
Under review as a conference paper at ICLR 2022

NORMALIZED ATTENTION WITHOUT
PROBABILITY CAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the popularity of attention based architectures like Transformers, the ge-
ometrical implications of softmax-attention remain largely unexplored. In this
work we highlight the limitations of constraining attention weights to the prob-
ability simplex and the resulting convex hull of value vectors. We show that
Transformers are biased towards local information at initialization and sensitive
to hyperparameters, contrast attention to max- and sum-pooling and show the per-
formance implications of different architectures with respect to biases in the data.
Finally, we propose to replace the softmax in self-attention with normalization,
resulting in a generally applicable architecture that is robust to hyperparameters
and biases in the data. We support our insights with empirical results from more
than 30,000 trained models. Implementations are in the supplementary material.

1 INTRODUCTION

v1 v2

v3

Hyperparamter Setting

A
cc

ur
ac

y

NAP
BERT

Figure 1: Softmax attention outputs can only
lie within the convex hull spanned by the
value vectors vi (blue region). Removing
this constraint with our normalized attention
pooling (NAP) leads to an increased robust-
ness to hyperparameters (See Section 5.1.1.)

The concept of neural attention (Graves, 2013; Bah-
danau et al., 2015) has sparked a number of ar-
chitectural breakthroughs. The Transformer ar-
chitecture (Vaswani et al., 2017) successfully de-
ploys multi-headed self-attention in several consec-
utive layers for natural language processing (NLP)
– a solution that has become increasingly popu-
lar (Vaswani et al., 2017; Radford et al., 2018; 2019;
Brown et al., 2020; Devlin et al., 2019; Yang et al.,
2019; Raffel et al., 2019; Liu et al., 2019). Apart
from NLP, self-attention has shown success in ap-
plications ranging from image classification (Par-
mar et al., 2019; Dosovitskiy et al., 2021) to gen-
erative adversarial networks (Zhang et al., 2019) to
reinforcement learning (Bram et al., 2019; Parisotto
et al., 2019; Loynd et al., 2020). The attention ar-
chitecture choice is thereby often based on one, if
not both, of the following arguments: (1) Attention helps with the information flow by providing
more direct, dynamic links between inputs and outputs. (2) Attention is directly interpretable as one
can investigate the percentages to which different inputs are “attended” to. However, this second
argument has been challenged recently, as several works show that attention weights do not directly
correlate with predictions (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Pruthi et al., 2019;
Brunner et al., 2020; Pascual et al., 2020). With interpretability already in dispute, we focus on the
other argument. Specifically, we question whether attention is the best way to route information and
argue that apart from the proven success, softmax attention might not always be the best option.

In this work, we investigate the theoretical implications of constraining the attention weights to the
probability simplex, and propose an unconstrained alternative based on normalization. We show that
the popular Transformer architecture has an innate bias towards local information at initialization
and showcase implications of this architectural bias on biases in the data. We investigate different
architectures on an abstract level in numerous experiments and demonstrate the advantage of uncon-
strained attention. In particular, we improve robustness to hyperparameters and show the general
applicability of attention based architectures as compared to sum and max pooling.

1

Under review as a conference paper at ICLR 2022

2 BACKGROUND AND RELATED WORK

Many data processing tasks can be addressed by representing the input as a set or sequence of dis-
crete tokens, e.g., words in a sentence, frames in a video or points in a point cloud. As a general
formulation, we represent each input token by a vector xi ∈ Rd for i ∈ {1, . . . , N}, where N
is the sequence length and d is the dimensionality of each token. For ease of notation we use the
word “sequence” throughout, but note that all architectures discussed are also applicable to un-
ordered sequences, i.e., sets of tokens. Multi-headed dot-product self-attention is a fundamental
building block of the Transformer architecture (Vaswani et al., 2017). It allows for information
exchange between different tokens of the input sequence. More formally, for each attention head
m, the input vectors xi are projected by an affine transformation to a query qim, key kim and value
vector vim. The dimensionality of these vectors is chosen as dh = d

M , where M is the number
of attention heads. The query and key vectors are used for a pairwise dot product, scaled by the
square root of the head dimension dh, to form the attention logits li,jm =

<qi
m,k

j
m>√

dh
and atten-

tion vectors aim = softmax([li,1m , . . . , li,Nm]), where softmax refers to the normalized exponential
function softmax(x)j = exp(xj)∑

k exp(xk)
commonly used to project vectors to the probability simplex

SP = {aim|ai,jm ≥ 0 ∀j and
∑
j a

i,j
m = 1}. The output oim of each attention head m is then given

by a weighted sum of all value vectors oim =
∑
j a

i,j
m · vjm. These attention head outputs are con-

catenated and mixed trough an affine transformation to form the attention output in the Transformer
architecture (Vaswani et al., 2017).

In this work, we investigate whether constraining the attention vectors aim into the probability
simplex through the softmax function is sensible from a geometric perspective. We contrast the
multi-head self-attention architecture to attention-inspired architectures without softmax (discussed
in Section 4) as well as simpler aggregation methods commonly used. Specifically, while Yun
et al. (2020) show that Transformers are universal sequence-to-sequence function approximators,
we question the practical necessity of an attention architecture, when sum pooling (Zaheer et al.,
2017) already provides general function approximation capabilities (Zaheer et al., 2017; Xu et al.,
2019; Segol & Lipman, 2020). Further, we compare to max pooling, a common aggregator choice
that has shown good empirical success (Nagi et al., 2011; Zaheer et al., 2017; Velikovi et al., 2020).
Several works have proposed architectural changes to the Transformer (Yun et al., 2020; Wu et al.,
2019; Lan et al., 2020; Dehghani et al., 2019; Fan et al., 2020; Wu* et al., 2020; Press et al., 2019;
Bachlechner et al., 2020), however, these do not alter the multi-head self-attention. Another di-
rection of research has focused on improving the computational efficiency of Transformers (Wang
et al., 2020; Lee et al., 2019; Katharopoulos et al., 2020; Zaheer et al., 2020; Choromanski et al.,
2021). However, these either retain the softmax (Lee et al., 2019; Wang et al., 2020; Zaheer et al.,
2020) or try to stay close to it (Katharopoulos et al., 2020; Choromanski et al., 2021; Lu et al.,
2021). We refer to Tay et al. (2020) for a more extensive overview on works in this direction. Our
focus is different: we ask whether the softmax is necessary at all. The Synthesizer (Tay et al., 2021)
and MLP-Mixer (Tolstikhin et al., 2021) show that an aggregation with learned aggregation weights
can already lead to good results. However, these aggregation schemes make the models dependent
on the input sequence length – a trait we explicitly seek to avoid. Recently, a few works provide
complementary results that motivate architectures without softmax. In particular, Tay et al. (2019)
introduce an attention mechanism that allows for negative attention values. Schlag et al. (2021)
link the head dimension dh to a corresponding limitation in the memorization capacity of linearized
models. Shen et al. (2021) propose an architecture similar to our NON architecture (see below) for
improved computational complexity. Cao (2021) also explore an architecture similar to our NON ar-
chitecture and links it to a Petrov-Galerkin projection for operator approximation. They empirically
find in an ablation that a layer normalization on the keys and queries separately improves conver-
gence. Our work goes beyond this, showing the correlated effects between hyperparameters and
architecture choices. In contrast to all mentioned works, we provide a viewpoint from the gradient
dynamics perspective and investigate the effect of skewed data distributions.

3 IMPLICATIONS OF SOFTMAX ATTENTION

To start our discussion, we highlight an observation that follows directly from attention vectors ai
being constrained to the probability simplex SP :

2

Under review as a conference paper at ICLR 2022

Outputs oim are convex combinations of the vectors vim: This in itself has interesting implica-
tions. First and foremost, we note that a convex combination of vectors vim cannot yield any vector
outside the convex hull spanned by the value vectors vim. An illustration of this output “cage” is
given in Figure 1 (left). We conjecture that this constraint limits the hypothesis space of the opti-
mization, making it more difficult for gradient descent to find a good solution. This conjecture is
supported by our experimental results showing an increased robustness to hyperparameter choices
when the constraint is removed. Further, we note the following from a theoretical perspective:

No convex combination can in itself represent XOR: A formal proof is given in Appendix A. Note
that this implication highlights an inability to represent non-linearity. While the binary exclusive OR
can be represented in architectures with multiple heads and layers, the insight further underlines our
argument: An aggregation with weights constrained to the probability simplex is restrictive. The
convex hull view point also leads to an additional insight:

Transformers are not aggregation size independent: Specifically, Transformers fo-
cus on local information at initialization; and this focus depends on the sequence
length N . To see this, consider the embeddings ei after the first residual connec-
tion given by ei = xi + W

[∑
j a

i,j
1 · v

j
1

∣∣∣ . . . ∣∣∣∑j a
i,j
M · v

j
M

]
+ b, where [·|·] de-

notes concatenation and W and b represent the parameters of the affine transfor-
mation that mixes the M attention head outputs to form the attention layer output.

100 101 102 103

100
101
102

Norm

attention normalized mean sum max

100 101 102 103

10−1

100
101

σ

Figure 2: The standard deviation (σ) and norm of a
pooling output depends on the sequence lengthN (x-
axis) if the output is not normalized. Softmax atten-
tion outputs (blue) scale similar to mean pooling at
initialization, i.e., Transformers focus more on local
information in longer sequences. Experiment details
are given in Appendix C.

Our aim is to show how much the embed-
ding ei is influenced by the local infor-
mation xi relative to the context informa-
tion {xj |j 6= i}. We first note that the
contribution of context information depends
on the initialization of W , where a typi-
cal initialization in language models yields
a contractive projection.1 This favors the
residual connection, i.e., local information.
However, even if we consider W as scale
preserving, we note that the magnitudes of
the attention head outputs om are upper
bounded by the magnitudes of the value vec-
tors vm as a result of the convex hull. More-
over, attention logits are normally close to 0
at initialization (to have the softmax in the
unsaturated region). This yields attention to
be close to mean aggregation as oim ≈ v̄m =
1
N

∑
j v

j
m. Considering vjm to be distributed

with zero-mean and variance σ2
v at initialization, we note that the expected magnitude and standard

deviation of v̄m scales proportional to σv√
N

. This means that the fraction of context information in
ei is dependent on the sequence length N and, counterintuitively, is smaller for longer sequences.
Specifically, with the constant contribution of the residual connection, Transformers focus more on
local information; and more so in longer sequences than in shorter sequences. For reference, we
visualize the dependence of om on N at initialization for different aggregators in Figure 2. We note
that while an architectural bias towards local information might be beneficial in some applications,
the implicit dependence on aggregation size N is questionable. Finally, we note that:

A softmax can easily saturate, which leads to vanishing gradients: To show this, we look at
the term g =

δai,jm

δli,jm
which gives a gradient factor on the back-propagation path through the softmax.

Specifically, we note that g ∈ (0, 0.25] and that the range of li,jm for which g > 0.01 is less than 9.2.
This means that any gradient update that changes li,jm by a constant of c > 9.2, e.g. by updating the
bias terms, will most certainly lead to vanishing gradients henceforth. This is particularly worrisome
in the Transformer architecture, where gradients correlate with the input due to the multiplicative
interactions in the attention. This means that a single large input can result in a parameter update
that yields vanishing gradients on all following data points. See Appendix B for proofs.

1As an example, BERT (Devlin et al., 2019) initializes W with parameters drawn from a truncated normal
distribution with standard deviation set to 0.02. This would only be roughly scale preserving for d = 2500.

3

Under review as a conference paper at ICLR 2022

4 NORMALIZED ATTENTION POOLING

Given the implications of softmax attention, one might seek alternatives. To investigate differ-
ent architectural choices, we contrast the following architectures in an abstract empirical study:

Q K V Q K V Q K V

Feedforward Layer
LayerNorm
GELU
Softmax Attention
Normalized Attention

BERT MTE NAP

+

+

+ +

++

Q - Query Projection

K - Key Projection

V - Value Projection

Figure 3: Difference in 1 Transformer layer.

