUNDING NUMBER OF QUERIES

Recall that the number of queries are computed via

QueriesT =

T∑
t=1

Zt =

T∑
t=1

Zt1

{
E

θ0,θ1∼N (θ̂r,t,σ2
rΣ

−1
t−1)

[∣∣∣(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)

∣∣∣] > ϵ

}
.

Notice that Cauchy-Schwarz inequality implies

E
θ0,θ1

∣∣∣(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)

∣∣∣ ≤ ∥ϕ(τ0t )− ϕ(τ1t )∥Σ−1
t−1

E
θ0,θ1
∥θ0 − θ1∥Σt−1

≤ 1√
λ
∥ϕ(τ0t )− ϕ(τ1t )∥2 E

θ0,θ1
∥θ0 − θ1∥Σt−1

≤ 2√
λ

E
θ0,θ1
∥θ0 − θ1∥Σt−1 ≤

2
√
2σ2

r d√
λ

where the second inequality is by ∥Σ−1
t−1∥2 = 1/λ, and the last step is by the fact that θ0−θ1 follows

N (0, 2σ2
rΣ

−1
t−1) and Lemma D.3. We denote ζ := 2σr

√
2d/λ for the ease of notation. Then, we
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have

QueriesT =

T∑
t=1

Zt1

{
min

{
ζ, E

θ0,θ1

[∣∣∣(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)

∣∣∣]} > ϵ

}

≤
T∑

t=1

Zt1

{
min

{
1, E

θ0,θ1

[∣∣∣(ϕ(τ0t )− ϕ(τ1t ))
⊤(θ0 − θ1)

∣∣∣]} > ϵ/ζ

}
Applying Cauchy-Schwarz inequality, we have

QueriesT ≤
T∑

t=1

Zt1

{
min

{
1, E

θ0,θ1

[(
(ϕ(τ0t )− ϕ(τ1t ))

⊤(θ0 − θ1)
)2]}

> ϵ2/ζ2
}
.

Let u0, u1 denotes two independent standard Gaussian variables with zero mean and identity covari-
ance matrix. Then, θ0 − θ1 has the same joint distribution as σrΣ

−1/2
t−1 (u0 − u1). Hence, we can

rewrite the expectation in the indicator as

E
θ0,θ1

[(
(ϕ(τ0t )− ϕ(τ1t ))

⊤(θ0 − θ1)
)2]

= E
u0,u1

[((
ϕ(τ0t )− ϕ(τ1t )

)⊤
σrΣ

−1/2
t−1 (u0 − u1)

)2]
Furthermore, we have

E
u0,u1

[((
ϕ(τ0t )− ϕ(τ1t )

)⊤
σrΣ

−1/2
t−1 (u0 − u1)

)2]
= E

u0,u1

[(
ϕ(τ0t )− ϕ(τ1t )

)⊤
σrΣ

−1/2
t−1 (u0 − u1) (u0 − u1)

⊤
σrΣ

−1/2
t−1

(
ϕ(τ0t )− ϕ(τ1t )

)]
=
(
ϕ(τ0t )− ϕ(τ1t )

)⊤
σrΣ

−1/2
t−1 E

u0,u1

[
(u0 − u1) (u0 − u1)

⊤
]
σrΣ

−1/2
t−1

(
ϕ(τ0t )− ϕ(τ1t )

)
.

For the expectation in the middle, we have

E
u0,u1

[
(u0 − u1) (u0 − u1)

⊤
]
= E[u0u

⊤
0 ] + E[u1u

⊤
1 ] = 2I

where we have used the fact that E[u0u
⊤
1 ] = 0 by independence. Therefore, we have

E
θ0,θ1

[((
ϕ(τ0t )− ϕ(τ1t )

)⊤
(θ0 − θ1)

)2]
=
(
ϕ(τ0t )− ϕ(τ1t )

)⊤
σrΣ

−1/2
t−1 (2I)σrΣ

−1/2
t−1

(
ϕ(τ0t )− ϕ(τ1t )

)
=2σ2

r

∥∥ϕ(τ0t )− ϕ(τ1t )
∥∥2
Σ−1

t−1

.

Inserting this back, we obtain

QueriesT ≤
T∑

t=1

Zt1
{
min

{
1, 2σ2

r

∥∥ϕ(τ0t )− ϕ(τ1t )
∥∥2
Σ−1

t−1

}
> ϵ2/ζ2

}
≤

T∑
t=1

Zt1

{
min

{
1,
∥∥ϕ(τ0t )− ϕ(τ1t )

∥∥2
Σ−1

t−1

}
>

ϵ2

2ζ2σ2
r

}

≤2ζ2σ2
r

ϵ2

T∑
t=1

Zt min
{
1,
∥∥ϕ(τ0t )− ϕ(τ1t )

∥∥2
Σ−1

t−1

}
≤2ζ2σ2

r

ϵ2
· 2d log

(
λ+ 4T

λ

)
where the last step is Lemma D.6. Plugging the value of ζ and all other variables, we obtain

QueriesT ≤
32σ4

r d
2

λϵ2
log

(
λ+ 4T

λ

)
= Õ

(
d4(κ+B2)2

ϵ2

)
.
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C PROOF OF THEOREM 5.4

We first present some supporting results in Appendix C.1. Then, we prove the upper bound of
Bayesian regret in Appendix C.2 and the number of queries in Appendix C.3.

C.1 SUPPORTING LEMMAS

In Appendix C.1.1, we establish some supporting results for a probability estimation problem in the
frequentist setting. In Appendix C.1.2, we adapt these results to the Bayesian setting. The Bayesian
results will be heavily used later in the proof of Theorem 5.4 in Appendices C.2 and C.3.

C.1.1 SUPPORTING RESULTS FROM FREQUENTIST SETTING

Consider a conditional probability estimation problem. Let X and Y be the instance space and the
target space, respectively. Let F : (X × Y) → R be a function class. We are given a dataset
D := {(xi, yi)}ni=1 where xi ∼ Di and yi ∼ f⋆(x, ·). We assume f⋆ ∈ F . Regarding the data
generation process, we assume the data distribution Di is history-dependent, i.e., xi can depend
on the previous samples: x1, y1, . . . , xi−1, yi−1 for any i ∈ [n]. Our goal is to estimate the true
conditional probability f⋆ using the dataset D.

At a high level, this problem is designed to capture both the reward learning and the model learning
problems in the RL setting. Specifically, in the reward learning problem, we will instantiate X =
S × A and Y = {0, 1}, where we recall that S and A are the state space and the action space,
respectively, and the preference feedback is binary. In the model learning problem, we can instantiate
X = S ×A and Y = S. We abstract these two problems into this conditional probability estimation
problem to make the analysis more concise. However, one caveat is that all we derived in this section
are frequentist results, while we are considering Bayesian RL. Thus, the results are not directly
applicable. In Appendix C.1.2, we will adapt these frequentist results to the Bayesian setting so that
they can be applied.

Now we establish some important results for this problem. First, we have the following lemma,
which is a consequence of Lemma D.10.

Lemma C.1 (MLE generalization bound). Fix δ ∈ (0, 1). Follow the setting stated above. Let f̂ be
the maximum likelihood estimator:

f̂ = argmax
f∈F

n∑
i=1

log f(xi, yi).

Define the version space:

VF =

{
f ∈ F :

n∑
i=1

d2TV

(
f̂(xi, ·), f(xi, ·)

)
≤ βF (n)

}
where βF (n) := 98 log(2N[]((n|Y|)−1,F , ∥ · ∥∞)/δ). Then, the following holds

(i) f⋆ ∈ VF with probability at least 1− δ,

(ii) for any f, f ′ ∈ VF , it holds that
n∑

i=1

d2TV

(
f(xi, ·), f ′(xi, ·)

)
≤ 4βF (n).

