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Abstract

Large Language Models (LLMs) have demon-001
strated a powerful ability for text generation.002
However, achieving optimal results with a003
given prompt or instruction can be challeng-004
ing, especially for billion-sized models. Addi-005
tionally, undesired behaviors such as toxicity006
or hallucinations can manifest. While much007
larger models (e.g., ChatGPT) may demon-008
strate strength in mitigating these issues, there009
is still no guarantee of complete prevention. In010
this work, we propose formalizing text genera-011
tion as a future-constrained generation problem012
to minimize undesirable behaviors and enforce013
faithfulness to instructions. The estimation of014
future constraint satisfaction, accomplished us-015
ing LLMs, guides the text generation process.016
Our extensive experiments demonstrate the ef-017
fectiveness of the proposed approach across018
three distinct text generation tasks: keyword-019
constrained generation (Lin et al., 2020), toxic-020
ity reduction (Gehman et al., 2020), and factual021
correctness in question-answering (Gao et al.,022
2023).023

1 Introduction024

Large language models (LLMs) exhibit impressive025

textual understanding and reasoning capabilities as026

evidenced by various studies (Brown et al., 2020;027

Kojima et al., 2022; OpenAI, 2022, 2023). Through028

the process of instruction tuning, where large mod-029

els are fine-tuned on data comprising diverse tasks030

with specific instructions, their performance can be031

notably improved, even for unseen tasks. However,032

despite their strong abilities in text understanding033

and generation, undesirable behaviors such as toxi-034

city (Hartvigsen et al., 2022) and hallucination (Ji035

et al., 2023) still persist. In particular, ensuring that036

the models’ outputs closely align with provided037

prompts remains a challenge. Figure 1 provides an038

illustration of how model-generated texts can devi-039

ate significantly from the instructions provided in040

their prompts, but still remain fluent and relevant.041

Traditional sampling methods like nucleus sam- 042

pling (Holtzman et al., 2020), top-k sampling, and 043

temperature sampling, as well as search-based 044

methods like greedy or beam search, typically do 045

not take future costs into account. Lu et al. (2022b) 046

introduced various heuristics to approximate future 047

lexical constraints. We focus on general language 048

constraint situations (Chen et al., 2022; Zhou et al., 049

2023) three different language constraints for text 050

generation tasks and using the estimation of future 051

satisfaction score to guide generation. 052

Specifically, in order to mitigate undesirable 053

behaviors and ensure faithfulness to instructions, 054

we propose a novel approach for text generation 055

(Section 2), by formalizing it as a problem con- 056

strained by future language generation. A future- 057

constrained satisfaction score is incorporated for 058

guiding the next token generation. This approach 059

serves to steer the generation process close to de- 060

sired behaviors and follow with the specified in- 061

structions. As shown in Figure 1, the future con- 062

strain score is used to choose a better next token to 063

complete a sentence. 064

A future-constrained satisfaction score is the dis- 065

tance for current generation to satisfy the constraint 066

goal. However, the estimation of this score can be 067

NP-complete (Chen et al., 2018). Recent investiga- 068

tions by OpenAI (2023); Liu et al. (2023b); Fu et al. 069

(2023) have showcased the promising potential of 070

utilizing large language models for evaluation on 071

various natural language processing tasks. These 072

LLMs evaluate candidate outputs based on their 073

generation probabilities. Building upon this line of 074

research, we propose a method to estimate future 075

constraint satisfaction. 076

With the future constraint satisfaction, we can 077

search the best sequence over the infinite output 078

space. In order to speed up the process, we present 079

a beam-based algorithm meticulously crafted to 080

recursively generate sequences from left to right, 081

remarkably enhancing the efficiency and efficacy 082
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Figure 1: An illustration of the proposed approach utilizing future constraint satisfaction to guide generation. In
this example, although “summer” is a more likely next token, generating it will lead to a lower score in the future
constraint, which includes the keyword “snow”. Our method incorporates future constraint satisfaction, making
“winter” a more preferable choice.

of the generation process. The experimental re-083

sults (Section 3) exhibit desired behaviour improve-084

ments in three different tasks: keyword-constrained085

generation, toxicity reduction, and factual correct-086

ness in question answering. We also conduct speed087

and human evaluation (Section 4) of our approach.088

The decoding time slowdown linear with the num-089

ber of candidates at each step1. It sheds light on090

the pathway for achieving faithful decoding with091

large language models through our approach.092

2 Method093

We start by revisiting the generic generation pro-094

cess of an autoregressive language model. Given095

a prompt, represented as a sequence of tokens x,096

a language model generates an output sequence y097

step-by-step, proceeding from left to right:098

log p(y | x) =
|y|

∑
t=1

log p(yt | y<t ,x)099

Here p(yt | y<t ,x) represents the distribution of100

the next token at position t given the prompt/prefix101

x, and the partial output y<t . All sequential tokens102

are generated iteratively based on this conditional103

probability distribution.104

There are several popular deterministic decoding105

methods such as greedy decoding and beam search,106

as well as non-deterministic sampling methods like107

temperature sampling, nucleus sampling (Holtz-108

man et al., 2020), and top-k sampling. In this109

context, our focus primarily revolves around de-110

terministic decoding techniques.111

1Future work can focus on enhancing constraint satisfac-
tion estimation and reducing candidate numbers to boost speed
and performance.