Transformer Encoder (BERT): As a starting
point, we replicate the encoder architecture pre-
sented by Vaswani et al. (2017) as described in
the code release of Devlin et al. (2019).2 This
architecture has been used extensively (Radford
et al., 2018; Yang et al., 2019; Raffel et al.,
2019; Liu et al., 2019; Clark et al., 2020).
Each Transformer-layer consists of two sub-
modules: a multi-head self-attention “layer”
and a feed forward network. Both modules
are encompassed by residual connections. The
multi-head self-attention “layer” consists of a
projection to queries, keys and values, the attention mechanism as well as a mixing layer as de-
scribed in Section 2. The feed forward network consists of two layers with a GELU (Hendrycks &
Gimpel, 2016) non-linearity. Layer normalization (Ba et al., 2016) is applied between incoming and
outgoing residual connections. Note that this gives a crucial distinction of this architecture: Embed-
dings are normalized after they are summed with the residual connection. This yields the implicit
dependence on sequence length as discussed in Section 3. We train this architecture with learning
rate warm-up and gradient norm clipping (cf. Devlin et al. (2019)).

Modified Transformer Encoder (MTE): To overcome the implicit dependence on sequence length,
we modify the architecture by moving the layer normalizations and adding additional normalizations
as shown in Figure 3. Note that this is different from the recently studied PreNorm (Parisotto et al.,
2019; Nguyen & Salazar, 2019; Liu et al., 2020) that places the normalization before the attention
mechanism. To further remove cofounding factors, we remove learning rate warm-up and gradient
clipping, but keep a linearly decreasing learning rate schedule, taking Li et al. (2020) as reference.
We provide an ablation of all modifications in Appendix D.1. All following architectures apply the
same modifications. The resulting MTE architecture still projects attention weights to the probability
simplex in the multi-head attention and is thereby limited to convex combinations of value vectors.

Normalized Attention Pooling (NAP): Given the success of online normalization during training
- be it through batch- (Ioffe & Szegedy, 2015), layer- (Ba et al., 2016) , group- (Wu & He, 2020),
instance- (Ulyanov et al., 2016) or weight-normalization (Salimans & Kingma, 2016) - our main
proposal is to simply replace the softmax with a normalization:

aim = normalize([li,1m , . . . , li,Nm]) with normalize(x)j = g · x
j − µx

σx
+ b

where µx = 1
N

∑
j x

j and σx =
√

1
N

∑
j(x

j − µx)2 are the mean and standard deviation of
the corresponding input vector x, in our case the logit vector calculated through key-query dot
products. Similar to layer normalization (Ba et al., 2016), we introduce gain and bias parameters g
and b initialized to 1 and 0, respectively. However, while Ba et al. (2016) introduce gain and bias
vectors, we only introduce scalar parameters and broadcast these over the sequence, as we want the
architecture to be independent of the sequence length N . Note that while no convex combination
can represent the logical XOR, a normalized weighting can – we give a proof in Appendix A.

No Online Logit Normalization (NON): To investigate whether a dynamic normalization of the
attention logits is necessary, we also train a model where we use the logits li,jm directly as attention
weights, i.e., oim = GELU(1√

N

∑
j l
i,j
m · vjm). The factor 1√

N
is introduced such that the model has

in expectation a constant contribution of context at initialization.

Simple Summation of Embeddings (sum): From a theoretical perspective, summation is sufficient
for general function approximation (Zaheer et al., 2017; Xu et al., 2019; Segol & Lipman, 2020).
Therefore, we investigate to simply replace attention with a sum-reduce-broadcast operation.

2https://github.com/google-research/bert

4

https://github.com/google-research/bert

Under review as a conference paper at ICLR 2022

// Case distinction task data generator
inputs ← random integer sequence
if 64 in inputs // argmin case

label ← argmin(inputs)
else if 50 in inputs // first case

label ← 0
else // argmax case

label ← argmax(inputs)
return (inputs, label) [97, 42, 64, 33]

Predictions

Pooling

Embeddings

Inputs
x0 x1 x2 x3

0.11 0.03 0.05 0.81

[52, 50, 67, 33]

0.92 0.03 0.04 0.01

97 42 64 33 52 50 67 33x0 x1 x2 x3

Figure 4: Left: Pseudo code of the data generation. The case distinction points 64 and 50 are chosen
arbitrarily. Right: Task setup for outputs across all tokens (cf. Section 5.1) and outputs from the first
token (cf. Section 5.2). Green boxes represent the trainable network layers (shared across tokens)
while red boxes represent the pooling across tokens. The targets of the displayed examples would
be [0, 0, 0, 1] and [1, 0, 0, 0], respectively.

Max Pooling over Sequence Dimension (max): Similar to sum pooling, we can replace the
attention sub-module with a simple max-reduce-broadcast operation over the sequence dimension.
Note that max pooling is a powerful operation that yields a direct link to up to d different tokens.

We provide a schematic figure of all architectures in Appendix D. If not varied in a corresponding
experiment, we default architecture hyperparameters to L = 2 Transformer-layers (consisting of
an attention sub-module and feed forward sub-module each), M = 4 heads to calculate the logits
(if applicable), d = 128 as model dimension and train on a total of 3200 batches of 32 example
sequences each, using the Adam optimizer (Kingma & Ba, 2014). The hidden dimension of the feed
forward sub-modules is 4 · d for the models BERT, MTE, NAP and NON. For the models sum and
max we increase the feed forward hidden dimension to approximately match the parameter count.

5 EXPERIMENTS AND RESULTS

Our goal with this work is to provide an insight into the variety of performance implications that
the architecture choices entail. We aim to provide these insights independent of any particular
application, as these architectures can be applied to a variety of tasks – from NLP (Vaswani et al.,
2017; Devlin et al., 2019) to graph neural networks (Velickovic et al., 2018; Yun et al., 2019; Xu
et al., 2019; Velikovi et al., 2020) to reinforcement learning agents (Parisotto et al., 2019; Fang et al.,
2019; Loynd et al., 2020). We therefore focus on carefully crafted synthetic tasks that (1) are general
enough in that we can expect the insights to generalize to a large set of downstream tasks and (2) let
us modify key aspects that are hidden in real world data sets, such as a bias towards a certain sub-
task. The focus on synthetic tasks also allows us to get a better grasp on the learning dynamics – the
focus of this work – as we can train thousands of models in diverse hyperparameter combinations.
To limit the influence of confounding hyperparameters, we generate new data points for every batch.
This allows us to omit regularizations and their confounding factors. See Appendix D.2 for an in
depth discussion of this setup as well as regularized ablations.

5.1 ARGMIN-FIRST-ARGMAX CASE DISTINCTION TASK

As a first task, we train the networks to pin-point a specific, input dependent token. Note that the
ability to pin-point a specific token is an abstract task relevant to NLP (e.g., question answering
or co-reference resolution), graph neural networks (e.g., finding the next hop in a shortest path)
as well as reinforcement learning (e.g., action credit assignment). We consider an input pipeline
where tokens from a fixed integer-vocabulary are translated to a randomly initialized embedding.
To the embedded tokens, a (also randomly initialized) positional embedding is added to provide
position-relative information. The sequence of tokens is then processed by several architecture
dependent Transformer-layers (cf. Section 4). Finally, each contextualized embedding is projected
to a single output. A softmax-crossentropy loss is applied over the sequence dimension. See Figure 4
(middle) for a visualization. To make the task input dependent, we generate the data as given in the
pseudo code in Figure 4 (left). Note that the argmin and argmax make this task quite challenging
from a learning perspective as the networks start from random embeddings which do not provide
any ordering information. Which embeddings correspond to bigger integers and which to smaller

5

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (97.7±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (97.8±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (97.9±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (97.5±0.6%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (84.5±6.8%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.8±0.5%)

Figure 5: Learning rate (y-axis) vs. model dimension d (x-axis) on the argmin-first-argmax case
distinction task (with output across all tokens). The pixels’ R (red), G (green) and B (blue) values
correspond to min-, mean- and max-accuracy, respectively, of the corresponding hyperparameter
combination – see main text for details. The plot shows the validation accuracy when validating on
sequences of length N = 64. Crosses indicate the combination for best validation accuracy, which
we report with standard deviation behind the model name.

integers has to be inferred during training. Further, the case distinction in this task lets us tweak the
data bias towards each sub-task. Specifically, we consider a vocabulary size of S = 100 integers
(0-99) and uniformly random sampled sequences of N = 128 tokens in length. This leads to a
bias as pargmin = 1 − (1 − 1

S)N ≈ 72.4% of data points require the network to pin-point the
minimum in the input sequence, pfirst ≈ 20.1% require to pin-point the first token of the sequence
and pargmax ≈ 7.5% require to pin-point the maximum in the input.

5.1.1 VARYING MODEL DIMENSION d

As a first investigation, we are interested in how varying the model dimension d influences the ar-
chitectures ability to learn the given task. For this, we train each of the architectures for each of the
model dimensions d ∈ {8, 16, 32, 64, 128, 256, 512, 1024} using 10 different learning rates and 5
random seeds for each hyperparameter combination. As we want to base our insights on as many re-
sults as possible, we derive a novel, human friendly visualization of results. Figure 5 shows the first
results as follows: The outcome of each hyperparameter combination is reported as an RGB pixel
in the plot, where the R (red) value corresponds to the accuracy of the worst performing random
seed, the G (green) value corresponds to the average over the random seeds and the B (blue) value
corresponds to the best performing random seed. For each value (R, G and B), the max over the
course of training is taken. This assignment roughly translates as follows: The brighter, the better -
brighter pixels correspond to higher min-, mean- and max-accuracy. Blue/turquoise pixels highlight
a large performance variation across random seeds and black/grey pixels correspond to hyperparam-
eter combinations where none of the random seeds could solve the task. See Appendix L for figures
with color channels split. Given that all architectures are applicable to sequences of any length,
we investigate how the architectures generalize to sequences of different length. Specifically, we
validated each of the models trained on sequences of length N = 128 after every 100 batches on 32
batches with sequences of half the length (N = 64). The condensed results in Figure 5 give rise to
the following observations: (1) Most models have some hyper-parameter combinations that learn the
task well (white pixels). (2) The optimal learning rate depends on the model size, especially in the
BERT architecture. This has profound implications for hyperparameter optimization: Tuning hyper-
parameters independent of each other might lead to sub-optimal results. (3) Models with probability
simplex limitations (BERT and MTE) work for a smaller range of hyperparameters. (4) Our NAP
architecture seems to be the most robust to this generalization. We provide case learning curves and
additional results in Appendices E and F. Specifically, to be sure, we repeat this experiment with
L = 4 and L = 6 Transformer layers, but the results stay the same (see Appendix F.1). We also
provide the results of an additional model with learned aggregation weights in Appendix H.

5.1.2 CASE ACCURACY UNDER VARYING DATA BIASES

As a next experiment we reset the model dimension to d = 128 and investigate the models un-
der varying data biases. We do so in two distinct ways: First, we vary the sequence length

6

Under review as a conference paper at ICLR 2022

4 8 16 32 64 12
8

25
6

51
2

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

4 8 16 32 64 12
8

25
6

51
2

MTE

4 8 16 32 64 12
8

25
6

51
2

NAP

4 8 16 32 64 12
8

25
6

51
2

NON

4 8 16 32 64 12
8

25
6

51
2

sum

4 8 16 32 64 12
8

25
6

51
2

max

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
0.3

0.09
0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

Figure 6: Biased data results on the case distinction task (with output across all tokens). RGB
pixel values correspond to argmin-, first- and argmax-mean-case-accuracies, respectively. Top row:
Learning rate (y-axis) vs. sequence length N (x-axis). Bottom row: Learning rate (y-axis) vs.
percentage of argmin-case in the data (x-axis) with fixed N = 128.

