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Abstract

Reinforcement learning (RL) is central to improving reasoning in large language
models (LLMs) but typically requires ground-truth rewards. Test-Time Reinforce-
ment Learning (TTRL) removes this need by using majority-vote rewards, but relies
on heavy online RL and incurs substantial computational cost. We propose RoiRL:
Reasoning with offline iterative Reinforcement Learning, a family of lightweight
offline learning alternatives that can target the same regularized optimal policies.
Unlike TTRL, RoiRL eliminates the need to maintain a reference model and instead
optimizes weighted log-likelihood objectives, enabling stable training with sig-
nificantly lower memory and compute requirements. Experimental results show
that RoiRL trains to 2.5 faster and consistently outperforms TTRL on reasoning
benchmarks, establishing a scalable path to self-improving LLMs without labels.

1 Introduction

Reasoning [18] is at the core of large language model (LLM) capabilities, improving performance on
mathematical problem solving [7], commonsense inference [18, 15], and agentic applications [19].
Recent advances have demonstrated that reasoning ability can be enhanced not only by scaling model
size and data but also by explicitly training models to generate and evaluate chains of thought [4].
Reinforcement learning (RL) [14] has played a particularly important role in this direction: RL aligns
models generations with outcome quality, improving their ability to solve complex tasks.

However, RL-based approaches require access to ground-truth rewards, mostly in the form of
correctness labels (e.g., for math problems). This reliance can limit their scalability, since ground-
truth supervision is costly and often unavailable. To circumvent this bottleneck, recent work has
leveraged majority-vote as a weak supervision signal: instead of relying on external labels, the model
itself generates multiple candidate solutions, and majority voting [17] is used to estimate correctness.
This idea has proven highly effective at inference time, where increasing the number of sampled
solutions substantially improves accuracy through test-time scaling [17].

Building on this observation, Test-Time Reinforcement Learning (TTRL) [20] has been proposed as a
mechanism for turning majority-vote feedback, originally used in test time scaling, into a training
signal. By repeatedly generating candidate chains of thought (CoT) [18] with their respective answers,
evaluating them with majority voting, and updating the model parameters online, TTRL enables
reasoning improvement without ground-truth labels. Empirically, this approach has demonstrated
strong gains on reasoning benchmarks, validating the potential of self-generated feedback.

Despite its promise, TTRL faces two critical limitations. First, it is computationally expensive. The
method requires maintaining a reference model and computing its logits at every training step.
Combined with repeated chain-of-thought (CoT) sampling during training, this quickly saturates
memory and makes the approach increasingly difficult to scale to larger models or longer runs.
Second, its online nature introduces instability. Performance is highly sensitive to hyperparameter
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choices, as also reported in [20]. These issues make TTRL challenging to deploy in practice and limit
its applicability as a general recipe for scalable reasoning improvements.

Inspired by offline RL approaches [9, 10], we introduce RoiRL (Reasoning with offline iterative
Reinforcement Learning), a lightweight alternative that preserves the benefits of self-generated
rewards while overcoming the limitations of TTRL. Our method optimizes simple weighted log-
likelihood objectives in an iterative offline loop, eliminating the need for online RL or maintaining a
reference model. This design improves stability, reduces memory overhead, and scales efficiently
with model size. On small-scale models and modest compute budgets, RoiRL trains faster and more
efficiently, while consistently surpassing TTRL across reasoning benchmarks.

Contributions. We introduce a family of offline weighted log-likelihood objectives, that can target
and solve the same underlying problem of TTRL without requiring online RL, nor maintaining a
reference model. We demonstrate empirically that RoiRL, which builds on these simple objectives,
achieves superior performance and scalability, offering a practical path toward self-improving LLMs
without reliance on true labels.

2 Preliminaries

We assume access to a strong base LLM, typically pre-trained or instruction-tuned , which we denote
by the policy mg = mg,, . Given a prompt x, the model generates a chain-of-thought c leading to the
answer y, sampled as {c, y} ~ mo(- | ). Alongside this model, we consider a collection of reasoning
tasks for which ground-truth answers are unavailable. These tasks are represented as a prompt dataset
Prn = {Zi}ic[n). where each x; corresponds to a question or input prompt and 7 is the dataset size.
Crucially, the dataset contains no labels, reflecting the realistic setting where large collections of
problems are readily available, while solutions are not.