In this work, we are exploring a distinct formula- 112

tion to ensure that the generated output y exhibits 113

specific desired behaviors (e.g., reduced toxicity 114

or inclusion of certain keywords). The conditional 115

sequence probability can be derived as follows: 116

logp(y | x) = ∑
t

log p(yt | y<t ,x) 117

∝∑
t

log
(

p(yt | y<t)∗ p(x | y<=t)
)

118

≈∑
t

log
(

p(yt | y<t ,x)∗ p(C(x) | y<=t)
)

︸ ︷︷ ︸
C(x) can be x

119

=∑
t

(
log p(yt | y<t ,x)+ log p(C(x) | y<=t)

)
120

≈∑
t

(
log p(yt | y<t ,x)+ R(y<=t ,C(x))︸ ︷︷ ︸

future constraint satisfaction

)
121

where C(x) can be the language description (or ver- 122

balization) of the constraint. C(x) can be as simple 123

as x itself, or in more sophisticated forms to repre- 124

sent desired constraints such as reducing toxicity or 125

ensuring alignment with supported evidence. For 126

example, the task of generating a sentence with 127

keyword constraints: “run team field drill”, C(x) 128

can be verbalized as “This will be a sentence with 129

these concepts: run team field drill”. It allows for a 130

flexible specification, tailored towards specific ob- 131

jectives or criteria, to guide the generation process 132

to meet the desired tasks or constraints. 133

The term R(y<=t ,C(x)) denotes the future con- 134

straint satisfaction score, given an output prefix 135

y and a constraint C(x). This score can be es- 136

timated with any pretrained language model by 137

assessing the likelihood of generating the desired 138
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output based on the given constraint. Moreover,139

such constraints can be broken down into several140

sub-constraints, each playing a role in measuring141

distinct constraints to fulfill the overall satisfac-142

tion. By aggregating individual future constraint143

satisfaction scores, we can derive a more holistic144

understanding of how well the output adheres to145

the set constraints.146

2.1 Estimation of Future Constraint147

Satisfaction148

In our method, we utilize future constraint satisfac-149

tion to provide guidance for text generation while150

ensuring the decoding efficiency of large language151

models. In this subsection, we introduce how to152

estimate the future constraint satisfaction using153

LLMs.154

We estimate the future constraint satisfaction155

score of C(x) using the log-likelihood of generat-156

ing the constraint conditioned on the prefix y<=t :157

R(y<=t ,C(x)) =
log p(C(x) | y<=t ,<SEP>)

|C(x)|
(1)158

where <SEP> is the special token delimiting the159

two sequences2.160

Some recent works (Scheurer et al., 2023)161

also proposed to estimate such scores or rewards162

in a binary question answering manner. So163

R(y<=t ,C(x)) = log p("Yes"|prompt)
p("Yes"|prompt)+p("No"|prompt) ,164

where p("Yes"|prompt) and p("No"|prompt) are165

the probabilities of generating “Yes” and “No”166

given the prompt, respectively3.167

In section 3, we exemplify how the proposed168

method can be applied to specific NLP problems.169

Note that, we use the likelihood of pretrained lan-170

guage models to estimate the satisfaction in this171

study. While this offers considerable versatility and172

flexibility, it might not always yield precise estima-173

tions. One can leverage fine-tuning and parameter-174

efficient techniques like LoRA (Hu et al., 2022)175

to effectively tailor the estimation process, provid-176

ing more accurate and flexible assessments of con-177

straint satisfaction. We leave this to future work.178

2.2 Inference179

Existing decoding methods such as beam search180

or nucleus sampling (Holtzman et al., 2020) de-181

termine which token to generate following a left-182

to-right manner. Given their inherent constraints,183

these methods may produce suboptimal outputs.184

2We set it as the end of sequence token.
3Figure 5 shows some related results for this setting.

This can be alleviated by proactively accounting 185

for future costs. Specifically, we consider this fol- 186

lowing decoding objective: 187

y←argmax
y∈Y

log p(y | x)+λ ∗R(y,C(x)) (2) 188

where Y is the set of all sequences and λ is a 189

weight coefficient. p(y |x) denotes the conditional 190

probability distribution by a language model, and 191

R(y,C(x)) is the estimation satisfaction score for 192

constraint C(x). 193

The above optimization problem is computation- 194

ally challenging, therefore we utilize the beam- 195

based search algorithm to solve it approximately. 196

Considering the current prefix y<t , a new token yt 197

is predicted at each step, and we select the top k 198

best candidate tokens using the following criterion: 199

yt←arg topK
yt∈Vt

log p(y<=t | x)+λ ∗R(y<=t ,C(x)) (3) 200

where Vt is candidate output space at position t. 201

We define Vt as the top 2*k candidates4 in cumu- 202

lative probability mass p(y<=t | x). Additional 203

tokens may be added to this candidate set. For 204

example, in keyword-constrained generation tasks, 205

we introduce another token set, Vkeys, which con- 206

sists of tokens found in keywords. This ensures 207

that these crucial tokens are considered at each de- 208

coding step. We iterate through this process until 209

certain conditions are met, such as encountering an 210

end-of-sequence token or reaching the maximum 211

allowed length, etc. 212

In the end, we choose the candidate that achieves 213

the highest score according to Equation 2 from the 214

top k candidates. 215

3 Experiments 216

We investigate the performance of the pro- 217

posed method on three different tasks: keyword- 218

constrained generation, toxicity reduction, and fac- 219

tual correctness in question-answering. 220

3.1 Keyword-constrained Generation 221

In our initial task, we focus on lexical-constrained 222

text generation using the CommonGen dataset (Lin 223

et al., 2020). This task involves generating a sen- 224

tence containing specific given keywords. For in- 225

stance, given a set of concepts (e.g., car, drive, 226

snow), the objective is to generate a fluent sentence 227

4To encompass more candidates, we do not use nucleus
sampling for candidate selection.
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that incorporates these concepts (e.g., "I drive my228

