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ABSTRACT

Meta-reinforcement learning (meta-RL) is developed to quickly solve new tasks
by leveraging knowledge from prior tasks. The assumption that tasks are drawn
IID is typically made in previous studies, which ignore possible structured het-
erogeneity of tasks. The non-transferable knowledge caused by structured het-
erogeneity hinders fast adaptation in new tasks. In this paper, we formulate the
structured heterogeneity of tasks via clustering such that transferable knowledge
can be inferred within different clusters and non-transferable knowledge would
be excluded across clusters thereby. To facilitate so, we develop a dedicated ex-
ploratory policy to discover task clusters by reducing uncertainty in posterior in-
ference. Within the identified clusters, the exploitation policy is able to solve
related tasks by utilizing knowledge shared within the clusters. Experiments on
various MuJoCo tasks showed the proposed method can unravel cluster structures
effectively in both rewards and state dynamics, proving strong advantages against
a set of state-of-the-art baselines.

1 INTRODUCTION

Conventional reinforcement learning (RL) is notorious for sample inefficiency, which often requires
millions of interactions with the environment to learn a performing policy for a new task. Inspired
by the human learning process, meta-reinforcement learning (meta-RL) is proposed to quickly learn
new tasks by leveraging knowledge shared by related tasks (Finn et al., 2017; Duan et al., 2016;
Wang et al., 2016). Extensive efforts have been put into learning and utilizing transferable knowl-
edge in meta-RL. For example, Finn et al. (2017) proposed to learn a set of shared meta parameters
which is used to initialize the local policy when a new task comes. Duan et al. (2016) and Wang
et al. (2016) trained an RNN encoder to characterize prior tasks according to the interaction history.

However, little attention has been paid to the situations where some knowledge is only locally trans-
ferable among tasks. All the aforementioned methods implicitly assume tasks have substantially
shared structures, and thus knowledge can be broadly shared across all tasks. However, hetero-
geneity among tasks exists in practice, if not prevails, which hampers the effectiveness of existing
meta-RL algorithms. For example, the necessary skills for the Go game can hardly be applied to the
Gomoku game, though both of them operate on the same chessboards. We formulate this scenario as
a more complicated but also more realistic meta-RL setting where tasks are originated from differ-
ent distributions, i.e., tasks are clustered. As a result, some knowledge is locally transferable within
clusters, but cannot be shared globally. We refer to this as structured heterogeneity among RL tasks,
and explicitly model cluster structures in the task distribution to capture cluster-level knowledge 1.

Structured heterogeneity has been studied in supervised meta-learning (Yao et al., 2019); but it is
a lot more challenging to be handled in meta-RL, where the key bottleneck is how to unravel the
clustering structure in a population of RL tasks. This can be further decomposed into two key re-
search questions, namely population-level structure estimation and task-level inference. Different
from supervised learning tasks where static task-specific data is already provided before meta learn-
ing, the observations in RL tasks are collected by an agent’s interactions with the environment. As

1In this paper, we do not assume the knowledge in different clusters is exclusive, and thus each cluster can
also contain overlapping global knowledge, e.g., motor skills in locomotion tasks.
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a result, in addition to the original explore-exploit trade-off an RL agent needs to handle for return
maximization, now a meta-RL agent also has to balance the trade-off between the need of clustering
structure identification and the need of return maximization when taking actions. Oftentimes, the
action benefiting return maximization does not necessarily help clustering structure identification.
The situation becomes more pressing when solving new tasks at test time, where the agent needs to
differentiate what is transferable at the cluster-level, task-level, or not at all, for fast adaptation.

To handle the structured heterogeneity of tasks in meta-RL, we propose a cluster-based meta-RL
algorithm, called MILET: Meta reInforcement Learning via Exploratory clusTering, which is de-
signed to explore clustering structures of tasks and enhance fast adaptation on new tasks with cluster-
level transferable knowledge. Specifically, we perform cluster-based posterior inference (Rao et al.,
2019; Dilokthanakul et al., 2016) to infer the clustering structure of a new task. To accelerate cluster
inference, we learn a dedicated exploration policy that is aware of cluster structures and is trained to
explore the environment to reduce uncertainty in cluster inference as fast as possible. Furthermore,
we design a composed reward function for it to encourage a coarse-to-fine exploratory strategy.
New tasks can be quickly adapted with the explored cluster information by using locally transfer-
able knowledge within clusters. We compare our method with a rich set of state-of-the-art meta-RL
baselines on various MuJoCo environments (Todorov et al., 2012) with cluster structures in both
rewards and state dynamics. We also show our method can mitigate the sparse reward issue by
sample-efficient exploration on cluster structures, which provides hints to solve a specific task. We
further test our method on environments without explicit clustering structures, the results show our
method can automatically discover locally transferable knowledge and benefit the adaptation.

2 RELATED WORK

Task modeling in meta-learning. Task modeling is important to realize fast adaptation in new tasks
in meta learning. Finn et al. (2017) first proposed the model-agnostic meta learning (MAML) aiming
to learn a shared model initialization, i.e., the meta model, given a population of tasks. MAML
does not explicitly model tasks, but it expects the meta model to be only a few steps of gradient
update away from all tasks. Later, an array of methods extend MAML by explicitly modeling tasks
using given training data in supervised meta-learning. Lee & Choi (2018) learned a task-specific
subspace of each layer’s activation, on which gradient-based adaptation is performed. Vuorio et al.
(2019) explicitly learned task embeddings given data points from each task, and then used it to
generate task-specific meta model. Yao et al. (2019) adopted a hierarchical task clustering structure,
which enables cluster-specific meta model. Such a design encourages the solution to capture locally
transferable knowledge inside each cluster, similar to our MILET model. However, task information
is not explicit in meta-RL: since the true reward/state transition functions are not accessible by the
agent, the agent needs to interact with the environment to collect observations about the tasks, while
maximizing the return from the interactions. MILET performs posterior inference of a task’s cluster
assignment based on its ongoing trajectory; better yet, it is designed to behave exploratorily to
quickly identify tasks’ clustering structures.

