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ABSTRACT

Humans perceive the world through multisensory integration, blending the infor-
mation of different modalities to adapt their behavior. Alignment through con-
trastive learning offers an appealing solution for multimodal self-supervised learn-
ing. Indeed, by considering each modality as a different view of the same entity,
it learns to align features of different modalities in a shared representation space.
However, this approach is intrinsically limited as it only learns shared or redun-
dant information between modalities, while multimodal interactions can arise in
other ways. In this work, we introduce CoMM, a Contrastive Multimodal learn-
ing strategy that enables the communication between modalities in a single multi-
modal space. Instead of imposing cross- or intra- modality constraints, we propose
to align multimodal representations by maximizing the mutual information be-
tween augmented versions of these multimodal features. Our theoretical analysis
shows that shared, synergistic and unique terms of information naturally emerge
from this formulation, allowing to estimate multimodal interactions beyond re-
dundancy. We test CoMM both in a controlled and in a series of real-world set-
tings: in the former, we demonstrate that CoMM effectively captures redundant,
unique and synergistic information between modalities. In the latter, we show
that CoMM learns complex multimodal interactions and achieves state-of-the-art
results on seven multimodal tasks. Code is available here.

1 INTRODUCTION

Multisensory or multimodal learning (Baltrusaitis et al., 2018) involves extracting and processing
information from multiple sources (e.g. text, audio, images, tabular data, efc.). The whole human
experience is inherently multimodal: we simultaneously see, hear, smell, taste and feel, and these
different sensory signals are combined to give us the necessary information to explore our environ-
ment. Many of the simplest tasks we tackle in our daily lives are multimodal:the way we perceive
the flavor of our food or drinks does not depend solely on our taste, but also on what we see (Morrot
et al., 2001) or what we hear (Woods et al., 2011) while we eat. McGurk & MacDonald (1976) have
also shown that visual stimuli interact with audio signals to perform human speech recognition.

Despite the inherent multimodality of sensory systems, machine learning has largely concentrated
on single-modality models, with few exceptions in areas like audio-visual speech recognition (Yuhas
etal., 1989; Ngiam et al., 2011), multimedia content retrieval (Atrey et al., 2010; Snoek & Worring,
2005), and video-based human behavior analysis (Kraaij et al., 2005). Nowadays, with the emer-
gence of self-supervised strategies and their impressive capacities for learning representations in
computer vision (Chen et al., 2020a; He et al., 2020; Caron et al., 2021), NLP (Radford et al., 2018;
Devlin et al., 2019) or audio (Oord et al., 2018; Niizumi et al., 2021), the paradigm has shifted
to learning general multimodal representations from unlabeled data and then fine-tune the models
to specific multimodal tasks. Recent works have shown success at training multimodal represen-
tations by using cross-modal contrastive objectives (Radford et al., 2021; Jia et al., 2021) to align
the representations in a shared embedding space. However, this training strategy only works under
the multiview redundancy assumption, i.e., considering that all task-relevant information is shared
between modalities and redundantly contained in either one of them separately. In particular, for
vision-language tasks, this can be seen as a clever way to perform supervised learning on a visual
encoder, which explains their success to transfer to visual classification tasks.
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Figure 1: a) We propose CoMM, a contrastive multimodal approach that allows the interplay
of multiple modalities and learns multimodal interactions. Unlike previous multimodal models
(Cross) that align cross-modal features, CoMM aligns multimodal features in a shared representation
space. b) Multimodal interactions are task-dependent, thus a model needs to capture all of them to
generalize to any multimodal task. CoMM’s new paradigm captures multimodal interactions
beyond redundancy.

Nonetheless, these solutions are insufficient in many cases, as the interactions between modalities
can arise in several ways to perform a specific task (Bertschinger et al., 2014): redundancy (R)
arises when the task can be performed using either of the modalities because they contain redundant
information; uniqueness (U) appears when only one of the modalities contains all the necessary
information to complete the task; synergy (S) emerges when both modalities have complementary
information, and they are needed simultaneously to fulfill the task. Modeling these interactions to
perform multimodal learning is highly challenging as the interplay between R, .S and U is task-
dependent and difficult to measure in complex real-life scenarios. Fig. 1b shows simple tasks where
the predominant type of interaction can be easily identified. We observe that we need to model
specific interactions for the same input modalities to perform a specific task. Therefore, a model
must capture all these terms to learn task-agnostic multimodal representations.

To achieve task-agnostic multimodal learning, we propose a Contrastive MultiModal self-
supervised pre-training method (CoMM) that enables the communication of modalities in a single
multimodal space. Unlike previous contrastive multimodal methods that impose cross-modal con-
straints to align unimodal representations, we propose to leverage a simple multimodal architecture
to fuse multimodal inputs into a common representation and then align the multimodal features by
maximizing the mutual information between augmented versions of these features (see Fig. 1a).
CoMM enables to model multimodal interactions —including redundancy, uniqueness and synergy—
in the context of multimodal representation learning , as these terms naturally emerge from our
contrastive multimodal formulation.

CoMM’s formulation is well-aligned with the global workspace theory (Baars, 1988; Goyal & Ben-
gio, 2022) in cognitive neuroscience, which considers the nervous system as a set of multiple spe-
cialized processors working in parallel and claims the existence of a shared representation, which
can be modified by any selected processor and whose content is broadcast to all processors. By
analogy, CoMM considers a shared representation space built from parallel streams of modality-
specific processors. When a task requires knowledge from a given modality or interactions between
modalities, only these parts of the representation space should be used.

Based on Partial Information Decomposition (Williams & Beer, 2010; Bertschinger et al., 2014), we
built a strong theoretical basis for CoMM to learn multimodal interactions in a self-supervised way.
Empirically, we show that CoMM effectively captures redundant, unique and synergistic informa-
tion between modalities in a controlled environment, where the type of interaction is known. Then,
in a series of real-world datasets —from different domains (healthcare, robotics, efc.) and including
diverse data types (image, text, audio, efc.)-, CoMM achieves state-of-the-art results on seven mul-
timodal tasks with two or three modalities. In all cases, CoMM showed to be a versatile framework
capable of handling any number of modalities, various data types, and different domains.
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2  QUANTIFYING MULTIMODAL INTERACTIONS

Problem setup. Let X1, Xo,..., X,, be random variables representing n different data modalities
(e.g. images, text, audio, tabular data, etc.), and a given task Y. Our goal is to learn a latent variable
Z = f(X) that is a good representation of X = (X3,...,X,,) forY.

For our theoretical analysis, we set n = 2, as multimodal interactions have not been characterized
yet by PID for larger n. In practice, CoMM’s implementation for n > 2 is straightforward and tested
in Section 4.3. All proofs can be found in Appendix G.

For Z to be a good representation of X it should capture the task-relevant information that X
contains. Therefore, we need to model the information between the joint variable X and the task Y':
I(X;Y) = I(X1, X2;Y).

Partial information decomposition (PID) (Williams & Beer, 2010; Bertschinger et al., 2014) states
that multivariate mutual information (X5, Xo;Y) is decomposed into three forms of interactions:

(i) Uniqueness. This term appears when the task Y can be completed by leveraging only one of
the modalities. U; (resp. Us) refers to the case when X; (resp. X5) contains all task-relevant
information.

(ii)) Redundancy. When X; and X5 contain the same information about Y. R corresponds to this
redundant or shared information.

(iii) Synergy. Noted by S, this term only emerges when X; and X5 are simultaneously present,
because they bring different and complementary task-relevant information.

