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ABSTRACT

Gradient-based policy search algorithms (such as PPO, SAC, or TD3) in deep rein-
forcement learning (DRL) have shown successful results on a range of challenging
control tasks. However, they often suffer from deceptive gradient problems in flat
or gentle regions of the objective function. As an alternative to policy gradient
methods, population-based evolutionary approaches have been applied to DRL.
While population-based search algorithms show more robust learning in a broader
range of tasks, they are usually inefficient in the use of samples. Recently, reported
are a few attempts (such as CEMRL) to combine gradient with a population in
searching optimal policy. This kind of hybrid algorithm takes advantage of both
camps. In this paper, we propose yet another hybrid algorithm, which more tightly
couples policy gradient with the population-based search. More specifically, we
use Cross Entropy Method (CEM) for population-based search and Twin Delayed
Deep Deterministic Policy Gradient (TD3) for policy gradient. In the proposed
algorithm called Coupling Policy Gradient with Population-based Search (PGPS),
a single TD3 agent, which learns by a gradient from all experiences generated by
population, leads a population by providing its critic function Q as a surrogate
to select better performing next generation population from candidates. On the
other hand, if the TD3 agent falls behind the CEM population, then the TD3 agent
is updated toward the elite member of CEM population using loss function aug-
mented with the distance between the TD3 and the CEM elite. Experiments in five
challenging control tasks in a MuJoCo environment show that PGPS is robust to
deceptive gradient and also outperforms the state-of-the-art algorithms.

1 INTRODUCTION

Figure 1: Flat gradient and population-
based search on piece-wise constant
function

In Reinforcement Learning (RL), an agent interacts with
the environment, and its goal is to find the policy that maxi-
mizes the objective function, which is generally defined as a
cumulative discounted reward. Recently, many researchers
have worked on combining deep neural networks and a
gradient-based RL algorithm, generally known as Deep Re-
inforcement Learning (DRL). This approach has achieved
great success not only in the discrete action domain, such
as in Go (Silver et al., 2017) and Atari games (Mnih et al.,
2015; 2016), but also in the continuous action domain, such
as in Robot control (Fujimoto et al., 2018; Lillicrap et al.,
2015; Schulman et al., 2015). However, it is difficult to use
the gradient-based method for the objective function (J),
which includes “many wide flat regions” since the gradient (∇θJ) is near zero at a flat point. Figure
1 is an extreme case consisting of only flat regions, which is called a piece-wise constant function.
This problem remains an unsolved issue in gradient-based DRL with continuous control domains
(Colas et al., 2018). The Swimmer in a MuJoCo environment (Todorov et al., 2012) has already
been reported to be hard to use the gradient-based method (Jung et al., 2020; Liu et al., 2019). Our
experiment shows that the objective function of Swimmer includes wide flat regions (Appendix A).

The population-based Evolutionary Approach (EA), which is an alternative to the gradient-based
method, has also shown successful results in various control tasks (Conti et al., 2018; Liu et al., 2019;
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Salimans et al., 2017; Such et al., 2017). As a population-based search, the EA generates a population
of agents to explore policy, and the population is regenerated with improvement in each generation.
The EA is also known as a direct policy search (Schmidhuber & Zhao, 1998) because it directly
searches by perturbing the parameter of policy. In Figure 1, the Cross-Entropy Method (CEM) as a
kind of population-based search is simply described, where the current population sampled from the
target distribution is evaluated. Then the distribution is updated to the direction for generating a more
promising population. Not depending on the gradient, these approaches are robust to flat or deceptive
gradients (Staines & Barber, 2013; Liu et al., 2019). However, the EA is sample inefficient because it
requires a Monte-Carlo evaluation, and the previous results and data generally cannot be reused.

The off-policy Policy Gradient (PG) algorithm uses the data from arbitrary policies to train its actor
and critic functions. It generates exciting potential by combining the EA and PG, where the data
which is discarded in a standard EA is directly used to train the PG’s functions. Khadka & Tumer
(2018) and Pourchot & Sigaud (2018) introduced a framework combining the EA and off-policy PG.
However, the framework of (Khadka & Tumer, 2018) is less efficient to train the policy for general
tasks than the PG algorithm alone, and the framework of (Pourchot & Sigaud, 2018) is unsuitable to
train the policy for a task providing a deceptive gradient.