Exploration in meta-reinforcement learning. Exploration plays an important role in meta-RL,
as the agent can only learn from its interactions with the environment. In gradient-based meta-RL
(Finn et al., 2017), the local policy is trained on the trajectories collected by the meta policy, thus
the exploration for task structure is not explicitly handled. Stadie et al. (2018) and Rothfuss et al.
(2019) computed gradients w.r.t. the sampling distribution of the meta policy, in addition to the
collected trajectories. Gurumurthy et al. (2020) learned a separate exploration policy for MAML
to collect informative pre-update trajectories. Gupta et al. (2018) also extended MAML by using
learnable latent variables to control different exploration behaviors. The context-based meta-RL
algorithms (Duan et al., 2016; Wang et al., 2016) automatically learn to trade-off exploration and
exploitation by learning a policy conditioned on the current context. Zintgraf et al. (2020) explicitly
provided the task uncertainty to the policy to facilitate exploration via variational inference. Zhou
et al. (2019) introduced intrinsic rewards encouraging exploration that can improve the prediction
of dynamics. Zhang et al. (2021) and Liu et al. (2021) developed a separate exploration policy
by maximizing the mutual information between task ids and inferred task embeddings. However,
all the aforementioned exploration methods are oblivious to the structured heterogeneity of tasks,
leading to inefficient exploration and ignorance of locally transferable knowledge within clusters.
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MILET learns the exploration policy to explicitly reduce the uncertainty in cluster inference, which
is important to utilize locally transferable knowledge.

3 BACKGROUND

Meta-reinforcement learning. We consider a family of Markov decision processes (MDPs) 2

p(M), where an MDP Mi ∼ p(M) is defined by a tuple Mi = (S,A, Ri, Ti, Ti,0, γ,H) with
S denoting its state space, A as its action space, Ri(rt+1|st, at, st+1) as its reward function,
Ti(st+1|st, at) as its state transition function, Ti,0(s0) as its initial state distribution, γ as a discount
factor, and H as the horizon of an episode. The index i represents the task id, which is provided to
agents in some works (Zhang et al., 2021; Liu et al., 2021; Rakelly et al., 2019). Following Zintgraf
et al. (2020), we consider a more general setting where the task id is unavailable to the agent, since it
becomes meaningless when we keep encountering new tasks. Tasks sampled from p(M) typically
differ in the reward and/or transition functions. For an MDP, we run a trial consisting of N + 1
episodes (Duan et al., 2016). Following the evaluation settings in previous works (Finn et al., 2017;
Liu et al., 2021; Zhang et al., 2021; Rothfuss et al., 2019), the first episode in a trial is reserved as
an exploration episode to gather task-related information, and an agent is evaluated by the returns in
the following N exploitation episodes.

Inside a trial, we denote the agent’s interaction with the MDP at time step n as τn =
{sn, an, rn, sn+1}, and τ:t = {s0, a0, r0, ..., st} denotes the whole interaction history collected
before time t. In the exploration episode, an agent should form the most informative history τψ by
rolling out an exploration policy πψ parameterized by ψ. In exploitation episodes, the agent executes
the exploitation policy πϕ parameterized by ϕ (in some prior work, πψ and πϕ could be the same)
conditioned on τψ and, optionally, the history collected in exploitation episodes τϕ. The agent’s
goal is to maximize the returns in exploitation episodes, which can be formally expressed as,

J (πψ, πϕ) = EMi∼p(M),τψ∼πψ

[N×H∑
t=0

Ri
(
πϕ(τ

ψ; τϕ:t)
)]
, (1)

where Ri
(
πϕ(τ

ψ; τϕ:t)
)

is the return of πϕ conditioned on τψ and τϕ:t at time step t in task Mi.

Mixture of RL tasks. In this paper, we consider a more genearl and realistic setting, where different
task distributions form a mixture,

p(M) =

C∑
c=1

wc · pc(M), (2)

where C is the number of mixing components (i.e., clusters) and wc is the corresponding weight of
component c, such that

∑C
c=1 wc = 1. Every task is sampled as follows,

• Sample a cluster c according to the multinomial distribution of Mul(w1, ..., wC);
• Sample a reward function R or a transition function T or both from pc(M).

The knowledge shared in different clusters could be different. For example, two clusters of target
positions can exist in a navigational environment and each task is associated with a particular target
position. In the first cluster, the target positions concentrate in the upper part of the map, while
the target positions in the second cluster fall in the bottom part. The knowledge that how the agent
moves to the upper part in the first cluster should not be transferred to the second cluster; but it is cru-
cial for different tasks in the first cluster. Such locally transferable knowledge cannot be effectively
captured by previous meta-RL solutions, since they are only designed to realize globally transfer-
able knowledge. Our method is able to discover and utilize such local knowledge by modeling the
underline structures of tasks distributions.