Proof of Lemma C.1. We first construct an auxiliary version space Ṽ as follows

ṼF =

{
f ∈ F :

n∑
i=1

E
x∼Di

d2TV

(
f̂(x, ·), f(x, ·)

)
≤ 10 log

(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)}

By Lemma D.10, f⋆ ∈ ṼF with probability at least 1− δ. To prove (i), we will show that whenever
f⋆ ∈ ṼF , we have f⋆ ∈ VF as well with high probability. Let F[] denote an (n|Y|)−1-bracket of F
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with respect to ∥ · ∥∞. Then for all f[] ∈ F[], the following holds with probability at least 1 − δ by
Lemma D.4 and the union bound on F[],

n∑
i=1

d2TV

(
f[](xi, ·), f⋆(xi, ·)

)
≤ 2

n∑
i=1

E
x∼Di

d2TV

(
f[](x, ·), f⋆(x, ·)

)
+ 4 log

(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)
. (12)

Now for any f ∈ F , there must exist f[] ∈ F[] such that ∥f − f[]∥∞ ≤ (n|Y|)−1, which impies the
following

n∑
i=1

d2TV

(
f(xi, ·), f[](xi, ·)

)
≤

n∑
i=1

|Y|2∥f − f[]∥2∞ ≤
n∑

i=1

n−2 = 1/n, (13)

n∑
i=1

E
x∼Di

d2TV

(
f(x, ·), f[](x, ·)

)
≤

n∑
i=1

|Y|2∥f − f[]∥2∞ ≤
n∑

i=1

n−2 = 1/n (14)

Hence, for all f ∈ F , we have

n∑
i=1

d2TV

(
f(xi, ·), f⋆(xi, ·)

)
≤2

n∑
i=1

d2TV

(
f[](xi, ·), f⋆(xi, ·)

)
+ 2

n∑
i=1

d2TV

(
f(xi, ·), f[](xi, ·)

)
≤ 2

n∑
i=1

d2TV

(
f[](xi, ·), f⋆(xi, ·)

)
+ 2/n

≤ 4

n∑
i=1

E
x∼Di

d2TV

(
f[](x, ·), f⋆(x, ·)

)
+ 8 log

(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)
+ 2/n

≤ 8

n∑
i=1

E
x∼Di

d2TV (f(x, ·), f⋆(x, ·)) + 8 log
(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)
+ 10/n.

with probability at least 1− δ. Here the second inequality uses (13), the third uses (12), and the last
uses (14). Therefore, for any possible value of the estimator f̂ , conditioning on f⋆ ∈ ṼF , we have

n∑
i=1

d2TV

(
f̂(xi, ·), f⋆(xi, ·)

)
≤8

n∑
i=1

E
x∼Di

d2TV

(
f̂(x, ·), f⋆(x, ·)

)
+ 8 log

(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)
+ 10/n

≤88 log
(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)
+ 10/n

≤98 log
(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)

with probability at least 1 − δ. Here the second inequality is by the definition of ṼF . The last
inequality holds since it is reasonable to assume that the bracketing number is at least some constant
so that log(N[]((n|Y|)−1,F , ∥ · ∥∞)/δ) > 1 ≥ 1/n.

The above means whenever f⋆ ∈ ṼF , we have f⋆ ∈ VF as well with probability at least 1 − δ.
Since f⋆ ∈ ṼF with probability at least 1 − δ, we have f⋆ ∈ VF with probability at least 1 − 2δ.
Adjusting δ completes the proof of (i).
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For (ii), we have
n∑

i=1

d2TV

(
f(x, ·), f ′(x, ·)

)
≤

n∑
i=1

(
dTV

(
f(x, ·), f̂(x, ·)

)
+ dTV

(
f̂(x, ·), f ′(x, ·)

))2
≤

n∑
i=1

2d2TV

(
f(x, ·), f̂(x, ·)

)
+

n∑
i=1

2d2TV

(
f̂(x, ·), f ′(x, ·)

)
≤4βF (n)

where the second inequality is by the fact that (a + b)2 ≤ 2a2 + 2b2 for any a and b, and the third
inequality is by the definition of VF .

Next, we further assume that the function class F is parameterized by a function class G via a
link function Φ. The reason for this assumption is that we want to capture the structure of the
reward learning problem, where the feedback generating distribution is parameterized by the reward
function via a link function Φ.
Assumption C.2 (Binary label and function parameterization.). Assume Y = {0, 1} is binary, and
there is a function class G ⊆ X → [0, G] that parameterizes F via a link function Φ. Specifically,
we assume

F =
{
f(x, 0) = Φ

(
g(x)

)
, f(x, 1) = 1− Φ(g(x)) : g ∈ G

}
,

where we further assume Φ satisfies Assumption 3.1. For any f ∈ F , let gf denote the function g
that parameterizes f . We define ĝ := gf̂ and g⋆ := gf⋆ .

As a preliminary note, the function class G will actually correspond to the function class R̃ (3) later
in the proof.

We should emphasize again that, although the function class G aims to capture the structure of the
reward learning problem, the function class F will be used to capture both the reward learning
and the model learning problems. When it is applied to the model learning problem, we can simply
ignore the function class G and any results that are related to G. On the other hand, when it is applied
to the reward learning problem, such a function class G will be helpful to derive some results in the
reward function itself.

Before diving into the analysis of the function class G, we first introduce the following lemma which
shows that the bracketing numbers of F and G are bounded by each other.
Lemma C.3. Under Assumption C.2, for any ω > 0, we have

N[]

(
ω,F , ∥ · ∥∞

)
≤ N[]

(
κω,G, ∥ · ∥∞

)
and N[]

(
κω,G, ∥ · ∥∞

)
≤ N[]

(
ω,F , ∥ · ∥∞

)
.

Proof. For any f, f ′ ∈ F , we assume they are parameterized by g := gf and g′ := gf ′ , respectively.
Then, we have

sup
x,y
|f(x, y)− f ′(x, y))| = sup

x

∣∣Φ(g(x))− Φ
(
g′(x)

)∣∣ ≤ κ−1 sup
x
|g(x)− g′(x)|

where the inequality is Lemma D.1. Hence, if we have a κω-bracket of G in the infinite norm, then
we have an ω-bracket of F in the infinite norm. This proves the first claim. For the second claim,
by Lemma D.1, we have

sup
x
|g(x)− g′(x)| ≤ κ sup

x

∣∣Φ(g(x))− Φ
(
g′(x)

)∣∣ = κ sup
x,y
|f(x, y)− f ′(x, y)| .

This proves the second claim.

Then, Lemma C.1 leads to similar results with a version space constructed on G.
Corollary C.4. Under Assumption C.2, define

VG =

{
g ∈ G :

n∑
i=1

(
ĝ(xi)− g(xi)

)2
≤ βG(n)

}
where βG(n) := 98κ2 log(2N[](κ(n|Y|)−1,G, ∥ · ∥∞)/δ) and we denote ĝ := gf̂ as the function

that parameterizes the maximum likelihood estimator f̂ . Then, the following holds
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(1) g⋆ ∈ VG with probability at least 1− δ

(2) for any g, g′ ∈ VG , we have
n∑

i=1

(
g(xi)− g′(xi)

)2
≤ 4βG(n).

Proof of Corollary C.4. To prove (i), we claim that for any f ∈ VF (defined in Lemma C.1), we
have gf ∈ VG as well. To see this, we note that

n∑
i=1

E
x∼Di

(
ĝ(x)− gf (x)

)2
≤ κ2

n∑
i=1

E
x∼Di

∣∣Φ(ĝ(x))− Φ
(
gf (x)

)∣∣2
=κ2

n∑
i=1

E
x∼Di

∣∣∣f̂(x, 0)− f(x, 0)
∣∣∣2 = κ2

n∑
i=1

E
x∼Di

d2TV

(
f̂(x, ·), f(x, ·)

)
where the inequality is Lemma D.1, and the last equality holds since we assume Y = {0, 1} is
binary. Hence, for any f ∈ VF , it holds that

n∑
i=1

E
x∼Di

(
ĝ(x)− gf (x)

)2
≤κ2

n∑
i=1

E
x∼Di

d2TV

(
f̂(x, ·), f(x, ·)

)
≤κ2βF (n)

=κ2 · 98 log(2N[]((n|Y|)−1,F , ∥ · ∥∞)/δ)

By Lemma C.3, we have
log(2N[]((n|Y|)−1,F , ∥ · ∥∞)/δ) ≤ log(2N[](κ(n|Y|)−1,G, ∥ · ∥∞)/δ).