In this paper, we propose another hybrid algorithm, called Policy Gradient with Population-based
Search (PGPS) in which the CEM and Twin Delayed Deep Deterministic Policy Gradient (TD3)
(Fujimoto et al., 2018) are combined. It is as robust to a deceptive gradient as the CEM and more
efficient to train the policy for general tasks than TD3. To be robust to a deceptive gradient, the
proposed algorithm is constructed in a way similar to the one in (Khadka & Tumer, 2018), where
the TD3 is trained using data from the CEM and periodically participates in the CEM population as
an individual (PG guides EA). However, in this basic framework, the TD3 sometimes falls into the
inferior solution and inefficiently searches. To get the TD3 out of the inferior solution, we let the EA
guide the TD3 by guided policy learning (Jung et al., 2020) (EA guides PG). Furthermore, the TD3
critic contributes to generating a more promising population by filtering the set of actors sampled from
CEM (Q-critic filtering). Lastly, to control the trade-off between the frequency of search and stable
estimation, we used evaluation step scheduling in the process of population evaluation (Increasing
evaluation steps). It carries out frequent searches when searching far from the optimal, whereas it
carries out stable estimation when searching close to the optimal. These approaches bring out more
synergies between the CEM and the TD3 while maintaining both the population-based search and
the gradient-based search. Consequently, the proposed algorithm is not only robust to a deceptive
gradient, but also produces outstanding performances with a low additional computational cost.

2 RELATED WORKS

Recently, beyond the view of an alternative approach, few attempts have been proposed in the form
of A supporting B. An attempt is to use EA to fill a replay buffer with diverse samples. In Colas et al.
(2018), a Goal Exploration Process (GEP), a kind of EA, is firstly applied to search the policy and
to fill a replay buffer with the diverse samples, and then the off-policy PG algorithm is sequentially
used for fine tuning the parameters of the policy. Another attempt is to combine a population-based
approach and PG for efficiently searching a good policy or the good hyper-parameters of an algorithm
in parallel multi-learners setting. These applications generally consist of periodically evaluating the
population, followed by distributing good knowledge to the other learners. To find the best architecture
and hyper-parameters, Jaderberg et al. (2017) proposed a Population-Based Training (PBT) method in
which the current best knowledge is periodically transferred to PG learners. Gangwani & Peng (2017)
developed the distilled crossover using imitation learning and mutation based on the PG. Proposed
operators transfer the information on current good policies into the next population without destructive
change to the neural network. Jung et al. (2020) introduced a soft-manner guided policy learning to
fuse the knowledge of the best policy with other identical multiple learners while maintaining a more
extensive search area for the exploration.

The idea of combining the population-based EA and off-policy PG was recently introduced by
Khadka & Tumer (2018). Their approach was called Evolutionary-Guided Reinforcement Learning
(ERL) in which the Genetic Algorithm (GA) and the Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2015) are combined. In ERL frameworks, the GA transfers the experience from
evaluation into the DDPG through a replay buffer, and the DDPG transfers the knowledge learned
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from the policy gradient into the GA by periodically injecting a PG actor into the GA population.
Khadka et al. (2019) expanded the PG algorithm of ERL from a single DDPG learner to multiple TD3
learners with a resource manager. Bodnar et al. (2019) revised the GA’s crossover and mutation to the
distilled crossover and proximal mutation inspired by (Gangwani & Peng, 2017) and (Lehman et al.,
2018) to prevent the destruction of neural networks. Pourchot & Sigaud (2018) introduced another
framework, which combines the CEM and the TD3. In this framework, the TD3 algorithm has only
a critic function trained using the experience from the CEM. In order to propagate the knowledge
learned by policy gradient to the CEM, half of the population is updated to the direction indicated
by the TD3 critic for a fixed number of steps, followed by the evaluation. The policy gradient for
half of the population not only enhances the gradient-based learning, but also deteriorate the CEM’s
robustness over a deceptive gradient.