4 METHODOLOGY

In this section, we present MILET in detail. Firstly, we introduce how to estimate population-
level task structures using the collected trajectories via cluster-based variational inference. Then,

2The terms of environment, task and MDP are used interchangeably in this paper.
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Figure 1: MILET architecture. The encoder processes ongoing trajectories and performs cluster-
based task inference qθ(z|c, hβ). The exploration policy πψ is trained to explore the environment
to find the most certain cluster assignment c. The explored information is passed to the exploitation
policy πϕ to facilitate fast adaptation in the inferred task Mzc .

we explain the exploration policy trained by the exploration-driven reward, which is designed to
quickly identify the cluster of a new task. In particular, in each task we first execute the exploratory
policy to collect the coarse-grained cluster information; then we adapt the task policy with the help
of the inferred posterior cluster distribution to obtain fine-grained task information. The architecture
of MILET is shown in Figure 1.

4.1 CLUSTER-BASED VARIATIONAL INFERENCE WITH CONSISTENCY REGULARIZATION

Since the reward and transition functions are unknown to the agent, we learn a stochastic latent
variable ci to infer the cluster assignment of current task Mi ∼ pc(M). Based on ci, we infer
another stochastic latent variable zi carrying task-level information, i.e., reward/transition functions
that define the task. For simplicity, we first drop the script i in this section as we will only use one
task as an example to illustrate our model design. We believe all information about the current task is
encoded in {z, c}, e.g., once we know the cluster and task assignments, we can perfectly reconstruct
the dynamics of the task, i.e., the trajectories. When a new task arrives, we decode its characteristics
by the posterior distribution p(z, c|τ:t) with respect to the interaction history up to time t. The
inferred task information zc (z conditioned on c) is then input into the policy πψ/ϕ(at|st, zc).

However, the exact posterior p(z, c|τ:t) defined by Eq.(2) is intractable. Instead, we learn an approx-
imated variational posterior qθ(z, c|τ:t) = qθ(z|τ:t, c)qθ(c|τ:t), in which we learn two dependent
inference networks and collectively denote their parameters as θ. On top of the inference networks,
we learn a decoder pω to reconstruct the collected trajectories. The whole framework is trained by
maximizing the following quantity,

Eρ(M,τ+)

[
log p(τ+|π)

]
, (3)

where ρ is the distribution of trajectories induced by the policies π = {πψ, πϕ} and the environment,
and τ+ = {τψ, τϕ} denotes all the trajectories collected in a trial, the length of which is denoted
as H+ = (N + 1)H . Note that we use trajectories from both exploration and exploitation episodes
since the rewards and state transitions in the same task are generated by the same underlying MDP.
We omit the dependencies on π to simplify our notations in later discussions. Instead of optimizing
the intractable objective in Eq.(3), we optimize its evidence lower bound (ELBO) w.r.t. the approx-
imated posterior qθ(z, c|τ:t) estimated via Monte Carlo sampling (Rao et al., 2019) (full derivation
can be found in Appendix A),

ELBOt = Eρ
[ cluster-specific reconstruction loss︷ ︸︸ ︷
Eqθ(z,c|τ:t)

[
ln pω(τ

+|z̃c)
]
−

cluster-specific regularization︷ ︸︸ ︷
Eqθ(c|τ:t)

[
KL(qθ(z|c, τ:t) ∥ pω(z|c))

]
−

categorical regularization︷ ︸︸ ︷
KL(qθ(c|τ:t) ∥ p(c))

]
,

(4)
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where pω(z|c) = N
(
µω(c), σ

2
ω(c)

)
is a learnable cluster-specific prior, which is different from

the simple Gaussian prior used in single-component VAE (Kingma & Welling, 2013). This prior
allows the model to capture the unique structure of each cluster. Its parameters are included in
ω since the cluster structure is also a part of the environment. z̃c is the latent variable sampled
from qθ(z|c, τ:t) = N

(
µθ(c, τ:t), σ

2
θ(c, τ:t)

)
, using the reparameterization trick (Kingma & Welling,

2013). qθ(c|τ:t) outputs the approximated posterior cluster distribution given τ:t 3. p(c) is a fixed
non-informative multinomial distribution representing the prior cluster distribution of tasks.

Similar to Zintgraf et al. (2020), the first term ln pω(τ
+|z̃c) in Eq.(4) can be further factorized as

ln pω(τ
+|z̃c, π) = ln p(s0|z̃c) +

H+−1∑
i=0

[
ln pω(si+1|si, ai, z̃c) + ln pω(ri+1|si, ai, si+1, z̃c)

]

≈ const.+

H+−1∑
i=0

−(ri − r̂(si, ai, si+1, z̃c))
2 − λs ∥si+1 − ŝ(si, ai, z̃c)∥22 ,

(5)

where p(s0|z̃c) is the initial state distribution in a task, and we consider it as a constant by assuming
identical distribution of the initial states across clusters. The second and third terms are likelihood
derived from decoders for transition and reward functions. λs control the effect of the state transition
in variational inference. The density function of pω(si+1|si, ai, z̃c) and pω(ri+1|si, ai, si+1, z̃c) is
difficult to estimate in continuous state and action spaces. Denote the corresponding decoder outputs
as r̂ and ŝ, we use L2 distance to approximate the log-likelihood functions (Zhang et al., 2021).

In the inference networks qθ(z|τ:t, c) and qθ(c|τ:t), we follow Duan et al. (2016); Zintgraf et al.
(2020) to encode the history τ:t by Gated Recurrent Units (GRUs) (Chung et al., 2014). We propose
a stacked GRU structure (shown in Figure 1) to differentiate the information for cluster and task
inference in the hidden space. Specifically, we set a task GRU (T-GRU) and a cluster GRU (C-GRU),
both of which encode the history τ:t, but with different levels of granularity. T-GRU is set to capture
fine-grained task-specific patterns in the history as it is optimized to reconstruct trajectories of a
specific task. C-GRU captures more coarse-grained patterns as it is set to help T-GRU reconstruct
all trajectories within a cluster. To realize this difference, the output hβ of T-GRU is only provided to
qθ
(
z|hβ(τ:t, hα), c

)
, while the output hα of C-GRU is passed to both cluster inference qθ

(
c|hα(τ:t)

)
and task inference qθ

(
z|hβ(τ:t, hα), c

)
. This also reflects our dependency assumption about the task

structure. We denote h = {hα, hβ}, and h is passed between episodes in a trial.