Hence, we have
n∑

i=1

E
x∼Di

(
ĝ(x)− gf (x)

)2
≤ βG(n)

which implies gf ∈ VG . Therefore, whenever f⋆ ∈ VF , we have gf⋆ ∈ VG as well. Since f⋆ ∈ VF

with probability at least 1− δ, we have gf⋆ ∈ VG with probability at least 1− δ. This completes the
proof of (i).

Now we prove (2). For any g, g′ ∈ VG , we have
n∑

i=1

(
g(xi)− g′(xi)

)2
≤ 2

n∑
i=1

(
ĝ(xi)− g(xi)

)2
+ 2

n∑
i=1

(
ĝ(xi)− g′(xi)

)2
≤ 4βG(n)

where the first inequality is by the fact that (a+ b)2 ≤ 2a2 + 2b2 for any a and b.

C.1.2 ADAPTING RESULTS INTO BAYESIAN SETTING

Now we change the setting defined in Appendix C.1.1 into a Bayesian online setting. The reason for
this adaptation is to make these results applicable to the Bayesian RL setting. We formally define
the Bayesian online conditional probability estimation problem below.

Let X and Y be the instance space and the target space, respectively. Let F : (X × Y) → R be
a function class. The interaction proceeds for T rounds. At each round t ∈ [T ], we observe an
instance xt ∈ X and need to outputs a function ft ∈ F as our prediction. Then, the label yt ∈ Y
is revealed. We assume that xi ∼ Di for some distribution Di and yi ∼ f⋆(x, ·). We assume the
true conditional distribution f⋆ is sampled from some known prior distribution ρ ∈ ∆(F) at the
beginning. Regarding the data generation process, we assume the data distribution Di is history-
dependent, i.e., xi can depend on the previous samples: x1, y1, . . . , xi−1, yi−1 for any i ∈ [n].

Denote Ht as the history up to round t, i.e., Ht = {x1, f1, y1, x2, f2, y2, . . . , xt, ft, yt}. Define the
maximum likelihood estimator of f⋆ on the dataset {(xs, ys)}t−1

s=1 as f̂t, i.e.,

f̂t = argmax
f∈F

t−1∑
s=1

log f(xs, ys).
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Similar to the previous section, we will also consider the presence of a function class G (Assump-
tion C.2) in the analysis presented in this section. It’s worth noting that although Assumption C.2
is initially introduced in the frequentist setting, when we mention that Assumption C.2 holds in this
section, we are actually considering the Bayesian setting.

Lemma C.5. It holds that

T∑
t=1

E
Ht−1

[
E

f,f ′

[
dTV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]
≤ 6
√
Tβ′

F (T ) · dim1

(
F , 1/T

)
· log(T ) (15)

and

T∑
t=1

E
Ht−1

[
E

f,f ′

[
d2TV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]
≤ 4β′

F (T ) + 2 (16)

where β′
F (t) := 98 log(2TN[]((t|Y|)−1,F , ∥ · ∥∞)), and f, f ′ are sampled from the posterior of f⋆

conditioning on Ht−1 in the inner conditional expectation. Moreover, if F is parameterized by G
(i.e., if Assumption C.2 holds), we have

T∑
t=1

E
Ht−1

[
E
g,g′

[∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]]
≤ 6
√

Tβ′
G(T ) · dim1

(
G, 1/T

)
· log(GT ) (17)

and

T∑
t=1

E
Ht−1

[
E
g,g′

[(
g(xt)− g′(xt)

)2 ∣∣∣Ht−1

]]
≤ 4β′

G(T ) + 2 (18)

where β′
G(t) := 98κ2 log(2GTN[](κ(t|Y|)−1,G, ∥ · ∥∞)), and g, g′ are sampled from the posterior

of g⋆ conditioning onHt−1 in the inner conditional expectation.

Proof of Lemma C.5. We will only prove (15) and (16) since the proof of (17) and (18) is almost
identical.

Proof of (15). We define the version space at round t for t ∈ [T ] as follows

VF
t =

{
f ∈ F :

t−1∑
s=1

d2TV

(
f̂t(xs, ·), f(xs, ·)

)
≤ βF (t− 1)

}

where f̂t is the maximum likelihood estimator on the dataset {(xs, ys)}t−1
s=1. This construction aims

to mimic the version space VF defined in Lemma C.1, which enable us to apply Lemma C.1.

We first split the left side of (15) into two cases based on whether f and f ′ belong to VF
t :

T∑
t=1

E
Ht−1

[
E

f,f ′

[
dTV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]

=

T∑
t=1

E
Ht−1

[
E

f,f ′

[
1
{
f ∈ VF

t and f ′ ∈ VF
t

}
dTV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]
+ E

f,f ′

[
1
{
f ̸∈ VF

t or f ′ ̸∈ VF
t

}
dTV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]
=:T1 + T2.
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To bound T2, since the total variation distance is upper bounded by 1, we have

T2 ≤
T∑

t=1

E
Ht−1

[
E

f,f ′

[
1
{
f ̸∈ VF

t or f ′ ̸∈ VF
t

} ∣∣∣Ht−1

]]

=

T∑
t=1

E
Ht−1

[
E

f,f ′

[
1
{
f ̸∈ VF

t or f ′ ̸∈ VF
t

} ∣∣∣Ht−1

]]

≤
T∑

t=1

E
Ht−1

[
2 E
f⋆

[
1
{
f⋆ ̸∈ VF

t

} ∣∣∣Ht−1

]]

=2

T∑
t=1

E
Ht−1,f⋆

[
1
{
f⋆ ̸∈ VF

t

}]
=2

T∑
t=1

E
f⋆

[
E

Ht−1

[
1
{
f⋆ ̸∈ VF

t

} ∣∣∣ f⋆
]]

≤2Tδ
where the second inequality holds by the union bound and the condition that f and f ′ have the
same posterior distributions as f⋆ conditioning onHt−1. The last two equalities holds by the law of
probability. The last inequality is Lemma C.1.

Now let’s bound T1. We first notice that we can replace the expectation with the supremum:

T1 ≤
T∑

t=1

E
Ht−1

[
sup

f,f ′∈VF
t

dTV

(
f(xt), f

′(xt)
)]

.

Applying Lemma D.12, we have

T1 ≤ 4
√
TβF (t− 1) · dim1

(
F , 1/T

)
· log T

Combining the upper bounds of T1 and T2 and setting δ = 1/T , we complete the proof of (15).

Proof of (16). We split the left side of (16) into two cases based on whether f and f ′ belong to VF
t :

T∑
t=1

E
Ht−1

[
E

f,f ′

[
d2TV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]

≤
T∑

t=1

E
Ht−1

[
E

f,f ′

[
1
{
f ∈ VF

t and f ′ ∈ VF
t

}
d2TV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]

+

T∑
t=1

E
Ht−1

[
E

f,f ′

[
1
{
f ̸∈ VF

t or f ′ ̸∈ VF
t

}
d2TV

(
f(xt), f

′(xt)
) ∣∣∣Ht−1

]]
=: T3 + T4.

Following a similar argument as in the proof of (15) above, we have T4 ≤ 2Tδ. For T3, by the
definition o VF

t , we directly have T3 ≤ 4βF (T ). Setting δ = 1/T , we complete the proof of (16).

Proof of (17) and (18). An identical argument can be applied to prove (17) and (18) leveraging
Corollary C.4.

Lemma C.6. Under Assumption C.2, it holds that
T∑

t=1

E
Ht−1

[
1

{
E
g,g′

[∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
> ϵ

}]

≤ min

9
√
Tβ′

G(T )

ϵ
· dim1

(
G, ϵ/2

)
,
21β′

G(T )

ϵ2
· dim2(G, ϵ/2)

 .

where β′
G(t) := 98κ2 log(2GTN[](κ(t|Y|)−1,G, ∥·∥∞)). In the inner expectation, g, g′ are sampled

from the posterior of g⋆ conditioning onHt−1.
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Proof of Lemma C.6. We define the version space at round t for t ∈ [T ] as follows

VG
t =

{
g ∈ G :

t−1∑
s=1

(
ĝt(xs)− g(xs)

)2
≤ βG(t− 1)

}
where recall that ĝt is defined as the function that parameterizes the maximum likelihood estimator
on the dataset {(xs, ys)}t−1

s=1 (i.e., ĝt = gf̂t ). This construction aims to mimic the version space VG

defined in Corollary C.4, which enable us to apply Corollary C.4.

