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Abstract

The use of deep neural networks for modelling
system dynamics is increasingly popular, but long-
term prediction accuracy and out-of-distribution
generalization still present challenges. In this
study, we address these challenges by consider-
ing the parameters of dynamical systems as fac-
tors of variation of the data and leverage their
ground-truth values to disentangle the represen-
tations learned by generative models. Our exper-
imental results in phase-space and observation-
space dynamics, demonstrate the effectiveness of
latent-space supervision in producing disentan-
gled representations, leading to improved long-
term prediction accuracy and out-of-distribution
robustness.

1. Introduction

The robust prediction of the behaviour of dynamical systems
remains an open question in machine learning, and engi-
neering in general. The ability to make robust predictions is
important not only for forecasting systems of interest like
weather (Garg et al., 2021), but also because it supports
innovations in fields like system control, autonomous plan-
ning (Hafner et al., 2019) and computer-aided engineering
(Brunton et al., 2020). In this context, the use of deep gen-
erative models has recently gained significant traction for
sequence modelling (Girin et al., 2020). The robustness
of machine learning models can be considered along two
axes: (1) long-term and (2) out-of-distribution (OOD) per-
formance. Accurate long-term prediction can be notoriously
difficult in many dynamical systems because error accumu-
lation can cause divergence in finite time (Zhou et al., 2020;
Raissi et al., 2019), a problem that even traditional solvers
can suffer from. At the same time, machine learning tech-
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niques are known to suffer from poor OOD performance
(Goyal & Bengio, 2020), when they are employed in a set-
ting they had not encountered in their training phase.

When it comes to modelling dynamics, training data contain
both the dynamics themselves and the dynamical system
parameters. However, many approaches to learning fail to
distinguish between the two, which could result in entan-
gled representations, leading to overfitting and thus poorer
forecasts (Bengio et al., 2013). Here, our aim is to investi-
gate generative models whose latent space is disentangled
in such a way that the parameters and the dynamics are
distinctly represented. More specifically, we explore dynam-
ical systems modelled by ordinary differential equations
(ODEs) and their respective parameters.

Our method builds on two elements. First, the inherent abil-
ity of Variational Autoencoders (VAEs) (Kingma & Welling,
2014) to produce disentangled representations in an unsu-
pervised way (Higgins et al., 2017), a feature that has been
applied in the context of image and scene modelling (Kim &
Mnih, 2018). Second, latent space supervision with ground-
truth factors has been found to produce more disentangled
representations in image modelling (Locatello et al., 2019).
We motivate the use of disentangled representations through
a theoretical analysis of the emission process through the
scope of dynamical systems. In practice, we treat the param-
eters of a dynamical system as factors of variation of the
data distribution and use the ground-truth values of these
parameters to improve the latent space disentanglement.
While various assumptions, like domain stationarity, have
been used to improve the disentanglement in the predic-
tion of dynamical systems in an unsupervised way (Li &
Mandt, 2018; Miladinovi¢ et al., 2019), to the best of our
knowledge, this is the first attempt to use supervised disen-
tanglement for system dynamics. Furthermore, contrary to
system-identification techniques that require knowledge of
the full underlying system to be computationally effective
(Ayyad et al., 2020), our technique only needs to be aware
of the system parameters.

Contributions Our work is the first, to the best of our knowl-
edge, that uses ground-truth information of the dynamical
system parameters to disentangle the latent space of genera-
tive models. We provide a theoretical motivation for disen-
tangled representations in dynamical system prediction and,
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practically, encourage latent space disentanglement throughom dynamics has also been tried in deep state-space mod-
supervision. We conduct experiments with VAEs trainedels (SSMs) (Fraccaro et al., 2017; Li & Mandt, 2018), but
with noisy observations of the phase-space of 3 dynamicahese methods focus mostly on modelling variations in the
systems. We also apply our method to a state-of-the-adppearance of moving objects, failing to take dynamics into
generative model (Recurrent State Space Model (Hafnesccount. Unsupervised techniques have also been proposed.
et al., 2019)) trained on image sequences of a swingindssuming domain stationarity, Miladindviet al. (2019)
pendulum. We propose a de nition of OOD data in the separate the dynamics from sequence-wide properties in
context of system dynamics and evaluate the performanagynamical systems like Lotka-Volterra but they do not fully

of models in- and out-of-distribution. We demonstrate thatevaluate the OOD performance of their model. Yeo et al.
models with a disentangled latent space can better captu(@021) suggest that learning hierarchy of semantic concepts
the variability of dynamical systems and produce more accueads to feature abstraction and enhanced disentanglement,
rate long-term predictions, both in- and out-of-distribution.while (Li et al., 2023) propose a model for time-series gen-
However, the practical importance of our method is cureration whose representation is disentangled by minimizing
rently limited by the labelling cost. It would be worth as- the pairwise total correlation between the latent variables.
sessing the model in the semi-supervised setting, as th&thile unsupervised methods have their advantages, they
would be better suited for real-world application. All the also dismiss a wealth of information that can be cheaply
necessary code to reproduce our experiments is provided abllected from simulated data, a gap that our method tries
https://github.com/stathius/sd-vae . to Il

VAEs for sequence modelling.Dynamical VAEs (Girin
2. Related Work et al., 2020) have long been used to model sequence dy-
namics. Combining VAEs with physics-informed neural

duce representations where each latent variable ca turesnetwOrks (Raissi et al., 2019) can also be used to model
b P 3fbchastic differential equations (Zhong & Meidani, 2022).

different factor of variation of the data distribution. This . ;
; . Feed-forward VAEs have also attracted a lot of interest in

can also be seen as identifying the true causal model of . : . .