N ∈ {4, 8, 16, 32, 64, 128, 256, 512}. Note that this implicitly varies the biases pargmin, pfirst
and pargmax in the data. Second, we fix the sequence length at N = 128 and vary pargmin by
explicitly adding or removing corresponding data points. We report the case specific accuracies in
Figure 6 as follows: After every 100 batches, we validate the models on 1000 examples per case.
Reported is the best accurracy over the course of training in form of pixel value with R (red) cor-
responding to the argmin-case accuracy, G (green) corresponding to the first-case accuracy and B
(blue) corresponding to the argmax-case accuracy. As a consequence, white pixels correspond to
all cases learned and yellow pixels correspond to the argmin- and first-case learned. We make the
following observations: (1) If the learning rate is too low, models tend to focus on the majority case
(indicated in a shift from blue to red as the bias shifts from the argmax- to the argmin-case with
increasing sequence length N and the shift from green to red for fixed N). (2) If the learning rate
is too high, the BERT architecture tends to focus on the first-case. We believe this is due to the
architectural bias towards local information as discussed in Section 3. Note that the first-case can be
solved by relying on the local positional embedding. (3) Only the NAP and max architecture manage
to learn all three cases from highly biased data (see N = 256 and pargmin = 96.5%). This shows
that the NAP architecture is not only robust to hyperparameters but also robust to biases in the
data. In Appendix F.2 and F.3 we provide further experiments investigating different batch sizes and
initialization scales. In Appendix F.4 we investigate the local vs. global aggregation focus further.

5.2 FIRST TOKEN OUTPUT

The task so far requires the architectures to learn an information flow between tokens to distinguish
the case and decide per token, whether it is the token that is looked for or not. Now we investigate,
whether all this information can also be aggregated into a single token. We therefore modify the
architecture output slightly in that we only take the contextualized embedding of the first token and
project from it to a vector of size N (see example on the right in Figure 4). Note that this task
set-up is harder and can highlight bottlenecks in the information flow across tokens. We fix the
sequence lenght to N = 128 and again vary the model dimension d. We report the case specific
mean accuracies in Figure 7. Min-, mean- and max-overall-accuracies are given in Appendix F.5.
We observe: (1) All architectures learn for (almost) all combinations the now close to trivial first-
case, even though it is not the majority case. (2) The sum pooling architecture does not learn any of
the other cases. (3) Only NAP and max learn all three cases in some hyperparameter combinations.

7

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (92.2±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (75.8±25.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (98.8±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (88.9±1.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (23.7±0.5%)

8 16 32 64 12
8

25
6

51
2

10
24

max (98.6±0.1%)

Figure 7: Learning rate (y-axis) vs. model dimension d (x-axis) on the case distinction task with
output from the first token. RGB pixel values correspond to the case accuracies. Crosses indicate
the best accuracy, reported behind the model name.

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.9±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (100.0±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.7±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.9±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (100.0±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

max (15.3±0.5%)

Figure 8: Learning rate (y-axis) vs. model dimension d (x-axis) on the mode finding task. RGB
pixel values correspond to min, mean and max accuracy. Crosses indicate the combination for best
accuracy, reported behind the model name.

1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (92.4±0.4%)

1 2 4 8 16 32 64 12
8

MTE (90.9±0.7%)

1 2 4 8 16 32 64 12
8

NAP (98.2±0.4%)

Figure 9: Learning rate (y-axis) vs. attention heads
M (x-axis) on the case distinction task (first token
output). RGB pixel values correspond to min, mean
and max accuracy. Crosses indicate the combination
for best accuracy, reported behind the model name.

The worse performance of NON highlights
the advantage of online normalization of the
logits. While the softmax provides some
form of online normalization, we hypothe-
size that the worse performance of MTE and
BERT in this task stems from an information
bottleneck induced by the probability sim-
plex limitations. To test this hypothesis fur-
ther, we vary the number of attention heads
M . The results are shown in Figure 9. We
observe that increasing the number of heads
helps the MTE and BERT architecture, sup-
porting our hypothesis. Note however, that
MTE and BERT are still outperformed sig-
nificantly by NAP. In Appendix F.6 we pro-
vide a further experiment, varying the depth
up to L = 64. Results are complementary.

5.3 MODE FINDING TASK

Given the results so far, one could conclude that max is the best choice due to its simplicity. Note
however, that max has an architectural prior that is in line with the underlying task of finding the
maximum or minimum of the sequence. To study the effect of architectural priors, we experiment
on an additional task: Finding the mode/most common integer in the input sequence. Also this task
has ties to NLP (e.g., sentiment analysis), graph neural networks (e.g., consensus/agreement) and
reinforcement learning (e.g., count based exploration). Here we remove the positional embeddings,
as this task can also be done on sets, and project from the contextualized embedding of the first
token to a vector of dimension S (the vocabulary size) over which we apply the softmax-cross-

8

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.1±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

BERT (99.3±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.4±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.4±0.1%)

Figure 10: Learning rate (y-axis) vs. model dimension d (x-axis). RGB pixel values correspond
to min, mean and max validation performance. Crosses indicate the best combination (validation),
from which we report the test performance. For NON, sum and max see Appendices I and J. Left:
Protein-protein-interaction task. Shown is the node classification F1-score. Right: Altered working
memory graph agent in the Baby-AI level 3 reinforcement learning task. Shown is the success rate.

entropy loss. We keep N = 128 but reduce S to 10 to have meaningful modes. Ties are broken
by taking the smallest integer of the ones with maximal occurrence. Results of varying the model
dimension d are reported in Figure 8. We observe: (1) sum pooling works well on this task, as it has
a suitable architecutral prior. (2) max pooling cannot learn the task, not even with a model dimension
d = 1024 = 8 ·N . In Appendix G.1 we provide complementary results varying the vocabulary size.
We refer an interested reader to Xu et al. (2020) for more on architecture-task alignment.

5.4 GENERALIZATION TO GRAPH NEURAL NETWORKS AND REINFORCEMENT LEARNING

NLP experiments normally require large amounts of data and large models – a setting which would
make an investigation of the training dynamics under various hyperparameters prohibitively expen-
sive. We therefore focus in our generalization study on the two other domains where attention based
architectures have recently gained traction. Specifically, to see whether the the learning dynamics
seen so far generalize, we perform two additional experiments: One investigating the architectures
in a graph neural network (GNN) task and one investigating them in a reinforcement learning (RL)
setup. Specifically, we train a transformer based GNN in the Protein-Protein-Interaction (PPI) graph
node classification task (Zitnik & Leskovec, 2017) and investigate the different architectures as al-
terations on the working memory graph architecture for RL (Loynd et al., 2020), training on level 3
of the Baby-AI environment (Chevalier-Boisvert et al., 2019). The validation results under varying
model dimension d are given in Figure 10. The results replicate several observations made so far.
Specifically: (1) All attention based architectures can learn the task for some hyperparameter com-
binations. (2) There is a correlation between optimal learning rate and model dimension. (3) BERT
is hyperparameter sensitive in comparison. See Appendices I and J for experiment details.

6 CONCLUSION

Taking all observations together, we conclude: Many recent works apply some sort of self-attention
mechanism involving a softmax that projects the attention weights to the probability simplex. In
this work we question the softmax in dot-product self-attention modules. Our theoretical investiga-
tion shows that softmax-attention outputs are constrained to the convex hull spanned by the value
vectors. In our experiments we show that this can lead to an unwanted hyperparameter sensibility.
We show that simpler architectures like max- and sum-pooling perform well when their architectural
prior aligns with the underlying task. These architectures however fail in cases where the architec-
tural prior is not suitable. As a solution, we propose to replace the softmax in attention through
normalization. Our resulting normalized attention pooling (NAP) architecture is the only architec-
ture of the 6 investigated that is robust in all tasks and setups, even if the data is heavily skewed
towards easier sub-tasks. We hope that our work provides a stepping stone to examine architectures
under varying biases in the data. Further, we see potential in exploring the correlated effects of
hyperparameters. Please also refer to our broader impact statement in Appendix K.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W Cottrell,
and Julian McAuley. Rezero is all you need: Fast convergence at large depth. arXiv preprint
arXiv:2003.04887, 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

Timo Bram, Gino Brunner, Oliver Richter, and Roger Wattenhofer. Attentive multi-task deep rein-
forcement learning. 07 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano Ciaramita, and Roger Wat-
tenhofer. On identifiability in transformers. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=BJg1f6EFDB.

Shuhao Cao. Choose a transformer: Fourier or galerkin. CoRR, abs/2105.14995, 2021. URL
https://arxiv.org/abs/2105.14995.

Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gradient
descent-based optimization. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=ryeFY0EFwS.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk0WRH.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1xMH1BtvB.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

10

http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=BJg1f6EFDB
https://arxiv.org/abs/2105.14995
https://openreview.net/forum?id=ryeFY0EFwS
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/n19-1423

Under review as a conference paper at ICLR 2022

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SylO2yStDr.

Kuan Fang, Alexander Toshev, Fei-Fei Li, and Silvio Savarese. Scene memory transformer for
embodied agents in long-horizon tasks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 538–547. Computer Vi-
sion Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00063. URL http://openaccess.
thecvf.com/content_CVPR_2019/html/Fang_Scene_Memory_Transformer_
for_Embodied_Agents_in_Long-Horizon_Tasks_CVPR_2019_paper.html.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.
URL http://arxiv.org/abs/1308.0850.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Sarthak Jain and Byron C. Wallace. Attention is not explanation. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 3543–3556.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1357. URL https:
//doi.org/10.18653/v1/n19-1357.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 2020. URL
http://proceedings.mlr.press/v119/katharopoulos20a.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Research, pp. 3744–3753. PMLR, 2019. URL
http://proceedings.mlr.press/v97/lee19d.html.

Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted training: Rethinking deep neural network
training under resource constraints. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HyxLRTVKPH.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. arXiv preprint arXiv:2004.08249, 2020.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=SylO2yStDr
http://openaccess.thecvf.com/content_CVPR_2019/html/Fang_Scene_Memory_Transformer_for_Embodied_Agents_in_Long-Horizon_Tasks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Fang_Scene_Memory_Transformer_for_Embodied_Agents_in_Long-Horizon_Tasks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Fang_Scene_Memory_Transformer_for_Embodied_Agents_in_Long-Horizon_Tasks_CVPR_2019_paper.html
http://arxiv.org/abs/1308.0850
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.18653/v1/n19-1357
https://doi.org/10.18653/v1/n19-1357
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://proceedings.mlr.press/v97/lee19d.html
https://openreview.net/forum?id=HyxLRTVKPH

Under review as a conference paper at ICLR 2022

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Ricky Loynd, Roland Fernandez, Asli Celikyilmaz, Adith Swaminathan, and Matthew Hausknecht.
Working memory graphs. In Hal Daum III and Aarti Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 6404–6414. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.
press/v119/loynd20a.html.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu,
Tao Xiang, and Li Zhang. SOFT: softmax-free transformer with linear complexity. CoRR,
abs/2110.11945, 2021. URL https://arxiv.org/abs/2110.11945.

Jawad Nagi, Frederick Ducatelle, Gianni A Di Caro, Dan Cireşan, Ueli Meier, Alessandro Giusti,
Farrukh Nagi, Jürgen Schmidhuber, and Luca Maria Gambardella. Max-pooling convolutional
neural networks for vision-based hand gesture recognition. In 2011 IEEE International Confer-
ence on Signal and Image Processing Applications (ICSIPA), pp. 342–347. IEEE, 2011.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

Emilio Parisotto, H Francis Song, Jack W Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant M
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing
transformers for reinforcement learning. arXiv preprint arXiv:1910.06764, 2019.

Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 68–80, 2019.

Damian Pascual, Gino Brunner, and Roger Wattenhofer. Telling bert’s full story: from local attention
to global aggregation. arXiv preprint arXiv:2004.05916, 2020.