Thus, the information that (X, X5) has about Y can be written as the contribution of four terms:
I(X17X2;Y)=R+S+U1+U2 (1)

Moreover, Eq. (1) and the application of the chain rule of mutual information yield the following
consistency equations between R, S, U; and Us:

I(X;Y)=R+U;, I(Xo;Y)=R+Us, I(X;;X35Y)=R-S 2)

Existing methods using contrastive objectives to learn multimodal representations (Jia et al., 2021;
Radford et al., 2021; Tian et al., 2020a) impose cross-modal constraints by maximizing an estima-
tor of I(X7; X5) as an approximation of I(X;, X2;Y). However, this strategy is limited by the
multiview redundancy assumption.

Definition 1 (Multi-view redundancy) 3 > 0 such that I(Y; X1|Xs2) < e and I(Y; X5|X1) < e.

This assumption states that most task-relevant information is shared across modalities and the non-
shared information is (at most) a small . In other words, any of the modalities contains enough
information to fulfill the downstream task Y, and they can provide some kind of “supervision” to
one another, which explains their success for zero-shot image classification (El Banani et al., 2023).

Lemma 1 Under the multiview redundancy assumption, cross-modal contrastive learning methods
are limited to only learn the redundant information R.

What happens when other sources of multimodal information intervene? FactorCL (Liang et al.,
2023b) is a good initial step to integrate uniqueness and redundancy into multimodal contrastive
learning by applying multimodal augmentations. However, it heavily relies on the assumption that
optimal multimodal augmentations can be obtained by applying a two-step process based on condi-
tional augmentations. We argue that this hypothesis is unrealistic, as the first unique augmentation
is strongly related to task-relevant information of different modalities. For example, if the text cap-
tion is “a yellow flower”, then color jittering should not be applied to an image depicting a flower.
Besides, the factorized formulation of FactorCL is impractical as it is prone to cumulative errors.
Finally, this method does not consider the synergy between modalities.

In contrast, we propose a model that relies solely in the main hypothesis of contrastive learning,
extended to the multimodal case, without relying on strong assumptions about multimodal relation-
ships nor conditional augmentations.

Assumption 1 (Minimal label-preserving multimodal augmentations) We assume the existence of
T*, a set of multimodal augmentations such that for any t € T* and X' = t(X), we have
I(X, XY =1(X,Y).
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Even if Assumption | might seem strong at first glance, it actually makes sense in the context of
multimodal representation learning. Indeed, coming back to the example of the flower image with
“a yellow flower” as a caption, applying color jittering to the image would allow the model to focus
on other interactions (uniqueness or synergy) rather than color redundancy or even to refocus on
other features (like the flower shape). This is discussed more in-depth in Appendix C.4.

Moreover, our assumption allows for a larger spectrum of augmentations, without being constrained
to the set 7 = {¢t(X) = (t1(X1),t2(X2))} of transformations that can be decomposed in indepen-
dent unimodal augmentations.

3 COMM: CONTRASTIVE MULTIMODAL LEARNING

We aim to learn multimodal representations that are transferable to any multimodal task. Contrastive
learning has shown promising results in multimodal learning. However, current approaches fail to
capture multimodal interactions other than redundancy, as shown in Section 2.

Our strategy builds upon multiview contrastive learning theory and extends it to the multimodal
case. It is based on two main components:

(i) A multimodal architecture, with specialized encoders to process any data type, and an
attention-based fusion module to obtain a final multimodal representation.

(i) A contrastive objective that naturally captures unique, redundant, and synergistic interactions
between different data modalities.

3.1 TOWARDS EFFECTIVE MULTIMODAL REPRESENTATIONS

To obtain robust, task-agnostic and common representations Z that capture uniqueness, redundancy
and synergy from different input modalities, we design fy —a neural network parameterized by 6-
such that Zy = fy(X) = fo(X1, X2).

We define X’ = t(X) with t € T a stochastic mapping' (multimodal augmentation) of X and

Zy = fo(X').

Given data processing inequalities for Markov chains X — X’ — Z} and Z), — X — Zy, we have:
1(Zy; Zg) < 1(X, Zp) < I(X, X) 3)

With these inequalities, we can prove the following lemmas:

Lemma 2 By optimizing fg to maximize I(Zy; Zy), and if we assume an expressive enough network

fo, we have at optimum:
I(Zg+, Zpo) = 1(X, X") 4

Lemma 3 Let fo« be optimal, ie. fo« maximizes 1(Zy,Z,). Then, we have the equality
I(Zy.;Y) = I(X';Y). If we consider the special case T = {t;} such that X' = t;(X) = X;
and Zj. = fo«(X;) = Z, fori € {1,2}, then it follows:

I(Z;Y)=I1X;Y)=R+U; 5)
Lemma 3 implies that optimal representations Z; preserve all the task-relevant information contained
in modality ¢. Interestingly, we do not require Assumption 1 for this equality to hold.

The previous theoretical developments lead us to the key ingredients for CoMM’s contrastive objec-
tives to succeed at capturing multimodal interactions (see Section 3.3 for practical implementation):

(i) Following Lemma 2, Uy + Us + R+ S = I(X,Y) can be learned by optimizing the term
I(Zy, Zy) for T = T*,since I(X, X') = I(X,Y) by Assumption I;

(ii) Thanks to Lemma 3, R + U; for ¢ € {1,2} can be directly learned by optimizing the term
I(Zg, Zy) for T = {t;}.

"Here, 7 can be any set of mappings, e.g., T # T*.
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3.2 MULTIMODAL ARCHITECTURE
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this module is to perfom the fusion of the modality-specific embeddings through the multihead
self-attention layers in the transformer block, obtaining the final multimodal embedding Z.

More information about the specific modules used as modality encoders, about the latent converters
and the transformer block architecture can be found in Appendix B.

3.3 TRAINING

Given a multimodal input X = (Xi,...,X,,) and a set of label-preserving multimodal transfor-
mations 7*, two augmentations t',t"” are drawn from 7* and applied to X, obtaining X’ =
t'(X) and X" = t(X). We also consider projections (with a slight abuse of notation) X; =
([MSK], ..., X, ..., [MSK]) fori € {1, ...,n}, where every modality is masked except for the i-th.

These terms are encoded by the network to obtain (n+2) embeddings, namely: Z’, Z”, and { Z,; } ;.
(2n 4+ 1) mutual information terms are then optimized through backpropagation: I(Z’, Z'") to max-
imize I(Z,Z’) in Eq. (3) and both I(Z;, Z") and I(Z;, Z") to better approximate R + U; in Eq. (5)
fori e {1,..,n}.

We use the InfoNCE (Oord et al., 2018) estimator of mutual information due to its simplicity and
strong results in the self-supervised learning literature:

eXp Slm(Z, ZII)OS)
6

] !/
21, OXP sim(2, 2feg

7 !
INCE(Za Z ) = IEZ,zl;osrvp(Z,Z') [log Z
Zpeg~P(Z")
Given this estimator, our final training loss can be written as:
n

Leomm = — Ince(Z',2") = " L (Ince(Zi, Z') + Ince(Zi, Z")) = L+> L, (T)
conmt = = Ince(Z7, 2") =34 (Incel(Zi, 2') + Ince( %, 2)) >

i=1
zR+S+Z:’:1 U; ~R+U;

Fig. 3 illustrates CoMM’s training process for the case n = 2. The pseudocode for the general case
n > 2 is available in Appendix D. It is worth to notice that the loss terms in Eq. (7) grow linearly
with the number of modalities 7.

At inference, no augmentations are applied. The multimodal input X = (X3, ..., X,,) is processed
through the network to obtain the multimodal feature Zy = fy(X). This multimodal representation
can then be directly transferred to any task either by performing linear probing or by fine-tuning the
whole architecture.