. . . modelling physical systems. There are two main motiva-
the data-generating process (Scholkopf, 2019). While sy- S ) .

. . : N ions for this. First, VAEs offer various ways to incorporate

pervised disentanglement is a long-standing idea (Math; . . . :
; . . ; . he inductive biases obtained from prior knowledge of the
ieu et al., 2016), information-theoretic properties can be

: : . hysical system. Second, since their latent space is rela-
leveraged to allow unsupervised disentanglement in VAE ively simple, one can easily assess if those inductive biases
(Higgins et al., 2017; Kim & Mnih, 2018). Recent ndings y bi€, y

(Locatello et al., 2020a) emphasize the vital role of |nduc-.result In more mte_rpret.able r'epresen.tat|ons. Methods to
' . i ncorporate inductive biases include (i) bottlenecks based
tive biases from models or data for useful disentanglemen .

; . . . n the degrees of freedom of the physical system (lten et al.,
leading to semi- and weakly-supervised disentangleme

approaches (Locatello et al., 2019; 2020b). In the eld of 018), (ii) the_ use of geometric and topological |nform_at|on
o#the dynamical system responses to shape the manifold of

physical sciences, hierarchical priors have been proposed | |- ient representations (Lopez & Atzberger, 2022), and
to learn disentangled representations of high-dimensiongl... . o . . e
%n) using physics-informed priors (Takeishi & Kalousis,

VAEs and disentanglement.Disentanglement aims to pro-

spatial elds (Jacobsen & Duraisamy, 2022). To assess th 021). Furthermore, feed-forward VAEs can be combined

strength of disentanglement, simulated datasets are usually :
. . ; ith recurrent neural networks (RNN) to improve accuracy
used, because simulations give access to the ground—'[ruW

o S YT ile at the same time learning highly-disentangled repre-
factors of variation (i.e., color or shape of an object in image__ - tions of dynamical systems (Yeo et al., 2021)
data). Various metrics have been proposed to quantify dis- v '
entanglement, both predictor-based (Eastwood & Williams,
2018; Kumar et al., 2018) and information-theoretic ones3. Problem formulation
(Chen et al., 2018) but the task still presents challenge§ 1. Dynamical systems
(Carbonneau et al., 2020). o
Letu 2 R3 be the state of a system. We consider system

Disentanglement in sequence modelling/Vhile disentan- ; . : .
glement methods are often tested in a static (image) Settmeg%mamms that are governed by a set of differential equations
Es):

there is a growing interest in applying disentanglement to se- 3u

guence dynamics. Using a bottleneck corresponding to the 3_C: Filu-° Q)
degrees of freedom of the physical system, Iten et al. (2018)

learn an interpretable representation using a VAE. HowwhereF describes the governing equations @n@ R*»

ever, their model gives physically inconsistent predictionsdenotes the parameters of these DEs. While these equations

in OOD data (Barber et al., 2021). Disentangling contendescribe how the system state evolves over time, there is a
limited number of real-world problems where they can be
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solved analytically. Hence, most often, the time evolution
of a system is acquired by numerical methods, given the
governing equations and some initial state. In experimental
data, observationsc contain some noisetic = Uc, &

where& 2 RS2 is the stochastic uncorrelated noise. In

our computational experiments, the data are corrupted Wittg'glurell: Sampleshfrom the pgrarr]neter_ dlstr;%utlpns of pen-
white Gaussian noise to simulate observation noise. ulum length . Each trajectory in the train, validation & test
sets is simulated with length drawn from Ut 1¢0-15°,

In the experimental section, we are concerned with dynanwhile OOD-Easy and OOD-Hard have disjoint distributions.
ical systems governed by Ordinary DEs (ODEs) but oumote that predicting the trajectory of a shorter pendulum is
methods could in principle apply to Partial DEs as well. Theharder for our models because it swings faster.

three dynamical systems we study are the swinging pendu-

lum, the Lotka-Volterra system used to model prey-predator

populations, and the planar 3-body system. The governinge often do not have access/teQ There are two options
equations are the following: in this case a) assign priors 6n—-O , and marginalize over
. o 6. them to obtain an estimate of the marginal, and b) estimate
Simple pendulum: = - sin\ (2) /' andO and directly model the conditional. Given the
Lotka-Volterra: 8= UG VGH wide nature of divergence in the trajectories of a system for
different/ —O, itis hard to both assign a proper prior and