Ofir Press, Noah A Smith, and Omer Levy. Improving transformer models by reordering their
sublayers. arXiv preprint arXiv:1911.03864, 2019.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C Lipton. Learning
to deceive with attention-based explanations. arXiv preprint arXiv:1909.07913, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-
10, 2016, Barcelona, Spain, pp. 901, 2016.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 9355–9366. PMLR, 2021. URL
http://proceedings.mlr.press/v139/schlag21a.html.

12

http://arxiv.org/abs/1907.11692
http://proceedings.mlr.press/v119/loynd20a.html
http://proceedings.mlr.press/v119/loynd20a.html
https://arxiv.org/abs/2110.11945
http://proceedings.mlr.press/v139/schlag21a.html

Under review as a conference paper at ICLR 2022

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
HkxTwkrKDB.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In IEEE Winter Conference on Applications of Computer
Vision, WACV 2021, Waikoloa, HI, USA, January 3-8, 2021, pp. 3530–3538. IEEE, 2021. doi: 10.
1109/WACV48630.2021.00357. URL https://doi.org/10.1109/WACV48630.2021.
00357.

Yi Tay, Anh Tuan Luu, Aston Zhang, Shuohang Wang, and Siu Cheung Hui. Compositional de-
attention networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp.
6135–6145. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/16fc18d787294ad5171100e33d05d4e2-Paper.pdf.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
CoRR, abs/2009.06732, 2020. URL https://arxiv.org/abs/2009.06732.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models, 2021.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. CoRR, abs/2105.01601,
2021. URL https://arxiv.org/abs/2105.01601.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ul-
rike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 5998–6008, 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Petar Velikovi, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgKO0EtvS.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768, 2020. URL https://arxiv.org/abs/
2006.04768.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp.
11–20. Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1002. URL
https://doi.org/10.18653/v1/D19-1002.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SkVhlh09tX.

13

https://openreview.net/forum?id=HkxTwkrKDB
https://openreview.net/forum?id=HkxTwkrKDB
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.1109/WACV48630.2021.00357
https://proceedings.neurips.cc/paper/2019/file/16fc18d787294ad5171100e33d05d4e2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/16fc18d787294ad5171100e33d05d4e2-Paper.pdf
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2105.01601
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=SkgKO0EtvS
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://doi.org/10.18653/v1/D19-1002
https://openreview.net/forum?id=SkVhlh09tX

Under review as a conference paper at ICLR 2022

Yuxin Wu and Kaiming He. Group normalization. Int. J. Comput. Vis., 128(3):742–
755, 2020. doi: 10.1007/s11263-019-01198-w. URL https://doi.org/10.1007/
s11263-019-01198-w.

Zhanghao Wu*, Zhijian Liu*, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short
range attention. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=ByeMPlHKPH.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Km.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=rJxbJeHFPS.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, pp. 5754–5764, 2019.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ByxRM0Ntvr.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph trans-
former networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
8-14 December 2019, Vancouver, BC, Canada, pp. 11960–11970, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 3391–3401, 2017. URL
http://papers.nips.cc/paper/6931-deep-sets.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 7354–
7363. PMLR, 2019. URL http://proceedings.mlr.press/v97/zhang19d.html.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinform., 33(14):i190–i198, 2017. doi: 10.1093/bioinformatics/btx252. URL
https://doi.org/10.1093/bioinformatics/btx252.

14

https://doi.org/10.1007/s11263-019-01198-w
https://doi.org/10.1007/s11263-019-01198-w
https://openreview.net/forum?id=ByeMPlHKPH
https://openreview.net/forum?id=ByeMPlHKPH
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
http://papers.nips.cc/paper/6931-deep-sets
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
http://proceedings.mlr.press/v97/zhang19d.html
https://doi.org/10.1093/bioinformatics/btx252

Under review as a conference paper at ICLR 2022

A REPRESENTATION POWER WITH RESPECT TO XOR

Lemma 1. No convex combination can represent the binary exclusive OR (XOR) function defined
on binary inputs x1 ∈ {0, 1} and x2 ∈ {0, 1} by the indicator function as XOR(x1, x2) = 1x1 6=x2 .

Proof. Suppose there exist convex combination weights a1 and a2 with a1 + a2 = 1, such that
a1 · x1 + a2 · x2 represents the XOR function. Plugging in x1 = x2 = 1 yields a1 · x1 + a2 · x2 =
a1 + a2 = 1, which gives the contradiction.

Lemma 2. Given the two binary inputs x1 ∈ {0, 1} and x2 ∈ {0, 1}, there exists an affine mapping
f : {0, 1}2 → R2, such that the normalized weighting given by

f1(x1, x2)− µf(x1,x2)

σf(x1,x2)
· x1 +

f2(x1, x2)− µf(x1,x2)

σf(x1,x2)
· x2

is equivalent to the logical exclusive OR given by the indicator function asXOR(x1, x2) = 1x1 6=x2 .

Proof. For a vector l ∈ R2, the standard deviation σl can be simplified to

σl =

√√√√1

2

∑
i∈{1,2}

(li − µl)2

=

√√√√1

2

((
l1 −

l1 + l2
2

)2

+

(
l2 −

l1 + l2
2

)2
)

=
1

2
|l1 − l2|

and the normalization function reduces to

normalize(l) =

[
l1 − µl

σl
,
l2 − µl

σl

]T
=

[
l1 − l2
|l1 − l2|

,
l2 − l1
|l1 − l2|

]T

=


[1,−1]T if l1 > l2
[−1, 1]T if l1 < l2
undef. if l1 = l2

As an example, consider the affine mapping f(x) = l = [3x1 + 1, 2x2]T , which for x1 ∈ {0, 1}
and x2 ∈ {0, 1} results in the function

3x1 + 1− 2x2
|3x1 + 1− 2x2|

· x1 +
−3x1 − 1 + 2x2
|3x1 + 1− 2x2|

· x2 = 1x1 6=x2

We note that for a realization of such an affine mapping across tokens given the weight sharing
constraints of the discussed architectures we would need x1 and x2 to be distinguishable for the
mapping to keys and queries, e.g., through positional embeddings. This however does not invalidate
our conclusion that normalized weighting is more expressive than softmax weighting, as we do not
require the inputs that are weighted to be distinguishable.

B VANISHING GRADIENT ANALYSIS

For better readability we will use subscripts here to index sequence elements and omit the implicit
reference to the head and vector dimension used in the main text.
Lemma 3. The partial derivative g = δsoftmax(l)i

δli
is limited to the range g ∈ (0, 0.25].

15

Under review as a conference paper at ICLR 2022

Proof.

g =
δsoftmax(l)i

δli
=

exp (li)
∑
j exp (lj)− exp (2 · li)(∑
j exp (lj)

)2 = ai · (1− ai) with ai = softmax(l)i

Maximizing this function we get that the maximum of g = 0.25 is achieved for ai = 0.5. Noting
that ai > 0, the claim follows.

To expand this further, we introduce the notion of α-bandwidth.

Definition 1. We call the range ∆x in which the absolute value of a gradient factor δf(x)
δx exceeds

a threshold α, i.e.
∣∣∣ δf(x)δx

∣∣∣ > α, its α-bandwidth BWα

(
δf(x)
δx

)
.

x

δf(x)
 δx

BW
α

α

Figure 11: Visual definition

Please refer to Figure 11 for a visualization of this definition. Intu-
itively, the α-bandwidth gives a measure for the range of operation,
where at least an α-fraction of the gradient gets backpropagated.

It also provides a measure of how fast a function saturates: Given x
with δf(x)

δx > α, updating x to x′ = x ± BWα

(
δf(x)
δx

)
puts x′ into

the saturated region where δf(x′)
δx′ ≤ α. A function with a small α-

bandwidth can therefore more easily saturate than a function with a
larger α-bandwidth.

Lemma 4. The α-bandwidth of g = δsoftmax(l)i
δli

can be calculated as

BWα(g) = ln

(
1− 2α+

√
1− 4α

1− 2α−
√

1− 4α

)

Proof. Substituting x = exp(li) and y =
∑
j 6=i exp(lj) we can write g as g(x) = x

x+y ·
(

1− x
x+y

)
.

Solving g(x) = α yields x = y
2α

(
1− 2α±

√
1− 4α

)
. Reversing the substitution of li = ln(x)

and subtracting the larger from the smaller value, we get:

BWα(g) = ln
(y

2α

(
1− 2α+

√
1− 4α

))
− ln

(y

2α

(
1− 2α−

√
1− 4α

))
= ln

(
1− 2α+

√
1− 4α

1− 2α−
√

1− 4α

)

Corollary 1. The range in which g = δsoftmax(l)i
δli

> 0.01 is smaller than 9.2.

Proof. Calculating the α-bandwidth for α = 0.01 we get BW0.01(g) ≈ 9.170.

Note that BWα(g) is independent of the length of the vector l as the remainder y =
∑
j 6=i exp(lj)

cancels. For the self-attention in the Transformer this translates to the fact that BWα(g) is indepen-
dent of the sequence length. This means that the Transformer architecture cannot adapt this range of
operation according to the sequence length. Aggregated information from long sequences inevitably
needs to be averaged or scaled to fall within this range.

We further note that the constant 0.01-bandwidth on its own is not the problem. In fact, a tanh-non-
linearity has a smaller 0.01-bandwidth. However, in the standard Transformer architecture, gradients
are scaled dependent on the layer input. More specifically, dropping sequence indices to simplify
notation, we have
Lemma 5. For k = Wkx + bk, q = Wqx + bq , WT

q Wk + WT
k Wq invertible and ||x|| ≥ c1 we

can find constants c2 > 0 and c3 > 0 such that∣∣∣∣∣∣∣∣ δlδx
∣∣∣∣∣∣∣∣ ≥ c2 · ||x|| − c3

16

Under review as a conference paper at ICLR 2022

Proof. Writing out l = <q,k>√
dh

we get

l =
1√
dh

(xTWT
q Wkx + (bTkWq + bTqWk)x + bTq bk)

Using δxTAx
δx = xT (A+AT) and substituting gb = bTkWq + bTqWk we get

δl

δx
=

1

dh
(xT (WT

q Wk +WT
k Wq) + gb)

Setting gx = xT (WT
q Wk+WT

k Wq) and solving for x we get (WT
q Wk+WT

k Wq)
−1gTx = x. With

this, we can bound ||gx|| with the operator norm on (WT
q Wk + WT

k Wq)
−1. Specifically, if we set

c2 as

c2 =
1√

dh · ||(WT
q Wk +WT

k Wq)−1||

we get 1√
dh
· ||gx|| ≥ c2 · ||x||. We can then bound

∣∣∣∣ δl
δx

∣∣∣∣ as∣∣∣∣∣∣∣∣ δlδx
∣∣∣∣∣∣∣∣ =

1√
dh
||gx + gb|| ≥

1√
dh

∣∣∣∣||gx|| − ||gb||∣∣∣∣
Therefore, if we set c1 = 1

c2·
√
dh
· ||gb|| we get ||gx|| ≥ c2 ·

√
dh · ||x|| ≥ ||gb|| and hence∣∣∣∣∣∣∣∣ δlδx

∣∣∣∣∣∣∣∣ ≥ 1√
dh

(||gx|| − ||gb||) ≥ c2 · ||x|| − c3

for c3 = 1√
dh
· ||gb||.

Lemma 5 shows that the magnitude of the gradient factor scales with the magnitude of the input.
Therefore, a single large input can yield a correspondingly large parameter update. This in turn can
put the softmax easily into the saturated region, since the softmax only has a constant α-bandwidth.
Once saturated, the softmax leads to vanishing gradients henceforth.