We first split the left side into two cases based on whether both g and g′ belong to VG
t :

T∑
t=1

E
Ht−1

[
1

{
E
g,g′

[∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
> ϵ

}]

=

T∑
t=1

E
Ht−1

[
1

{
E
g,g′

[
1
{
g ∈ VG

t and g′ ∈ VG
t

}∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
+ E

g,g′

[
1
{
g ̸∈ VG

t or g′ ̸∈ VG
t

}∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
> ϵ

}]

≤
T∑

t=1

E
Ht−1

[
1

{
E
g,g′

[
1
{
g ∈ VG

t and g′ ∈ VG
t

}∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
> ϵ/2

}]

+

T∑
t=1

E
Ht−1

[
1

{
E
g,g′

[
1
{
g ̸∈ VG

t or g′ ̸∈ VG
t

}∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
> ϵ/2

}]
=:T1 + T2.

Here the inequality is due to the fact that 1{a+ b > c} ≤ 1{a > c/2}+1{b > c/2} for any a, b, c.
To bound T2, recalling that g(·) ∈ [0, G], then we have

T2 ≤
T∑

t=1

E
Ht−1

[
1

{
E
g,g′

[
1
{
g ̸∈ VG

t or g′ ̸∈ VG
t

}
·G
∣∣∣Ht−1

]
> ϵ/2

}]

≤2G

ϵ

T∑
t=1

E
Ht−1

[
E
g,g′

[
1
{
g ̸∈ VG

t or g′ ̸∈ VG
t

} ∣∣∣Ht−1

]]

≤2G

ϵ

T∑
t=1

E
Ht−1

[
2 E
g⋆

[
1
{
g⋆ ̸∈ VG

t

} ∣∣∣Ht−1

]]

=
4G

ϵ

T∑
t=1

E
g⋆,Ht−1

[
1
{
g⋆ ̸∈ VG

t

}]
=
4G

ϵ

T∑
t=1

E
g⋆

[
E

Ht−1

[
1
{
g⋆ ̸∈ VG

t

} ∣∣∣ g⋆]]
≤4GTδ

ϵ
.

where the second inequality is by the fact that 1{a > b} ≤ a/b for any a ≥ 0 and b > 0, the
third inequality holds since g and g′ are identically distributed as g⋆ conditioning on Ht−1, the two
equalities holds by the law of probability, and the last inequality is Corollary C.4.

Now let us bound T1. We first notice that we can replace the expectation with the supremum:

T1 ≤
T∑

t=1

E
Ht−1

[
1

{
sup

g,g′∈VG
t

∣∣g(xt)− g′(xt)
∣∣ > ϵ/2

}]
Recall that, for any g ∈ VG

t , we have
t−1∑
s=1

(
g(xs)− ĝ(xs)

)2 ≤ βG(t− 1).
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Hence, applying Lemma D.11, we get

T1 ≤min

{(
2
√
TβG(t− 1)

ϵ/2
+ 1

)
· dim1

(
G, ϵ/2

)
,

(
4βG(t− 1)

ϵ2/4
+ 1

)
dim2(G, ϵ/2)

}

≤min

{
5
√
TβG(t− 1)

ϵ
· dim1

(
G, ϵ/2

)
,
17βG(t− 1)

ϵ2
· dim2(G, ϵ/2)

}
Combining the upper bounds of T1 and T2, we obtain

T∑
t=1

E
[
1

{
E
g,g′

[∣∣g(xt)− g′(xt)
∣∣ ∣∣∣Ht−1

]
> ϵ

}]

≤ 4GTδ

ϵ
+min

{
5
√

TβG(t− 1)

ϵ
· dim1

(
G, ϵ/2

)
,
17βG(t− 1)

ϵ2
· dim2(G, ϵ/2)

}
.

Setting δ = 1/(TG), the parameter βG(t−1) becomes β′
G(t−1), which is upper bounded by β′

G(T ).
Then, we finish the proof.

C.2 BOUNDING BAYESIAN REGRET

Now we are ready to prove Theorem 5.4. We will prove the upper bound on the Bayesian regret in
this section and prove the upper bound on the number of queries in the next section.

For the ease of notation, we will omit the dependence of the state-value function on the initial state
s1 and simply write V := V1(s1) for any state-value function V throughout the proof.

We start by simplifying the Bayesian regret. Since π1
t = π0

t−1, we have

BayesRegretT = E
r⋆,P⋆

[
T∑

t=1

(
2V ⋆ − V π0

t − V π1
t

)]

= E
r⋆,P⋆

[
T∑

t=1

(
2V ⋆ − V π0

t − V π0
t−1

)]

= E
r⋆,P⋆

[
T∑

t=1

(
V ⋆ − V π0

t

)]
+ E

r⋆,P⋆

[
T−1∑
t=0

(
V ⋆ − V π0

t

)]

≤2 E
r⋆,P⋆

[
T∑

t=0

(
V ⋆ − V π0

t

)]
.

Hence, we only need to consider the regret incurred by π0
t . We defined V π

r,P as the state-value
function of policy π with reward function r and model P . Given that, we can express the Bayesian
regret as

BayesRegretT ≤ 2 E
r⋆,P⋆

[
T∑

t=0

(
V π⋆

r⋆,P⋆ − V
π0
t

r⋆,P⋆

)]
We reformulate the expectation by first taking the expectation of the historical data up to round
t − 1 and then taking the conditional expectation of P ⋆ and r⋆. Concretely, we denote Ht−1 =
{τ01 , τ11 , (o1), . . . , τ0t−1, τ

1
t−1, (ot−1)} as the history up to round t− 1, and then we have

BayesRegretT ≤2
T∑

t=0

E
Ht−1

E
r⋆,P⋆

[
V π⋆

r⋆,P⋆ − V
π0
t

r⋆,P⋆

∣∣∣Ht−1

]
=2

T∑
t=0

E
Ht−1

E
r⋆,P⋆

[
V

π0
t

rt,Pt
− V

π0
t

r⋆,P⋆

∣∣∣Ht−1

]
.
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For the equality above, we note that (rt, Pt) and (r⋆, P ⋆) are identically distributed givenHt−1 and

π0
t and π⋆ are the respective optimal policies of (rt, Pt) and (r⋆, P ⋆). Hence, V π0

t

rt,Pt
and V π⋆

r⋆,P⋆

are identically distributed given Ht−1, which is the reason that we can do the replacement in the
conditional expectation. Next, we proceed by decomposing the regret:

BayesRegretT =2

T∑
t=0

E
Ht−1

E
r⋆,P⋆

[
V

π0
t

rt,Pt
− V

π0
t

rt,P⋆ + V
π0
t

rt,P⋆ − V
π1
t

r⋆,P⋆ + V
π1
t

r⋆,P⋆ − V
π0
t

r⋆,P⋆

∣∣∣Ht−1

]
=2

T∑
t=0

E
Ht−1

E
r⋆,P⋆

[
V

π0
t

rt,Pt
− V

π0
t

rt,P⋆ + V
π0
t

rt,P⋆ − V
π1
t

rt,P⋆ + V
π1
t

r⋆,P⋆ − V
π0
t

r⋆,P⋆

∣∣∣Ht−1

]
=2

T∑
t=0

E
[
V

π0
t

rt,Pt
− V

π0
t

rt,P⋆ + V
π0
t

rt,P⋆ − V
π1
t

rt,P⋆ + V
π1
t

r⋆,P⋆ − V
π0
t

r⋆,P⋆

]
=2

(
T∑

t=0

E
[
V

π0
t

rt,Pt
− V

π0
t

rt,P⋆

]
︸ ︷︷ ︸

=:Tmodel

+

T∑
t=0

E
[
V

π0
t

rt,P⋆ − V
π1
t

rt,P⋆ + V
π1
t

r⋆,P⋆ − V
π0
t

r⋆,P⋆

]
︸ ︷︷ ︸

=:Treward

)

(19)

Here we added and substracted V
π0
t

rt,P⋆ and V
π1
t

r⋆,P⋆ in the first equality. For the second equality, we

note that π1
t = π0

t−1 is measurable with respect to Ht−1 (i.e., E[π1
t |Ht−1] = π1

t ).4 Hence, V π1
t

r⋆,P⋆

and V
π1
t

rt,P⋆ are identically distributed conditioning onHt−1.