4 EXPERIMENTS

We design different sets of experiments to evaluate our model: first, over a controlled environment
inspired by the Trifeature dataset (Hermann & Lampinen, 2020), we carefully formulate tasks that
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Figure 3: CoMM training for n = 2. Two multimodal augmentations are applied to X to obtain
X’ and X”'. We also consider the projection operators to get {X;}” ;. These n + 2 transformed
versions of X are processed by the network fy, trained to maximize the agreement between these
n + 2 terms using contrastive objectives.

need a specific kind of interaction (uniqueness, redundancy, or synergy) to assess the model’s ability
to capture them separately. Second, in order to evaluate the capacities of the model to learn multi-
modal representations for complex tasks requiring different levels of shared, unique, and synergistic
information, we use real-world benchmark datasets with 2 or 3 modalities.

Experimental settings. We report mean and standard deviation over 5 runs for all our results (except
when using public model weights). All hyper-parameter details can be found in Appendix B.

Evaluation. Given a pre-trained model f, we perform evaluation through linear probing, i.e., we
train a linear layer gy (x) = W f(x) (f fixed) to minimize the classification or regression loss
(depending on the task). We also report results obtained with fine-tuning, i.e. after further training f
in a supervised way.

4.1 CONTROLLED EXPERIMENTS ON THE BIMODAL TRIFEATURE DATASET

--- Random Level

To evaluate whether CoMM learns redundant, 1000998 99.7 90.0 == Cross
synergistic and unique information for a given o o B8 mm Crossselt
task, we design a synthetic bimodal dataset 80 e
based on Trifeature (Hermann & Lampinen,
2020). Briefly, we generate a Trifeature dataset
(as first modality) containing images of one of
ten shapes, for one of ten textures and one of
ten colors (1000 combinations in total). We
augment each image three times using rotations
and translations. Then, we pair each image ) )
with a second one (as second modality) from Figure 4: Linear probing accuracy of redun-
the same Trifeature dataset, allowing us to con- dancy (shape), uniqueness (texture) and synergy
trol the shared, unique and synergistic attributes (color and texture) on bimodal Trifeature dataset.
between the two modalities. As Hermann & COMM is the only model capturing all three task-
Lampinen (2020), we use AlexNet (Krizhevsky related interactions between modalities.

et al., 2012) as modality-specific encoder for

both modalities in all experiments with an embedding dimension d = 512.
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Experiment 1 — Modeling shared and unique interactions. We choose the shape as shared fea-
ture and texture as unique feature for each modality by selecting only paired images with the same
shape. Training and test set follow the same distribution, with 10 000 and 4 096 images, respectively.
We measure the linear probing accuracy of shape (respectively texture) to test whether redundancy
(resp. uniqueness) has been captured in the latent representation of the model (chance level=10%).

Experiment 2 — Modeling synergy. In the previous experiment, texture and color features are in-
dependent between the two modalities. To introduce a synergy between these features, we bias the
training set by defining a mapping M between the ten textures and ten colors (e.g. stripes=red,
dots=green, efc.). Then, we select randomly 10000 pairs of images that respect this mapping,
thus artificially introducing a strong correlation between texture from the first modality and color
from the second modality in the training set. The test set is left unchanged from previous Exper-
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Model Regression Classification

V&TEE| MIMICt  MOSIt  UR-FUNNYt MUSTARDT Average* 1
Cross' (Radford et al., 2021) 33.094367  66.740.0 478118 50.141.9 53.540.9 54.52
Cross+Selft (Yuan et al., 2021) 7.5610.31 65.4940.0 49.041.1 59.910.9 53.914.0 57.07
FactorCL' (Liang et al., 2023b) 10.824056 67.3200  51.2416 60.540.8 55.8040.0 58.7
CoMM (OUI’S) 4‘5510430 66.4:&0_32 67.5:&1_30 63.1:&0.65 63.913_01 65.22
SupCon' (Khosla et al., 2020) - 67.440.0 472410 50.1490 52.742.2 54.35
FactorCL—SUPT (Liang et al., 2023b) 1.723:0_03 76.83:0‘0 69~1j:()‘6 63.5i0_3 69-9j:1A9 69.82
CoMM (ﬁne—tuned) 1‘3410'01 68‘1810423 74.98i0_43 65‘9610.44 70.42;&0415 69.88

Table 1: Linear evaluation top-1 accuracy (in %) for classification tasks and MSE (x10~%) for
regression task (V&T End Effector) on MultiBench after 100 epochs. TResults obtained from (Liang

et al., 2023b). * Average is taken over classification results only. Rows in color are supervised.

iment 1 and the task Y is to detect whether a given pair of images respects the mapping M, i.e.
Y = 1 (texture(X ), color(X2) € M) (chance level=50%).

In Fig. 4, we show that cross-modality constraints with InfoNCE (Radford et al., 2021) (“Cross”
model) allow to perfectly capture redundant information but completely remove unique and syn-
ergistic information, as predicted in Lemma 1. Self-supervised constraints on each encoder
(“Cross+Self” (Yuan et al., 2021)) capture accurately unique information but fail at preserving syn-
ergy, FactorCL, the method most closely related to our work, also performs poorly on synergy.
CoMM is the only model learning all three interactions related to the task.

4.2 EXPERIMENTS WITH 2 MODALITIES ON REAL-WORLD DATASETS

MultiBench. Following (Liang et al., 2023b), we use a subset of real-world multimodal datasets
from MultiBench (Liang et al., 2021), with different degrees of shared and unique task-relevant in-
formation, including: Vision&Touch (Lee et al., 2020) a robotics dataset that includes images, force,
and proprioception data for end-effector position prediction (regression) and contact prediction (bi-
nary classification), MIMIC (Johnson et al., 2016), a dataset for mortality and disease prediction
from medical records, including tabular data and medical time series from ICU; MOSI (Zadeh
et al., 2016), a dataset for sentiment analysis from videos (vision, audio, and language); UR-
FUNNY (Hasan et al., 2019), humor detection from videos (vision, audio and language); and MUs-
TARD (Castro et al., 2019), a dataset for sarcasm detection from TV shows (vision, audio, and
language). For fair comparisons, we run our experiments using the same data pre-processing steps
as previous works, using pre-extracted text, video and audio features for training (Liang et al., 2021;
2023b). More details about these datasets and the data pre-processing can be found in Appendix E.
We train CoMM on the same data modalities as FactorCL and use the same backbone networks.

We consider two different experimental settings. In the self-supervised setting, we perform pre-
training and evaluate with linear probing. We consider FactorCL, “Cross” and “Cross+self” methods
for comparison. In the fine-tuning setting, CoMM is fully fine-tuned in a supervised way after pre-
training. We compare it against SupCon and FactorCL-Sup as supervised methods.

Results for these experiments are in Table 1. In the self-supervised experiments with linear probing
evaluation, CoMM surpasses FactorCL (second best) by large margins (16.3%, 2.6% and 8.1% of
top-1 accuracy on MOSI, UR-FUNNY and MUSTARD, respectively) on three out of four classifi-
cation datasets. On MIMIC, margins are considerably narrower, with FactorCL performing slightly
better, and CoMM showing comparable results with “Cross” and “Cross+Self”. In the regression
task of V&T, CoMM is considerably better than competitors (3 x 10~% lower MSE than second best).
In the fine-tuning scenario, we observe the same pattern, with CoMM outperforming competitors on
four datasets and FactorCL taking the lead on MIMIC.