Different from the static training data provided beforehand in supervised meta-learning settings, the
trajectory data is incrementally collected by the agent in meta-RL, which brings both challenges
and opportunities in obtaining the most informative information for structure identification. Firstly,
inside a trial, the structure inference improves as more interactions are collected, which means the
agent’s belief about the task structure could change thereby. This introduces a contradiction since
the inference result should stay consistent within a given task, no matter how trajectory changes over
episodes. We attribute this property as in-trial consistency. It can be measured by KL(q(c|τ:t1) ∥
q(c|τ:t2)), where t1 and t2 refer two arbitrary timesteps in a trial and the KL divergence measures the
inconsistency between two cluster posterior distributions. We realize the notion of cluster inference
consistency via the following regularizer,

LI =
1

H+ − 1

H+−1∑
t=0

KL
(
qθ(c|τ:t) ∥ qθ(c|τ:t+1)

)
. (6)

This regularizer minimizes the inconsistency between any two consecutive time steps inside a trial.
The consistency of task inference is implicitly enforced once the cluster inference becomes consis-
tent. Furthermore, qθ(c|τ:t) is encouraged to find structures beyond the task-level by this regularizer,
i.e., cluster structures, as in-trial cluster inference is enforced to be the same.

Similarly, since the cluster-specific prior pω(z|c) is learnable, the task inference can become in-
consistent if the prior changes drastically across training epochs. More seriously, oscillation in the
inference of latent variable z can cause the collapse of policy training, as tasks across clusters might

3In practice, we use the Gumbel-softmax trick to simplify the calculation.
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be assigned with the same latent variable z. We conclude it as the prior consistency property and
realize it via the following regularization,

LP =
1

C

C∑
KL

(
pω(z|c) ∥ ptgt(z|c)

)
, (7)

where ptgt(z|c) is a target network and its parameters are the same as pω(z|c) but updated in a much
slower pace. We finally conclude the objective in our cluster-based variational inference (CBVI),

L(θ, ω) = Ep(M)

[ H+∑
t=0

ELBOt − λILI − λPLP

]
, (8)

where λI and λP are hyper-parameters to control the strength of two regularizers.

4.2 EXPLORATION FOR REDUCING TASK INFERENCE UNCERTAINTY

The adaptation procedure in a new task can be decomposed into two sub-goals: (1) explore clustering
structure; (2) solving the task with the inferred task information. These two sub-goals are not in
parallel, but the correct clustering structure identification is the prerequisite for maximizing task
return. Thus, we are motivated to learn two separate policies as shown in Figure 1. One takes
exploratory behaviors to collect cluster and task information, i.e., the exploration policy πψ . The
other is optimized to solve the task with the collected information, i.e., the exploitation policy πϕ.

Clustering structures provide hints to solve specific tasks. We train a separate exploration policy to
provide a good basis for task-solving by exploring the environment to quickly identify the cluster as-
signment of a task. We evaluate the quality of exploration using two principles. Firstly, whether the
trajectory of an exploration episode can reduce the uncertainty of the cluster inference. Secondly,
whether the inference result is consistent. The exploration trajectory should lead to a consistent clus-
ter, other than switching among clusters. We conclude them as certain and consistent exploration.

We design two intrinsic rewards to encourage certain and consistent behaviors. First, we use the
entropy of cluster inference network qθ(c|τψ:H) to measure the uncertainty of the inferred cluster.
For a new task, we look for trajectories that provide the most certain cluster inference. We formalize
the objective is as follows, omitting the subscript θ and superscript ψ for simplicity,

H(q(c|τ:H)) = −E
[
ln q(c|τ:H)

]
= −E

[
ln q(c|τ0) +

H−1∑
t=0

ln
q(c|τ:t+1)

q(c|τ:t)
]
. (9)

We then define an intrinsic reward of each action by telescoping the second term similar to Zhang
et al. (2021); Liu et al. (2021),

rh(at) = E
[
ln
q(c|τ:t+1 = [st+1; at; rt; τ:t])

q(c|τ:t)
]
= H(q(c|τ:t))−H(q(c|τ:t+1)). (10)

This reward favorites actions which can reduce the entropy of cluster inference; and therefore, a
trajectory leading to a consistent cluster inference is preferred. To more explicitly measure the
divergence between the inferred cluster distributions from two steps, we define another reward en-
couraging consistent cluster inference,

rc(at) = −KL(q(c|τ:t) ∥ q(c|τ:t+1)). (11)

The above two rewards are designed to collect certain and consistent cluster-level information. After
we locate the cluster, the exploration policy should focus on finding task-level information, which
becomes easier under the help of cluster information. Intuitively, cluster is easier to find, as infor-
mation across individual tasks can be leveraged. This induces a coarse-to-fine exploration strategy.
We define the following composed reward to encourage the coarse-to-fine exploration behaviors,

re(at) = r(at) + γh(t)rh(at) + γc(t)rc(at), (12)

where r is the reward provided by the environment. γh and γc are two temporal decaying functions,

γh(t) = bh − ah exp(−sh(H − t)), γc(t) = −bc + ac exp(−sc(H − t)), (13)
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(a) Environments with clustered reward functions.