H=XG %W<H - (3) ef ciently marginalize. On the other hand if we can der.ive
3-body system:wg= - —° rgq good estimates far —O , then the second modelling choice
<8 g4 jreg3 becomes more appealing and this is where disentanglement
%= oV 4) can be _bene cial. For simpli_city, we consider the p_endulum
278 where its length = ; varies between trajectories, and
VeXg 2 RP—& »1-2-3s all other parameters and initial conditions are constant and

known. In this case, the margin#xcc =jxy® remains un-
Where\ is the length of the pendulurg,is the acceleration known, the conditional/#xcc =jxvc-? is just characterized
due to gravity and is its length. Since the two parameters by the observational noise, as described earlier. In VAESs
appear in ratio we keep gravity constant and only vary thehis procedure is modelled by the decodef/@sc =jzy 2.
length of the pendulum, i.el., = » ¥%In Lotka-VolterraG—H Disentanglement allows the separation of the latent vector
are the prey and predator populations while the 4 parameteia two parts i)zyc that captures the dynamics and i)
| = »U-V-WéKscribe the interaction of the two speciesthat encodes the pendulum length. This leads to a condi-
In the 3-bodyxg-vg are the positions and velocities of the tional distribution%xcc =jzycz;° which better resembles
bodies and the 4 parametédrs » 1— <—<o—<sgWrepresent the functional structure of the real conditional distribution
the gravity constant and masses. Overall, these systems aabove.
characterized by a varied number of degrees of freedom,
governing equations and number of parameters. We als®.3. De nition of OOD dataset

refer to Appendix B.2 for more details. ) ) i
The evolution of a dynamical system is de ned by far and

foremost by the form oF in Equation (1). Considering
given, the next most important factor that characterizes the
The problem setup that involves inferring the evolution ofdistribution of trajectories in the system is the values of the
a system state, up to some time in futu@, =, given a parameters. If these parameters come from a distribution
number of previous (observed) states up to a pointintime / %3/ °, the trajectories of states that the system can fol-
The system dynamics are de ned by the form of the differ{ow will form another distributioru ¢ %u ¢j/°, where
ential equation (DE), the parameters of jtand the initial  u ¢is the evolution of the system states from the start-up
conditionsQ Since the DE is deterministic, if parameters to time C Given the nature of dynamical systems, different
and current state is known then next step can be calculatgehrameters can produce widely different trajectories in state
using numerical methods with a high precision (bound byspace (Lai & Winslow, 1994) so it is reasonable to assume
the numerical precision of the computational method). Wethat changes in the parameter distribution will affect the tra-
can consider the simpli ed setting where the conditionaljectory distribution as well. For our systems, we additionally
distribution of the next statédxcc =jxyg/ —O °is char- verify this by visually inspecting the trajectories produced
acterized only by the noise of the observations, assumingy each parameter distribution (see Appendix A.1). Here,
there is no other type of uncertainty. In the absence of noiseve de ne an OOD dataset as a dataset comprising a set
the distribution becomes Dirac's delta function. In practiceof trajectories derived from a parameter distribution that is

3.2. Theoretical motivation for disentanglement

3
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Figure 2: The SD-VAE modelTaking as inpuCobserva-  Figure 3: Autoregressive predictionBy using model au-

tions of the phase space, the model predicts the state {gregressively on its own predictions we can derive an arbi-
future time-steps in one pass. The model is trained with afrily long horizon.

additional loss term over some of the latent, which makes
the representation more disentangled.

In the standard formulation, the ELBO consists of a recon-

disjoint from the one used to generate the trajectories of th%iruction loss and the Kullback-Leibler divergence between
e posterior distributio: 41z j x° and a prior4z).

training dataset. For each system, we draw the parameters

[ from a uniform distribution which is the same for the . . . .
training, validation and test sets. These three datasets afe?- Disentangling VAEs for modelling dynamics

considered in-distribution. Furthermore, we create two addlm theory’ disentang]ement in VAEs can be also achieved in
tional datasets using different parameter distributions. Then unsupervised way. Choices include using a prior with
support of these distributions is disjoint from the previousyncorrelated variables like the standard normal, adding a
distribution and with each other. We name these dataseWeighting factor on the KL divergence term of the loss (H|g_
OOD-Easy and OOD-Hard. Figure 1 illustrates the distribugins et al., 2018) or constraining the size of the latent space
tion of lengths of the pendulum datasets. to coincide with the factors of variation in the data (Iten

Capturing the whole distribution of trajectories in a sin-€t &l 2020). As Locatello et al. (2020a) has shown, unsu-
gle training set is unrealistic (Fotiadis et al., 2020) and forP€rvised disentanglement only works if there are biases in
learning models with robust OOD prediction, some extrathe da_ta to explon. Supervised dlsentang!er_nent is possible
inductive biases are needed (Bird & Williams, 2019; BarberVhen information about the factors of variation of the data
et al., 2021). In our method, this inductive bias comes bylS available. Using the ground-truth values of simulated
leveraging the ground-truth parameters to disentangle thig'ages to disentangle VAE representations improves image
latent representation. For the observation-space pendulufineration quality (Locatello et al., 2019).