car during the winter through the snow"). We eval-229

uate the generated outputs using automatic metrics230

of fluency (BLEU, CIDER, etc.) and a constraint231

coverage score. The coverage score is calculated232

as the average percentage of the provided concepts233

present in the generated outputs.234

Lexical-Constraint Satisfaction Evaluation. In235

order to check the estimation quality of future236

lexical-constraint satisfaction using LLMs, we cre-237

ate a ranking benchmark, where each sample con-238

sists of a sentence pair (a,b), with a being the239

sentence with a constraint C and b without. Each240

a is derived from the development set of Common-241

Gen, while b is a complete sentence generated by242

ChatGPT given a few prefix words from a. We243

hypothesize that if this completed sentence b does244

not include all the specified concepts, it should be245

treated as a negative sample compared to a.246

We also investigate a distinct scenario (prefix247

pairs) involving a sequence pair (â, b̂), where both248

sequences have similar lengths and are incomplete.249

The sole distinction between them lies in the last250

word, while they share the same prefix. â and251

b̂ have the same prefix, except for the last word.252

Specifically, â is the prefix of a, and b̂ has the253

same prefix as â, except for the last word. The last254

word in b̂ is a randomly selected word from b5.255

For each sentence pair (a,b), we assign a rank-256

ing accuracy score of 1 if R(a,C)> R(b,C). Other-257

wise, it is 0. Figure 2 shows the ranking accuracies258

of keyword-constrained satisfaction estimation us-259

ing various models6. High accuracies over sentence260

pairs are observed. However, accuracy significantly261

drops for prefix pairs, suggesting that satisfaction262

estimation for prefix pairs is considerably more263

challenging. Fortunately, many open LLMs still264

manage to achieve over 60% accuracy. Another265

observation is high performance with NLI-based266

models, despite significantly smaller model sizes.267

Hyperparameter Selection. In Figure 3, we dis-268

play the constraint coverage and BLEU-4 scores on269

the CommonGen development set with different λ .270

λ = 0 corresponds to a decoding method without271

considering future constraint satisfaction. For λ in272

the range λ ∈ {1,2, . . . ,10}, our proposed method273

5Although â and b̂ differ by only one word, it’s impor-
tant to note that their tokenized sequences may have varying
lengths. However, the difference in length is small.

6For more detailed information about these models, please
refer to the Appendix in Section .1.

consistently achieves higher coverage scores, in- 274

dicating a higher percentage of provided concepts 275

present in the generated outputs. However, setting 276

a large λ can excessively weight on the constraint 277

satisfaction term and hurt performance. 278

Results. With the select hyperparameter λ on the 279

development set, Table 1 presents the results for 280

several selected LLMs. Notably, we observe high- 281

quality outputs from these instruction-tuned models 282

(Falcon-7B-Instruct, LLaMA-2-13B-Chat, Falcon- 283

40B-Instruct). Specifically, the constraint satisfac- 284

tion coverage scores are significantly higher com- 285

pared to baseline methods. Remarkably, the results 286

from the 40 billion model (Falcon-40B-Instruct) 287

even surpass those of Text-Davinci-003, an Ope- 288

nAI model with 175 billion parameters. 289

BLEU-4 ROUGE-L CIDER Coverage

Text-Davinci-003

17.6 44.8 11.3 96.1

Falcon-7B-Instruct

Greedy 13.7 42.3 9.0 88.7
Beam search 14.1 42.5 9.4 87.5
Our 15.3 43.8 10.4 93.3

LLaMA-2-13B-Chat

Greedy 14.8 43.0 8.8 93.6
Beam search 16.2 44.1 9.7 93.8
Our 17.8 44.9 10.7 95.2

Falcon-40B-Instruct

Greedy 14.5 42.8 9.2 88.7
Beam search 17.2 45.3 11.3 89.4
Our 17.7 45.8 11.4 97.6

Table 1: Keyword-constrained generation results on
CommonGen test set.

3.2 Toxicity Reduction 290

Next, we consider another task: toxicity reduc- 291

tion (Liu et al., 2021). Given a prompt x, the task 292

is to generate a fluent continuation y but not with 293

a toxicity attribute. The next token is generated re- 294

cursively by sampling next token probability distri- 295

bution provided by LLMs. Following to the setting 296

in Liu et al. (2021), we use the REALTOXICI- 297

TYPROMPTS benchmark (Gehman et al., 2020), 298

generating up to 20 tokens with nucleus sampling 299

(p = 0.9). Following previous work (Gehman et al., 300

2020), we characterize generation toxicity using 301

the toxicity score from Perspective API. Two tox- 302

icity scores are reported: 1) maximum toxicity, 303

defined as the average maximum toxicity over 25 304

sampled generations, and 2) the empirical toxicity 305

probability of at least 1 out of 25 generations being 306

toxic. We also evaluate our generations for fluency, 307
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Figure 2: Accuracy of the estimation of lexical constraint satisfaction with different models. For NLI-based model,
non-entailment probability are used for ranking.