C SEQUENCE LENGTH DEPENDENT FOCUS

For Figure 2 we sample 16’384 value, key and query vectors of dimension dh = 128 per sequence
length N ∈ {1, 2, 4, 8, 16, 32, 64, 128, 512, 1024, 2048} from a normal Gaussian N (0, Idh) - Idh
being the dh-dimensional identity matrix. We split the samples to form the sequences and calculate
the corresponding output vectors oi for i ∈ {1, . . . , N}. Here, the softmax attention outputs are
calculated as described in Section 2, while the mean-, sum- and max-outputs are calculated as mean-
, sum- and max-reduce of the value vectors over the sequence dimension. For the normalized results
we take the sum-output vectors and normalize them (over the dh-dimensional vector dimension).
Note that such a normalization can be applied to any of the aggregation methods to get qualitatively
similar results. The plots in Figure 2 are generated by reporting the standard deviation over all output
values and the mean norm of the output values, respectively.

Given the numerous successes of Transformers in natural language processing, we conjecture that
a bias towards local information might be beneficial in language modeling. However, the implicit
dependence on sequence length in a model that should be oblivious to different input sequence
lengths is questionable. We leave an in depth investigation to future work.

D ARCHITECTURES

We provide a schematic of 1 Transformer-layer of each architecture investigated in Figure 12. Our
base architectures consist of 2 such layers followed by a projection to the output dependent on the
task as described in the corresponding sections (cf. Section 5.1, 5.2 and 5.3).

17

Under review as a conference paper at ICLR 2022

GELU - non-linearity

Layer normalization

Mixing layer

Queries Keys Values

Feed forward layer

Feed forward layer

Multi-head softmax attention

+

+

Layer normalization

(a) BERT

GELU - non-linearity

Mixing layer

Feed forward layer

Feed forward layer

Multi-head softmax attention

+

+

Layer normalization

Layer normalization

Layer normalization

GELU - non-linearity
Layer normalization

Queries Keys Values

(b) MTE

GELU - non-linearity

Mixing layer

Feed forward layer

Feed forward layer

Multi-head normalized weighting

+

+

Layer normalization

Layer normalization

Layer normalization

GELU - non-linearity
Layer normalization

Queries Keys Values

(c) NAP

GELU - non-linearity

Mixing layer

Feed forward layer

Feed forward layer

Multi-head dot-product weighting

+

+

Layer normalization

Layer normalization

Layer normalization

GELU - non-linearity

Queries Keys Values

(d) NON

GELU - non-linearity

Feed forward layer

Feed forward layer

+

+

Layer normalization

Layer normalization

Layer normalization

Sum-reduce over sequence

(e) sum

GELU - non-linearity

Feed forward layer

Feed forward layer

+

+

Layer normalization

Layer normalization

Layer normalization

Max-reduce over sequence

(f) max

Figure 12: Schematics of 1 Transformer-layer block of the different architectures investigated.
Green layers correspond to the main weight matrices that are trained. Note that displayed dimen-
sions are not to scale - the hidden dimension of the feed forward layer is larger than the model
dimension and the hidden layer size in the feed forward network of “max” and “sum” are adjusted
to approximately match the parameter count of the other architectures.

18

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

8 16 32 64 12
8

25
6

51
2

10
24

- warm up

8 16 32 64 12
8

25
6

51
2

10
24

- grad. clip

8 16 32 64 12
8

25
6

51
2

10
24

+ normalize

8 16 32 64 12
8

25
6

51
2

10
24

+ GELU

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

Figure 13: Learning rate (y-axis) vs. model dimension d (x-axis) on the argmin-first-argmax case
distinction task (with output across all tokens) - architecture modification ablation study. In the first
two rows, RGB pixel values correspond to min-, mean- and max-accuracy. In the last two rows,
RGB pixel values correspondto argmin-, first- and argmax-mean-case-accuracies. 1. row: Training
accuracy (sequence length N = 128). 2. row: Validation accuracy when validating on sequences
of half the length (N = 64). 3. row: Training case accuracy (sequence length N = 128). 4.
row: Validation case accuracy when validating on sequences of half the length (N = 64). Crosses
indicate the combination for best mean accuracy, which are reported in Table 1.

D.1 ARCHITECTURE MODIFICATION ABLATIONS

An empirical ablation of the modifications that lead from the BERT architecture to the MTE ar-
chitecture is given in Figure 13. The plots are generated as described in Sections 5.1.1 and 5.1.2.

The first column in Figure 13 corresponds to the original BERT architecture, trained with gradient
norm clipping and learning rate warm up.

The second column (- warm up) corresponds to the same architecture, but trained without learn-
ing rate warm up. Here we see that too high learning rates learn even less without learning rate

19

Under review as a conference paper at ICLR 2022

Table 1: Ablation study accuracy values taken from the hyper-parameter combination that led to the
best mean overall accuracy, indicated by a cross in Figure 13.

BERT - warm up - grad. clip + normalize + GELU
Overall min 99.3% 99.4% 99.3% 99.2% 99.3%
Training mean 99.4% 99.5% 99.4% 99.3% 99.3%
Accuracy max 99.5% 99.6% 99.6% 99.5% 99.5%
Overall min 96.5% 96.9% 96.9% 96.3% 96.7%

Validation mean 97.2% 97.6% 97.2% 96.8% 97.3%
Accuracy max 98.2% 98.2% 98.2% 98.4% 98.2%

Mean Case argmin 99.3% 99.6% 99.5% 99.6% 99.5%
Accuracy first 100% 100% 100% 100% 100%
Training argmax 96.9% 98.1% 97.5% 96.5% 98.0%

Mean Case argmin 98.0% 98.0% 98.0% 98.1% 97.9%
Accuracy first 100% 100% 100% 100% 100%
Validation argmax 93.9% 93.8% 93.1% 91.2% 93.8%

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

Cases - all tokens (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

Cases - first token (99.2±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

Mode (99.4±0.1%)

Figure 14: Learning rate (y-axis) vs. model dimension d (x-axis) in the different task setups when
just replacing the softmax in BERT with normalization. The plots from left to right are grouped
according to the tasks: The case task with outputs across all tokens (cf. Section 5.1), the case task
with outputs from the first token (cf. Section 5.2) and the mode task (cf. Section 5.3). For the case
tasks, the left sub-plot reports min, mean and max accuracies while the right sub-plot reports mean
case accuracies as RGB pixel values. The mode plot reports min, mean and max accuracies. The
plots show the accuracies for N = 128.

warm up in the BERT architecture, hinting at a necessity for learning rate warm up for the original
architecture.

The third column (- grad. clip) reports the results if we further remove gradient clipping from the
training schedule. This does not seem to have a big impact in our setup.

Next, we report in the forth column (+ normalize) the results of moving the layer normalization
before the residual addition and introducing an additional layer normalization right after the attention
mechanism as well as on the hidden layer of the feed forward network. Note that this change removes
the bias towards local information discussed in the end of Section 3. We see that this change leads
to a profound shift in focus in regions where the learning rate is high: models with the original
normalization focus on the (local) first-case, while models with our normalization focus on the
(majority) argmin-case. This is in line with the insights stated in Section 5.1.2.

Finally, we report in the fifth column (+ GELU) the results of adding an additional GELU layer after
the attention. These results correspond to the MTE architecture used throughout the paper.

Apart from the performance landscape changes just mentioned, the best hyper-parameter accuracies
remain similar throughout all modifications, cf. Table 1.

For completeness, we also provide results for just replacing the softmax in BERT with normalization
in Figure 14, that is, we train NAP with learning rate warmup, gradients clipped, no GELU after the
attention and layer normalization as in BERT. The results are complementary to those presented in
the main text: the model is still more robust to hyperparameter changes, albeit not performing well

20

Under review as a conference paper at ICLR 2022

on higher learning rates. On these high learning rates, the model focuses (similar to BERT) on the
local first task. This is due to the placement of layer normalization, which with the initialization of
the mixing layer yields a focus on local information.

D.2 REGULARIZATION EXPERIMENTS

To limit the number of variables which are not accounted for in the experiments, we focus on the
infinite data but limited training time regime. In this regime, every batch consists of new data points.
We believe that this regime is of paramount interest in future research, as more devices create a
constant stream of data and training is more limited by the available training time than the available
data. This regime allows us to omit regularization in all architectures as over-fitting is not an issue.
In fact, our supplementary experiments below as well as related work (Lan et al., 2020) show that
regularization does not help in this regime. We leave a comparison of the architectures in the limited
data regime to future work.

Here, we show empirical results supporting the intuition that L2 as well as dropout regularization
does not help in our setup. For each of our tasks, we take our default hyper-parameters (d = 128,
L = 2, M = 4, N = 128) and train 5 random seeds per learning rate for models with regular-
ization, varying the dropout rate in {0.0625, 0.125, 0.25, 0.5} and the L2 regularization weighting
in {0.0001, 0.001, 0.01, 0.1}. Tables 2, 3 and 4 report the best mean accuracy achieved with the
small number behind the accuracies indicating the regularization used, 1 referring to the smallest,
4 to the largest. We underline the results where regularization did lead to an improvement in mean
accuracy. Note however that these improvements should be taken with a grain of salt, as (1) none
of these improvements is significant considering the performance variation across random seeds and
(2) the regularized values are likely to be overestimated, as the max is taken over 40 averages (4
regularization values times 10 learning rates) as compared to 10 averages (10 learning rates) in the
unregulated case.

Overall we note that none of the architectures consistently benefits from regularization in our setup
and regularization often decreases mean performance. Further, we point out that the best perfor-
mance with regularization is most of the times achieved with the smallest regularization.

Table 2: Regularization results in the case distinction task with output taken across all tokens. The
top three rows correspond to the best mean training accuracy, while the bottom three rows corre-
spond to the best mean validation accuracy when validating on sequences of half the length.

BERT MTE NAP NON sum max
unregularized 99.3% 99.1% 99.3% 99.1% 98.9% 99.2%
with dropout 98.1%1 97.3%1 97.8%1 97.5%1 97.3%1 98.2%1

with L2-regularization 99.3%2 99.2%1 99.2%2 99.2%1 98.9%1 99.4%2

unregularized 95.5% 95.5% 97.0% 95.3% 75.0% 97.1%
with dropout 94.4%1 94.6%1 96.8%2 96.0%1 83.1%1 96.3%1

with L2-regularization 97.2%2 93.6%2 97.1%1 96.1%2 67.7%2 97.2%2

Table 3: Regularization results in the case distinction task with output from the first token. The top
three rows correspond to the best mean training accuracy, while the bottom three rows correspond
to the best mean validation accuracy when validating on sequences of half the length.

BERT MTE NAP NON sum max
unregularized 36.6% 66.5% 94.5% 23.2% 22.8% 97.8%
with dropout 44.9%1 44.3%1 85.0%1 23.2%1 22.6%1 92.6%1

with L2-regularization 36.0%2 55.3%1 93.8%2 22.8%1 22.8%1 95.4%1

unregularized 36.7% 50.6% 83.9% 29.6% 28.5% 88.5%
with dropout 41.4%2 40.7%1 74.6%1 29.6%3 28.9%4 87.8%1

with L2-regularization 37.2%2 45.7%1 82.5%2 28.9%1 29.0%1 81.0%1

21

Under review as a conference paper at ICLR 2022

Table 4: Regularization results in the mode finding task. The top three rows correspond to the best
mean training accuracy, while the bottom rows correspond to the best mean validation accuracy
when validating on sequences of twice the length.

BERT MTE NAP NON sum max
unregularized 99.6% 99.8% 99.6% 98.7% 99.8% 14.4%
with dropout 93.9%1 93.3%1 94.3%1 91.8%1 93.3%1 24.5%1

with L2-regularization 99.5%1 99.9%2 99.7%1 98.8%1 99.9%4 14.4%2

unregularized 95.3% 95.4% 94.9% 91.3% 95.8% 13.5%
with dropout 94.8%2 95.4%2 93.8%1 92.6%1 95.7%2 13.4%4

with L2-regularization 94.7%1 96.0%1 94.9%1 94.7%2 95.8%1 13.7%1

E CASE LEARNING CURVES

Figures 15, 16 and 17 show the case accuracies over the course of training. The corresponding color
plot is given in Figure 18. Besides the observations made in the main text, a few additional insights
can be noted: (1) Cases are mostly learned in the order of their occurrences (recall that 72.37% of
the examples are from the argmin case, 20.09% are from the first case and 7.53% are from the
argmax case). This is to be expected when training with gradient descent, cf. Chatterjee (2020). (2)
This order is not always given in the BERT architecture.