These experiments not only show CoMM’s efficiency at learning multimodal representations, but
also exhibit CoMM’s versatility to process different data domains (time series, audio, images, text,
etc.) and to adapt to diverse backbones.
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Multimodal IMDb (MM-IMDb) Model Modalities weighted-f1 macro-fl

(Are.\/alo et al" 20]7) Is a dataset' for SimCLRi (Chen et al., 2020a) A\ 40.35:{:0‘23 27.9910(33
movie genre prediction. We consider Y 51.5 40.8
two modalities: images and text (the CLIP (Radford et al., 2021) VLL gég 45188
3 . 9 . b + . .
movie poster and its plot’s description, gy p ) o V4L 57.4 49.9

respectn./ely).. Since each movie can SLIP! (Mu et al, 2022 V4L 56.5410.19 47.3510.07

be classified into one or more genres,  CLIP' Radtord et at., 2021) V4L 54491019  44.9440.30

it is a multi-label classification task, CoMM (ours, CLIP backbone) V+L 61.48. 015  54.63.4 99

Wlth 23 CategOI‘ieS. MM_IMDb pro_ COMM (ours, BLIP-2 backbone) V+L 64-75i0.17 58.443:()‘43
vides a suitable example of life-like MFAS (Pérez-Ra et al., 2019) V+L 62.50 55.6
ReFNet (Sankaran et al., 2022) V+L 56.7

multimodal task as the genre predic- N
g p CoMM? (ours, CLIP backbone) V+L 64.90. o 58.9740.19

tion cannot be performed accuratel.y COMM1 (ours, BLIP-2 backbone) V+L 67‘39i0'07 62.0*0'25
from the movie poster or the movie

plot alone, while results significantly
improve by considering both (Arevalo Table 2: Linear evaluation F1-score (weighted and macro)
et al., 2017), suggesting that syn- (in %) on MM-IMDb after 70 epochs. t indicates further
ergistic interactions are needed to training on unlabeled data. { means supervised fine-tuning.
fulfill this task. We compare CoMM’s Rows in color are supervised.

performance on MM-IMDb against

important baselines under two different settings. First, in the self-supervised setting, we consider
CLIP (Radford et al., 2021), representing “Cross” methods, SLIP (Mu et al., 2022) representing
“Cross+Self” methods, SIimCLR (Chen et al., 2020a) for unimodal self-supervised methods,
BLIP-2 (Li et al., 2023) as a recent powerful vision and language model, as baselines. All models
were trained on unlabeled MM-IMDb. For CLIP, we also report results with the publicly released
weights without further training. CoMM is initialized with pre-trained weights from CLIP and
BLIP-2. Second, in the fine-tuning setting, we compare CoMM fine-tuned with state-of-the-art
fully supervised baselines. We also include results for LLaVA-NeXT (Li et al., 2024) representing
new vision-and-language generative models, however these scores are not fully comparable to
ours, since the model might have seen the IMDb database during training. See Appendix B for
implementation details.

LLaVA-NeXT (Li et al., 2024) V+L 64.28 56.51

Table 2 shows that CoMM outperforms all models in both settings. In the self-supervised setting,
CoMM has a margin of 7.5% and 5.8% of macro and weighted Fl-scores, respectively, with the
second-best method. It is interesting to observe that CLIP performs better with the publicly released
weights (probably because of the large-scale and diversity of the data it was trained on), than with
further training on MM-IMDb. This result suggests that the genre movie prediction does not benefit
from learning redundant information. Including uniqueness from the image modality allows for
some improvement (SLIP). In the fine-tuning setting, CoMM fine-tuned outperforms existing fully
supervised baselines, even if MFAS has been designed to search for the best fusion strategy, and
vision-language generative models (LLaVA-NeXT).

4.3 EXPERIMENTS WITH 3 MODALITIES ON REAL-WORLD DATASETS

We test CoMM’s abilities to learn multimodal

interactions beyond 2 modalities. We perform Model #Mod. V&T CP UR-FUNNY
experiments on two large datasets including tri- Cross 2 84.4 50.1

2 .. Cross+Self 2 86.8 59.9
modal data from MultiBench: Vision&Touch CoMM (ours) 5 88.1 6.1
(contact prediction task) and UR-FUNNY. CMIC (Tian otal, 20208 3 o )
In Table 3, we compare CoMM trained on CoMM (ours) 3 94.2 64.6

the three modalities in a self-supervised way Table 3: Linear evaluation top-1 accuracy (%) on
against CMC (Tian et al., 2020a). We also com- Vision&Touch and UR-FUNNY.

pare with bi-modal models: CoMM, Cross and

Cross+Self trained on image and propriocep-

tion data for Vision&Touch and image and text data for UR-FUNNY.

First, we observe a consistent improvement (+6.1% on V&T, +1.5% on UR-FUNNY) when adding
a third modality with CoMM (compared to only using two), which demonstrates its versatility.
Second, we improve the state-of-the-art for SSL methods on datasets with more than two modalities
(+0.1% and +5.4% on V&T and UR-FUNNY, respectively).
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Figure 5: Linear probing accuracy of redundancy R, uniqueness U = % Z:L:l U; and synergy S on
bimodal Trifeature when optimizing each term separately in Lcopmm. Minimizing £; allows to learn
U; and R, approximating [(X;;Y) fori € {1, ...,n}. Optimizing £ = —1(Z’, Z") allows to slowly
learn R, U; and S. CoMM quickly captures all information.

5 ABLATION STUDIES

We test three main components of our framework (the loss, fusion module and augmentation strat-
egy) against important control baselines on bimodal Trifeature dataset (see Section 4.1).

Loss function. First, we check our claim that optimizing both £ and > , £; —as in Eq. (7)-
is required to accurately capture uniqueness, synergy, and redundancy. In Fig. 5, we show that
minimizing Z?zl L; improves redundancy and uniqueness, as guaranteed by our Lemma 3, but
fails for synergy. Conversely, minimizing £ allows one to learn all information terms but very
slowly. In particular, for synergy, we argue this is because the model has to learn modality-specific
features first (phase 1) before learning their interactions (phase 2). The former is learned through
I(Z;,Z") + 1(Z;, Z") while the latter is captured with I(Z’, Z"). Hence, Lcomm Speeds up phase
1 and can learn synergy more efficiently in phase 2.

Fusion module. We compare our

. - Fusion Redundancy  Uniqueness Synergy ~ Average
attention-based latent fusion module  ~c 0 o o0 T T g a0 L 50.0000  77.07
with shallow linear fusion. We project CoMM 99.92.003 87.831155 71.874006 86.83

modality-specific representations to

the common latent space using only Table 4: Linear fusion module versus attention-based fu-
linear layers and remove latent con-  sjon with latent converters (CoMM). Non-linearities are re-
verters. Table 4 shows that synergy is  quired to learn synergistic interactions between modalities.
not captured with linear fusion. This is

expected as the XOR gate (typical example of synergistic interactions) cannot be approximated by
a linear function. Additionally, uniqueness accuracy is also degraded compared to CoMM (—6%),
suggesting that only modeling linear interactions limits the model’s representation power.

Data augmentation. Finally, Angmentations
we show in Table 5 that strong i T Vodaiy 2 R
data augmentation is crucial {All} o 99.725001 79924105 46441571 50.0500  69.02

for learning multi-modal inter- {All} 99581013 53.894660 86.041001 50.0100  72.37

z
: P . o {AlN\{crop)  {Al} 88791005 25651010 S4.00.i45 50.0s09 6211
actions, in line with the liter (AL} {AI}\{crop} 90.50.207 8322405 21744145 50.0s00  61.36

CoMM 99.92.003 84.351537 91191007 71.87100; 86.83

Uy Us S Average

ature on unimodal contrastive
methods. Contrary to Fac-
torCL (Liang et al., 2023b), ap- Table 5: Effect of data augmentation on linear probing accuracy
plying strong augmentation on (%) of multimodal interactions. A/l refers to SImCLR augmenta-
both modalities is beneficial for tions (Chen et al., 2020a). CoMM uses All for both modalities.
CoMM and we do not require

task-dependent augmentations, highlighting the versatility of our framework.