Figure 3: Performance (y-axis) of Falcon-7B-Instruct in terms of BLEU-4 score and constraint coverage with
different λ (x-axis) on the CommonGen development set.

and diversity. Diversity is another metric, which is308

the mean number of distinct n-grams, normalized309

by the length of text.310

Toxicity-Constraint Satisfaction Evaluation311

To evaluate the quality of toxicity constraint scores312

from LLMs, we establish our ranking benchmark.313

Constructing sequence pairs (a,b) where a is less314

toxic than b, we utilize a file containing numer-315

ous model outputs and human-evaluated toxicity316

scores.7, provided by the work (Liu et al., 2021).317

From the given file, we create sequence pairs (a,b)318

by employing the same prompt prefix and pairing319

it with two distinct annotated continuations, each320

having its own toxicity score. The prefix pair (â, b̂)321

is formed using the common prefix and the first322

word from these two continuations.323

For a given prompt x, the description of the324

toxicity constraint we used is C(x) =“This will325

be a rude, disrespectful, or unreasonable com-326

ment.”. We assign a ranking accuracy score of 1327

7The file can be accessed at https://github.com/
alisawuffles/DExperts/blob/main/human_eval/
toxicity/human_eval_toxicity.csv.

if R(a,C(x))> R(b,C(x)), otherwise 0. Figure 4 328

shows ranking accuracies8 of various LLMs9 on 329

the toxicity ranking benchmark. Most open LLMs 330

demonstrate an accuracy surpassing 50%, which 331

represents the performance of random guessing. 332

Particularly, the model Falcon-7B-Instruct exhibits 333

superior performance. However, several models 334

achieve an accuracy exceeding 60%, indicating po- 335

tential for improvement in the future. 336

Results. In our proposed method, we reweight 337

the top k = 50 token logits from LLMs with our 338

future constraint satisfaction score, then truncate 339

the logits that are in the top-k/top-p vocabulary at 340

each position, effectively assigning zero probability 341

to tokens outside the vocabulary. We determine the 342

hyperparameter λ by evaluating its performance 343

on a set of 50 randomly selected samples. 344

Table 2 presents the toxicity reduction on two 345

different LLMs (Falcon-7B-Instruct and Alpaca- 346

7B-Instruct), which also have a minor decrease on 347

8We observe that certain pairs have nearly identical toxicity
constraint scores, and we did not categorize them as incorrect.

9For more detailed information about these models, please
refer to the Appendix in Section .1.
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Figure 4: Accuracy of the estimation of constraint satisfaction with different pretrained LLMs.

diversity. We do not include LLaMA-2-13B-Chat348

because we notice that it is a low toxicity mode as349

shown in Touvron (2023)10.350

Toxicity (↓) Diversity (↑)
Avg. Max Prob. Dist-1 Dist-2 Dist-3

Falcon-7B-Instruct

Baseline 0.371 0.215 0.549 0.839 0.843
Our 0.287 0.125 0.583 0.782 0.762

Alpaca-7B-Instruct

Baseline 0.272 0.140 0.471 0.714 0.745
Our 0.235 0.108 0.471 0.584 0.574

Table 2: Toxicity reduction results on 1k prompts.

3.3 Factual Question Answering351

Hallucination is a notable issue associated with352

large language models, despite their ability to gen-353

erate coherent and fluent output. Providing accu-354

rate answers supported by concrete evidence is cru-355

cial, and mitigating hallucination is key to achiev-356

ing this goal. We use the dateset ALCE (Gao et al.,357

2023) as factual question answering This bench-358

mark provides a set of retrieved passages, denoted359

as D = {D1,D2, . . .}, for each question q. Addi-360

tionally, the dataset offers correctness evaluation361

through multiple short answers in ASQA (Stel-362

makh et al., 2022) and three “sub-claims” for363

ELI5 (Fan et al., 2019).364

In ASQA, correctness is determined by calcu-365

lating the recall of correct short answers. This is366

achieved by verifying whether the short answers367

provided by the dataset are exact substrings of the368

generated response. On the other hand, for the369

long-form QA task ELI5, correctness is measured370

10We also conducted tests and discovered that the average
maximum toxicity score is approximately 0.135, while the
average toxicity probability is close to 0.01.

by the ratio of model outputs that entail the three 371

provided "sub-claims". 372

We evaluate 2-shot on the above dataset, and 373

three retrieved documents are used each question. 374

In the future satisfaction score term R(y<=i,C(x)), 375

C(x) can be the retrieved document or sub-claims. 376

We determine the hyperparameter λ by evaluating 377

its performance on a set of a few samples. 378

Baselines. We compare our proposed method 379

with two different deterministic search-based meth- 380

ods: greedy decoding and beam search with beam 381

size = 5. While nucleus sampling is a widely 382

adopted technique for open-ended text generation, 383

it operates as a sampling method. However, in our 384

initial experiments, we did not observe a signifi- 385

cant improvement in performance compared to the 386

deterministic approach of greedy decoding. 387

Factual-Correctness-Constraint Satisfaction 388

Evaluation. We constructed our factual correct- 389

ness ranking benchmark using the fact verification 390

part of TRUE (Honovich et al., 2022). Specifically, 391

we focused on FEVER (Thorne et al., 2018) 392

and VitaminC (Schuster et al., 2021) within the 393

TRUE dataset. In the training set of FEVER and 394

VitaminC, for each evidence (as C), we choose 395

one claim denoted as a that was supported by the 396

evidence, and another claim that was not supported 397

by the evidence, denoted as b. This formed pairs 398

of sentences: (a,b). 399

For each evidence, if the factual constraint es- 400

timation score is higher for the supported claim 401

compared to the unsupported claim with respect 402

to the evidence, we assign an accuracy score of 1. 403

Otherwise, if R(a,evidence)≤ R(b,evidence), the 404

accuracy score is 0. Table 4 displays the accura- 405

cies on our constructed factual correctness ranking 406
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benchmark. We can see that several open LLMs11407