Next, we will show that the two terms, Tmodel and Treward, arise from the estimation errors in the
model and reward, respectively.

Bounding Tmodel. By simulation lemma (Lemma D.2) and the tower rule, we have

Tmodel ≤H E

 T∑
t=0

H∑
h=1

E
(sh,ah)∼d

π0
t

h

dTV

(
Pt(sh, ah), P

⋆(sh, ah)
)

=H E

[
T∑

t=0

H∑
h=1

dTV

(
Pt(sh, ah), P

⋆(sh, ah)
)]

=H E

[
T∑

t=0

H∑
h=1

E
Pt,P⋆

[
dTV

(
Pt(sh, ah), P

⋆(sh, ah)
) ∣∣∣Ht−1

]]

=H

H∑
h=1

E

[
T∑

t=0

E
Pt,P⋆

[
dTV

(
Pt(sh, ah), P

⋆(sh, ah)
) ∣∣∣Ht−1

]]
≤O

(
H2 · dim1

(
P, 1/T

)
· log(T ) ·

√
T log(TN[]((HT |S|)−1,P, ∥ · ∥∞))

)
where the last step is Lemma C.5.

Bounding Treward. By the definition of state-value function, we have

Treward =

T∑
t=0

E
[
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

]

=

T∑
t=0

E
[
(1− Zt)

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]

+

T∑
t=0

E
[
Zt

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]
.

4Strictly speaking, π1
t is measurable with respect to the σ-algebra generated by Ht.
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For the first term, by the query condition, it holds that

T∑
t=0

E
[
(1− Zt)

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]

=

T∑
t=0

E

[
1
{
E
[
|r(τ0t )− r(τ1t )− (r′(τ0t )− r′(τ1t ))|

∣∣Ht−1, τ
0
t , τ

1
t

]
≤ ϵ
}

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]

=

T∑
t=0

E
Ht−1,τ0

t ,τ
1
t

E

[
1
{
E
[
|r(τ0t )− r(τ1t )− (r′(τ0t )− r′(τ1t ))|

∣∣Ht−1, τ
0
t , τ

1
t

]
≤ ϵ
}

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

) ∣∣∣∣∣Ht−1, τ
0
t , τ

1
t

]

=

T∑
t=0

E
Ht−1,τ0

t ,τ
1
t

[
1
{
E
[
|r(τ0t )− r(τ1t )− (r′(τ0t )− r′(τ1t ))|

∣∣Ht−1, τ
0
t , τ

1
t

]
≤ ϵ
}

E
[(

rt(τ
0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

) ∣∣∣Ht−1, τ
0
t , τ

1
t

]]
≤ Tϵ.

Here the first equality is by definition. The second equality is by the law of probability. The third
equality holds since the indicator is measurable with respect toHt−1, τ0t , and τ1t . The last inequality
is by the indicator and the fact that rt and r⋆ have the same posterior conditioning onHt−1. Plugging
this upper bound back, we have

Treward ≤Tϵ+
T∑

t=0

E
[
Zt

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]

=Tϵ+

T∑
t=0

E
Ht−1

[
Zt E

rt,r⋆

[∣∣∣rt(τ0t )− rt(τ
1
t ) + r⋆(τ1t )− r⋆(τ0t )

∣∣∣ ∣∣∣∣Ht−1

]]
.

In the inner expectation of the second term above, we notice that both rt and r⋆ are sampled from
the posterior of r⋆ conditioning on Ht−1. Thus, we can invoke the second statement in Lemma C.5
where the function g corresponds to rt and the function g′ corresponds to r⋆. This gives

Treward ≤ O

(
Tϵ+

√
Tκ2 log

(
HTN[](κ(2T )−1, R̃, ∥ · ∥∞)

)
· dim1

(
R̃, 1/T

)
· log(HT )

)
.

Conclusion. Given the upper bounds on Tmodel and Treward, ignoring logarithmic factors on T
and H , we conclude that

BayesRegretT = Õ

(
H2 · dim1

(
P, 1/T

)
·
√

T log(N[]((HT |S|)−1,P, ∥ · ∥∞))

+ Tϵ+ κ · dim1

(
R̃, 1/T

)
·
√

T log
(
N[](κ(2T )−1, R̃, ∥ · ∥∞)

))
.
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C.3 BOUNDING NUMBER OF QUERIES

It holds that

BayesQueriesT =E

[
T∑

t=0

Zt

]

=

T∑
t=0

E
Ht−1

[
Zt1

{
E

r,r′∼ρr,t

[(
(r(τ0t )− r(τ1t )

)
−
(
r′(τ0t )− r′(τ1t ))

)]
> ϵ

}]
.

We notice that, in the inner expectaion, r and r′ are sampled from the posterior of r⋆ conditioning
on Ht−1 (recalling the definition of ρr,t). Thus, we can invoke Lemma C.6 where the function g
corresponds to r and the function g′ corresponds to r′. This gives

BayesQueriesT ≤min

{
9
√
TβR

ϵ
· dim1

(
R̃, ϵ/2

)
,
21βR

ϵ2
· dim2(R̃, ϵ/2)

}
.

where the inequality is Lemma C.6 and βR := 98κ2 log(2THN[](κ(2T )
−1, R̃, ∥ · ∥∞)).

C.4 GENERALIZING THEOREM 5.4 THROUGH SEC

In this section, we show that the dependence on the eluder dimension in Theorem 5.4 can be gener-
alized to the Sequential Extrapolation Coefficient (SEC) (Xie et al., 2022). It have been shown by
Xie et al. (2022) that the SEC can be upper bounded by the eluder dimenion, the Bellman-eluder
dimension (Jin et al., 2021), and the bilinear rank (Du et al., 2021). Thus, SEC is a more general
measure of complexity.

We start by introducing the Bayesian Sequential Extrapolation Coefficient (Bayesian SEC) in the
preference-based feedback, which is a variant of the original SEC to accommodate the Bayesian and
preference-based learning setting. We define the Bayesian SEC for a model class P as

BayesSECP(P) := E
r⋆,P⋆

 sup
P1,...,PT∈P

(π0
1 ,π

1
1),...,(π

0
T ,π1

T )

T∑
t=1

(∑H
h=1 Es,a∼d

πt
h

[dTV (Pt(· | s, a), P ⋆(· | s, a))]
)2

1 ∨
∑t−1

i=1

∑H
h=1 Es,a∼dπ

i
h

[d2TV (Pt(· | s, a), P ⋆(· | s, a))]


and the Bayesian SEC for a reward function classR as

BayesSECR(R) := E
r⋆,P⋆

 sup
r1,...,rT∈R

(π0
1 ,π

1
1),...,(π

0
T ,π1

T )

T∑
t=1

Eτ0
t ∼π0

t ,τ
1
t ∼π1

t

[ (
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1

t )− r⋆(τ0
t )
)2 ]

1 ∨
∑t−1

i=1 Eτ0
i ∼π0

i ,τ
1
i ∼π1

i

[(
rt(τ0

i )− rt(τ1
i ) + r⋆(τ1

i )− r⋆(τ0
i )
)2]


We note that the Bayesian SEC can be easily reduced to the frequentist SEC by specifying the prior
on r⋆ and P ⋆ to be the Dirac delta function. We note that our definition of the reward function SEC
involves squaring within the expectation in the numerator rather than externally, potentially making
it larger.

Now, we are ready to state the generalization of Theorem 5.4.
Theorem C.7. PbTS (Algorithm 2) guarantees that

BayesRegretT = Õ

(
Tϵ+H

√
BayesSECP(P) · TH · ιP +

√
BayesSECR(R) · T · κ2 · ιR

)
,

BayesQueriesT = Õ

(
κ2 · BayesSECR(R) · ιR

ϵ2

)
.

where we denote ιP := log(N[]((HT |S|)−1,P, ∥ · ∥∞)) and ιR := log(N[](κ(2T )
−1, R̃, ∥ · ∥∞)).

The proofs are provided in the following sections (Appendices C.4.1 and C.4.2).