Test Time Reinforcement Learning. Given P,,, TTRL [20] provides a learning algorithm to improve
the reasoning abilities of g, . For each reasoning task x;, TTRL attributes an approximate ground truth
label g; to x; on the fly. For each optimization step ¢, mg, generates k > 2 candidates {cf, yf} e[k
defined with their respective CoT and answers. The answers {yf}ge[k] are used to define the
approximate ground truth label §; as the label with the majority vote i.e. §¥(0;) = maj telk] (y5).
Rewards are then naturally attributed to the generated candidates and constructed as 7 (y, z;, 0;) =
1 [y =gk (Gt)] , augmenting data with rewards and enabling the use of RL algorithms to train and

optimize the parametrised LLM policy 7y. For instance, TTRL optimizes the KL regularized expected
reward using GRPO [13]:

mgax {Z E(C’y)wﬂs(.ui) [fk(y,xi, 9)] — ﬂKL(?T@,?T()M‘i)} . (1)

i=1

with KL(mg, mo|x) the KL divergence between my(-|x) and mo(:|z), and 8 > 0 a regularization
parameter, solving for an LLM that optimizes for the consistency of the generated answer while
staying close to the original model.

Non-stationary rewards. The particularity of the optimization problem in Equation (1) is that the
rewards are non-stationary and depend on the current policy myp we are optimizing. In step ¢, the
reward of an answer ¥ is positive when it matches the majority vote at k: §*(6;). This means that the
reward shifts when the majority vote changes in the optimization. This subtlety makes this approach
differ from only distilling the majority voter back into the model.

3 Self Supervised Reasoning with Iterative Offline Reinforcement Learning

TTRL optimizes the KL-regularized reward maximization objective of Equation (1) using GRPO
[13] in an online setting. While effective, this procedure is computationally demanding: it requires
maintaining a reference model in memory, repeatedly sampling potentially long answers during
training, and computing their logits under both current and reference policies. This saturates GPU
memory and limit scalability. In addition, the reliance on online RL makes the method highly sensitive
to hyperparameter choices, leading to instability and unreliable performance in practice [20].
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This raises a natural question: can we achieve the same objective with a procedure as simple and
stable as supervised fine-tuning? Building on offline RL methods [10], we answer affirmatively with
RoiRL (Reasoning with offline iterative Reinforcement Learning), an iterative, offline approach that
address these limitations. In each iteration m > 1, RoiRL alternates between two steps:

(1) Generation: From the current policy ,,,_1, we sample k candidate solutions {c!, y! } e[ for
each prompt z; € P. These candidates are scored with a majority-vote reward, 7, (y¢, i, 0y 1) =
1 [y; = §F (6m—1)] with G (6,n—1) = maj e (yf). This produces an offline dataset:

Dmfl = {xh {Cf7yfa fk:(:Ufaxia emfl)}ge[k]}

(2) Offline Update: Using D,,,_1, we approximate and solve the weighted log-likelihood objective

1€[n]

O = arg ;nax {Z ]E((:,y)wﬂ'm,l [QED) [gm (,Fk (y7 Ty, em—l)) log o (C, yxl)]} ’ )

i=1
with g, : R — R an increasing reward transform. We then update the policy as 7, < 7, .
The resulting optimization routine is summarized in Algorithm 1. Equation (2) can be interpreted as a

weighted supervised fine-tuning loss on generated answers, in contrast to the unstable online updates
of TTRL. RoiRL is more stable and alleviates the need for 7, making it significantly more scalable.