6 RELATED WORK

Multimodal learning refers to methods that connect and integrate information from multiple
sources of data (BaltruSaitis et al., 2018; Akkus et al., 2023). Early works focused on training
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separate encoders and studied different fusion mechanisms to blend the information from different
inputs (Zeng et al., 2007; Pérez-Rua et al., 2019). With the development of transformers and ViTs,
the focus has shifted towards training a unique architecture and designing specific tasks and loss
functions to integrate multimodal interactions (Xu et al., 2023; Lu et al., 2019; Sun et al., 2019;
Chen et al., 2020b; Lu et al., 2020). Today multimodal learning includes different research lines,
from generative multimodal learning (Suzuki & Matsuo, 2022; Ramesh et al., 2021; Saharia et al.,
2022; Wang et al., 2022b; Alayrac et al., 2022) to multimodal representation learning (Zong et al.,
2024; Tian et al., 2020a). CoMM belongs to the latter category.

Self-supervised multimodal representation learning. Self-supervised learning aims to learn
general representations through supervisory signals from the data itself (known as the pretext
task) (Balestriero et al., 2023). In the multimodal context (Zong et al., 2024), self-supervised meth-
ods can be grouped according to their pretext task. Clustering-based methods (Alwassel et al.,
2020; Asano et al., 2020), where cluster assignments are used as pseudo-labels to train the model
and different modalities can be used as supervisory signals to each other; masking modeling meth-
ods (Mizrahi et al., 2023; Bachmann et al., 2022; Lu et al., 2023) that reconstruct pieces of informa-
tion that have been masked from input data. In the multimodal case, masked modelling is used in
a cross-modal way, by predicting missing information conditioned in other modalities. Contrastive
methods (Radford et al., 2021; Jia et al., 2021) in the multimodal context have been mostly used on
matched data from different modalities to obtain aligned—yet distinct—representations. In this work,
instead of representing each modality separately, we take a different perspective for contrastive
methods by learning a single multimodal representation of the inputs.

Multimodal contrastive learning. Current methods in contrastive learning are inspired by the idea
of multiview learning (Li et al., 2018) and have shown remarkable results in representation learning
in unimodal tasks (Chen et al., 2020a; He et al., 2020; Tian et al., 2020a; Oord et al., 2018). The
natural extension of these approaches to multimodal settings is to optimize a cross-modal contrastive
loss (Radford et al., 2021; Alayrac et al., 2020; Jia et al., 2021). Other works have gone even
further by introducing cross-modal and intra-modal contrastive objectives (Mu et al., 2022; Jain
et al., 2021; Mi et al., 2024), or by adding other intra-modality regularization terms (Wang et al.,
2022a; Kim et al., 2022). However, these approaches are designed to learn redundant information,
neglecting the contributions of uniqueness or synergy. Recently, FactorCL (Liang et al., 2023b)
has proposed a solution to model shared and unique task-relevant information explicitly. Yet, the
method relies heavily on assumptions that are hard to meet in practice; it proposes a factorized
approximation of multimodal interactions that is prone to cumulative errors and does not model
synergistic information. Alternatively, we propose CoMM, a contrastive multimodal approach that
leverages multimodal augmentations with a modular architecture optimized through information
theory-grounded losses to capture unique, redundant and synergistic interactions.

7 CONCLUSIONS

Multisensory integration is at the core of human perception, allowing us to build coherent represen-
tations of our environment. In this paper, we introduce CoMM, a contrastive multimodal method
that enables the integration of multiple modalities in a single multimodal representation space. Un-
like existing multimodal contrastive models, CoMM is designed to learn multimodal interactions
beyond redundancy, through Partial Information Decomposition theory. Our controlled experiments
on the bimodal Trifeature dataset demonstrate that CoMM successfully learns redundant, unique and
synergistic information. In real-life multimodal datasets from Multibench with two and three input
modalities, CoMM outperforms existing methods by large margins in almost every case, showing
the efficiency and versatility of CoMM to handle data across diverse domains (robotics, healthcare,
affective computing, multimedia) and data structures (time series, image, text, audio, tabular).

This work opens large avenues for future research on multimodal representation learning, in partic-
ular for crafting label-preserving multimodal augmentations not limited to unimodal augmentations.
Limitations and perspectives for future research are further discussed in Appendix A. Overall, the
simplicity and versatility of CoMM’s design make it a good candidate to learn deep representations
of several modalities across domains. It offers promises in better solving real-world problems rang-
ing from neuroscience (Preti & Van De Ville, 2019) and medical imaging (Boehm et al., 2022) to
remote sensing (Goémez-Chova et al., 2015).
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A

LIMITATIONS AND FUTURE RESEARCH

* CoMM'’s theoretical analysis for more than two modalities is still unclear since PID theory

is currently limited to n = 2 modalities (see Section 2 in the main paper). While uniqueness
can be easily defined for any n > 2, the number of interactions between modalities (e.g. re-
dundancy and synergy) grows exponentially with 7, making the analysis harder. Nonetheless,
we should recall that CoMM performs empirically very well even for n > 2 (see Section 4.3),
and the number of loss terms increases only linearly with n (see Eq. (7)). Another limitation is
the additional computational cost associated with adding modality-specific encoders. A simple
workaround is to use large pretrained (frozen) encoders (e.g. from CLIP (Radford et al., 2021)
for vision and text or DINOv2 (Oquab et al., 2024) for vision) and to only tune a lightweight
fusion transformer in CoMM, allowing a much faster training.

CoMM’s computational cost for data augmentation is higher than in cross-modalities frame-
works (such as CLIP). This is because for each data tuple X = (X, Xo,...,X,,), CoMM
needs to compute X’ = #(X), while cross-modality methods feed X directly into the neu-
ral network. A possible solution would be the implementation of a momentum encoder and a
queue method, as in MoCo (He et al., 2020).

Interpretability. Our experiments on the Trifeature dataset (see Section 4.1 in the main paper)
show that CoMM can efficiently learn unique, redundant and synergistic information. However,
it seems difficult to disentangle the contributions of these three interactions in the representation
space. Disentanglement might be one direction for future work. However, other approaches
to measure such quantities (given a dataset and a task) are emerging (Hu et al., 2022; Liang
et al., 2023a; 2024). Another interesting approach would be to use modality masking (already
implemented and handled by CoMM) to analyze the contribution of each modality individually
versus collectively.

We believe the above limitations are directions that were outside the scope of the current manuscript;
however, they are exciting avenues for future research in multimodal representation learning.

B

IMPLEMENTATION DETAILS

For all experiments with CoMM, we use an attention-based fusion module that takes as input a
sequence of embeddings. We use a 1-layer Transformer with 8 heads that applies self-attention
to all inputs and we add a [CLS] learnable embedding at the beginning of the sequence. The
embedding size depends on each dataset, detailed below.

B.1

ENCODER ARCHITECTURES BY DATASET

¢ Trifeature is composed of two visual modalities, so we use an AlexNet encoder for both modal-

ities with a 512-d embedding space. For CoMM, we remove the last average pooling layer and
we apply a linear patch embedding layer (Dosovitskiy et al., 2021) to the 6 x 6 feature maps as
latent converter. We then add fixed 2D sine-cosine positional embeddings (Dosovitskiy et al.,
2021). For Cross, we use a linear projector for each encoder (512-d output space) and we opti-
mize the CLIP loss (Radford et al., 2021). For Cross+Self, we apply a 3-layers MLP projection
head to each encoder to optimize the SSL objectives as in SLIP (Mu et al., 2022) (1024-d hid-
den layers and 256-d output space) and we use the same projectors and CLIP objective as for
Cross.