C.4.1 BOUNDING BAYESIAN REGRET VIA SEC

We first prove the upper bound on the Bayesian regret. Following (19), it suffices to separately
bound Tmodel and Treward via SEC. We start with Tmodel.
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Bounding Tmodel. By simulation lemma (Lemma D.2), we have

Tmodel ≤ H E

 T∑
t=0

H∑
h=1

E
(sh,ah)∼d

π0
t

h

dTV

(
Pt(sh, ah), P

⋆(sh, ah)
)

where dπh(s, a) denotes the probability of π reaching (s, a) at time step h. By multiplying and
dividing by the same term, we obtain the following.

Tmodel ≤H E

 T∑
t=0

∑H
h=1 E(sh,ah)∼d

π0
t

h

dTV

(
Pt(sh, ah), P

⋆(sh, ah)
)

√
1 ∨

∑t−1
i=0

∑H
h=1 E(sh,ah)∼d

π0
i

h

d2TV

(
Pt(sh, ah), P ⋆(sh, ah)

)

×

√√√√√1 ∨
t−1∑
i=0

H∑
h=1

E
(sh,ah)∼d

π0
i

h

d2TV

(
Pt(sh, ah), P ⋆(sh, ah)

)

≤H

√√√√√√√√E


T∑

t=0

(∑H
h=1 E(sh,ah)∼d

π0
t

h

dTV

(
Pt(sh, ah), P ⋆(sh, ah)

))2

1 ∨
∑t−1

i=0

∑H
h=1 E(sh,ah)∼d

π0
i

h

d2TV

(
Pt(sh, ah), P ⋆(sh, ah)

)


︸ ︷︷ ︸
(i)

×

√√√√√ T∑
t=0

E

1 ∨ t−1∑
i=0

H∑
h=1

E
(sh,ah)∼d

π0
i

h

d2TV

(
Pt(sh, ah), P ⋆(sh, ah)

)
︸ ︷︷ ︸

(ii)

Here we note that a ∨ b := max(a, b) ≤ a + b for a, b ≥ 0. The last step above is the Cauchy-
Schwarz inequality. We observe that term (i) is exactly bounded by the Bayesian SEC of models.
For term (ii), we can invoke (16) in Lemma C.5 since Pt has an identical posterior distribution as P ⋆

given the historical data up to round t − 1. This gives (ii) ≤ Õ(
√
TH · ιP). Plugging these back,

we obtain

Tmodel ≤ Õ
(
H
√
BayesSECP(P) · TH · ιP

)

Bounding Treward. The reward part can be bounded similarly, except that we need to additionally
consider the query conditions. To begin with, by the definition of state-value function, we have

Treward =

T∑
t=0

E
[
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

]

=

T∑
t=0

E
[
(1− Zt)

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]
︸ ︷︷ ︸

(i)

+

T∑
t=0

E
[
Zt

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

)]
︸ ︷︷ ︸

(ii)

.

Following the same argument as in the proof of Appendix C.2, we can bound (i) as (i) ≤ Tϵ. Now
we proceed to bound (ii), which is the regret incurred when making queries. By multiplying and
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dividing by the same term, we obtain the following.

(ii) =
T∑

t=0

E
π0
t ,π

1
t ,rt,Zt

 E
[
Zt

(
rt(τ

0
t )− rt(τ

1
t ) + r⋆(τ1t )− r⋆(τ0t )

) ∣∣π0
t , π

1
t , rt, Zt

]√
1 ∨

∑t−1
i=0 E

[
Zt (rt(τ0i )− rt(τ1i ) + r⋆(τ1i )− r⋆(τ0i ))

2
∣∣∣π0

t , π
1
t , rt, Zt

]
×

√√√√1 ∨
t−1∑
i=0

E
τ0
t ,τ

1
t

[
Zt

(
rt(τ0i )− rt(τ1i ) + r⋆(τ1i )− r⋆(τ0i )

)2
∣∣∣∣∣π0

t , π
1
t , rt, Zt

] 

≤

√√√√√√ T∑
t=0

E
π0
t ,π

1
t ,rt,Zt


(
E [Zt (rt(τ0t )− rt(τ1t ) + r⋆(τ1t )− r⋆(τ0t )) |π0

t , π
1
t , rt, Zt]

)2
1 ∨

∑t−1
i=0 E

[
Zt (rt(τ0i )− rt(τ1i ) + r⋆(τ1i )− r⋆(τ0i ))

2
∣∣∣π0

t , π
1
t , rt, Zt

]


︸ ︷︷ ︸
(iii)

×

√√√√ T∑
t=0

(
1 ∨

t−1∑
i=0

E

[
Zt

(
rt(τ0i )− rt(τ1i ) + r⋆(τ1i )− r⋆(τ0i )

)2
])

︸ ︷︷ ︸
(iv)

where the last inequality is Cauchy-Schwarz inequality. We observe that term (iii) is exactly bounded
by the Bayesian SEC of reward functions via Jensen’s inequality. For term (iv), we invoke (18) in
Lemma C.5 and get (iv) ≤ Õ(

√
κ2T · ιR). Now plugging these upper bounds back, we get

Treward ≤ Tϵ+ Õ
(√

BayesSECR(R) · κ2T · ιR
)
.

Conclusion. Given the upper bounds on Tmodel and Treward, we conclude that

BayesRegretT ≤Õ

(
H
√
BayesSECP(P) · TH · ιP + Tϵ+

√
BayesSECR(R) · κ2T · ιR

)
.

C.4.2 BOUNDING NUMBER OF QUERIES VIA SEC

By the definition of Zt, we have

BayesQueriesT =E

[
T∑

t=0

Zt

]
= E

[
T∑

t=0

Z2
t

]

=E

[
T∑

t=0

Zt1

{
E

r,r′∼ρr,t

[∣∣(r(τ0t )− r(τ1t )
)
−
(
r′(τ0t )− r′(τ1t ))

∣∣] > ϵ

}]

=E

[
T∑

t=0

Zt1

{
E

r,r′∼ρr,t

[∣∣(r(τ0t )− r(τ1t )
)
−
(
r′(τ0t )− r′(τ1t ))

∣∣2] > ϵ2
}]

≤ 1

ϵ2
E

[
T∑

t=0

Zt E
r,r′∼ρr,t

[∣∣(r(τ0t )− r(τ1t )
)
−
(
r′(τ0t )− r′(τ1t ))

∣∣2]]

=
1

ϵ2
E

[
T∑

t=0

Zt E
r,r′

[∣∣(rt(τ0t )− rt(τ
1
t )
)
−
(
r⋆(τ0t )− r⋆(τ1t ))

∣∣2 ∣∣∣Ht−1

]]
.
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Here the last step is by the definition of ρr,t. Now we swap the order of expectation and get

BayesQueriesT

≤ 1

ϵ2
E

[
T∑

t=0

E
τ0
t ,τ

1
t

[
Zt

(
(rt(τ

0
t )− rt(τ

1
t )
)
−
(
r⋆(τ0t )− r⋆(τ1t ))

)2 ∣∣∣π0
t , π

1
t , r

⋆, rt, Zt

]]

=
1

ϵ2
E

 T∑
t=0

Eτ0
t ,τ

1
t

[
Zt

(
(rt(τ

0
t )− rt(τ

1
t )
)
−
(
r⋆(τ0t )− r⋆(τ1t ))

)2 ∣∣∣π0
t , π

1
t , r

⋆, rt, Zt

]
1 ∨

∑t−1
i=0 Eτ0

i ,τ
1
i

[
Zt

(
(rt(τ0i )− rt(τ1i )

)
−
(
r⋆(τ0i )− r⋆(τ1i ))

)2 ∣∣∣π0
i , π

1
i , r

⋆, rt, Zt

]
×

(
1 ∨

t−1∑
i=0

E
τ0
i ,τ

1
i

[
Zt

(
(rt(τ

0
i )− rt(τ

1
i )
)
−
(
r⋆(τ0i )− r⋆(τ1i ))

)2 ∣∣∣π0
i , π

1
i , r

⋆, rt, Zt

])]

≤ 1

ϵ2
E

 T∑
t=0

Eτ0
t ,τ

1
t

[
Zt

(
(rt(τ

0
t )− rt(τ

1
t )
)
−
(
r⋆(τ0t )− r⋆(τ1t ))

)2 ∣∣∣π0
t , π

1
t , r

⋆, rt, Zt

]
1 ∨

∑t−1
i=0 Eτ0

i ,τ
1
i

[
Zt

(
(rt(τ0i )− rt(τ1i )

)
−
(
r⋆(τ0i )− r⋆(τ1i ))

)2 ∣∣∣π0
i , π

1
i , r

⋆, rt, Zt

]


× Õ
(
κ2 · ιR

)
where in the last step we applied Jensen’s inequality to the first multiplicative term and applied (18)
in Lemma C.5 to the second term. We observe that the first term can be bounded by SEC, and thus
we obtain

BayesQueriesT ≤ Õ

(
κ2 · BayesSECR(R) · ιR

ϵ2

)
.