achieve more than 60% accuracy12.408

Results. We consider samples for which the re-409

trieved documents support the answers13. This410

selective approach helps mitigate the noise effect411

in the data, ensuring a more accurate assessment412

of the correctness. Table 3 shows the results on413

question answer tasks. In general, we observe that414

beam search tends to perform comparably to greedy415

decoding on factual correctness. Our proposed416

method demonstrates a significant enhancement in417

factual correctness compared to the baselines for418

both tasks. .419

Results Using Claims as Constraints. In Ta-420

ble 3, we present the results for the case where the421

constraint C(x) corresponds to the retrieved doc-422

uments. Furthermore, Table 5 displays the results423

when the constraint is "sub-claims." Our proposed424

method exhibits improvements in both scenarios,425

particularly for Vicuna-13B-v1.3.426

Results on the Entire ELI5 Dataset. Table 9 in427

the Appendix displays results for the full ELI5428

dataset. It is evident that the absence of high-429

quality supported documents leads to a substantial430

decrease in the average performance of all models.431

This underscores the critical role of accurate and432

credible supporting documents in achieving good433

performance in question-answering tasks.434

4 Analysis435

Speed We test the wall-clock running time of436

greedy decoding, our method, and the standard437

beam search. We follow the same configuration.438

The result is shown in Table 6. Our method is439

nearly k times linear slowdown due to all the over-440

head of computing 2*k candidates in Equation 3.441

It is worth that decoding time is increased in442

order to do a expect faithful generation. And there443

are several ways to decrease the time and keep444

generation quality: choose small k, choose smaller445

size but tuned LLMs that can compute the future446

constraint satisfaction score R(y<=t ,C(x)) etc.447

Human Evaluation To verify the effects of dif-448

ferent decoding methods, we conducted human449

11For more detailed information about these models, please
refer to the Appendix in Section .1.

12We noticed an usual trend in the performance of the llama-
1 family model. Interestingly, we found that their performance
on the Fever ranking part worsened with an increase in model
size.

13More evaluation results are in Table 9 of the Appendix

evaluation on the challenging long-form QA task 450

ELI5 (which usually requires long answers and 451

multiple passages as evidence). We randomly 452

chose 30 questions and requested workers from 453

Amazon Mechanical Turk (AMT) to judge model 454

responses on three dimensions14: 1. Fluency: a 455

1-to-5 score indicating whether the generation is 456

fluent and cohesive; 2. Informative: a 1-to-5 score 457

indicating whether the generation helps answer the 458

question; 3. Correctness: a 0-to-3 score indicating 459

the number of claims is fully supported by the re- 460

sponse. Later, this score is normalized as a ratio of 461

correctness. Figure 6 shows one example of human 462

evaluation. Table 7 confirms the strength of our 463

proposed decoding method, which received better 464

scores in all dimensions, especially on correctness. 465

5 Related Work 466

Previously, there are several work like 467

CTRL (Keskar et al., 2019), PPLM (Dathathri et al., 468

2020), Gedi (Krause et al., 2021), FUDGE (Yang 469

and Klein, 2021) on controllable generation. They 470

use additional code or attributes for controllable 471

generation. One tuned classifier or auxiliary model 472

is used to modify the output distribution. The 473

type of control is limit (a label or a category 474

of the sequence). In this work, the constraints 475

are verbalized in natural language. Any natural 476

language constraint can be suitable for our 477

method. The knowledge or understanding of 478

powerful LLMs is used to guide the constrained 479

text generation. Another related approach in 480

constrained generation involves refinement with 481

LLMs after each completion (Welleck et al., 482

2023; Madaan et al., 2023). This refinement or 483

correction model iteratively editing the generated 484

text. Multiple generations are often required, 485

particularly for long-form question-answering 486

tasks, such as ELI5 (Fan et al., 2019). Another 487

direction in constrained decoding (Ziegler et al., 488

2020; Lu et al., 2022a) is related to reinforcement 489

learning (RL). The generator model parameters 490

need to be updated in this approach. Extra training 491

is conducted involving both the generator and a 492

reward model. 493

Our work is inspired by A* algoirhtm (Hart 494

et al., 1968), a search algorithm that seeks the 495

highest-scoring path by utilizing heuristic estima- 496

tions of future scores toward the goal. Recently, Lu 497

14Inspired by previous human evaluation work (Liu et al.,
2023a; Gao et al., 2023)
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ASQA ELI5
Correct. Correct.

Text-Davinci-003

Greedy 60.1 56.1

ChatGPT

Greedy 70.3 64.9

Falcon-7B-Instruct

Greedy 22.7 29.8
Beam search 23.7 30.4
Our 24.4 32.7

Vicuna-13B-v1.3

Greedy 13.5 21.1
Beam search 11.9 22.2
Our 14.5 26.3

LLaMA-2-13B-Chat

Greedy 20.9 47.9
Beam search 23.1 49.2
Our 24.6 50.3

Table 3: Question answering results on ASQA and
ELI5.
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Table 4: Factual correctness ranking accuracy of different
LLMs.