experiments, we extend the notion of parameters to includgve extend the idea of supervised disentanglement to the
the initial conditions (boundary conditions could also becontext of modelling dynamics. In our datasets, each tra-
added). A detailed description of the datasets is provided iflectory is accompanied by the parametérsf the ODE

Table 3 of the Appendix. that were used to produce it. We treat those parameters
as factors of variation in the data and use them to enforce

4. Methods a structure on the latent space using constrained optimiza-
tion. Under the Karush-Kuhn-Tucker conditions, we can

4.1. Variational Autoencoders (VAES) rewrite the constraint in the Langragian form and obtain the

VAEs (Kingma & Welling, 2014) offer a principled ap- regularization ternh; *z;.4, - °, between the ground truth

. ' - . #
proach to latent variable modeling. It combines an encodePa@rameters 2 R”» and the output of the rs#, latents
& 4Zjx° which takes the dat@as input and infers the la- of the VAE,zl;#_b. We dlscus_s the ch0|_c§ of the regression
tent representatioh, with a generative decodéf 1xjz° termL, in Section 5. Extending the original VAE to gener-
that project the representation back to the data space. TIRde predictions instead of reconstructions, is also needed. To
encoder and decoder are parameterized by neural networR§commodate for this, we change theoreconstruct_lon term
which makes the computation of the marginal likelihood" Equation (5) to a prediction teriog % Xcy-c=jz,
prohibitively expensive. Training is, thus, done with approx-'€ading to the the nal training objective:
imate inference, i.e., maximizing the evidence lower bound
(ELBO) of the marginal over the data. L g\1X (© = Eg 1zx @ 109% Xcy-g=j 2°
L q-\1X° = Eg 1zjxe ¥0g % X j %% , XLy1zg4,H° (6)

5
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WhereCis the length of the input and of the predicted 5.1. Datasets

output and we drop the dependencezant to simplify T te the dataset daptive R Kutta int
the notation. To allow more exibility between prediction 0 create the datasets, we use an adaptive Runge-tutta inte-

and disentanglement, both the KLD and regression termgrator with a timestep d]?-Olseconds. .For'every simulated
are weighted by tunable parametevsapdXrespectively). sequence we draw a different combination of parameters.

Weighting the prediction term can also be seen as tuningor the pendulum simulations we randomly draw the initial

the decoder variance. A more elaborate derivation of th ngle_\ from a uniform distributiorl0 170, the angular
objective can be found in Appendix C.1 We refer to thisveIOCItyI is always0. For the Lotka-Volterra and 3-body

model asSD-VAE. A schematic of the architecture can be SYStem the initial conditions are always the same to avoid
seen in Figure 2 ' pathological trajectories. Dataset details can be found in

Appendix A.1.
Both the VAE and SD-VAE can produce arbitrarily-long
predictions by re-feeding the model predictions back ag.2. Models and training
input (Figure 3). This autoregressive approach has been
shown to work well in problems like wave propagation and Choices for the VAE modelsWe use the same model

weather forecasting (Fotiadis et al., 2020; Lam et al., 2022)zhoices for both VAE and SD-VAE. Our prior is an isotropic
Gaussiar?#z° = Ntz j 0-O which helps to disentangle

the learned representation (Higgins et al., 2017). To geta
closed form KL-divergence term, we use a Gaussian with di-
We investigate how disentanglement affects modelling ofagonal covariance as the approximate posterior distribution
dynamics when the state of the system is not accessibl@*z j x° = N 1zj- ;- |° a common practical choice
directly but it inferred from high-dimensional observations (Kingma & Welling, 2014). The decoder has a Laplace
like image sequences. In this case, the state of the systedistribution?\ 1x j z° = Laplacelx j - c-O which is equiv-
uc2 ' 3 is mapped to a high-dimensional renderfagin  alent to using 4 ; prediction loss. Preliminary experiments
our datasefc 2 R® 54 andC2 N. The model for this showed that ; loss works better thah,. This is not un-
dataset is the Recurrent State Space Model (RSSM) (Hafn@ixpected, sincé ; is known to provide crisper results in
et al., 2019). RSSM has been successfully used for plaimage modelling (Mathieu et al., 2019) and has also been
ning from pixels and is considered state-of-the-art model irused in time-series forecasting (Tang & Matteson, 2021).
long-term spatiotemporal prediction (Saxena et al., 2021Yhe covariance of the decoder is constant and isotropic. No
Furthermore, RSSM is a hybrid model combining determinscaling of the covariance is needed since we weight the
istic and stochastic components, and this allows us to asseg&$ D term in Equation (6).