(b) Environments with clustered state transition functions.

Figure 2: Average test performance for 2 episodes on MuJoCo environments.

where {a, b, s}h,c are hyper-parameters controlling the rate of decay. γh should gradually decrease
to 0, which means we encourage the policy to find a certain cluster at the early stage, but it should
begin to collect task information later. γc gradually increases from a negative value to positive. At
the early stage, a negative γc encourages the policy to try different clusters. Later, a positive γc
enforces the policy to stick to the current cluster and focuses more on discovering task information
by maximizing raw rewards.

Finally, the exploitation policy πϕ inherits the hidden state hπψH , which encodes knowledge collected
by the exploration policy, and is then trained to maximize the expected reward defined in Eq.(1). The
detailed pseudo-codes of meta-train and meta-test phases for MILET are shown in Appendix B.

5 EXPERIMENTS

To fully demonstrate the effectiveness of MILET in handling structured heterogeneity in meta-RL.
In this section, we conduct extensive experiments to study the following research questions: (1) Can
MILET achieve better performance than state-of-the-art meta-RL algorithms by handling structured
heterogeneity in the task distribution? (2) Can MILET effectively unravel cluster structures in both
rewards and state dynamics? (3) Can the sparse reward issue be mitigated by exploratory clustering
of tasks? (4) How does the number of clusters affect the final performance of MILET? We defer the
ablation study to Appendix E.

5.1 REWARD AND DYNAMICS CLUSTER ENVIRONMENTS

Environment setup. We evaluate MILET on two continuous control tasks with clustered reward
functions, simulated by MuJoCo (Todorov et al., 2012). In Ant-Goal, the ant robot needs to move to
a predetermined goal position. We create 4 clusters by distributing the goal positions in 4 different
centered areas. In Humanoid-Dir, the human-like robot is controlled to move towards different tar-
get directions. We create 4 clusters by distributing goal directions along 4 orthogonal directions in a
2D space. We also created environments with clustered transition functions by adopting two move-
ment environments Hopper-Rand-Params and Walker-Rand-Params, also simulated by MuJoCo.
The physical parameters of the robot, including body mass, damping on degrees of freedom, body in-
ertia and geometry friction, can be manipulated to realize different transition functions of the robot’s
movement. The hopper and walker robots are required to move smoothly under different parameter
settings. We created 4 clusters by manipulating one of the parameters at a time and keep the others
to the default parameters. The detailed procedure of task generation can be found in Appendix C.

Baseline setup. We compared MILET with several representative meta-RL baselines, includ-
ing RL2 (Duan et al., 2016), PEARL (Rakelly et al., 2019), VariBAD (Zintgraf et al., 2020) and
MetaCURE (Zhang et al., 2021). For each environment, we created 500 tasks for meta-train and
hold out 32 new tasks for meta-test. We report the performance on test tasks over frames in the
meta-train phase. In the meta-test phase, we executed 2 episodes in each new task. For algorithms
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(a) MiLEt traces. (b) VariBAD traces. (c) NMI score in exploration.

Figure 3: Qualitative analysis of MILET. (a) Traces of MILET on the meta-test tasks of Ant-Goal.
Cross marks represent goal positions, and the colors represent the cluster assignments produced by
MILET. The dashed lines suggest the optimal traces to the centers of ground-truth clusters. (b)
Traces of VariBAD on the same meta-test tasks of Ant-Goal. The traces are in the same color as
VariBAD is unaware of clusters. (c) NMI of MILET’s inferred clusters in the exploration episode of
meta-test tasks in four environments.

with the explicit exploration policy, i.e., MILET and MetaCURE, we run their exploration policy in
the first episode and exploitation policy in the second episode. We used public algorithm implemen-
tations provided by the original papers. We trained MILET via Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and set the default cluster number C to 4. PEARL and MetaCURE are
based on off-policy algorithms (Haarnoja et al., 2018); they need less frames of data to converge in
the meta-train phase. We terminated them once the algorithm was converged and reported the final
performance. The reported performance is averaged over 3 random seeds. More hyper-parameter
settings and implementation details can be found in Appendix D.

Results and analysis. Figure 2 shows the test performance of all evaluated meta-RL algorithms.
We also provide qualitative analysis in Figure 3, including visualization of the models’ behaviors
and the clustering performance of MILET in the exploration episode measured by the normalized
mutual information score (NMI).

MILET showed significant improvement against baselines in the second episode, which is expected
as it benefits from the information explored in the first episode. Interestingly, we can observe even
though the first episode of MILET was reserved for exploration, it still performed comparable to
other methods in all four different environment setups. In the first episode, MILET behaves ex-
ploratorily to find the most probable cluster of the current task, and thus its traces in Figure 7a
look like spirals from the starting point. VariBAD is also designed to explore by uncertainty in
task inference, but its traces are close to random walk at the early stage, which is less effective. In
Figure 3c, we can observe the NMI scores of the MILET’s inferred tasks have almost converged
in 20 time steps, which means the stable cluster inference can already provide the agent necessary
cluster information to gain fine-grained task information. This also explains how MILET obtained
comparable performance in the first episode. In the second episode, with the better task informa-
tion, MILET is able to move towards the targets directly, showing significant improvements against
baselines. MetaCURE guides the exploration by task IDs, which in fact provides more information
of environment than what MILET can access. However, the exploration empowered by task IDs fo-
cuses more on leveraging task-level information thus is less effective in exploring coarser but useful
information, e.g., clusters, especially when the task IDs are independent on the task structure.