Correct. ROUGE-L

Vicuna-13B-v1.3

Documents 26.3 17.7
Claims 41.5 21.4

LLaMA-2-13B-Chat

Documents 50.3 23.8
Claims 48.5 21.8

Table 5: The impact of different constraints is explored,
where one setup involves retrieving documents and the
other involves sub-claims of gold answers.

CommonGen ELI5

Greedy 1.0s 10.2s
Beam search 1.5s 22.1s
Our 4.8s 63.2s

Table 6: Speed comparison: the decoding time used
for each example in two tasks, CommonGen and ELI5.
Refer to the experimental setup in Section 4.

F(↑) I(↑) C(↑)

Greedy 3.6 3.8 63.7
Beam Search 3.8 4.0 67.0
Our 4.0 4.1 70.0

Table 7: Human Evaluation Criteria: F (Fluency), I
(Informativeness), C (Correctness).

et al. (2022b); Madaan et al. (2023) develop several498

heuristics to estimate look-ahead scores. In con-499

trast to our work, they estimate lexical constraint500

scores using fixed-size look-ahead steps in lexical501

constrained tasks. In the work of FUDGE (Yang502

and Klein, 2021), an auxiliary binary classifier is503

trained with random input sequence truncation. Re-504

cently, Choi et al. (2023) learned a token-level dis-505

criminator for knowledge-grounded dialogue and506

abstractive summarization. In our work, a future507

constraint satisfaction score is estimated with ver-508

balized constraints and LLMs. 509

6 Future Work and Conclusion 510

In this work, we delved into decoding methods for 511

LLMs to mitigate undesired behaviors through a 512

constrained approach. Unlike previous techniques 513

such as greedy decoding, nucleus sampling, or 514

beam search, which focus on the past generation, 515

we advocate for considering future constraint sat- 516

isfaction during text generation. We propose a 517

formalized approach to text generation that inte- 518

grates future constraint satisfaction, enabling better 519

control over the output. 520

To quantify the future constraint satisfaction, we 521

introduce a scoring mechanism evaluated by LLMs. 522

By benchmarking LLMs using these constraint sig- 523

nals, we observed a distinct and discernible trend 524

associated with this scoring signal. Exploring vari- 525

ous signals and enhancing their effectiveness, such 526

as refining constraint score evaluation through tun- 527

ing, is a promising avenue for future research. Im- 528

provements in signal quality and understanding 529

how these signals impact the generation process 530

can lead to more robust and controlled text genera- 531

tion systems. 532
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7 Limitations533

Estimation of Future Constraint Estimation. It534

is challenging to estimate the future constraint sat-535

isfactions. In this work, we utilize Large Language536

Models (LLMs) for this estimation. Because LLMs537

inherently encapsulate extensive world knowledge,538

their incorporation can leverage this wealth of in-539

formation. Moreover, the ongoing augmentation of540

world knowledge within LLMs suggests a growing541

potential for refining the estimation. This refine-542

ment can be achieved through further tuning with543

human preference data.544

Incorporating more symbolic components into545

the estimation could be beneficial. This approach546

would allow for the inclusion of detailed reasoning547

paths as integral elements of the estimation. It can548

be with more interpretation and reliability. This549

part can be a promising direction for future work.550

Limitation of Correctness Evaluation. This551

work primarily prioritizes the correctness of con-552

straint satisfaction. However, in question answer-553

ing, the generated output of a question may include554

correct claims alongside hallucinated information.555

Each piece of information in a generation is not556

guaranteed to be factually supported by a reliable557

source of knowledge. Future work can explore558

methods to enable LLMs to generate not only cor-559

rect answers but also minimize the inclusion of560

hallucinated information.561
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.1 LLMs 841

Following are the models that are used in our ex- 842

periments. 843

• Ouyang et al. (2022): Text-Davinci-003 844

• Team (2023): MPT-7B, MPT-7B-Instruct 845

• Taori et al. (2023) :Alpaca-7B-Instruct 846

• Radford et al. (2019): GPT-2, GPT-2 Large 847

• Touvron et al. (2023a): LLaMA-7,13,30B 848

• Touvron et al. (2023b): LLaMA-2-7B, 849

LLaMA-2-7B-Chat, LLaMA-2-13B, LLaMA- 850

2-13B-Chat 851
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13B-V1.3 853
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• Reimers and Gurevych (2019): RoBERTa-854

base-nli855

• Lewis et al. (2020): BART-large-mnli856

• He et al. (2021): DeBERTa-xlarge-mnli857

.2 Hyper-parameter858

In our beam-based search algorithm, we employ859

a beam size denoted by k. For the keyword-860

constrained generation task, we strive to use a861

larger beam size, specifically setting k = 20. How-862

ever, due to memory limitations, for the Falcon-863

40B-Instruct model, we reduce the beam size to864

5. 8 A100 40G GPUs are used for Falcon-40B-865

Instruct model.866

For toxicity reduction task, k = 50 is used to867

reweight the top 50 tokens.868

In the question answering task, we utilized 4869

A100 GPUs. The beam size was set to k = 5 due to870

the demands of generating long context sequences.871

.3 Ranking Datasets for Constraint872

Satisfaction Evaluation873

Following are the used datasets and their licences.874

• CommonGen dataset (Lin et al., 2020): MIT875

License876

• REALTOXICITYPROMPTS (Gehman et al.,877

2020): the licensing status is unclear; however,878

the data has been made publicly available by879

the authors.880

• TRUE benchmark (Honovich et al., 2022):881

Apache-2.0 license882

• ALCE (Gao et al., 2023): MIT License883

#examples

Lexical-Constraint 993
Toxicity-Constraint 2720

Factual-Correctness-Constraint 2000

Table 8: Statistics from three ranking benchmarks are
utilized to estimate constraint satisfaction of LLMs. The
factual-correctness-constraint benchmark consists of
1000 examples sourced from FEVER and VitaminC
datasets, respectively.