Besides the focus on the first case if the learning rate is too high - discussed in the main text - we
also highlight a curiosity that occurs when the model dimension is too small (see plot highlighted in
with red in Figure 15): The first case is learned and then unlearned in favor of the argmin case. Note
that all 5 random seeds follow this pattern. Note also that for a different learning rate, the opposite
holds as seen in the plot just below the highlighted plot. We highly encourage an interested reader to
check out our code release,3 which includes these results as well as visualization scripts to inspect
them further.

3See supplementary material.

22

Under review as a conference paper at ICLR 2022

0.3

0.09

0.027

0.008

0.002

7.3e-4

2.2e-4

6.6e-5

2.0e-5

5.9e-6

8 16 32 64 128 256 512 1024

Model Dimension

In
iti

al
 L

ea
rn

in
g

R
at

e

argmin first argmaxBERT

0.3

0.09

0.027

0.008

0.002

7.3e-4

2.2e-4

6.6e-5

2.0e-5

5.9e-6

8 16 32 64 128 256 512 1024

Model Dimension

In
iti

al
 L

ea
rn

in
g

R
at

e

argmin first argmaxMTE

Figure 15: Case accuracies over the course of training on the argmin-first-argmax case distinction
task with output across all tokens, cf. Section 5.1. Each small sub-plot shows the case accuracies
(y-axis, bottom is set to 0%, top to 100%) over the course of training (x-axis). Solid lines represent
the mean accuracy over the 5 random seeds while shaded areas fill the spread between min- and
max-accuracy achieved. Models BERT and MTE are shown here, cf. Figures 16 and 17.

23

Under review as a conference paper at ICLR 2022

0.3

0.09

0.027

0.008

0.002

7.3e-4

2.2e-4

6.6e-5

2.0e-5

5.9e-6

8 16 32 64 128 256 512 1024

Model Dimension

In
iti

al
 L

ea
rn

in
g

R
at

e

argmin first argmaxNAP

0.3

0.09

0.027

0.008

0.002

7.3e-4

2.2e-4

6.6e-5

2.0e-5

5.9e-6

8 16 32 64 128 256 512 1024

Model Dimension

In
iti

al
 L

ea
rn

in
g

R
at

e

argmin first argmaxNON

Figure 16: Case accuracies over the course of training on the argmin-first-argmax case distinction
task with output across all tokens, cf. Section 5.1. Each small sub-plot shows the case accuracies
(y-axis, bottom is set to 0%, top to 100%) over the course of training (x-axis). Solid lines represent
the mean accuracy over the 5 random seeds while shaded areas fill the spread between min- and
max-accuracy achieved. Models NAP and NON are shown here, cf. Figures 15 and 17.

24

Under review as a conference paper at ICLR 2022

0.3

0.09

0.027

0.008

0.002

7.3e-4

2.2e-4

6.6e-5

2.0e-5

5.9e-6

8 16 32 64 128 256 512 1024

Model Dimension

In
iti

al
 L

ea
rn

in
g

R
at

e

argmin first argmaxsum

0.3

0.09

0.027

0.008

0.002

7.3e-4

2.2e-4

6.6e-5

2.0e-5

5.9e-6

8 16 32 64 128 256 512 1024

Model Dimension

In
iti

al
 L

ea
rn

in
g

R
at

e

argmin first argmaxmax

Figure 17: Case accuracies over the course of training on the argmin-first-argmax case distinction
task with output across all tokens, cf. Section 5.1. Each small sub-plot shows the case accuracies
(y-axis, bottom is set to 0%, top to 100%) over the course of training (x-axis). Solid lines represent
the mean accuracy over the 5 random seeds while shaded areas fill the spread between min- and
max-accuracy achieved. Models sum and max are shown here, cf. Figures 15 and 16.

25

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.5±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (99.0±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

max (99.4±0.1%)

Figure 18: Learning rate (y-axis) vs. model dimension d (x-axis) on the argmin-first-argmax case
distinction task (with output across all tokens). The pixels’ R (red), G (green) and B (blue) values
correspond to min-, mean- and max-accuracy, respectively, of the corresponding hyperparameter
combination. The plot shows the accuracy when evaluating on sequences of length N = 128.
Crosses indicate the combination for best mean accuracy, reported behind the model name.

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (98.0±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (97.6±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (98.0±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (97.8±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (88.9±5.0%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.7±0.3%)

Figure 19: Rerun of the experiments of Figure 5 with L = 4 instead of L = 2. Crosses indicate the
combination for best validation accuracy, which we report behind the model name.

F CASE DISTINCTION TASK - ADDITIONAL RESULTS

Figure 18 shows the accuracy in the case distinction task when evaluating with the same sequence
length as used during training, i.e., N = 128.

F.1 VARYING MODEL DIMENSION WITH 4 AND 6 LAYERS

Figures 19 and 20 show the results when varying the model dimension for deeper models, specifi-
cally 4 and 6 Transformer-layer deep models. The results do not differ which is why we choose to
set the default to L = 2 layers, which in turn allows us to run more experiments. Note that we also
present an experiment in F.6 where we explicitly vary the depth up to L = 64 Transformer-layers.

F.2 VARYING BATCH SIZE

In Figure 21 we provide the case accuracy results of an additional experiment, varying the batch size.
In this experiment we train the models using different batch sizes, adjusting the number of training
steps accordingly to keep the total number of training points seen constant. With this experiment
we aim to show the training behaviour of the different architectures if we go from single example
batches (many, potentially noisier updates) to batches of size 128 - a batch size in which each batch
contains in expectation several examples per case, but fewer updates are made to the network param-
eters. Besides replicating several insights made in the main text, this experiment shows: (1) smaller
batches require a smaller learning rate, supporting our argument that hyper-parameters should not
be optimized independent of each other. (2) The focus of BERT on the first-case when the learning
rate is too high is amplified in smaller batches.

26

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (98.2±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (97.1±1.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (97.6±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (97.6±0.5%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (84.3±6.2%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.8±0.2%)

Figure 20: Rerun of the experiments of Figure 5 with L = 6 instead of L = 2. Crosses indicate the
combination for best validation accuracy, which we report behind the model name.

1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

1 2 4 8 16 32 64 12
8

MTE
1 2 4 8 16 32 64 12
8

NAP

1 2 4 8 16 32 64 12
8

NON

1 2 4 8 16 32 64 12
8

sum

1 2 4 8 16 32 64 12
8

max

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 21: Learning rate (y-axis) vs. batch size (x-axis) on the argmin-first-argmax case distinction
task (with output across all tokens). RGB pixel values correspond to argmin-, first- and argmax-
case-accuracies, respectively. Top row: Training accuracy (sequence length N = 128). Bottom
row: Validation accuracy on sequences of length N = 64.

F.3 VARYING INITIALIZATION SCALE

In Figure 22 we provide the case accuracy results of an additional experiment, varying the initial-
ization standard deviation of the truncated normal distribution with which we initialize the weight
matrices. The results show additionally to the observations made previously that the softmax based
models BERT and MTE struggle to learn if the initialization is too large. This is likely due to the
fact that the softmax is already saturated if the initialization too large. Also, larger initializations
seem to require a larger learning rate.

F.4 LOCAL VS. GLOBAL FOCUS UNDER VARYING DATA BIAS

To investigate the local vs. global focus further, we conduct another experiment under varying data
bias. Specifically we look at a task where each token has to output its own position (identity-case),
if there is a 64 in the input sequence. If there is no 64, each token has to output the argmin position.
The results when varying the percentage of identity-case data points are given in Figure 23. Red
represents that only the identity-case is learned while turquoise represents that only the argmin-
case is learned. We can see that BERT struggles to learn the argmin-case (which requires global
information) as soon as it is not the majority case anymore.

27

Under review as a conference paper at ICLR 2022

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

MTE

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

NAP

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

NON

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

sum

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

max

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 22: Learning rate (y-axis) vs. initialization scale (x-axis) on the case distinction task (output
across tokens). RGB pixel values correspond to the case-accuracies. Top row: Training accuracy
(N = 128). Bottom row: Validation (N = 64).

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

MTE

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

NAP

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

NON

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

sum

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

max

Figure 23: Learning rate (y-axis) vs. percentage of identity-case (x-axis). R = identity accuracy, G
and B = argmin accuracy.

F.5 FIRST TOKEN OUTPUT - VARYING MODEL DIMENSION

Section 5.2 discusses the case accuracies when training on the case distinction task with outputs
taken from the first token. In Figure 24 we addtionally give best the min-, mean- and max-accuracies
over the course of training. The top row corresponds to in-distribution/training accuracy (N = 128)
while the bottom row corresponds to out-of-distribution generalization accrucay when validating on
sequences of half the length (N = 64). Again we note a correlation between optimal learning rate
and model dimension, especially in the BERT and MTE architecture. We also note that BERT and
MTE have a large performance variation across random seeds in this setup.

F.6 FIRST TOKEN OUTPUT - VARYING DEPTH

In this section we investigate whether our results are tied to the shallow architecture of L = 2
Transformer layers. We therefore vary the number of Transformer-layers L and report the results
on the case distinction task with outputs taken from the first token in Figure 25. The results lead
us to the following observations: (1) The BERT architecture does seem to perform better when
the number of Transformer-layers is increased to L = 4. However, the performance degrades if
we further increase the depth. (2) The NAP architecture achieves a higher best mean accuracy and
performs well on a wide range of depths. (3) The max architecture performs well on the biggest
range of hyperparameters. This is due to the beneficial architectural prior as discussed earlier.

28

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (72.7±0.7%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (59.3±14.8%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (94.1±1.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (69.8±0.9%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (30.9±0.6%)

8 16 32 64 12
8

25
6

51
2

10
24

max (91.7±1.3%)

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 24: Learning rate (y-axis) vs. model dimension d (x-axis) on the case distinction task with
output from the first token. RGB pixel values correspond to min, mean and max accuracy. Top row:
Training accuracy (sequence length N = 128). Bottom row: Validation accuracy when validating
on sequences of half the length (N = 64). Crosses indicate the combination for best validation
accuracy, which we report with standard deviation behind the model name.

1 2 4 8 16 32 64

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (77.3±21.0%)

1 2 4 8 16 32 64

MTE (52.7±18.6%)

1 2 4 8 16 32 64

NAP (91.1±1.9%)

1 2 4 8 16 32 64
NON (32.5±5.6%)

1 2 4 8 16 32 64

sum (30.6±0.9%)

1 2 4 8 16 32 64

max (93.2±0.6%)

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 25: Learning rate (y-axis) vs. Transformer-layers L (x-axis) on the case distinction task
(output from the first token). RGB pixel values correspond to min, mean and max accuracy. Top
row: Training accuracy (sequence length N = 128). Bottom row: Validation accuracy when
validating on sequences of half the length (N = 64). Crosses indicate the combination for best
validation accuracy, which we report with standard deviation behind the model name.

G MODE FINDING TASK - ADDITIONAL RESULTS

G.1 VARYING VOCABULARY SIZE

Figure 26 shows the results of an additional experiment, varying the vocabulary size S while keep-
ing the sequence length N = 128 constant during training. For this experiment, we also vary the
total number of training steps and set it to 400 ·S, to keep the number of examples seen per vocabu-
lary token approximately constant. We also include zero-shot generalization results when testing on

29

Under review as a conference paper at ICLR 2022

2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

2 4 8 16 32 64 12
8

25
6

MTE

2 4 8 16 32 64 12
8

25
6

NAP

2 4 8 16 32 64 12
8

25
6

NON

2 4 8 16 32 64 12
8

25
6

sum

2 4 8 16 32 64 12
8

25
6

max

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 26: Learning rate (y-axis) vs. vocabulary size S (x-axis) on the mode finding task. RGB
pixel values correspond to min, mean and max accuracy. Top row: Training accuracy (sequence
length N = 128). Bottom row: Validation accuracy when validating on sequences of twice the
length (N = 256). Crosses indicate the learning rate for best mean accuracy, reported in Table 5.