5.2 SPARSE REWARD ENVIRONMENTS

Environment setup. We evaluated MILET on a more challenging setting where the reward is
sparse. We modified Ant-Goal and Humanoid-Dir environments such that the agent only gets pos-
itive rewards within a small region around target positions or target directions, otherwise 0. We
denote them as Ant-Goal-Partial and Humanoid-Dir-Sparse. In Ant-Goal-Partial, we found all
evaluated methods failed when rewards were too sparse. Hence, we set the reward regions to cover
the initial position of the robot. With sparse reward, it becomes more important for the agent to
leverage knowledge across related tasks, as the feedback within a single task is insufficient for pol-
icy learning. More environment details are deferred to Appendix C.

Results and analysis. We present results in Figure 4. By exploring and leveraging task structures
in the exploration episode, MILET outperformed all baselines with a large margin. MetaCURE is
designed for exploration when reward is sparse by utilizing task ids, which indeed helped it outper-
form other baselines in Ant-Goal-Partial. But such exploration is on the task-level thus is unable to
effectively explore cluster information to enhance task modeling. On the contrary, MILET lever-
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Figure 4: Average test performance for 2 episodes on sparse reward environments.

aged relatedness among tasks with in the same cluster to bootstrap policy adaptation; and as shown
in Figure 3c, cluster inference can be efficiently solved, which provides an edge for accurate task
inference. These two factors contribute to MILET’s better performance in the exploitation episode.

5.3 INFLUENCE OF THE NUMBER OF CLUSTERS
Table 1: Performance comparison on Ant-
Goal and its variant.

Ant-Goal Ant-U
VariBAD -168.6±9.6 -162.4±9.2

MILET-2 -132.3±7.6 -128.6±8.8

MILET-4 -125.4±5.1 -113.7±4.8

MILET-6 -123.6±4.4 -99.7±5.2

MILET-8 -124.2±4.7 -117.9±5.7

MILET-10 -128.6±5.2 -142.7±10.4

In this experiment, we study how the number of clus-
ters C influence the final performance, especially
when there is a mismatch between the ground-truth
number of clusters and C set by the agent. We set
C to different values and denote it in suffixes. We
additionally create a set of tasks on the Ant-Goal en-
vironment, where the goal positions are uniformly
sampled on a circle. We denote it as Ant-U. In this
setting, there is no explicitly created clusters of tasks.

The average final returns are shown in Table 1. Inter-
estingly, we observe MILET can perform well even though there are no explicit cluster structures
in Ant-U. By looking into the detailed trajectories, we found MILET segmented the circle into dif-
ferent parts as shown in Figure 5 such that knowledge from nearby tasks can be effectively shared.
VariBAD mistakenly assumed all tasks can share knowledge and thus failed seriously. When C is
set smaller than the ground-truth number of clusters, MILET-2 discovers more general structures.
However, transferable knowledge within such structures is less, causing the performance drop. How-
ever, it does not mean more clusters than necessary is helpful, as less knowledge could be shared in
each cluster. In Ant-U, MILET-8 and -10 generate unnecessary clusters, and cluster assignments are
mixed at the boundary of adjacent clusters (see visualization in Appendix G). Such inaccurate clus-
ter modeling causes ineffective exploration and sharing of wrong knowledge, leading to degenerated
performance. Hence, correctly inferring the number of clusters is an important future work.

6 CONCLUSION & FUTURE WORK

Figure 5: Traces of
MILET-6 in exploration
episodes on Ant-U. Col-
ors represent the cluster
assignments produced
by MILET-6.

In this paper, we present MILET, a clustering-based method to unravel
structured heterogeneity of tasks in meta-RL. MILET is able to discover
clustered task structures in a population of RL-tasks and adapt cluster-
level transferable information to new tasks. To quickly identify the clus-
ter assignment of new tasks, MILET learns a separate exploration policy
which aims to reduce uncertainty in cluster inference. We further de-
sign a dedicated reward function to control the exploration between the
cluster- and task-level information. MILET outperformed representative
meta-RL methods by utilizing structured heterogeneity in the task dis-
tribution. We further demonstrated its exploration on cluster structures
greatly improves its sample efficiency in sparse reward environments.

Overall, MILET sheds lights on discovering structures in the task distri-
bution to boost meta-RL algorithms. Several extensions of MILET are
worth to explore in the future work. We currently assume a uniform cluster prior. More complicated
priors can be considered to enable new features. For example, the Gaussian process prior can be
used to automatically identify number of clusters in the task distribution, and possibly detect out-
of-distribution tasks in the meta-test phase. Also, MILET can be combined with skill-based RL
methods (Pertsch et al., 2021; Nam et al., 2022) to learn cluster-level skills, which could form a new
basis for meta-RL, e.g., each task can be modeled as a mixture of skills and different clusters of task
associate with different skill distributions.
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A ELBO DERIVATION

Eρ(M,τ+)

[
log p(τ+)

]
= Eρ

[
ln

∫
p(z, c, τ+)

q(z, c|τ:t)
q(z, c|τ:t)

]
= Eρ

[
lnEq(z,c|τ:t)

[p(z, c, τ+)
q(z, c|τ:t)

]]
≥ Eρ

[
Eq(z,c|τ:t)

[
ln
p(z, c, τ+)

q(z, c|τ:t)

]]
= ELBOt

where the inequality holds due to the Jensen’s inequality. The inner expectation term can be further
decomposed as,

Eq(z,c|τ:t)
[
ln
p(z, c, τ+)

q(z, c|τ:t)

]
= Eq(z,c|τ:t)

[
ln
p(τ+|z, c)p(z|c)p(c)
q(z|c, τ:t)q(c|τ:t)

]
= Eq(z,c|τ:t)