Algorithm 1: Reasoning with offline iterative Reinforcement Learning (RoiRL)

Input: Policy 7y, reward transforms (g, )men, prompt dataset P = {; };c[,,, number of
candidates k.
Initialize: 0 = 6y, 7o = 7y,
form=1,2,... do
Construct offline dataset D,,, 1 with m,,, 1
Update parameters 6,,, by solving Equation (2)
Set my, < 7,

Connection to KL-Regularized Objectives. Unlike TTRL, which explicitly enforces KL regular-
ization, RoiRL leverages a sequence (g, )men of reward transform g,,, : R — R, Vm that implicitly
control the reward influence. At iteration m, the analytical solution of Algorithm 1 takes the form:

Vie,y),, mmlcylr) o< | [ g5, 2,0,-1) | molc,ylz). 3)

j=1

For example, choosing g, (r) = gg(r) = exp(r/B) ,Vj yields

1 &
V(c,y)mc, wm(c,y|x) X exp Bzrk(y7$79jfl) 71—O(cuy|x)7
Jj=1

which closely mirrors the closed-form solution of KL-regularized RL objectives widely used in
preference alignment [8, 11] and reasoning [13] for example. A proof of the analytical solution is
provided in Appendix A.2. In particular, the following proposition connects RoiRL and TTRL.

Proposition 3.1. For any 8 > 0, there exists a choice of the reward transforms (gm )men such that
Equation (1) and Algorithm 1 admit the same solution.

This result is proven in details in Appendix A.3, and shows that RoiRL can target the same theoretical
objective as TTRL, while being more stable, scalable, and practically implementable. Moreover, by
flexibly choosing g, and thus controlling the reward influence on the updates, RoiRL extends beyond
TTRL to encompass a broader family of objectives, including known regularized objectives [16].

4 Experiments

Experimental Setup. We design our experimental setting to compare the training and generalization
performance of RoiRL against TTRL. We evaluate the learning approaches on three mathematical



Table 1: Results are reported for training on unlabeled problems from MATHS500 Train and evaluating
on all datasets. RoiRL outperforms TTRL in most cases. For each decoding strategy, the second-best
result is underlined, the best result is in bold, and marked with x when it beats 7wy with maj,,g.

Decode  Model \ Qwen2.5-Math-1.5B Phi4-mini-reasoning-4B Llama-3.2-3B-Instruct

‘ MATHS00 AMC AIME ‘ MATHS00 AMC AIME ‘ MATHS00 AMC AIME

| Train Test | Train Test | Train Test
Base (mp) | 0.244 0.239 0.170 0.036 0.210 0.160 0.071 0.000 0.256 0.295 0.141 0.050
s TTRL 0.307 0.298 0.214 0.026 0.272 0.225 0.090 0.000 0.361 0.394  0.159 0.043
maj; RoiRL g; | 0.686 0.587 0.337 0.083 | 0.660* 0.511 0.246 0.016* | 0.395 0.376 0.198 0.060
RoiRL gg | 0.670 0.604 0.340 0.070 0.533 0.344 0.125 0.000 | 0.487 0.256 0.090 0.020
Base (mp) | 0.572 0.520 0.445  0.100 | 0.420 0.350 0.157 0.000 | 0.495  0.480  0.253  0.033

nai 0.625 0.560 0.469  0.066 | 0.483 0.460 0.193 0.000
J10 RoiRLg; | 0.712 0.690* 0.518" 0.133 | 0.720* 0.680* 0.421* 0.067* | 0.508 0.520 0.313 0.200*

RoiRL gg | 0.685 0.650 0.469  0.200 | 0.543 0.560 0.277 0.033 | 0.508 0.530* 0.229  0.100
majy,g  Base (o) | 0.717 0.680 0.506  0.233 | 0.563 0.560 0.289 0.000 | 0.543  0.520  0.361 0.167

0.510 0.490 0.313 0.167

reasoning benchmarks: MATHS00 [6], AMC [6], and AIME2024 [2]. The MATHS500 dataset is
further divided into 400 training (MATHS00 Train) and 100 test (MATHS00 Test) problems. All
training algorithms are run on the unlabeled problems from the Train split of MATH500, which defines
the problem dataset P,,. Using ground-truth labels, we then measure accuracy on the MATHS500
Train split, the MATHS500 Test split, AMC, and AIME2024 to assess the generalization capabilities
of the learning methods. For base models, we use three reasoning-oriented LLMs of diverse sizes:
Qwen2.5-Math-1.5B [3], Phi-4-mini-reasoning-4B [1], and Llama-3.2-3B-Instruct [5]. These models
already demonstrate good reasoning capabilities and differ sufficiently in design to enable robust
validation of our learning approaches across architectures and training paradigms [12]