MIMIC contains tabular and time-series data, seen as two modalities. We use a 2-layers MLP
(10-d hidden dimension, 10-d output) as tabular encoder and a GRU (512-d hidden dimension)
as time-series encoder (similarly to FactorCL (Liang et al., 2023b)). For tabular data, we use a
feature tokenizer (Gorishniy et al., 2021) as latent converter with 512-d embedding space and
no converter for time-series.

MOSI, UR-FUNNY and MUSTARD contain visual and textual modalities extracted from
videos. Similarly to FactorCL (Liang et al., 2023b), we use a 5-head Transformer with 5 layers
for each modality with a 40-d embedding space. We do not use latent converters in this case.
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¢ MM-IMDb also contains visual and textual modalities but in their raw format. We use a ViT-
B/32 (Dosovitskiy et al., 2021) image encoder pre-trained with CLIP (Radford et al., 2021) and
a Sentence-BERT multilingual text encoder” pre-trained with CLIP and distilled with Sentence-
BERT (Reimers & Gurevych, 2019). For CoMM, we consider the token embeddings given by
the image and text encoders (frozen) and we do not use latent converters. For CLIP (Rad-
ford et al., 2021), we fine-tune the pre-trained encoders with their original architecture. For
SLIP (Mu et al., 2022), we use the same pre-trained encoders as CLIP and we add a 3-layers
visual projection MLP (4096-d hidden layers and 256-d output space) to compute the SSL
objectives.

¢ Vision&Touch has visual, force-torque and robot proprioception modalities available. For the
binary contact prediction task, we only use visual and proprioception data for the experiments
with two modalities and we encode images with a ResNet18 (He et al., 2016) (512-d output
space) and proprioception data with a 5-layer MLP (512-d output space), as in the original
paper (Lee et al., 2020). In the experiments with 3 modalities, force-torque data are encoded
with a 5-layer causal convolutions network (512-d output space). For CoMM, we remove the
last average pooling layer and apply a patch embedding layer (Dosovitskiy et al., 2021) to the
4 x 4 feature maps as latent converter. We consider the 1D feature vector of proprioception
data as a 1-length sequence in the fusion module. For the end-effector regression task, we use
visual and force-torque modalities. We use ResNet18 as image encoder (128-d output space)
and a 5-layer causal convolutions network (128-d output space) as force encoder (Lee et al.,
2020). For CoMM, we add the same latent converter for images as in the previous task and we
add a feature tokenizer (Gorishniy et al., 2021) for force-torque embeddings.

B.2 DATA AUGMENTATION BY MODALITY

For raw images (in Trifeature, MM-IMDDb and Vision&Touch), we use the default SimCLR augmen-
tations (Chen et al., 2020a), which include RandomResizedCrop, ColorlJitter, RandomGrayscale,
GaussianBlur and RandomHorizontalFlip (from the PyTorch library).

For tabular data (in MIMIC and Vision&Touch), we add a random Gaussian noise to each component
(assuming they are all continuous).

For time-series data (either extracted from videos as in MOSI, UR-FUNNY, MusTARD, from health
recordings as in MIMIC or from force-torque readings as in Vision&Touch), we apply a random
composition of Gaussian noise and random dropping between 0 and 80% of the sequence. We have
compared several other strategies for this modality and we present the results in Appendix C.

For raw text (in MM-IMDb), we randomly mask 15% of input tokens by using a special [MASK]
token as in BERT (Devlin et al., 2019).

B.3 LATENT CONVERTERS BY ENCODER ARCHITECTURE

» Transformer and GRU: the latent converter is the identity since the Transformer and GRU already
output a sequence of embeddings;

e CNN: the latent converter is a patch embedding projection module originally defined in
ViT (Dosovitskiy et al., 2021) that we apply to the features maps of the CNN;

e MLP: the latent converter is a feature tokenizer originally defined in (Gorishniy et al., 2021)
for tabular data. The feature vector h; is transformed into sequential embeddings by applying
feature-wise multiplication with a learnable matrix and we add a bias term. For proprioception
and force-torque data, we simply consider them as a 1-length sequence in the fusion module.

B.4 EXPERIMENTAL SETTINGS

We use AdamW optimizer (Loshchilov & Hutter, 2019) in all experiments and a learning rate o =
3 x 10~* for Trifeature (with weight decay 107%), a = 1073 for MIMIC, MOSI, UR-FUNNY
and MusTARD (with weight decay 10~2) and o = 10~* for MM-IMDb and Vision&Touch (with
weight decay 10~2). For MM-IMDb, we also use a cosine scheduler with final value 10~ and a
warmup over 10 epochs. All models were optimized during 100 epochs. The critic in the InfoNCE

2 1 ; - . P ~n o =
https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-vl
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losses in Lcomm Eq. (7) is implemented as a 3-layer MLP (512-d hidden layers and 256-d output
space), similarly to the projection head in SImCLR (Chen et al., 2020a). All experiments ran on a
single V100 GPU with 32GB of memory.

Fine-tuning of CoMM. For all downstream classification tasks, we use the SupCon loss (Khosla
et al., 2020) to fine-tune CoMM (with no additional parameters). In the case of multi-label classifi-
cation with MM-IMDb, we use a linear head on top of CoMM and we optimize a cross-entropy loss
for each label. For the regression task on Vision&Touch, we also use a linear head and we optimize
the MSE loss. We systematically use early-stopping according to the validation accuracy in order to
prevent over-fitting on the downstream tasks.

B.5 EXPERIMENTAL SETTINGS ON THE BIMODAL TRIFEATURE DATASET

To generate our trifeature dataset, we considered the 1 000 combinations of the three features ex-
isting in the original dataset (see Appendix E) and split them into 800 combinations for training
and 200 for evaluation. To have more variety in the training set for training, each combination was
generated 3 times (the shape and the texture were randomly rotated), obtaining a training split of
2400 images.

The bimodal Trifeature dataset used in our experiments was built by considering the trifeature dataset
twice (as two separate modalities) and building pairs from these two dataset copies. In total, we get
5760000 pairs (2400 x 2400) available for training, and 40 000 (200x200) available for evalua-
tion.

To create a controlled environment for evaluation of multimodal interaction learning, we needed to
carefully design tasks where the dominant interaction was clearly defined.

1. To measure uniqueness U; (resp. Us), given a pair of trifeature images, the task is to predict
the texture of the first (resp. the second) image. The task is then a 10-class classification
problem and chance level is at 10%.

2. To measure redundancy R, given a pair of trifeature images with the same shape (but differ-
ent color and texture), the task is to predict the shape of the pair (therefore, the redundant
information that can be extracted either from the first or the second image). The task is
then a 10-class classification problem and chance level is at 10%.

3. To measure synergy .5, the definition of the task was more subtle as it should require infor-
mation from both modalities simultaneously and should not be possible to perform it from
one of the images alone. To achieve this, we defined a mapping M between the ten tex-
tures and the ten colors (e.g. stripes=red, dots=green, etc.). Then, given a pair of trifeature
images, the task is to predict whether the pair satisfies the mapping or not. The task is then
a binary classification problem and chance level is at 50%.

To evaluate these tasks, we built two versions of the bimodal trifeature dataset:

(i) For uniqueness and redundancy, we considered 10000 image pairs (out of the 5760 000
pairs) for training and 4 096 for testing, that have the same shape (to measure redundancy)
and different texture (to measure uniqueness).

(ii) For synergy, we considered 10000 image pairs that respect the mapping M and used the
same test set as before (4 096 image pairs).