[
ln p(τ+|z, c) + ln

p(z|c)
q(z|c, τ:t)

+ ln
p(c)

q(c|τ:t)

]
= Eq(z,c|τ:t)

[
ln p(τ+|z, c)

]
− Eq(c|τ:t)

[
KL(q(z|c, τ:t) ∥ p(z|c))

]
− KL(q(c|τ:t) ∥ p(c)),

which is essentially Eq.(4). In practice, we first apply the Gumbel-Softmax trick (Jang et al., 2017)
to sample a c̃ to calculate the second term instead of directly calculating the expectation, and then
sample a z̃ given c̃ to calculate the first term using the reparameterization trick (Kingma & Welling,
2013). To calculate the last term, we decompose it into,

−KL(q(c|τ:t) ∥ p(c)) = H
[
q(c|τ:t)

]
+ Eq(c|τ:t)

[
p(c)

]
,

where p(c) is the uniform prior of the cluster distribution, thus the last KL term is essentially the
entropy of the posterior q(c|τ:t) plus a constant value, which can be easily computed.

B ALGORITHMS

Algorithm 1: MILET: Meta-train Phase
Input: A set of meta-train tasks M drawn from p(M);
Initialize a buffer V for CBVI training;
while not Done do

Sample a task Mi ∼ M;
Collect exploration and exploitation episodes τ+ = {τψ, τϕ} by running Alg.(2) on Mi;
Insert τ+ to V;
Compute intrinsic rewards rh and rc;
Train πψ on τψ by maximizing Eq.(12) using PPO;
Train πϕ on τϕ by maximizing Eq.(1) using PPO;
Sample a trajectory batch v from V;
Update θ, ω using v by maximizing Eq.(8);

end

Algorithm 1 summarizes the training procedure of MILET. We use the on-policy algorithm PPO
(Schulman et al., 2017) to train policies; and retain a buffer storing trajectories for the cluster-based
variational inference training. Algorithm 2 is used to obtain trajectories given a task. When it is
executed in Algorithm 1 during training, c is sampled using the Gumbel-Softmax trick, otherwise
using argmax when handing new tasks during testing.
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Algorithm 2: MILET: Meta-test Phase
Input: Meta-test task drawn from p(M), number of exploitation episodes N ;
for t = 1, ...,H do

Obtain c = argmaxc qθ(c|h
ψ
α,t−1) ; // Use Gumbel-Softmax during training

Take action according to πψ
(
at|st, qθ(z|hψβ,t−1, c)

)
;

Update hψt with (st, at, rt, st+1);
end
Initialize hϕ0 = hψH ;
for e = 1, ..., N do

for t = 1, ...,H do
Obtain c = argmaxc qθ(c|h

ϕ
α,t−1) ; // Use Gumbel-Softmax during training

Take action according to πϕ
(
at|st, qθ(z|hϕβ,t−1, c)

)
;

Update hϕt with (st, at, rt, st+1);
end

end

C ENVIRONMENTS

Ant-Goal. We create clusters by manipulating the goal positions. Given an angle θ ∈ [0, 2], we
obtain the 2D coordinate of the goal position as (r cos θ, r sin θ), where r is the radius and fixed
to 2 in our experiments. To create clusters, we sample θ from 4 different normal distributions
N (0.25, 0.22), N (0.75, 0.22), N (1.25, 0.22), N (1.75, 0.22). To sample a task, we first uniformly
sample a normal distribution, and then sample a θ from it.

Humanoid-Dir. We create clusters by manipulating the goal directions. To sample a goal direction,
we first sample an angle θ ∈ [0, 2], and then the goal direction is (cos θ, sin θ). To create clusters,
we sample θ from 4 different normal distributions N (0.25, 0.22), N (0.75, 0.22), N (1.25, 0.22),
N (1.75, 0.22). To sample a task, we first uniformly sample a normal distribution, and then sample
a θ from it.

Hopper-Rand-Params. We create clusters by manipulating physical parameters of the robot, caus-
ing different transition functions. We have four sets of parameters in total, including body mass,
damping on degrees of freedom, body inertia and geometry friction. To sample a task, we first uni-
formly sample one of the four parameter sets, and then multiply parameters in it with multipliers
sampled from N (3, 1.52).

Walker-Rand-Params. The parameter sets are the same as the hopper robot. We find small mul-
tipliers cannot change transition functions a lot in this environment, thus we sample the multipliers
from N (6, 12).

Ant-Goal-Partial. The tasks are sampled in the same way as Ant-Goal. The goal reward is defined
as,

r =

{
−|x− g|1 + t, |x− g|1 ≤ t

0, otherwise

where x is the current coordinate of the robot, g is the coordinate of the goal position, t is the
threshold, whish is fixed to 3 in our setting. Control cost and contact cost are also included in the
final reward.

Humanoid-Dir-Sparse. The tasks are sampled in the same way as Humanoid-Dir. The velocity
reward is defined as,

r =

{
g · v, g·v

∥g∥∥v∥ ≥ t

0, otherwise

where v is the velocity of the robot, g is the goal direction, t is the threshold and fixed to 0.8 in our
setting. Control cost and contact cost are also included in the final reward.

Ant-Goal-U. For each task, we uniformly sample a θ ∼ U(0, 2) and obtain the goal position
(r cos θ, r sin θ) with r fixed to 2.

13



Under review as a conference paper at ICLR 2023

Figure 6: Visualization of γ in the exploration policy.