Training. Both TTRL and RoiRL use the majority vote signal 7 as a training signal to improve the
base model. For each problem z;, we generate £k = 10 candidates, with which the majority vote
signal 7%, is defined. TTRL is implemented using GRPO [13] with the KL regularizer 8 = 0.1, that we
compare to two flavors of RoiRL: the first one uses an exponential function gg : * — exp(z/8) with
£ = 0.1 to mimic TTRL’s behavior, and the second uses the identity function g; : * — x, reducing
the offline update to simple supervised finetuning on good generated answers. Implementation details
are developed in Appendix B.1.1.

Decoding strategies and baselines. We evaluate our learning methods based on their ability to
improve the base model 7y. Since training uses the majority-vote signal with £ = 10, improving
a single sampled answer (k = 1) is relatively straightforward, as the model effectively distills the
majority vote. To assess performance beyond this distilled signal, we compare models using k = 1
(maj,) and k = 10 (maj,y). We also report the base model with k = 128 (maj,,g) to evaluate
whether the learned model can surpass this strong but costly baseline.

Results. Table 1 shows that RoiRL outperforms the online RL-based TTRL approach in the majority
of cases while being up to 2.5x faster (see Appendix B.1.3). RoiRL with gg improves over TTRL
despite both targeting a KL-regularized objective, while the gy variant achieves the best overall
results, suggesting that alternative reward transforms beyond KL may be more effective. RoiRL is a
self-improving method and not merely a distillation of majority voting: maj, decoding with obtained
models can surpass the base model’s maj,, decoding, and maj,, decoding with obtained models can
outperform the base model with costly maj,,¢ decoding, even on unseen problems. Extended results
with training curves and developed discussions are provided in Appendix B.

5 Conclusion

We proposed RoiRL, a simple and scalable approach for self-supervised reasoning in LLMs that
converts majority-vote signals into efficient offline updates. Unlike online RL approaches such as
TTRL, RoiRL requires no reference model, achieves greater stability and speed, and consistently
improves accuracy across benchmarks, demonstrating that lightweight offline reinforcement learning
is sufficient for self-improvement in reasoning tasks. Future work will extend this approach by
evaluating RoiRL on larger LLMs to further validate scalability, exploring alternative ground-truth
estimation strategies beyond majority vote, and studying the impact of different reward transforms,
which we found to substantially influence performance.
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A Technical Discussions and Proofs

A.1 Useful Lemma
Our main theoretical result is based on the use of the following Lemma.
Lemma A.1. Let g a positive function. The solution of the weighted likelihood objective of the form:
arg max {E (e, (1) 92, ¢.9) log (e, )]}
can be computed analytically and is:
vz, (y,c), 7 (¢, ylx) o< g(z, ¢, y)mo(c, y|z) .

Proof. We prove this Lemma below for completeness. The objective is a constrained optimization
problem, that can be solved by Lagrange multipliers. For a fixed input x, we want to maximize:

‘](,/T) = Z 7(-0(67 y‘m)g(% & y) 1Og ,/T(Ca y|l’)

subject to the normalization constraint:

S resyla) = 1

ey
Setting up the Lagrangian:
L(m,\) = Zwo(c,y|x)g(m, c,y)logm(e,ylz) — A (Z (e, ylz) — 1)
cy cy

Taking the partial derivative with respect to (¢, y|x) and setting it to zero:

oL mo(e,ylr)g(z,cy) A =0
on(c, y|z) (e, ylx)
Solving for 7(c, y|x):
eyl = LY C.0)

A

Using the normalization constraint  _,  7(c,ylz) = 1:

Z ’/TO(Ca y|$)g(l’, C, y) -1
A

ey
Therefore:

A= Z 7TO(Ca y\a?)g(x, ¢, y)

ey
Substituting back:
77'*(6 y\x) — Tl'o(C,y|JU)g($,C, y)
’ Zc/7y/ W()(Clvy/|x)g(xac/ay/)

This shows that 7*(c, y|z) x g(z, ¢, y)mo(c, y|z), completing the proof. O

A.2 Analytical Solution of RoiRL

We remind the reader of the RoiRL algorithm below:

RoiRL leverages a set (g, )men of increasing reward transform g,,, : R — R, Vm that implicitly
control the reward influence. At iteration m, the analytical solution of Algorithm 1 takes the form:

Vie,y), i, mm(eylw) o | ] g5y, zi05-1)) | mole,yla:) -
j=1
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Algorithm: Reasoning with offline iterative Reinforcement Learning (RoiRL)

Input: Policy 7y, transforms (g, )men, prompt dataset P = {x; };c[,], number of candidates k.
Initialize: 0 = 0y, mo = 7y,

form=1,2,... do

Construct offline dataset D,,, 1 with m,,, 1

Using D,,,—1, we approximate and solve the weighted log-likelihood objective

Om = arg max {Z E(cp)mmm 1 (lzs) [9m (T (Y, T35 Om—1)) 10g7T9(C,y|117i)]} :

i=1

Set 7, < Ty

m

Proof. We prove this result by induction on the iteration number m.

Base Case (m = 1): At iteration m = 1, we solve:
01 = argénax {Z E(C,y)’\/ﬂ'o("xi) [gl (fk(ya Ty, 00)) log 7'(9(0, y|$1)] }
i=1

As the optimization problem is decomposable, we can look at each z; independently. Let x; be a
prompt from P. By the previous Lemma A.1, the analytical solution is:

m1(c,ylwi) o< g1 (Fr(y, 24, 00))mo(c, y|x:)
This matches our claimed form with m = 1:

1
mi(e,ylea) o | [T 05 (Falys i, 0;-1)) | molesylas) = g1(Fuly, 2, 60))mo(c, yls)
j=1

Inductive Step: Assume the claim holds for some iteration m — 1, i.e.:

m—1

7Tm_1(C,y|$i) X H gj(":k(yvxivoj—l)) 7T0(67y"ri)
j=1

At iteration m, we solve:
O = arg max {Z Ee,p)mrmm—1 (las) [9m (Te (Y, T4, Om—1)) log ma(c, y|x)] }
i=1
By the previous lemma, the analytical solution is:
7Tm(C, y|x7,) X gm(fk (ya Ly em—l))ﬂ-m—l (Ca y|3§'1)

Substituting the inductive hypothesis:

m—1

Trm(cay|mi) OCg’rn(?:k(yvxueﬂl—l)) H g](lf;k(yaxlaej—l)) Tl'o(C,y|x7;)
j=1

m

o | [T 95 ey, zi,6,-1)) | wolc, yla:)

j=1

This completes the induction and proves the claimed form. O



A.3 RoiRL solves the TTRL objective and beyond

The proposed RoiRL objective provides an offline, iterative alternative to the recently proposed TTRL
algorithm. We recall that TTRL optimizes the KL regularized expected reward:

mgx {Z E(C’y)wﬂ(.mi) [f]g(y, Ty, 7'(')] - ﬁ KL(ﬂ', 7TO|$1')} .
i=1

This optimization problem differs from the classical regularized objective as the individual rewards

depend themselves on the current policy we are optimizing. We can connect RoiRL and TTRL with

the following proposition:

Proposition 3.1. For any 8 > 0, there exists a choice of the reward transforms (G ) men such that
Equation (1) and Algorithm 1 admit the same solution.