Table 5: Best mean accuracy per vocabulary size, taken from the combinations indicated in Fig-
ure 26. First six rows correspond to training accuracies, bottom six rows correspond to validation
accuracies. Bold numbers indicate a min-accuracy higher than the best max accuracy of all other
models.

S = 2 S = 4 S = 8 S = 16 S = 32 S = 64 S = 128 S = 256
BERT 100% 99.9% 99.9 % 92.1% 72.5% 76.2% 77.4% 74.4%
MTE 100% 100% 99.9% 99.8% 99.3% 97.3% 73.3% 64.9%
NAP 100% 99.9% 99.8% 99.6% 99.7% 99.6% 97.4% 84.6%
NON 100% 99.9% 99.2% 97.3% 74.7% 71.5% 65.2% 61.5%
sum 100% 100% 99.9% 99.8% 99.7% 99.2% 97.5% 60.6%
max 55.7% 30.1% 17.3% 10.4% 6.6% 4.6% 3.6% 3.1%

BERT 100% 98.2% 95.8 % 88.0% 65.7% 68.6% 68.0% 53.0%
MTE 99.2% 98.4% 96.1% 93.6% 90.5% 85.4% 61.6% 38.9%
NAP 99.6% 98.4% 95.8% 93.1% 90.6% 90.4% 84.3% 64.3%
NON 100% 97.7% 93.1% 85.7% 66.4% 58.3% 50.2% 46.4%
sum 99.0% 97.9% 96.7% 94.4% 91.6% 89.1% 85.9% 45.6%
max 53.8% 29.3% 16.1% 9.5% 6.0% 4.2% 3.0% 2.1%

sequences of twice the length (N = 256). Compared to the case distinction task we can do such a
generalization evaluation here as we do not learn any positional embeddings in this setup. We make
the following observations: (1) max completely fails to learn in any of the vocabulary sizes. Note
that the shading to the left merely corresponds to the majority class base rate. (2) NAP struggles
when the vocabulary consists of only 2 tokens. This is expected, as the mean subtraction in the nor-
malization effectively removes the task relevant information (the mode) in this case. Note however,
that for a high enough learning rate, the model learns to use the bias parameter b introduced in the
normalization - effectively reverting to sum pooling. (3) While all models learn the task well on
small vocabularies, NAP outperforms all other approaches significantly when S gets larger then the
training sequence length, cf. Table 5.

30

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

Cases - all tokens (98.8±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

Cases - first token (88.2±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

Mode (99.7±0.1%)

Figure 27: Learning rate (y-axis) vs. model dimension d (x-axis) in the different task setups with
learned aggregation weights. The plots from left to right are grouped according to the tasks: The
case task with outputs across all tokens (cf. Section 5.1), the case task with outputs from the first
token (cf. Section 5.2) and the mode task (cf. Section 5.3). For the case tasks, the left sub-plot
reports min, mean and max accuracies while the right sub-plot reports mean case accuracies as RGB
pixel values. The mode plot reports min, mean and max accuracies. The plots show the accuracies
for N = 128.

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.1±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (92.3±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.9±0.2%)

Figure 28: Full results of the GNN experiments on the protein-protein-interaction task. The plot
shows a variation of learning rate (y-axis) vs. model dimension d (x-axis). RGB pixel values
correspond to min, mean and max validation node classification F1-score. Crosses indicate the
best combination (validation), from which we report the test performance behind the model name.

H LEARNED AGGREGATION WEIGHTS

Here we present the results of an additional model for fixed aggregation size. In particular, we
ask how the results look if we learn the aggregation weights as parameters of the network. For this
model, we take the sum model and replace the sum-broadcast operation with a fully connected linear
layer across the sequence dimension. This is akin to the Random Synthesizer presented by Tay et al.
(2021), but without the softmax. The results presented in Figure 27 confirm our conjecture that the
softmax limits the information flow, as this new model is more robust to hyperparameters than BERT
and MTE.

I PPI EXPERIMENT

For the PPI node classification task we train a GNN based on our architectures with aggregation over
neighbors instead of the whole sequence. Here we use L = 3 transformer layers, as the number of
layers specifies the k-hop neighborhood from which information is aggregated in a GNN (k = L).
The remaining settings are left at the default (M = 4 attention heads, no regularization). We train
with one graph per update for 32 epochs.

All runs are repeated with 5 different random seeds. We track the validation performance over the
course of training. Figure 10 shows the highest validation performance in each hyperparameter
combination, with the results of all models given in Figure 28. For the test performance reported

31

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.3±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.4±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.4±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (96.0±1.2%)

8 16 32 64 12
8

25
6

51
2

10
24

max (99.6±0.2%)

Figure 29: Full results of the RL experiments. The plot shows a variation of learning rate (y-axis) vs.
model dimension d (x-axis). RGB pixel values correspond to min, mean and max success rate when
evaluating on 10,000 newly generated games. Crosses indicate the combination for best success
rate, which we report with standard deviation behind the model name. Note here that training is
stopped early if a success rate of 99% is reached.

we take the hyperparameter combination with the best average validation performance and use the
checkpoints with highest validation performance over the course of training.

J BABY AI EXPERIMENT

To test our architecutres in an RL environment, we base ourself on the open source implementation
of the working memory graph agent presented by Loynd et al. (2020). Specifically, we take a
factored representation of the environment and let the agent learn, what it needs to remember. Please
refer to Loynd et al. (2020) for the core ideas here. In our experiments, we slightly modify their
code, replacing the multi layer perceptron for the policy and value outputs with a simple linear layer
each. Also, we replace the ReLU non-linearities used with GeLUs. These modifications are done
to reflect a similar setup as investigated in the rest of the paper. Similarly we fix M = 4, L = 2
and set the “WMG Memo size” equal to the model dimension d. We chose level 3 of the Baby-AI
environment (Chevalier-Boisvert et al., 2019) based on the results presented by Loynd et al. (2020).
That is, we chose a task which trains decently fast and which should be solvable for a variety of
hyperparameter combinations given the allocated training time. For the hyperparameters which do
not alter the architecture, we used those which Loynd et al. (2020) reported to work best for their
architecture. For completeness, we list them in Table 6. The complete result of all architectures
investigated are given in Figure 29. Also here we ran every hyperparameter combination with 5
different random seeds.

Table 6: Hyperparameters used in the reinforcement learning experiment. These are based on the
hyperparameters which Loynd et al. (2020) report in their Appendix in Table 8.

Hyperparameter Value
A3C tmax 1
Adam eps 1e-12

Discount factor γ 0.95
Entropy term strength β 0.1

Gradient clipping threshold 128.0
Reward scale factor 8.0

WMG Memos 2

32

Under review as a conference paper at ICLR 2022

K BROADER IMPACT STATEMENT

Our work contrast different architectures on an abstract level. Due to the abstract nature of the
study, there is no direct risk associated with system failure. However, we would like to mention
potential implications of the findings. Our main proposal is an architecture which is more robust
to hyperparameters. This has a potential positive benefits on the environment as less computation
needs to be invested to reach a decent performance. Further, our architecture shows an increased
robustness to skewed data distributions. This can have negative and positive aspects. On one hand,
outliers inconsistent with ethical norms, such as hate speech and extreme views, might get picked up
by the model more easily. On the other hand, the model might be able to represent minority groups
more accurately, even though they are underrepresented in the data. In general, we see it as vital
to get a better understanding of how different architectures learn to represent different biases in the
data and hope that our work can provide a stepping stone in this direction.

L FIGURE REPLICATION

Since our way to visualize the results uses the full color spectrum, it might be difficult for people
with color blindness to verify and learn from our findings. We therefore replicate the main figures
here with the R, G and B channels split into three separate plots. We also encourage readers to get
in contact with us if they face any other difficulty reading our plots. We replicate Figures 5-10 in
Figures 30-36 and the Figures of the Appendix thereafter. We also invite an interested reader to
check out our code release, which allows for further visualizations of all results.

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (97.7±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (97.8±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (97.9±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (97.5±0.6%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (84.5±6.8%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.8±0.5%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

Figure 30: Replica of Figure 5: Learning rate (y-axis) vs. model dimension d (x-axis) on the
argmin-first-argmax case distinction task (with output across all tokens). The rows from top to
bottom correspond to min-, mean- and max-accuracy, respectively. The plots show the validation
accuracy when validating on sequences of lengthN = 64. Crosses indicate the combination for best
validation accuracy, which we report with standard deviation behind the model name.

33

Under review as a conference paper at ICLR 2022

4 8 16 32 64 12
8

25
6

51
2

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

4 8 16 32 64 12
8

25
6

51
2

MTE

4 8 16 32 64 12
8

25
6

51
2

NAP

4 8 16 32 64 12
8

25
6

51
2

NON

4 8 16 32 64 12
8

25
6

51
2

sum

4 8 16 32 64 12
8

25
6

51
2

max

4 8 16 32 64 12
8

25
6

51
2

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2

4 8 16 32 64 12
8

25
6

51
2

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2

Figure 31: Replica of Figure 6 (top row): Biased data results on the case distinction task (with output
across all tokens). The rows from top to bottom correspond to argmin, first and argmax-mean-case-
accuracies, respectively. Shown is the learning rate (y-axis) vs. sequence length N (x-axis).

34

Under review as a conference paper at ICLR 2022

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

MTE

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

NAP

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

NON

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

sum

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

max

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

Figure 32: Replica of Figure 6 (bottom row): Biased data results on the case distinction task (with
output across all tokens). The rows from top to bottom correspond to argmin, first and argmax-mean-
case-accuracies, respectively. Shown is the learning rate (y-axis) vs. percentage of argmin-case in
the data (x-axis) with fixed N = 128.

35

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (92.2±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (75.8±25.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (98.8±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (88.9±1.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (23.7±0.5%)

8 16 32 64 12
8

25
6

51
2

10
24

max (98.6±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

Figure 33: Replica of Figure 7: Learning rate (y-axis) vs. model dimension d (x-axis) on the case
distinction task with output from the first token. The rows from top to bottom correspond to argmin,
first and argmax-mean-case-accuracies. Crosses indicate the best accuracy, reported behind the
model name.

36

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.9±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (100.0±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.7±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.9±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (100.0±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

max (15.3±0.5%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

Figure 34: Replica of Figure 8: Learning rate (y-axis) vs. model dimension d (x-axis) on the mode
finding task. The rows from top to bottom correspond to min, mean and max accuracy. Crosses
indicate the combination for best accuracy, reported behind the model name.

37

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (92.4±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (90.9±0.7%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (98.2±0.4%)
8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

Figure 35: Replica of Figure 9: Learning rate (y-axis) vs. attention heads M (x-axis) on the case
distinction task (first token output). The rows from top to bottom correspond to min, mean and max
accuracy. Crosses indicate the combination for best accuracy, reported behind the model name.

38

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.1±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

8 16 32 64 12
8

25
6

51
2

10
24

BERT (99.3±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.4±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.4±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

Figure 36: Replica of Figure 10: Learning rate (y-axis) vs. model dimension d (x-axis). The rows
from top to bottom correspond to min, mean and max validation performance. Crosses indicate the
best combination (validation), from which we report the test performance. Left: Protein-protein-
interaction task. Shown is the node classification F1-score. Right: Altered working memory graph
agent in the Baby-AI level 3 reinforcement learning task. Shown is the success rate.