D HYPER-PARAMETERS

We used the PyTorch framework Paszke et al. (2019) to implement our experiments. We use PPO
with Humber loss to update MILET. In the cluster-based variation inference, we set λI to 1, and λP
to 0.1. We update the target network ptgt(z|c) every 50 training epochs. For the decaying function
used in exploration policy, we set γh(t) = 0.1 − 0.1 exp(−0.1(H − t)) and γc(t) = −0.1 +
0.2 exp(−0.1(H − t)), which are visualized in Figure 6. We use the Adam optimizer (Kingma
& Ba, 2014) for both policy learning and cluster-based variational inference training. For policy
learning including πψ and πϕ, we set the learning rate as 1e-4, while 1e-3 for variational inference
training. In the clustered reward function environments, λs is set to 0 in MiLEt and all variational
inference baselines. In the clustered state transition function environments, λs is set to be 1. The
other parameters are set as default. The max episode length H is set to 100 for every environment.

We provide implementation of MILET and task generation process in the supplementary material.

E ABLATION STUDY

We study the contribution of proposed components in MILET. Firstly, we disabled the exploration
policy and directly train the exploitation policy to maximize task rewards. Secondly, we removed
the stacked GRU (S-GRU) structure and only keep a single GRU to encode the trajectory τ:t in
the cluster-based variational inference. Lastly, we disable the consistency regularizers (CR) in the
variational inference and directly optimize the ELBO. We use the same environments as Section 5.1.

The final performance of all variants is shown in Table 2. Firstly, without the exploration policy, the
performance decreases significantly. This variant can still unravel clustering structures of tasks, so
it performs better than VariBAD in general, which uses a simpler variational inference component.
This again proves the necessity of handling structured heterogeneity in task distribution. However, it
cannot effectively utilize local knowledge as the exploration does not aim to explore different cluster
structures. Our exploration policy utilizes the cluster structure information and is trained to explore
the most certain clusters for tasks, leading to better adaptation performance. Secondly, removing S-
GRU makes it harder to utilize patterns with different levels of granularity in the interaction history.
This ability is essential to quickly identify cluster structures as cluster patterns are more common
across tasks, without which the exploration is less effective, causing performance drop. Also, a
consistent variational inference is very important. Our designed consistency regularizers are helpful
to discover cluster structures following the nature of sequential data in meta-RL, improving the final
performance of MILET.

F VISUALIZATION OF STATE TRANSITION FUNCTIONS

We visualize the clusters in clustered transition function experiments in Figure 7. It is hard to directly
visualize the state transition function as it is not a simple tabular function and it is conditioned on
agent’s actions. Recall that we created the ground-truth clusters by applying different multipliers
on the initial parameters of each of the parameter sets, and thus such multipliers well characterize
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Table 2: Ablation analysis of MILET.

Ant-Goal Humanoid-Dir Hopper-Rand-Params Walker-Rand-Params
VariBAD-G -171.2±9.7 514.3±24.6 272.9±11.3 153.6±9.4

¬exploration -130.4±4.5 533.9±18.4 278.3±9.6 164.2±16.7

¬S-GRU -173.7±14.2 554.2±12.7 284.4±14.3 211.7±9.8

¬CR -142.8±8.7 528.1±35.6 301.6±12.2 219.4±11.1

MILET -125.4±5.1 577.7±28.0 312.2±18.1 232.6±15.4

the state transition in each task. We then calculate the average multipliers of tasks in each inferred
cluster 4. Ideally, one cluster of tasks should only have one set of multipliers larger than 1, as it is
how we created different task clusters. From this visualization results, we can clearly observe that
MILET successfully identifies the difference of 4 clusters.

(a) Hopper-Rand-Params. (b) Walker-Rand-Params.

Figure 7: Clusters in state transition functions. Each color represents an identified cluster by MILET.
Four parameter sets are split by dashed lines.

G VISUALIZATION ON ANT-U

We visualize the task clusters identified by MILET-8 and MILET-10 on the testing tasks in the Ant-
U environment. We can observe that tasks are split into smaller groups by these two new variants,
and their cluster assignments are mixed at the boundary of adjacent clusters. Such inaccurate cluster
modeling causes ineffective exploration and sharing of wrong knowledge across tasks, leading to
the degeneration of final performance in Table 1.

Figure 8: Cluster assignments produced by MILET-8 and MILET-10 in the Ant-U environment.

4Multipliers with value 0 mean the corresponding initial parameters are 0.
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H DISCUSSION OF CLUSTER-AWARE EXPLORATION

Our exploration policy distinguishes MILET from other task inference methods in utilizing the struc-
tures of the task distribution. VariBAD (Zintgraf et al., 2020) performs exploration as a function of
task uncertainty by maximizing task rewards. MetaCURE (Zhang et al., 2021) and DREAM (Liu
et al., 2021) propose to explore by maximizing the mutual information between inferred task em-
beddings and pre-defined task descriptions. These exploration methods are unaware of structures of
the task distribution, thus are less effective in exploring coarser but useful information, i.e., clusters.
Our cluster-aware exploration is designed to quickly reduce the uncertainty in cluster inference. As
shown in Figure 7a, the agent explores on the map scale to find the most suitable structure.

To better understand the implication of our cluster-aware exploration, we compare the clustering
quality (measured by NMI score) at the end of the first episode of MILET and its variant without the
exploration policy in Table 3. Similar to VariBAD, this variant performs exploration by considering
task uncertainty. Our exploration policy with explicit clustering objective obtains better clustering
quality, which builds foundation for refining task inference, resulting in better final performance in
Table 2.

Table 3: NMI score of different exploration methods.

Ant-Goal Humanoid-Dir Hopper-Rand-Params Walker-Rand-Params
¬exploration 0.466 0.485 0.517 0.327

MILET 0.615 0.639 0.588 0.765
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