B.6 ADDITIONAL DETAILS FOR LLAVA-NEXT EVALUATION

We evaluate LLaVA-NeXT (Li et al., 2024) on MM-IMDb based on its answer to the following
prompt: “From the following plot: {...} and this poster image, give me all the movie genres it
belongs to among the following list: {...}. Give me the answer as a list.” We formulate it as a close
question with limited number of answers to be closer to the linear probing setting for representation
learning models.
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Figure 6: Linear evaluation accuracy (%) on four datasets from MultiBench (Liang et al., 2021)
when applying individual or composing data augmentations on the modalities. Diagonal entries cor-
respond to one augmentation applied to all modalities while off-diagonal entries are a composition
of two augmentations. Average is the average of all four matrices. Results are averaged over 5 inde-
pendent runs (with different seeds) in each cell.

C ADDITIONAL EXPERIMENTS

In this section we present additional analysis of CoMM, including: a benchmark of several aug-
mentation strategies for time-series data, ablation studies on our loss function on a real dataset, and
supplementary results on the trifeatures dataset.

C.1 DATA AUGMENTATION STRATEGY FOR TIME-SERIES

For time-series data like in MIMIC, MOSI, UR-FUNNY and MuSTARD, there is no consensus with
respect to the best data augmentation strategy to apply for self-supervised contrastive learning. We
benchmark several common augmentations for time-series data including random crop between 8%
and 100% of the signal, random drop between 0% and 80% of the signal and adding Gaussian noise.
We also designed two new multimodal augmentations: multi-crop (resp. multi-drop) consisting of
cropping (resp. dropping) a signal across multiple modalities for time-aligned data (introducing
consistency in the preserved multimodal signal).

We tested these augmentations along with their composition on four datasets from Multi-
Bench (Liang et al., 2021) and we plot the results in Fig. 6. Overall, we find that composing
Gaussian noise and random drop results in the best performances across datasets and tasks. This
is our default augmentations strategy in our main experiments. Our proposed multi-drop and multi-
crop augmentations can provide better results in some cases (for MIMIC and MuSTARD), but we
select the same default augmentations for consistency across all datasets.

C.2 ABLATION STUDIES ON A REAL DATASET

We performed the loss ablation study on MM-IMDb. Results follow the same tendency as in the
Tri-features dataset (Fig. 5 main paper).
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Loss weighted-f1 macro-f1
> Li 60.7110.17  53.3540.37
L 54-94i0.50 47~13i0.56

Lo =L+ >, L; 614841013 54.6340.22

Table 6: Ablation study of loss function contribu-
tions on MM-IMDb. Lcomm allows to better capture
multimodal interactions than each term separately.

C.3 DESIGN CHOICES ON TRIFEATURES EXPERIMENTS

Hermann & Lampinen (2020) experimented with Trifeatures using AlexNet and ResNet-50 back-
bones. Both architectures showed comparable results. Therefore, we chose to use AlexNet in our ex-
periments. For completeness, we ran the same experiments on ResNet-50, which show that CoMM
is the only model to learn all interactions, regardless of the architecture.

Redundancy Uniqueness Synergy
Cross C+S CoMM Cross C+S CoMM  Cross C+S CoMM

AlexNet 100.0:}:0_02 99~7:|:042 99.9:‘:0‘03 11.6:|:0_9 86.9:5:0,8 87.8:|:1_6 50.0:5:0,0 50.0:|:0_03 71~9i2.0
ResNet 100~0:t0.04 99.9:‘:0,04 99.9:‘:0‘03 6.5:‘:0'7 96.2:‘:0,8 96.3;&1_3 50.0:‘:0,0 50.0:‘:0,0 75.0:‘:1,7

Model

Table 7: Linear probing accuracy of redundancy (shape), uniqueness (texture) and synergy (color
and texture) on bimodal Trifeature dataset, with different backbone encoders. These results are
complementary to Fig. 4.

C.4 ON THE FEASIBILITY OF ASSUMPTION 1
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Figure 7: Downstream task performance as the cropping augmentation strength decreases (for
Trifeatures) or when both cropping and masking augmentation strength for image and text re-
spectively decreases. Incg(X,X’) is measured using the trained encoder fy in Eq. (6). As
Ince(X, X') increases, the downstream performance first increases and then decreases, revealing
a “sweet spot”. It suggests the existence of an optimal augmentation policy that preserves task-
relevant information while removing nuisance features from the multimodal input data, giving more
credit to our Assumption 1.

Assumption 1 states the existence of an optimal augmentation policy 7* such that I(X,¢(X)) =
I(X,Y) for any t € T*, given a task Y. Hence, the set of optimal multimodal transformations
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is task-dependent. However, in practice, we have seen that the augmentations applied in our ex-
periments are general enough to obtain good results in a variety of datasets (7 datasets, 10 tasks,
diverse data modalities). These augmentations were chosen according to the findings in unimodal
self-supervised learning [2, 3], and by a comprehensive ablation study on the best augmentation
strategies applicable to time-series in Appendix C.1.

Theoretically, the set of multimodal augmentations need to be large enough such that no information
about the task Y is lost, but small enough to extract this information only. Tian et al. (2020b) have
referred to this observation as the InfoMin principle. In Section 5, our data augmentation ablation
study shows that if the set of augmentations is not large enough, then synergy cannot be learnt (the
performance is always random chance). In order to further explore the feasibility of Assumption |
and inspired by the strategy developed by Tian et al. (2020b), we evaluate CoMM by progressively
increasing the strength of the data augmentations applied. We use random crop as the augmentation
to control in the vision domain, mainly for two reasons: first, it is intuitive that by decreasing the
level of cropping (keeping less information about the images), we are destroying the task-relevant
information; and second, because it has been empirically demonstrated that cropping is a critical
transformation in self-supervised learning for vision Chen et al. (2020a). For the text domain, we
use masking as the augmentation to control. More specifically, on Trifeatures we randomly crop
the original image in the first modality from 0% up to x% (z = 20% is the strongest augmentation
while z = 60% is the lightest); and from 2% to 100% (z = 0.05% is the strongest, x = 15% the
lightest). For MM-IMDb, we also use random crop of the image modality from x% up to 100% and
masking of text with a decreasing probability % from 90% (the strongest) to 20% (the lightest).

Our results are shown in Fig. 7. They demonstrate, both in the controlled environment of the bi-
modal Trifeatures dataset and in the real-world application of MM-IMDb, that the sweet spot of the
InfoMin principle can be reached. By gradually increasing the strength of the applied transforma-
tions, we enhance model performance by reducing noisy information, up to an optimal point (the
sweet spot) where noise is minimized while task-relevant information is preserved. However, ap-
plying overly strong augmentations destroys task-relevant information, leading to a degradation in
model performance.

D PSEUDO-CODE

Algorithm 1 presents the pseudo-code for CoMM’s training. It is written in the general case when
we have n modalities. It is complementary to Fig. 3 (main paper), which depicts the case for n = 2.
CoMM’s official implementation is available in this Github repository.

E DATASETS DETAILS

E.1 TRIFEATURE

The Trifeature dataset (Hermann & Lampinen, 2020) was introduced as a controlled environment to
study the properties of vision neural networks and how they learn different features (shape, texture
and color). Images contain one of ten shapes (triangle, square, circle, efc.), rendered in one of ten
textures (solid, stripes, grid, etc.), in one of ten colors (red, green, blue, ezc.). Shapes are rendered
within a 128 x 128 square, rotated at an angle drawn between [—45°,45°] and placed at a random
position within a larger image (224 x 224), such that the shape is fully contained in the image. Then,
an independently rotated texture and a color are applied.

In our experiments, we consider the bimodal version of this dataset as explained in Section 4.1 (main
paper).