In this paper, we introduce another hybrid algorithm, in which the CEM and the TD3 are combined as
in CEMRL (Pourchot & Sigaud, 2018). However, the TD3 has both actor and critic, which are trained
by a gradient from experiences generated by CEM. And then, the TD3 actor periodically participates
in CEM population as in ERL (Khadka & Tumer, 2018). This structure is an effective way to maintain
a direct policy search of CEM. To enhance the performance, we introduced new interactions processes
between the CEM and TD3 instead of carrying out a policy gradient for numerous individual actors.

3 BACKGROUNDS

Twin Delayed Deep Deterministic Policy Gradient (TD3) RL framework has an agent interacting
with an environment generally defined by a Markov Decision Process (MDP). At each timestep t,
an agent receives the state st, and takes an action at according to the policy π, and then receives a
reward rt and the next state st+1 at next time step t + 1. The goal of RL is to find the policy that
maximizes the discounted cumulative return Rt =

∑∞
k=t γ

k−trk where γ is a discounted factor.
Off-policy RL can use the data from arbitrary policies to train its actor and critic functions repeatedly,
which is a key point for improving recent gradient-based RL. Silver et al. (2014) introduced the
off-policy Deterministic Policy Gradient (DPG), which has an advantage for high-dimensional action
spaces. The DDPG (Lillicrap et al., 2015) was extended from the DPG to apply it to a deep neural
network. TD3 (Fujimoto et al., 2018) is an advanced version of the DDPG, which suffers from the
overestimation bias of the critic. To correct this bias, two critics are introduced, and then the critic
with the lowest state-action value is taken during the critic update as in the Double Deep Q-Network
(DDQN) (Van Hasselt et al., 2016). Figure 2(a) represents the architecture of the TD3.

(a) TD3 (b) CEM

Figure 2: Architecture of TD3 and CEM. θi is sampled from N(µ,Σ), λi is a weight depending on
the rank of the Returni, and K is a fixed number about high performing actors.

Cross Entropy Method (CEM) The Evolutionary Approach (EA) is a heuristic search method
inspired by nature, where the current population is evaluated, and the next population is regenerated
using the current evaluation result in order to produce a higher Return, which is also known as Fitness
and defined as a cumulative sum of immediate reward for a fixed number of steps. The Estimation
of Distribution Algorithm (EDA) is a class of the EA: It updates the target distribution to generate
a better population. Depending on the update method for the distribution, EDAs are classified as a
CEM (De Boer et al., 2005), a Covariance Matrix Adaptation Evolutionary Strategy (Hansen, 2016),
an Evolutionary Strategy (Salimans et al., 2017), and a Natural Evolutionary Strategy (Wierstra et al.,
2014). We used the CEM as one part of our proposed algorithm. As shown in Figure 2(b), the CEM
procedures are as follows: The population is sampled from the multivariate Gaussian N(µ,Σ) and
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evaluated, and for the top K, which is smaller than the population size (N ), high performing actors
are used to update a new mean (µ) and covariance (Σ) of the target distribution. The weight can
be given to each actor according to the rank of the Return (Hansen, 2016). The elite actor can be
passed to the next population, which is known as elitism. The more detailed procedure is reported in
(De Boer et al., 2005). In this paper, we used a diagonal covariance to reduce the parameters.

Population-guided Parallel Policy Search (P3S) The Guided Policy Learning (GPL) is commonly
used when the elite policy leads some sub-policies to a better solution in multiple policies setting.
Teh et al. (2017) introduced GPL for joint learning of numerous tasks in which a common policy
encourages local policies to act better. Jung et al. (2020) proposed a soft-manner GPL, called the
Population-guided Parallel Policy Search, for multiple identical learners with the same objective,
where a population is evaluated periodically. Then sub-policies are trained to maximize their critic
value and to concurrently minimize the distance from the elite policy for the next period. For this
purpose, Augmented Loss (2) is used to train the sub-policies instead of Original Loss (1).