disentanglement outside VAEs. We use the same formul%h ices for th wised disentanalement termfor th
tion of the loss function as in the original paper, with the oices for the supervised disentangiement terror tne
regression loss we chose the loss, corresponding to a

addition of the supervised disentanglement loss, similarl . _ . . . .
to what we do in Equation (6). Since the RSSM has laten)[,aplauan prior with meakhg and unitary covariance. This
hoice was driven by preliminary experiments with vari-

variables for each time-step, we apply a disentan lemerit . . .
P PRl 9 ous loss functions. Using a standard normal prior pulls the

loss on all of them. The SD-RSSM loss function can be . . .
. . latents to be close 1@ but this comes at odds with the disen-
found in Appendix C.3.
tanglement loss term because the target parameters can have
) ) ) larger values. To alleviate this issue we scale the parameters
5. Disentangling for system dynamics / 2 0-1%We nd that linear scaling offers some small im-

In this section we compare models trained to predict theorovement. and we use it throughout our experiments (details
in Appendix C.2).

evolution of dynamical systems. The main goal of our ex-
periments is to assess whether supervised disentanglemefmhining Early experiments revealed signi cant variance in

of VAEs improves the prediction accuracy and if the im-the performance of the models, depending on hyperparame-
provement also transfers to OOD data. To achieve this weers. With this in mind, we take various steps to make model
compare VAEs with our proposed SD-VAE. Additionally, comparisons as fair as possible. Firstly, all models have
using quantitative and qualitative approaches, we analyzsimilar capacity of neurons. Both the VAE and AE have
how latent space supervision affects the representation @& encoder with two hidden layers of sizes 400 and 200 re-
VAEs. Next, we try to see if supervised disentanglementpectively and a reverse decoder. The LSTM model has two
works also in deterministic autoencoders (AEs). Lastlystacked LSTM cells with a hidden size of 100, which results
we conduct experiments with LSTMs, a popular recurrenin an equivalent number of learned parameters. We tune
method for low dimensional sequence modelling (Yu et al.the hyperparameters of each method using grid-search and
2019). Overall, we train and compare VAE, SD-VAE, AE, train the same number of models for each method to avoid
SD-AE and LSTM models. favouring one over the others by chance. To further reduce

4.3. Disentanglement of dynamics in observation-space
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Figure 4:Disentangled VAE (SD-VAE) vs VAE Normalized MAE difference between the SD-VAE and the plain VAE.
Negative values indicate that SD-VAE has lower error. We plot the mean and one standard deviation interval of the best 5
models (selected based on the cummulative MAE over a validation set)

Table 1: MAE averaged over 800 stepsMean of the best 5 models that were selected by validation MAE. SD-VAE
outperforms VAE and the other models. LSTM diverged during testing on Lotka-Volterra.

Pendulum Lotka-\Volterra 3-body system
Test-set OOD-Easy OOD-Hard Test-set OOD-Easy OOD-Hard| Test-set OOD-Easy OOD-Hard

LSTM 0829 1318 1985 0-061 0082 0099
MLP 0635 1097 1420 0103 0140 0157 0-064 0079 0093
SD-MLP 0687 1088 1442 0104 0141 0157 0053 0067 0084
VAE 0673 1128 1:386 0104 0142 0159 0060 0075 0089
SD-VAE 04443 0819 1185 0100 0138 0155 0048 0062 0080

statistical chance, we conduct large-scale experiments traiand standard deviation computed for the 3 best models of
ing overall 1200 models which required more tf®000  each method. The best models are selected based on average
CPU-hours. Details for the hyperparameters and number ofalidation MAE.

experiments can be found in Appendix D.1. Results (Figure 4 & Table 1) indicate that SD-VAE offers
a substantial and consistent improvement over the VAE
across all 3 dynamical systems and datasets with a reduction

We compare the prediction accuracy of VAE and SD-VAEIN error that surpasse20% in the pendulum system. In
on the three dynamical systems described in Section 3.0th the pendulum and 3-body system the improvement is
and for each system we compare on three datasets: thRostly increasing for long-term predictions indicating that
in-distribution test-set, which shares the same parameté¥D-VAE captures better the system dynamics. While the
distribution with the training set, and the OOD-Easy andaccuracy of both models deteriorates in the OOD-Easy and
OOD-Hard sets which represent an increasing distributiof?OD-Hard set (details in Figure 13 of the Appendix), SD-
shift from the training data. Models are compared usingVAE still outperforms the VAE. This is an indication that
the Mean Absolute Error (MAE) between prediction andthe disentanglement of domain parameters can be a useful
ground truth, a widely used metrics for sequence predictiodnductive bias for OOD generalization. Overall, results show
problems (Girin et al., 2020), that was also used for trainingthat SD-VAE forecasts more accurately both long-term and
Models are used in an autoregressive manner (Section 4.90D, indicating that supervised disentanglement helps the
to produce long-term predictions of 800 timesteps. Wemodel to better capture the system dynamics.

consider this to be suf ciently long-term since it is 20 times

longer than the output of a forward pass. We predict ugb.4. Disentanglement of representations

to 800 timesteps because the simulated trajectories are 9\];e want to understand if latent space supervision leads to

1000 steps long and we reserve the rst 200 timesteps tc()Jlif'ferences in the learned representations of VAEs and SD-

randomly select a starting point for the input. To accountVAES For this, we use various metrics to quantify disentan-
for the variability in model training, we provide the mean ) '

glement. Measuring disentanglement is a challenging task;

5.3. Long-term and OOD prediction accuracy
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Table 2:SD-VAE exhibits stronger disentanglement properties than the plain VAE according to widely used metrics
Scores are averages over the best 3 models (selected by validation accuracy).