D TECHNICAL LEMMAS

Lemma D.1. Under Assumption 3.1, we have κ(Φ(a)− Φ(b)) ≤ a− b ≤ κ(Φ(a)− Φ(b)) for any
a, b ∈ [0, H].

Proof of Lemma D.1. We note that Φ(a)− Φ(b) =
∫ a

b
Φ′(x) dx and

κ−1(a− b) ≤ (a− b) inf
x∈[a,b]

Φ′(x) ≤
∫ a

b

Φ′(x) dx ≤ (a− b) sup
x∈[a,b]

Φ′(x) ≤ κ−1(a− b).

Lemma D.2 (Simulation lemma). For any models P, P̂ and any policy π, we have∣∣∣V π
P,1(s1)− V π

P̂ ,1
(s1)

∣∣∣ ≤ H∑
h=1

E
(sh,ah)∼dπ

P,h

∣∣∣∣∣ E
s′∼P (sh,ah)

V π
P̂ ,h+1

(s′)− E
s′∼P̂ (sh,ah)

V π
P̂ ,h+1

(s′)

∣∣∣∣∣
≤H

H∑
h=1

E
(sh,ah)∼dπ

P,h

dTV

(
P (· | sh, ah), P̂ (· | sh, ah)

)
where dπP,h(s, a) is the probability of π reaching (s, a) at time step h given model P .

Lemma D.3 (Gaussian concentration). Let ϵ ∼ N (0, cΣ−1) for c ∈ R+ and Σ a positive definite
matrix. Then, for any δ > 0, we have

1. Pr
(
∥ϵ∥Σ >

√
2cd log(2d/δ)

)
≤ δ.

2. E [∥ϵ∥Σ] ≤
√
cd.

Proof of Lemma D.3. The proof of the first inequality is provided in Abeille & Lazaric (2017, Ap-
pendix A). We provide a proof here for completeness. Let η ∼ N (0, Id) where Id denotes the
d-dimensional identity matrix. Fix an arbitrary α. We have

Pr
(
∥η∥2 > α

√
d
)
≤ Pr

(
∃i : |ηi| > α

)
≤ dPr

(
|η1| > α

)
≤ d · 2e−α2/2
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where the second inequality is the union bound, and the last inequality is the standard concentration
inequality for one-dimensional Gaussian random variable. We choose α =

√
2 log(2d/δ) and get

Pr
(
∥η∥2 >

√
2d log(2d/δ)

)
≤ δ.

Let B denote the square root of Σ, i.e., BB = Σ. Then, we have

∥ϵ∥Σ =
√
ϵ⊤Σϵ =

√(√
cB−1η

)⊤
BB

(√
cB−1η

)
=
√
c∥η∥2 (20)

Hence, it holds that

Pr
(
∥ϵ∥Σ >

√
2cd log(2d/δ)

)
= Pr

(
∥η∥2 >

√
2d log(2d/δ)

)
≤ δ.

This proves the first inequality. To prove the second inequality, we note that, by (20),

E [∥ϵ∥Σ] =
√
cE [∥η∥2] ≤

√
c
√
E [η⊤η] =

√
cd.

The following inequalities are well-known, and we use the version in Zhu & Nowak (2022).
Lemma D.4. (Zhu & Nowak, 2022) Let {Xt}t≤T be a sequence of positive valued random variables
adapted to a filtration Ft, and let Et[·] := E[· | Ft−1]. If Xt ≤ B almost surely, then with probability
at least 1− δ, the following holds:

T∑
t=1

Xt ≤
3

2

T∑
t=1

Et[Xt] + 4B log(1/δ),

T∑
t=1

Et[Xt] ≤ 2

T∑
t=1

Xt + 8B log(1/δ).

Lemma D.5 (Self-normalized process). (Abbasi-Yadkori et al., 2011) Let {xi}∞i=1 be a real valued
stochastic process sequence over the filtration {Fi}∞i=1. Let xi be conditionally B-subgaussian
given Fi−1. Let {ϕi}∞i=1 with ϕi ∈ Fi−1 be a stochastic process in Rd with each ∥ϕi∥ ⩽ Lϕ.
Define Σi = λI +

∑i−1
j=1 ϕiϕ

⊤
i . Then for any δ > 0 and all i ⩾ 0, with probability at least 1− δ∥∥∥∥∥

k−1∑
i=1

ϕixi

∥∥∥∥∥
2

Σ−1
k

⩽ 2B2 log

(
det (Σi)

1/2
det(λI)−1/2

δ

)
⩽ 2B2

(
d log

(
λ+ kL2

ϕ

λ

)
+ log(1/δ)

)

Lemma D.6 (Elliptical potential lemma). (Abbasi-Yadkori et al., 2011) Following the setting of
Lemma D.5, we have

k∑
i=1

min
{
1, ∥ϕi∥2Σ−1

i

}
⩽ 2d log

(
λ+ kL2

ϕ

λ

)
Lemma D.7 (Sum of features). (Jin et al., 2020) Following the setting of Lemma D.5, we have

k−1∑
i=1

∥ϕi∥2Σ−1
k

⩽ d

The following lemma converts the TV distance between Gaussian distributions into the distance
between their means.
Lemma D.8. Assume p1 = N (µ1, σ

2I) and p2 = N (µ2, σ
2I) are two Gaussian distributions over

Rd. Assume ∥µ1 − µ2∥2 ≤ m. Then, we have

∥µ1 − µ2∥2 ·min

{√
1

2eπσ2
,

1

2m

}
︸ ︷︷ ︸

=: C1

≤ dTV(p1, p2) ≤ ∥µ1 − µ2∥2 ·
√

1

2πσ2︸ ︷︷ ︸
=: C2
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Proof. Without loss of generality, we can rotate and translate the Rd space and assume that p1 =
N (0, σ2I) and p2 = N (α · e1, σ2I) where α = ∥µ1 − µ2∥2 and e1 = [1, 0, . . . , 0] ∈ Rd. It is clear
that the total variation distance is preserved. Then, by definition,

dTV(p1, p2) =
1

2

∫
x∈Rd

|p1(x)− p2(x)| dx =

∫
x·e1≤α/2

p1(x)− p2(x) dx

where the last step holds since p1(x) − p2(x) ≥ 0 if and only if x · e1 ≤ α/2. Note that the above
formulation is independent of any dimension except for first dimension, so we can marginize other
dimensions and reduce into a one-dimensional problem:

dTV(p1, p2) =

∫
x≤α/2

N (x | 0, σ2)−N (x |α, σ2) dx

=
(
F (α/(2σ))− F (−α/(2σ))

)
=

∫ α/(2σ)

−α/(2σ)

N (x | 0, 1) dx

where we denote F as the CDF of standard Gaussian N (0, 1) in the middle step. Below we show
that the above integral is upper bounded by C2α and lower bounded by C1α.

Upper bound. For an upper bound, we note that for any v > 0, we have∫ v

−v

N (x | 0, 1) dx ≤ 2v ·max
x
N (x | 0, 1) ≤ v

√
2

π
.

Inserting v = α/(2σ), we obtain the desired upper bound.

Lower bound. For a lower bound, we note that for any 0 < v ≤ m/(2σ), if v < 1, we have∫ v

−v

N (x | 0, 1) dx ≥ 2v max
x∈[−v,v]

N (x | 0, 1) ≥ 2vN (1 | 0, 1) = 2v · e
−1/2

√
2π

= v ·
√

2

eπ
.

When v ≥ 1, we have∫ v

−v

N (x | 0, 1) dx ≥
∫ σ

−σ

N (x | 0, 1) dx ≈ 0.6827 ≥ v · 1

2v
≥ v · σ

m
.