.4 More Results on Constraint Scoring884

Function885

Factual Correctness with a binary Yes/NO ques-886

tion Given claim a and the evidence g, we use887

the following template:888
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Figure 5: Factual correctness accuracy with a binary
question.

Claim:{a} 889

890

Document:{g} 891

892

Question: Is the above claim 893

supported by the above document? 894

Answer with Yes or No. 895

896

Answer: 897

The next token probabilities of “Yes” and “No” 898

of the above prompt are used to estimate the future 899

constraint satisfaction score. 900

Figure 5 shows ranking performance with the 901

above binary Yes/No question. 902

Correct. ROUGE-L

Text-Davinci-003

Greedy 21.8 22.3

ChatGPT

Greedy 21.1 21.2

Vicuna-13B-v1.3

Beam search 10.0 16.2
Our 16.2 20.2

LLaMA-2-13B-Chat

Beam search 17.9 20.5
Our 19.4 21.4

Table 9: QA results on full ELI5 test set of ALCE.

.5 Human Evaluation Details 903

Figure 6 presents one example in human evaluation 904

experiment. 905

.6 QUALITATIVE EXAMPLES 906
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Concepts: mower push lawn mow
Greedy The homeowner pushed the lawnmower across

the grass, cutting the blades of grass with each
pass as she mowed the law.

Beam
Search

To keep the lawn looking its best, I push the
mower around the yard to cut the grass.

Our She pushed the mower across the lawn to mow
the grass.

Concepts: word spray paint wall
Greedy The vandal used a can of spray pain to deface

the wall with his graffiti.
Beam
Search

The graffiti artist sprayed a colorful word on
the wall.

Our She used a word spray to paint the wall.

Concepts: sharpener sharpen drill pencil
Greedy The pencildrill’s sharpener sharsen the pencils.

Question: Write a sentencwith these words
:sandpaper sand smooth. Answer:The carpen-
ter used sandpaper to smooth

Beam
Search

The sharpener helps to sharper the drill, which
is used to pencils.

Our The sharpener sharpens the drill, which is used
to pencils.

Concepts: pad hold air head kick
Greedy The football player kicked the ball with all his

might, but it only went a few feet before hitting
the pad on the ground and bouncing back up to
hit him in the head.

Beam
Search

The football player kicked the ball with his
head while holding it in his pad.

Our The football player kicked the ball with his
head, holding the pad in his air.

Concepts: piece throw air pumpkin pick
Greedy She carefully picked up the pump kin and threw

it into the air, watching as it soared through the
crisp autumn air.

Beam
Search

Here’s a sentence using all of the given words:
She picked up a piece of pumkin and threw it
into the air.

Our She picked up a piece of air and threw it pump-
kins

Concepts: hit machine come ball bat
Greedy The batter swung the bat and hit the ball with a

loud crack, sending it flying out of the park on
a high arc.

Beam
Search

The batter swung the bat and hit the ball into
the machine.

Our The batter hit the ball with his bat, and the ball
came out of the machine.

Concepts: brush apply lipstick lip
Greedy She carefully brushed on a layer of lipstik to

her lips before leaving the house.
Beam
Search

She carefully brushed on a layer of lipstik, mak-
ing sure to apply it evenly across her lips.

Our To brush apply the lipsticks lip, you need to use
a lip brush.

Concepts: scroll sunglass tattoo hair hold
Greedy She held her long hair back with a scrunchie,

sung her heart out at the karaoke bar, and
showed off her new tattoos under the bright
stage lights.

Beam
Search

She held her long hair back with a hair tie,
while wearing a pair of sung glasses and show-
ing off her tattoos as she scrolled through her
phone.

Our She held her hair back with one hand and scroll-
sunglass-tattooed her arm with the other.

Concepts: snow watch jump crowd rider
Greedy The snowboarder soared through the air, jump-

ing over the crowd and landing with a smooth
ride.

Beam
Search

The snowboarder watched the crowd below as
he jumped off the ridge, feeling the thrill of the
ride.

Our The snow rider watched the crowd jump as he
rode through the snow.

Table 10: Generated examples from CommonGen given different concepts with LLaMA-2-13B-Chat. We show
outputs from greedy decoding, beam search and our method.
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Instruction: Write a high-quality answer for the given question using only the provided search
results.

Question: what is the difference between an IRA / ROTH IRA / 401k?