Pendulum Lotka-Volterra 3 body system
VAE SD-VAE | VAE SD-VAE | VAE SD-VAE
Disentanglement - - 027 053 020 090
Completeness 017 090 020 057 013 090
Informativeness 094 0499 1-00 100 100 100
SAP 003 0-87 004 021 001 067
MIG 001 017 000 003 000 008

DCI with random forests is "the best all-around metric"

(Zaidi et al., 2020). For completeness, we additional in-
clude Mutual Information Gap (MIG) (Chen et al., 2018)

an information-theoretic metric that quanti es disentangle-
ment as the difference between the mutual information (Ml)
between the top two latent-factor pairs, and the Attribute
Predictability Score (SAP) (Kumar et al., 2018) a metric
that works similarly to MIG but uses the importance weight

of a learned predictor instead of MI.

Metrics in Table 2 indicate that SD-VAE produces more dis-
entangled representations than the VAE in all the systems.
Speci cally, we observe a signi cant increaselisentan-
glementCompletenesand SAP scores and a more modest
increase in MIG. We also observe that théormativeness

of both VAE and SD-VAE is close to the maximur)( this
suggests that the representation of the VAE also captures in-
formation about the parameters but this is spread across the

Figure 5:Disentanglement of representationsTheGaxis ~ latent dimensionsDisentanglementan not be computed
corresponds to the parameters andHfaxis to the latent  for the pendulum since there is only one factor of variation
various. The color scale denotes the value of the importancdength).
weights. These values were extracted from the weights of g compute the DCI metrics, we train a boosted trees re-
regressor trained to predict the parameters from the 'ate'btressor to predict the parameters from the latent codes (on
values. High vaIue§ (yellow) indicate that the latent variableyne training dataset). The importance weights of the learned
that has high predictive power over the ground-truth valueegressor demonstrate the predictive power of each latent
We present the top 3 models for each method and datasgly each parameter. We visualize the weights of the best
The latent space of the SD-VAE is disentangled in highlysp.yAE and VAE models in Figure 5. We use the best 3
predictive and non-predictive parts, while the VAE encodingmodels as before (selected by validation MAE). To allow
exhibits no such characteristic. better visual inspection we keep the rst 8 latents. To further
facilitate the comparison for the VAE we place the highest
value of each column at the top diagonal positions ([1,1],
many metrics have been proposed that do not always corrg2,2] etc). We provide visualizations of the full latent space
late well with each other (Locatello et al., 2020a). In thiswith importance weights. We observe that the supervised la-
work we useDisentanglementCompletenesdnformative-  tents of the SD-VAE have very high predictive power for the
nesgDCI) (Eastwood & Williams, 2018), a predictor-based system parameters, while the other latents are not signi cant.
measuring frameworks that analyses three different aspecta the case of VAE, the predictive power is spread across
of disentanglement. Brie yDisentanglemenneasures how the whole latent code. In conjunction with the disentangle-
well the factors of variation are factorized in the represenment metrics, these ndings demonstrate that latent space
tation, Completenesidicates if each factor is captured by supervision produces highly disentangled representations.
a single latent variable, aridformativenessgjuanti es the
amount of information a representation captures about the
factors of variation. Recent studies suggest that in practice
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5.5. Linearity of correlation disentangling AEs does not offer much if any improvement
The importance weiahts in the previous section denote thin prediction accuracy. Probabilistic models seem better
P 9 P : Suited to capture the variation in the data distribution. It also

strong correlation between latetand parameters. Since . illustrates that latent space disentanglement is not trivial and

trees can capture both linear and non-linear dependenmqﬁbre work is needed to help us understand what works in
the nature of the relationship remains, unclear. To quarfiractice and why,

tify the linearity, we t linear regression models for each
I's, bg pair and compute the absolute Pearson correlatiolve also trained LSTMs and found that their prediction accu-
coef cient between the two variables. Peargoralues are  racy is subpar compared to the other models. In fact for the
visualized in Figure 15. Results (see Appendix E.1) indicatd-otka-Volterra system, LSTMs proved to be very unstable:
that the relationship between supervised latents and paramene of the 72 trained LSTMs could predict long-term (800
eters and is strongly linear in most cases. This aligns wittsteps) without diverging. On the note of model stability,
our experimental ndings that linear scaling works best for this is something to take into consideration when using su-
the disentanglement loss (see Appendix C.2). We exploipervised disentanglement in practice. In AEs supervised
this linearity to perform traversals of the latent space in thedisentanglement resulted in a higher percentage of unstable

next section. models. SD-VAE was the most stable model in the pendu-
lum and 3-body systems with more than 90% of the models
5.6. Latent space traversals being stable, but in the Lotka-Volterra systems the VAE