Proof. Let us focus on the TTRL objective. As the problem is decomposable over prompts, the
optimal policy 7* can be recovered for each x;. We then optimize:

Ji(m) = S wlesylea)ia(y zim) — B3 m(e, yhos) log T UAT)

Y ¢,y o (C’ y|f177)

Using the method of Lagrange multipliers with the constraint Zc, Y (e, ylz;) = 1:
L=Ji(n) =N\ (Zﬂ(qym) - 1)
Y

Taking the functional derivative with respect to m(c, y|z;):

oL ark(y L, T )
Irleyle) W *Z V1) Gyl
fm%gkﬁﬁlfﬂszo
7TO(va‘xi)

The key challenge is the second term, which captures how changing (¢, y|z;) affects all other
rewards 7 (y’, z;, w) through the policy dependence.

For the optimal policy 7*, rearranging:

*u 7 or Ia ia*
m%ﬂﬁwﬂiz o) + Y 7 (o o) 2 WL 20 T) g

mo(c, yla; o om*(c,yl:)

Taking the exponential:

87"k(y y Liy T )

Ty PN

1
(e, ylzi) = mo(c, ylw;) exp 5| (y, @i, +Z7r ' ylzi)

Using the normalization constraint to determine A;, the first-order conditions become:

1 0
™ (eale) el o | 5 |l + 3o o) UCE

Finally, as the rewards are indicator functions, which is d1scont1nu0us, their derivative is null almost
surely. This allows us to set all the rewards partial derivative to 0, obtaining a fixed point equation
that 7 verifies:

1
V(e.y) 7 (e yle) oc exp (Bmg,xi,w*)) rolesylas) @

TTRL targets this solution by solving Equation 1. However, obtaining this solution can also be
conducted by solving the fixed point equation directly. The fixed point solution can be solved by
iterating over m > 1 the following:
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¢ Collect a dataset D,,,_1 with m,,,_1.
» Update 7, x exp (%Fk(y,xi, Wm,l)) mo(c, ylz;i)

until you reach convergence of the policy 7,,,. The update step can be solved by optimization, and
can be implemented by the following Algorithm:

Algorithm: Fixed Point Approach

Input: Policy 7y, prompt dataset P = {x;},c|,], number of candidates k.
Initialize 7.

form=1,2,... do

Construct offline dataset D,,, 1 with m,,, 1

Set by,—1(y, ;) = 7 (y, Ti, T—2) if m > 2 else by,—1(y, z;) = 0.

Using D,,,_1, we approximate and solve the weighted log-likelihood objective

- 1
o = Argmax {ZEM_1<<@,) [exp (Bwk(m s bml(y,xn)) log 7re<c7y|xi)} } .
& i=1
)

This algorithm is exactly Algorithm 1 with the particular choice of g,, to be:

gm(ya CL‘) = exp (; (fk(yvxaﬂ-mfl) - bm(l', y))) 3 (6)

with by, —1(y,x) = T (y, T, Tm—2) if m > 2 else by,—1(y,z) = 0. RoiRL can exactly target the
optimal solution of TTRL with the choice of g in Equation 6. This ends the proof.

O

B Extended Empirical Results

B.1 Experimental Details
B.1.1 Implementation Details

We compared three training methods using the same hyperparameters. In all experiments, we generate
k = 10 candidates for each problem and then train on these candidates using the chosen reward
function g. We used our custom WeightedSFTTrainer to implement learning with gg :  —
exp(z/fB) and used standard SFTTrainer to implement g; : © — x, as it is equivalent to using
supervised finetuning on candidates with answers corresponding to majority vote. We will refer to
the proccess of generating candidates and training on them as 1 round of RoiRL. In both methods,
after generating candidates, we train for 3 epochs during every round. We trained all methods for 15
rounds, with early stopping if maj,, accuracy on the train dataset did not improve for more than 5
rounds. We take the round with the best performance on train, when reporting the final accuracies.

All hyper-parameters were set to their default values in SFTTrainer, the only exception being the
reduction of the learning rate from 2 - 10~° to 10~° for Llama-3.2 with g; because higher values
result in overfitting. We implemented TTRL with Huggingface GRPOTrainer and used its default
parameters.

In our experiments, we compare one round of RoiRL with one epoch of TTRL as both require the same
number of generations, namely, kn. However, note that TTRL is computationally more demanding
and thus requires more time per epoch. More details of the computational advantages of RoiRL over
TTRL are discussed in B.1.3.