Document [1](Title: Money Talk :: - Roth 401k??): Roth 401k?? ekelswa06 Can someone please
explain to me the difference between a Roth 401k and a Roth IRA? Thank you. Re: Roth 401k??
Originally posted by ekelswa06 I’ll try.... Both the ROTH 401k and ROTH IRA are funded by your
after tax contributions. You can contribute up to $17,500 in 2013 to the 401k. You can contribute up
to $5,500 in 2013 to the IRA. Both the 401k and the IRA grow tax deferred. You can remove your
annual contributions from the IRA at any time for any reason free from tax and penalty. You can not
take your
Document [2](Title: 401k Plan Archives - Debt Free To Early Retirement): IRA. As a side note, if
you don’t have a 401K, then consider reviewing the Difference Between Roth IRA and Traditional
IRA. Difference Between 401K and Roth IRA Remember that the Roth IRA and 401K are just
accounts where you keep your investments. They aren’t actual investments. They are just the account
(or vehicle, as some put it) where the money is held. These accounts are great because they get special
tax treatment. You are able to contribute pre-tax dollars to a 401K. This means that no tax is taken
from your money that is placed into the 401K. If
Document [3](Title: Roth 401k vs. Roth IRA - How Are They Different? | Personal Capital): IRA
Penalty-Free? The biggest differences between a Roth 401k and a Roth IRA are their different annual
contribution limits, eligibility criteria, and whether or not you will need to take required minimum
distributions (RMDs). Let’s start with the annual contribution limits. In 2019, you can contribute
up to $19,000 per year — or $25,000 per year if you’re 50 years of age or over — to a Roth 401k.
However, the annual contribution limit for Roth IRAs is much lower: just $6,000 per year, or $7,000
if you’re 50 years of age or over. Another big difference between the Roth

Greedy Decoding: The main differences between an Individual Retirement Account (IRA), a Roth
IndividualRetirement Account(Roth IRA), and a 301(k) are the contribution limits and the tax
implications. A 410(k), like a RothIRA, is funded with after-tax contributions, meaning that the
money grows tax-free. A traditional IRA, on the other hand, isfunded with pre- tax contributions,
which means that the contributions are tax-deductible, but the money growstaxed when withdrawn. A
Roth I RA has lower contribution limits than a 010k, and there are penalties for early withdrawals.
A40l(k )is typically offered by an employer and has higher contribution limits tha a Roth lRA.

Beam Search: An IRA (Individual Retirement Account) is a type of savings account that provides tax
benefits for retirement savings. A Roth ISA is a specific type of IRA that allows you to contribute
after-tax income and then withdraw the contributions (not the earnings) tax-free. A 410(k) is an
employer-sponsored retirement plan that allows employees to contribute a portion of their income to a
tax-deferred retirement account. The main differences between the three are the contribution limits
and the required minimum distribution rules. The contribution limits for a Roth Ira are lower than
those for a 301(k), and the Roth Ira does not require minimum distributions during the contributor’s
lifetime. The 310 (k) requires minimum distributions to begin at age 70 1/2.

Our: An IRA (Individual Retirement Account) is a type of savings account that provides tax benefits
for retirement savings. A Roth I RA is a specific type of IRA that allows after-tax contributions, and
the money grows tax-free. A 4 01(k) is an employer-sponsored retirement plan that allows pre- tax
contributions and the investments grow tax-deferred. The key differences between the three are:
* Contribution limits: The annual contribution lim it for a Roth IR A is lower than that of a 40 1 (k) .
* Eligibility: Not all employers offer 411) plans, but most employers do offer IRA plans.
* Required Minimum Distributions (R MDs): 4 O 1( k) plans require RMDs after age 70
and 1/2, while IRAs do not have RMD requirements.

Table 11: Generated outputs of three different decoding methods on one ELI5 example.
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Figure 6: One example in our human evaluation experiment.

15



Instruction: Write a high-quality answer for the given question using only the provided search
results.

Question: why does mining crypto use so much electricity compared to normal PC use.

Document [1](Title: How Much Electricity Does Your PC Consume? | PCMag.com): use more
electricity under load than a Chromebox with a low-power CPU. Factor 3: How You Use Your PC Just
because your PC is a beast with a 750-watt power supply doesn’t mean it’s going to use 750 watts all
the time. Most PCs come with power-saving features that lower your energy usage when the computer
is idle, or doing basic tasks like browsing the web. So someone mining Bitcoin or folding@home is
going to use more power than someone typing up Word documents, even if they did so on the exact
same PC for the same number of hours
Document [2](Title: Why I built a cryptocurrency mining factory in my bedroom | CCG): I found
some free software online for mining Zcash and was ready to go. How the numbers stacked up The
biggest cost for a crypto miner is electricity. You need to leave your computer running non-stop if you
want to make maximum use of it, but this involves not only the cost of the mining itself but also the
cost of keeping the computer cool. Fortunately, at that time I was living in Trinidad, which according
to my research had the second-cheapest electricity in the world at just five US cents (3.7p) per kWh,
compared with a typical cost of
Document [3](Title: Agorastoken Mining With Pc – Say it with Crypto-Currency – Bitcoins Alot):
Agorastoken Mining With Pc – Crypto-Currency – Building Wealth at Each Level Thank you for
coming to us in search for “Agorastoken Mining With Pc” online. The beauty of the cryptocurrencies
is that scam was proved an impossibility: because of the character of the method in which it is
transacted. All exchanges on a crypto-currency blockchain are irreversible. After you’re paid, you
get paid. This is simply not anything short-term where your visitors could challenge or demand a
discounts, or use dishonest sleight of palm. Used, most dealers could be smart to utilize a transaction
processor, due to the irreversible

Answer:

Table 12: The format for ELI5. In the context learning experiments for ELI5, each example follows a specific
format. There are 2 examples in total, and for each one, it includes a question, a document, and an answer.
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