) o training produced more stable models.
Being able to traverse between two points in the latent space

is a property that indicates meaningful representations. Ing- Modellina d ics in ob .
terpolation in latent space can produce meaningful image€- M0delling dynamics in observation-space

in properly disentangled VAEs (Higgins et al., 2017). While \ye extend the idea of supervised disentanglement to models

images have easily recognizable visual components, travefiat infer the state from high-dimensional observations such
sals of dynamical systems are harder to portray. Here wgg image sequences.

study whether interpolating between two points in the la-

tgnt space of SD-VAE can produce meaningful traje'c:t'oal. Datasets

ries. For this, we create a new pendulum dataset containing

100 trajectories with linearly spaced length in the rangeThe dynamical system we use in this experiment is the
; 2 »1«0 1% The initial conditions are kept constant swinging pendulum, a common benchmark for modelling
(= ?—I = 0) for all the trajectories to facilitate compar- dynamics in image sequences (Brunton et al., 2020; Barber
isons . We use the encoder of our best SD-VAE model teet al., 2021). The data set contains sequences of images of a
extract the latent variables for each trajectory. For each tramoving pendulum. The positions of the pendulum are rst
jectory, the encoder produces 4 latent variables « L. We ~ computed by a numerical simulator and then rendered in
linearly interpolate between the latents of the two extremdmage space as frames of dimensth 64. The length
trajectories { = 1«0 and; = 1+5), driven by our ndings of the pendulum, the strength of gravityy and the ini-

in Appendix E.1 that latents and parameters have a higl§ial conditions (position, angular velocity ) are set to
linear correlation. Next, we feed the real and interpolatedlifferent values in each trajectory so they differ from each
latents to the decoder and predict up to 1000 timesteps. Wether. Parameters are drawn from a uniform distribution.
nd that the total mean absolute error between predictionFor the OOD sets we change the distributions of length
and ground truth i©«29 with the real latents an@33 with and gravity6 but keep the same distributionofandl as

the interpolated one. These results indicate that linear laterin training. More details about the data set are illustrated
space interpolation produces meaningful latent codes. Thig Appendix A.3. For the simulations, we use an adaptive
is further corroborated by plotting the real and interpolatedRunge-Kutta integrator with a timestep@D5 seconds.
latents together (Figure 3). The relationship between the

real latentd g and pendulum lengthis highly linear, which  6.2. Model and Training

further explains with the linear interpolation method works

well. In this experiment, we use RSSM described in Section 4.3.

RSSM is a generative model including both stochastic and

deterministic latents. We use supervised disentanglement
on the stochastic part, and term that model SD-RSSM. The

We pose the question of whether supervised disentanglemeRSSM model we use follows the architecture as described

can also be applied to (deterministic) AEs. For this, wein (Hafner et al., 2019) & (Saxena et al., 2021). Disentangle-

train both AE and SD-AE models and compare them withment is applied to all four parameters (lengftgravity 6,

VAE and SD-VAE models (Table 1). Results indicate thatinitial position\ and velocityl ), but only length and gravity

5.7. Disentangling AEs and stability
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Figure 6: Prediction quality on the observation-space pendulum.Structural Similarity (SSIM) as a function of the
predicted timestep. The disentangled SD-RSSM model seems more robust on long-term predictions.

vary between datasets. For training, we use sequences @&ms in observation-space sequences, resulting in improved

100 frames and batch size 100. We usé afoss for the  long-term and OOD performance.

disentanglement term because preliminary results showed it

performs better thah; and BCE. During testing the model 7. Conclusion

uses 50 frames as context. We train 24 RSSM and 24 SD-

RSSM models (detailed hyperparameters in Appendix D.2)Ve have shown that using ground-truth parameters to super-

vise the latent space of VAEs encourages them to learn more

6.3. Results disentangled and interpretable representations while at the
. . same time increasing their prediction accuracy and OOD

We compare the predictions of RSSM and SD-RSSM usingyenersjization in three dynamical systems. We have, further,

structural similarity (SSIM), a metric that takes into accountgpgn that supervised disentanglement improves generative

the qualitative characteristics of the image, something thal,,je|s like RSSM trained on observation-space data of a

pixel-wise metrics like MSE and MAE fail to do (Wang  ginging pendulum and leads to better long-term forecasting

etal., 2004). We select the best RSSM and SD-RSSM Modseformance and robustness to OOD shifts. These results

els based on the average SSIM over the validation set angaye supervised disentanglement an attractive choice for

plot the SSIM as a function of the timestep (Figure 6) andq generative modelling of system dynamics. In practice,

is widely used for dynamical system prediction from spayzg ang SD-VAES should be preferred over their determin-
tiotemporal data (Pant & Farimani, 2020). Results show thagyic counterparts. Using simulated data makes the label

while for the short-term predictions, the RSSM has higher,q)ection cheap but this is not always possible. Extending

SSIM, in long-term prediction after about 350 steps SDr method to the semi-supervised setting, i.e., supervising