B.1.2 Evaluation

To obtain the majority vote, we generate k answers from the model using temperature sampling with
a temperature equal to 1.0. The maximum number of new tokens is set to 1024. We then extract the
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answers from the generated solution, find the one that has the most occurrences, and choose it as
our majority vote answer. If two answers have equal number of occurrences, we pick one of them
randomly.

To extract the answer, we find the first occurrences of \boxed{} in the generated solution and
consider everything that was put inside the brackets as the final answer. Qwen2.5-Math automatically
puts the final answer inside \boxed{} and to ensure the same behavior from the other two models,
we add a phrase “Put your answer in \boxed{}” to the prompt.

Since the same answer can be written in multiple ways (for example, 0.5 or %) we used sympy to
parse latex and then compared the answers as sympy objects. In case of parsing or comparison errors
or timeouts, we fallback and compared the answers as strings.

B.1.3 Computational advantages of RoiRL

The proposed RoiRL method has several computational advantages over TTRL. Firstly, we strictly
separate the generation and the training phases and this allows better batching during generation.
More precisely, we can generate answers to multiple questions in a single batch, unlike online RL
algorithms such as TTRL. Secondly, our reward method does not require storing logits, so we can use
larger batch size during generation compared to TTRL. Unlike GRPO, our method does not use a
reference model to compute the reward, further reducing its computational cost. And finally, using a
sparse reward function (e.g., gr) in RoiRL can significantly speed up the training phase, especially
in the early stages, when the majority answers are sparse. With all these advantages combined, we
achieve performance more than x 2.5 times faster per 1 round of RoiRL compared to 1 epoch of TTRL.
The exact time evaluations for TTRL and RoiRL with sparse (g7) and dense (gg) reward functions are
presented in Table 2.

All experiments were conducted on a Google Cloud Platform (GCP) instance with a single NVIDIA
A100 (80Gb VRAM), 12 vCPUs and 170 GB RAM running on Debian GNU/Linux 11 (bullseye).
RoiRL and TTRL methods were implemented using the Hugging Face Transformers library v4.52.4,
TRL v0.18.2 and PyTorch v2.7.1 with CUDA 12.4.

Table 2: Time per round comparison

Method Time per round

RoiRL, g (sparse reward) 6552.5s
RoiRL, gg (dense reward)  8883.5s
TTRL 17019.25s

B.2 Detailed Results and Discussions

Figures 1, 2 and 3 illustrate the training curves for Qwen2.5-Math-1.5B [3], Phi-4-mini-reasoning-4B
[1], and Llama-3.2-3B-Instruct [5] trained with RoiRL and TTRL. The greedy decoding baseline and
the maj,,q baseline are represented by horizontal lines.

RoiRL consistently improves the accuracy on the MATHS500-train dataset and successfully generalizes
on a holdout MATHS500-test dataset, AMC and AIME datasets. Note that unlike supervised finetuning,
RoiRL does not require ground-truth labels even on the train dataset, so this is a self-improvement
process. Compared to TTRL, RoiRL demonstrates faster convergence with the same number of
training rounds and less computations.

RoiRL improves not only the sampling accuracy (dotted lines), but also the maj, accuracy (solid
lines). Moreover, for Qwen-2.5 and Phi-4, after several epochs the sampling accuracy exceeds
the initial maj,, accuracy. This demonstrates how RoiRL does not just distill the majority vote
performance into the base model, but improves the general ability to solve mathematical problems.

Finally, Figure 4 illustrates the evolution of the average entropy during training for Qwen2.5 on
MATHS00-Train and Test. When using the RoiRL, entropy rapidly decreases to almost zero. However,
for TTRL, the entropy stays relatively high during the whole training process. This can explain faster
convergence of RoiRL during our experiments. In addition, the fast reduction of the entropy to zero
with RoiRL raises a natural question of applying more regularization, implicitly by reducing the
learning rate or using alternative reward functions, which may be the subject of further research.
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