E.2 MULTIBENCH
All the following datasets are pre-processed as described in (Liang et al., 2021).

e MIMIC (Medical Information Mart for Intensive Care) (Johnson et al., 2016) is a dataset com-
prising de-indentified clinical data related to patients admitted to critical care units at a large
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Algorithm 1 CoMM training algorithm

Require: Multi-modal dataset { X7, Xs, ..., X, }, label-preserving transformations 7*, set of pro-
jection transformations 7 = {t1,...,t,}, batch size N, uni-modal encoders (f;);c[1..,,), fusion
transformer g
for sampled mini-batch {Xx } rei. N) = (X s X)) gepr..n] doO

for k € [1..N] do
draw ', t" ~ T*
X/k7 X”k — t/(Xk), t//(Xk)
7'y g(fl(X/i), e fn(X/Z))
2"t g(fL(X"k), s fa (X))
for i € [1..n] do
X}, < ti(xy)
z, < g(fi(x},))

end for
end for
for i € [1..n] do

N : 3 ! N : i "
1 expmm(z}c,z k) expmm(zfc,z k)
oL log —2PsimiziZ k) log 2®smlzioz k)

Li+ 2N <k¥1 08 z;c exp sim(z'}e,z’l) T 1;::1 08 lgk expsim(z}wz”z)
end for
I _% ]Zv: log expsim(z'k,z”k)

S~ exp sim(#/ 5,2 1)
k=1 1k

Loomm < L+ 30 L

update (f;)ie[1..n]> g to minimize Lcomm
end for
return (fi)ic(1..n), 9

Boston-area hospital between 2001 and 2012. It contains information about 53 423 hospital ad-
missions, including 38 597 distinct patients. We use the data as provided by MultiBench (Liang
et al., 2021), organized as in (Purushotham et al., 2018). There are two data modalities: first, a
time series modality, composed by a set of medical measurements of a given patient taken ev-
ery hour during 24 hours. Each measurement is a vector of size 12 (i.e., including 12 different
measured numerical values). Second, a static modality, including medical information about
the patient (age, gender, efc.), represented as a vector of size 5 (tabular data). Asin (Liang et al.,
2023b), in our experiments we address the binary classification task of predicting whether a pa-
tient fits any disease in the ICD-9 code in group 7 (460-519). ICD-9 (International Statistical
Classification of Diseases and Related Health Problems) codes are used to classify diseases
and a variety of symptoms. Almost every health condition can be assigned a unique ICD-9
code group, where each group includes a set of similar diseases.

e MOSI (Zadeh et al., 2016) is a sentiment analysis dataset obtained from 2 199 YouTube video
segments. Each sample consists of a video (visual frames), the corresponding audio and tran-
scription (text). The original dataset evaluates sentiment intensities with continuous labels
ranging from -3 to 3. We follow previous works (Liang et al., 2023b) and consider the binary
version of the labels (positive and negative), and the same data modalities for training: text and
videos.

e UR-FUNNY (Hasan et al., 2019) is a dataset for humor detection in human speech. It was
created from 1 866 TED talk videos, obtaining more than 16 000 samples (parts of the videos).
Each sample in the dataset consists of videos (visual frames), audio and their transcrips (text).
The task is binary classification (humor or non-humor sequence).

e MUSTARD (Castro et al., 2019) is a multimodal video dataset for automated sarcasm detection.
It contains videos from popular television shows including Friends, The golden girls, The big
bang theory and Sarcasmaholics anonymous. Each sample in the dataset correspond to an
utterance composed of a video (visual frames), its corresponding audio and the transcription
(text), labeled as sarcastic or non-sarcastic. As previous works (Castro et al., 2019; Liang et al.,
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2023b), we use the balanced partition consisting of 690 utterances. In our experiments with
two modalities, we considered only text and vision.

* Vision&Touch (Lee et al., 2020) is a robot manipulation multimodal dataset including visual,
force and proprioception data for a peg insertion task. The data is collected from a 7-DoF,
torque-controlled Franka Panda robot, with a triangle peg attached to its end-effector. Its goal
is to insert the peg into a triangle hole situated in a box attached to a table in front of the
robot. By running a random policy (the robot takes random actions) and a heuristic policy (the
robot attempts peg insertion), 150 trajectories are recorded, each of them consisting of 1000
timesteps. These trajectories contain RGB images, depth maps, force, end-effector position
and velocity. Following MultiBench (Liang et al., 2021), we consider two tasks on this dataset:
(1) the binary task of predicting contact or no contact in the next timestep, and (ii) predicting
the end-effector position (measured in MSE).

E.3 MM-IMDB

Multimodal IMDb (MM-IMDb) (Arevalo et al., 2017) is a multimodal dataset for movie genre pre-
diction. It has been built from the Movielens 20M dataset (GroupLens research, 2015) by filter-
ing out movies without poster image. Therefore, MM-IMDb comprises 25959 movies along with
their plot, poster, genres and additional metadata (e.g. year, language, writer, efc.). As in previous
works (Arevalo et al., 2017; Liang et al., 2021; Pérez-Rua et al., 2019), we consider posters (image)
and plots (text) as input data modalities to perform the multilabel classification genre prediction task
(23 categories, each movie can be assigned to several categories). Technically, MM-IMDb is part
of the Multibench benchmark (Liang et al., 2021), however, since we used raw data instead of the
proposed pre-processed features, we treat it as a separate dataset.

F DETAILS ON PROCESSING TIMES AND MODEL COMPLEXITY

We include in Table 8 an analysis of the complexity of CoMM against CLIP and BLIP-2. As we
can observe, the fusion module in CoMM adds a marginal computational cost to existing backbones
without compromising speed.

Model FLOPs MACs #Params Fwd-latency
CLIP 251G 126G 222M 488ms
CoMM (w/ CLIP) 281G 140G 229M 493ms
BLIP-2 9.22T 4.61T 1.17B 14s
CoMM (w/ BLIP-2) 9.48T  4.74T 1.17B 15s

Table 8: Comparison of model complexity and processing times of
different multimodal architectures.

G PROOFS

Proof 1 (Lemma 1) Indeed, combining Assumption | (multiview redundancy) and equations for
I(X1;Y|X3) and I1(X2; Y| X1) from Eq. (2) (main paper) we obtain:

0 < I(X1;Y|X2) + (X YX1) = Uy + Uz + 28 < 24 3
Since €;yf, is supposed to be small and all the terms Uy, Us, S > 0, their contributions are negligible.

Thus, under the multiview redundancy assumption I( X1, X2;Y) ~ R. -

Proof 2 (Lemma 2) Given data processing inequalities for the Markov chains X — X' — Z} and
Zy — X — Zg, we have:
1(Zg; Zy) < 1(X, Zy) < I(X, X) ©)

The equality can be achieved, for example, by selecting fo(-) = Id(-), the identity function. -

24



Published as a conference paper at ICLR 2025

Proof 3 (Lemma 3) First, we prove that I(Zy.;Y) = I(X',Y).

Indeed, we have:

I(X5Y) = I(X5 Y5 X) + (X5 Y|X)
=1(Zp;YV; X) (by lemma 1 in (Wang et al., 2022a))
— I(Zh:Y) — I(Z).; Y| X)
=1(Zp.;Y) because Zy. = fo-(t(X)) (10)

Second, let T = {t;} such that X' = t,(X) = X, and Z). = fo-(X;) = Z; for i € {1,2}
(with a slight abuse of notation). Thanks to the previous result (in Eq. (10)) and by the consistency
equations for I(X;;Y') in Eq. (2) (main paper), the final result follows:

1(Z:Y) = [(Z};Y)

=1(X";Y) because of Eq. (10)
=I1(X;Y)
=R+U; because of consistency equations. n
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