RSSMis performing better, in all 3 datasets. Furthermore,is, e\ |abels, is important for real-world applications

as we move from the test-set to the OOD sets, we 0bSer\(ghare the collection of labels is more expensive but robust
that the SD-RSSM model closes the performance gap ifyeqiction of system dynamics remains critical. Further
the short-term prediction. Speci cally, in the OOD-Hard 5, \ysis of the method using systems with more complex

for predictions up to around 350 step it is almost equwalenhynamics is also an important avenue for future work.
to RSSM while at the same time maintaining its long-term

(>350) advantage. We hypothesize that SD-RSSM has better
long-term performance due to less over tting to the rela/A\Cknowledgements

tively short training horizon. Similarly, the robustness in\; | 24 sE. acknowledge nancial support from the De-

increasing distribution shifts could also be explained by, yments of Aeronautics and Bioengineering respectively.
less over tting on the parameters of the training data. We

also compared using the peak signal-to-noise ratio (PSNR?__é

drawing similar conclusions (details in Appendix F). Quali- R€ferences

tative results show that both models produce accurate shogyyad, A., Chehadeh, M., Awad, M. I., and Zweiri, Y. Real-
time predictions and also accurately capture the appearance time system identi cation using deep learning for linear
of the pendulum even in long-term predictions. Where they processes with application to unmanned aerial vehicles.

differ is in how well they capture the long-term dynamics |gEgg Accesss:122539-122553, 2020. doi: 10.1109/AC
indicating that latent space disentanglement is helpful for cgss 2020.3006277.

long-term prediction. Overall, results suggest that super-
vised disentanglement can be used to model dynamical syBarber, G., Haile, M. A., and Chen, T. Joint Parameter
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Software and Data

We provide all the necessary code to reproduce our experiments at https://github.com/stathius/sd-vae. The repository
contains code and instructions for generating all the datasets and training all the models presented in this work using the
hyperparameters that are clearly presented in the paper. This should signi cantly help others reproduce our experiments. For
any further clari cations, readers are encouraged to contact the corresponding author(s).

Accessibility

We have used vector-based gures to increase clarity for zooming-in, a color palette that is easily distinguishable by
colorblind people and different line styles. We have also curated arxiv citations to refer to the corresponding conference or
journal publications where possible.

A. Datasets
A.l. Phase space

For simulations, we use an adaptive Runge-Kutta integrator with a timestflasfeconds. Each simulated sequence
has a different combination of parameters. Simulation of the pendulum uses an initial avigteh is randomly between

10 170 while the angular velocity is 0. For the other two systems the initial conditions are always the same to avoid
pathological con gurations.

A.2. Visualizing dataset shift

Visualizing the distribution shift between datasets is not always straightforward. Especially in cases like dynamical system
trajectories where there is usually not much familiarity with their visual representation in comparison for example to natural
images. To facilitate qualitative comparisons we we depict the datasets from the three dynamical systems. We provide plots
for all the dynamical systems and each dataset in separate gures so that the differences become more apparent. Apart
from the phase space diagrams we also provide trajectories across time, offering another way to discern the difference in
dynamics.
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Figure 7: Phase space diagraftop) and evolution over timebpttom) for random samples from the pendulum datasets.
The OOD-Hard test set exhibits higher variation in the trajectoriés bfas can be seen in the bottom row.

Figure 8: Example illustration of the parameter distribution for the LV test sets. The regions do not overlap, colors represent
regions not boundaries. The OOD-Easy test (green) set does not include any of the parameter con gurations of the training
and original test set (blue). Respectively, the OOD-Hard dataset (magenta) does not include none of the OOD-Easy or the
original test set con gurations. The parameter space of the blue region is almost half as big at the green area (again without
any overlap), signifying a signi cant OOD shift).
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Table 3:Datasets.In L-V and 3-body OOD test sets, at least one domain parameter is outside of the parameter range used

for training.
Pendulum Lotka-\Volterra 3-Body
|
3B _ <g<d
- <836~ 1 9 /89
¥ 6y 8= UG VGH 3C A
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= fX2 »195-2:04Y4g OOD-Hard =
train = * ° S B
= fU 2 »1494-2:06Y4g S 2 14942:06Vig
= m,g iggﬁggf‘g " 1=f<q 2 1404-2006Y4g
_ = “9 " 2=1f<, 2 $94-2:06%4g
OOD Test Set Easy ;2915 16Ya = fX2 »1494-2:06v49 " 3=f<3 2 w194-206g
O0D-Easy™ OOD-Hard =
N train 1 "1 "2 " 3N ain
=fu2 »1093—2‘071/49 =f ) 2 »1.93_2.071/49
= I‘\\//vg igggjg%‘g " 1= < 2 A93-207Yag
X2 1103 207 . 2=1<2 251932079
OOD Test Set Hard 12500 10Y <1749 " 3=f<3 2 Me93-2:07g
©OOD-Hard™ 0OD-Hard =
°n R - S
' train[ ooOD-Easy U yainl  0OD-Easy
Number of sequences
Train/Val/Test 8000/1000/1000
OOD Test Set Easy 1000
OOD Test Set Hard 1000

15