Combining the two cases together, we have∫ v

−v

N (x | 0, 1) dx ≥ v ·min

{√
2

eπ
,
σ

m

}
.

Inserting v = α/(2σ), we obtain the desired lower bound.

Lemma D.9. Let x ∼ N (0, Id) and A be a positive semi-definite matrix. Then, we have

E
x
∥x∥A ≥

√
2 tr(A)

π
.

Proof. Let P denote the orthogonal matrix diagonalizing A, i.e., A = PΛP⊤ where Λ =

diag(λ1, . . . , λd). Then, we have Ex ∥x∥A = Ex

√
x⊤Ax = Ey

√
y⊤Λy where y = P⊤x ∼

N (0, Id). Now we consider the following optimization problem:

min
M∈M

f(M) := E
y

√
y⊤My where M := {M ⪰ 0 : M is diagonal and tr(M) = tr(Λ)}.

Then, we have Λ ∈M and Ex ∥x∥A = f(Λ). Thus, the solution to the above optimization problem
is a lower bound of Ex ∥x∥A. Since f(M) is concave in M , it must attain the minimum on the
bounary of M. By symmetry of entries in the diagonal, we know that the minimizer must have
tr(Λ) at one entry and 0 at all other entries. Hence, the minimum value is

E
y

√
tr(Λ)y21 =

√
tr(Λ)E

y
|y1| =

√
2 tr(Λ)

π
.

We finish the proof by noticing that tr(Λ) = tr(A).
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The following lemma was originally established by Agarwal et al. (2020) and later adapted by Wu
et al. (2023a) to accommodate infinitely large function classes.

Lemma D.10 (Maximum likelihood estimation). (Wu et al., 2023a, Lemma C.3) Consider a se-
quential conditional probability estimation problem. Let X and Y be the instance space and the
target space, respectively. Let F : (X × Y) → R denote the function class. We are given a dataset
D := {(xi, yi)}ni=1 where xi ∼ Di and yi ∼ f⋆(x, ·). We assume f⋆ ∈ F . For the data generating
process, we assume the data distribution Di is history-dependent, i.e., xi can depend on the previ-
ous samples: x1, y1, . . . , xi−1, yi−1 for any i ∈ [n]. We fix δ ∈ (0, 1). Let f̂ denote the maximum
likelihood estimator,

f̂ = argmax
f∈F

n∑
i=1

log f(xi, yi).

Then, we have
n∑

i=1

E
x∼Di

d2TV

(
f̂(x, ·), f⋆(x, ·)

)
≤ 10 log

(
N[]

(
(n|Y|)−1,F , ∥ · ∥∞

)
/δ
)

(21)

with probability at least 1− δ. Here |Y| denotes the total measure of space Y , i.e., |Y| :=
∫
Y 1 dy.

D.1 ELUDER DIMENSION

The following lemmas are adapted from Russo & Van Roy (2013) and Liu et al. (2022a).

Lemma D.11. Following the notation of Definition 5.2, define

Ft =

{
f ∈ F :

t−1∑
s=1

d2
(
f(xs), f̂t(xs)

)
≤ β

}

where f̂t ∈ F is an arbitrary function. Then, we have

T∑
t=1

1

{
sup

f,f ′∈Ft

d (f(xt), f
′(xt)) ≥ ω

}
≤
(
2
√
Tβ

ω
+ 1

)
dim1(F , ω), (22)

T∑
t=1

1

{
sup

f,f ′∈Ft

d (f(xt), f
′(xt)) ≥ ω

}
≤
(
4β

ω2
+ 1

)
dim2(F , ω) (23)

for any constant ω > 0.

Proof of Lemma D.11. We first prove (22) and then (23).

Proof of (22). We begin by showing that if

sup
f,f ′∈Ft

d (f(xt), f
′(xt)) ≥ ω

for some t ∈ [T ], then xt is ω-dependent on at most 2β/ω disjoint subsequence of its predeces-
sors. To see this, we note that, if xt is ω-dependent on a subsequence (xi1 , xi2 , . . . , xin) of its
predecessors, we must have

n∑
s=1

d
(
f(xis)− f ′(xis)

)
> ω.

Hence, if xt is ω-dependent on l disjoint subsequences, we have

t−1∑
s=1

d
(
f(xs), f

′(xs)
)
> lω. (24)
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For the left-hand side, we also have

t−1∑
s=1

d
(
f(xs), f

′(xs)
)
≤

t−1∑
s=1

d
(
f(xs), f̂t(xs)

)
+

t−1∑
s=1

d
(
f̂t(xs), f

′(xs)
)

≤
√
T

√√√√t−1∑
s=1

d2
(
f(xs), f̂t(xs)

)
+
√
T

√√√√t−1∑
s=1

d2
(
f̂t(xs), f ′(xs)

)
≤2
√

Tβ (25)

where the first inequality is the triangle inequality, and the second inequality holds by the definition
of Ft. Combining (24) and (25), we get that l ≤ 2

√
Tβ/ω.

Next, we show that for any sequence (x′
1, . . . , x

′
τ ), there is at least one element that is ω-dependent

on at least τ/d− 1 disjoint subsequence of its predecessors, where d := dim1(F , ω). To show this,
let m be the integer satisfying md+ 1 ≤ τ ≤ md+ d. We will construct m disjoint subsequences,
B1, . . . , Bm. At the beginning, let Bi = (x′

i) for i ∈ [m]. If x′
m+1 is ω-dependent on each

subsequence B1, . . . , Bm, then we are done. Otherwise, we select a subsequence Bi which x′
m+1

is ω-independent of and append x′
m+1 to Bi. We repeat this process for all elements with indices

j > m + 1 until either x′
j is ω-dependent on each subsequence or j = τ . For the latter, we have∑m

i=1 |Bi| ≥ md, and since each element of a subsequence Bi is ω-independent of its predecesors,
we must have |Bi| = d for all i. Then, xτ must be ω-dependent on each subsequence by the
definition of eluder dimension.

Finally, let’s set the sequence (x′
1, . . . x

′
τ ) to be the subsequence of (x1, . . . , xT ) consisting of ele-

ments xt for which d (f(xt), f
′(xt)) > ω. As we have established, we have

1. each x′
i is ℓ1-norm ω-dependent on at most 2

√
Tβ/ω disjoint subsequences, and

2. some x′
i is ℓ1-norm ω-dependent on at least τ/d− 1 disjoint subsequences.

Therefore, we must have τ/d− 1 ≤ 2
√
Tβ/ω, implying that τ ≤ (2

√
Tβ/ω + 1)d.

Proof of (23). The proof is quite similar to the proof of (22). For ℓ2-norm, following the same
argument, we can show the following:

1. each x′
i is ℓ2-norm ω-dependent on at most 4β/ω2 disjoint subsequences, and

2. some x′
i is ℓ2-norm ω-dependent on at least τ/d− 1 disjoint subsequences.

Therefore, we must have τ/d− 1 ≤ 4β/ω2, implying that τ ≤ (4β/ω2 + 1)d.

Lemma D.12. Following the setting of Lemma D.11, assume d(·, ·) is upper bounded by D ≤ β.
Then, we have

T∑
t=1

sup
f,f ′∈Ft

d
(
f(xt), f

′(xt)
)
≤ 4
√
Tβ · dim1(F , 1/T ) · log(DT )

Proof of Lemma D.12. For notational simplicity, we denote

wt := sup
f,f ′∈Ft

d
(
f(xt), f

′(xt)
)
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Now we fix a constant ∆ > 0, and then we have

T∑
t=1

wt =

T∑
t=1

∫ D

0

1{wt ≥ δ} dδ

=

∫ D

0

T∑
t=1

1{wt ≥ δ} dδ

≤∆T +

∫ D

∆

T∑
t=1

1{wt ≥ δ} dδ

≤∆T +

∫ D

∆

(
2
√
Tβ

δ
+ 1

)
dim1(F , δ) dδ

≤∆T +

∫ D

∆

3
√
Tβ

δ
· dim1(F , δ) dδ

≤∆T + 3
√

Tβ · dim1(F ,∆) · log(D/∆)

where the second inequality is Lemma D.11, and the last inequality uses the fact that dim1(F , δ) is
non-increasing in δ. We can conclude the proof by setting ∆ = 1/T .
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