39

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

8 16 32 64 12
8

25
6

51
2

10
24

- warm up

8 16 32 64 12
8

25
6

51
2

10
24

- grad. clip

8 16 32 64 12
8

25
6

51
2

10
24

+ normalize

8 16 32 64 12
8

25
6

51
2

10
24

+ GELU

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

8 16 32 64 12
8

25
6

51
2

10
24

- warm up

8 16 32 64 12
8

25
6

51
2

10
24

- grad. clip

8 16 32 64 12
8

25
6

51
2

10
24

+ normalize

8 16 32 64 12
8

25
6

51
2

10
24

+ GELU

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 37: Replica of Figure 13 (top two rows): Learning rate (y-axis) vs. model dimension d (x-
axis) on the case distinction task (with output across all tokens) - ablation study. The rows from
top to bottom correspond to min, mean and max accuracy for N = 128 (top 3 rows) and N = 64
(bottom 3 rows). Crosses indicate the combination for best accuracy, reported in Table 1.

40

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

8 16 32 64 12
8

25
6

51
2

10
24

- warm up

8 16 32 64 12
8

25
6

51
2

10
24

- grad. clip

8 16 32 64 12
8

25
6

51
2

10
24

+ normalize

8 16 32 64 12
8

25
6

51
2

10
24

+ GELU

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

8 16 32 64 12
8

25
6

51
2

10
24

- warm up

8 16 32 64 12
8

25
6

51
2

10
24

- grad. clip

8 16 32 64 12
8

25
6

51
2

10
24

+ normalize

8 16 32 64 12
8

25
6

51
2

10
24

+ GELU

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 38: Replica of Figure 13 (bottom two rows): Learning rate (y-axis) vs. model dimension
d (x-axis) on the case distinction task (with output across all tokens) - ablation study. The rows
from top to bottom correspond to argmin, first and argmax accuracy for N = 128 (top 3 rows) and
N = 64 (bottom 3 rows). Crosses indicate the combination for best accuracy, reported in Table 1.

41

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

Cases - all tokens (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

Cases - first token (99.2±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24

Mode (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

Figure 39: Replica of Figure 14: Learning rate (y-axis) vs. model dimension d (x-axis) in the
different task setups when just replacing the softmax in BERT with normalization. The plots from
left to right are grouped according to the tasks: The case task with outputs across all tokens (cf.
Section 5.1), the case task with outputs from the first token (cf. Section 5.2) and the mode task (cf.
Section 5.3). For the case tasks, the left sub-plots report min, mean and max accuracies (from top to
bottom) while the right sub-plots report mean case accuracies (argmin, first and argmax from top to
bottom). The mode plots report min, mean and max accuracies. The plots show the accuracies for
N = 128.

42

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.5±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (99.0±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

max (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 40: Replica of Figure 18: Learning rate (y-axis) vs. model dimension d (x-axis) on the
argmin-first-argmax case distinction task (with output across all tokens). The rows from top to
bottom show min, mean and max accuracy for N = 128. Crosses indicate the combination for best
accuracy, reported behind the model name.

43

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (98.0±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (97.6±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (98.0±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (97.8±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (88.9±5.0%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.7±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (98.2±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (97.1±1.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (97.6±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (97.6±0.5%)
8 16 32 64 12
8

25
6

51
2

10
24

sum (84.3±6.2%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.8±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 41: Replica of Figures 19 and 20: Learning rate (y-axis) vs. model dimension d (x-axis) on
the argmin-first-argmax case distinction task (with output across all tokens) with L = 4 (top 3 rows)
and L = 6 (bottom 3 rows). The rows from top to bottom show min, mean and max accuracy for
N = 64. Crosses indicate the combination for best accuracy, reported behind the model name.

44

Under review as a conference paper at ICLR 2022

1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

1 2 4 8 16 32 64 12
8

MTE

1 2 4 8 16 32 64 12
8

NAP

1 2 4 8 16 32 64 12
8

NON

1 2 4 8 16 32 64 12
8

sum

1 2 4 8 16 32 64 12
8

max

1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

1 2 4 8 16 32 64 12
8

MTE

1 2 4 8 16 32 64 12
8

NAP

1 2 4 8 16 32 64 12
8

NON
1 2 4 8 16 32 64 12
8

sum

1 2 4 8 16 32 64 12
8

max

1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8 1 2 4 8 16 32 64 12
8

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 42: Replica of Figure 21: Learning rate (y-axis) vs. batch size (x-axis) on the case distinction
task (with output across all tokens). The rows from top to bottom correspond to argmin, first and
argmax-mean-case-accuracies for N = 128 (top 3 rows) and N = 64 (bottom 3 rows). Crosses
indicate the combination for best accuracy, reported behind the model name.

45

Under review as a conference paper at ICLR 2022

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

MTE

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

NAP

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

NON

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

sum

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

max

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

MTE

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

NAP

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

NON
3e

-4
1e

-3
5e

-3
0.

02
0.

08
0.

32
1.

28
5.

12

sum

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

max

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

3e
-4

1e
-3

5e
-3

0.
02

0.
08

0.
32

1.
28

5.
12

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 43: Replica of Figure 22: Learning rate (y-axis) vs. initialization scale (x-axis) on the case
distinction task (output across tokens). The rows from top to bottom correspond to argmin, first and
argmax-mean-case-accuracies for N = 128 (top 3 rows) and N = 64 (bottom 3 rows).

46

Under review as a conference paper at ICLR 2022

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

MTE

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

NAP

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

NON

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

sum

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

max

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%
9.

0%
18

.1
%

36
.2

%
72

.4
%

86
.2

%
93

.1
%

96
.5

%
98

.3
%

9.
0%

18
.1

%
36

.2
%

72
.4

%
86

.2
%

93
.1

%
96

.5
%

98
.3

%

Figure 44: Replica of Figure 23: Learning rate (y-axis) vs. percentage of identity-case (x-axis). Top
row: identity accuracy. Bottom row: argmin accuracy.

47

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (92.2±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (75.8±25.3%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (98.8±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (88.9±1.1%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (23.7±0.5%)

8 16 32 64 12
8

25
6

51
2

10
24

max (98.6±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (72.7±0.7%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (59.3±14.8%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (94.1±1.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (69.8±0.9%)
8 16 32 64 12
8

25
6

51
2

10
24

sum (30.9±0.6%)

8 16 32 64 12
8

25
6

51
2

10
24

max (91.7±1.3%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 45: Replica of Figure 24: Learning rate (y-axis) vs. model dimension d (x-axis) on the case
distinction task (first token output). The rows from top to bottom show min, mean and max accuracy
for N = 128 and then N = 64. Crosses indicate the combination for best accuracy, reported behind
the model name.

48

Under review as a conference paper at ICLR 2022

1 2 4 8 16 32 64

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (95.5±2.7%)

1 2 4 8 16 32 64

MTE (63.4±32.3%)

1 2 4 8 16 32 64

NAP (98.0±0.5%)

1 2 4 8 16 32 64

NON (26.4±6.4%)

1 2 4 8 16 32 64

sum (23.6±0.6%)

1 2 4 8 16 32 64

max (98.3±0.1%)

1 2 4 8 16 32 64
0.3

0.09
0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

1 2 4 8 16 32 64

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (77.3±21.0%)

1 2 4 8 16 32 64

MTE (52.7±18.6%)

1 2 4 8 16 32 64

NAP (91.1±1.9%)

1 2 4 8 16 32 64

NON (32.5±5.6%)
1 2 4 8 16 32 64

sum (30.6±0.9%)

1 2 4 8 16 32 64

max (93.2±0.6%)

1 2 4 8 16 32 64

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 46: Replica of Figure 25: Learning rate (y-axis) vs. Transformer-layers L (x-axis) on the
case distinction task (output from the first token). The rows from top to bottom correspond to min,
mean and max accuracy for N = 128 (top 3 rows) and N = 64 (bottom 3 rows). Crosses indicate
the combination for best mean accuracy, reported behind the model name.

49

Under review as a conference paper at ICLR 2022

2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

2 4 8 16 32 64 12
8

25
6

MTE

2 4 8 16 32 64 12
8

25
6

NAP

2 4 8 16 32 64 12
8

25
6

NON

2 4 8 16 32 64 12
8

25
6

sum

2 4 8 16 32 64 12
8

25
6

max

2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT

2 4 8 16 32 64 12
8

25
6

MTE

2 4 8 16 32 64 12
8

25
6

NAP

2 4 8 16 32 64 12
8

25
6

NON
2 4 8 16 32 64 12
8

25
6

sum

2 4 8 16 32 64 12
8

25
6

max

2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 47: Replica of Figure 26: Learning rate (y-axis) vs. vocabulary size S (x-axis) on the mode
finding task. The rows correspond to min, mean and max accuracy for N = 128 (top 3 rows) and
N = 256 (bottom 3 rows). Crosses indicate the learning rate for best mean accuracy, reported in
Table 5.

50

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

Cases - all tokens (98.8±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

Cases - first token (88.2±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

8 16 32 64 12
8

25
6

51
2

10
24

Mode (99.7±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

Figure 48: Replica of Figure 27: Learning rate (y-axis) vs. model dimension d (x-axis) in the
different task setups with learned aggregation weights. The plots from left to right are grouped
according to the tasks: The case task with outputs across all tokens (cf. Section 5.1), the case task
with outputs from the first token (cf. Section 5.2) and the mode task (cf. Section 5.3). For the case
tasks, the left sub-plots report min, mean and max accuracies (from top to bottom) while the right
sub-plots report mean case accuracies (argmin, first and argmax from top to bottom). The mode
plots report min, mean and max accuracies. The plots show the accuracies for N = 128.

51

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.1±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.1±0.0%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (92.3±0.4%)

8 16 32 64 12
8

25
6

51
2

10
24

max (97.9±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 49: Replica of Figure 28: Full results of the GNN experiments on the protein-protein-
interaction task. The plot shows a variation of learning rate (y-axis) vs. model dimension d (x-axis).
The rows from top to bottom correspond to min, mean and max validation node classification F1-
score. Crosses indicate the best combination (validation), from which we report the test performance
behind the model name.

52

Under review as a conference paper at ICLR 2022

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

BERT (99.3±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

MTE (99.4±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

NAP (99.4±0.1%)

8 16 32 64 12
8

25
6

51
2

10
24

NON (99.4±0.3%)

8 16 32 64 12
8

25
6

51
2

10
24

sum (96.0±1.2%)

8 16 32 64 12
8

25
6

51
2

10
24

max (99.6±0.2%)

8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12
8

25
6

51
2

10
24

0.3
0.09

0.027
0.008
0.002

7.3e-4
2.2e-4
6.6e-5
2.0e-5
5.9e-6

Figure 50: Replica of Figure 29: Full results of the RL experiments. The plot shows a variation
of learning rate (y-axis) vs. model dimension d (x-axis). The rows from top to bottom correspond
to min, mean and max success rate when evaluating on 10,000 newly generated games. Crosses
indicate the combination for best success rate, which we report with standard deviation behind the
model name. Note here that training is stopped early if a success rate of 99% is reached.

53

	Introduction
	Background and Related Work
	Implications of Softmax Attention
	Normalized Attention Pooling
	Experiments and Results
	Argmin-First-Argmax Case Distinction Task
	Varying Model Dimension d
	Case Accuracy under Varying Data Biases

	First Token Output
	Mode Finding Task
	Generalization to Graph Neural Networks and Reinforcement Learning

	Conclusion
	Representation Power with Respect to XOR
	Vanishing Gradient Analysis
	Sequence Length Dependent Focus
	Architectures
	Architecture Modification Ablations
	Regularization Experiments

	Case Learning Curves
	Case Distinction Task - Additional Results
	Varying Model Dimension with 4 and 6 Layers
	Varying Batch Size
	Varying Initialization Scale
	Local vs. Global Focus under Varying Data Bias
	First Token Output - Varying Model Dimension
	First Token output - Varying Depth

	Mode Finding Task - Additional Results
	Varying Vocabulary Size

	Learned Aggregation Weights
	PPI Experiment
	Baby AI Experiment
	Broader Impact Statement
	Figure Replication