Original Loss : LO(π) = Es∼SS [−Qπ(s, π(s))] (1)

Augmented Loss : LA(π, πelite, β) = Es∼SS [−Qπ(s, π(s)) + β||π(s)− πelite(s)||22] (2)

where π is a trained policy, Qπ is a critic function depending on π, πelite is the elite policy, SS
is the set of states, and ||π(s)− πelite(s)||22 is the Euclidean distance measure between the trained
policy and the elite policy. β is a distance weight and is controlled adaptively. In this paper, we used
a revised GPL inspired by P3S so that the CEM elite actor guides the TD3 to better space.

4 COUPLING POLICY GRADIENT WITH POPULATION BASED SEARCH
ALGORITHM

Figure 3: Architecture of PGPS. π is used instead of πθ for the simplification.

As shown in Figure 3, the Policy Gradient with Population-based Search (PGPS) is a coupling
framework between the CEM and the TD3. In this framework, two algorithms encourage each
other to be efficient. The general flow is as follows. The generated actor population is evaluated by
interacting with the environment, where each actor can fail to reach the max step (T ). The experience
(the set of state transitions) is saved in a replay buffer, and Returns go to the CEM. The CEM updates
the parameters of the population using top K (K is set to half of the population) high performing
actors, and then the TD3 trains its critic and actor using the mini-batches sampled from the replay
buffer. The knowledge of TD3 is periodically transferred to the CEM by copying the TD3 actor
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into the last actor of the CEM population. The knowledge of the CEM is transferred to the TD3 by
the GPL when the TD3 is presumed to falls into the inferior solution. Lastly, the next population is
regenerated, where the TD3 critic is used to selects promising actors among the set sampled from
N(µ,Σ) so that the population will be better. A pseudocode of the PGPS is described in Appendix B.

Gradient-based Update In a standard CEM, the experience of state transitions is discarded imme-
diately because they require only Returns to update the target distribution. However, the TD3 enables
the discarded experience to be reused to train its actor and critic functions. Therefore, the experience
is saved in the replay buffer and then is repeatedly used in a gradient-based update.

PG Guides EA In order to transfer the knowledge learned in TD3 to the CEM, the TD3 actor is
periodically copied to the last actor of the population. If the last actor is included in the top-performing
K actors, a multivariate Gaussian move to the direction indicated by TD3. On the other hand, if the
TD3 actor is excluded from the top-performing K actors, the CEM ignores the knowledge from the
TD3 and focuses on the direct policy search. High copying frequency benefits knowledge propagation
from the TD3 to the CEM, but it can disturb the population-based search.

EA Guides PG When the TD3 falls into the inferior solution, mainly due to a deceptive gradient, it
is difficult to get out by relying solely on the gradient-based method despite the experience from good
behavior policy (Colas et al., 2018). Therefore, we use the Guided Policy Learning (GPL), where
the CEM elite actor leads the TD3 to escape the inferior solution. We judge the TD3 to have fallen
into the inferior solution if its actor shows a lower Return than (mean − one standard deviation) of
Returns of the current population. The TD3 actor that has fallen into the inferior solution is updated
for the direction to minimize the Augmented Loss LA, equation (2). Moreover, the TD3 critic is
trained through the target actor indirectly guided by the elite actor, and it will fix the critic to be
appropriate. The distance weight (β) in the in LA is adapted several times during the GPL-based
update by equation (3). It is a simplified version of P3S (Jung et al., 2020) and similar to Adaptive
TRPO, which was introduced in (Schulman et al., 2017).

β =

{
β × 2 if D(πTD3, πelite) > Dtarget × 1.5

β / 2 if D(πTD3, πelite) < Dtarget / 1.5
(3)

where the distance measure D(πTD3, πelite) is defined as Es∼SS [||πTD3(s)− πelite(s)||22], SS is
the set of states in the replay buffer, and Dtarget as a hyper-parameter determines how close the TD3
actor and the elite actor should be. During the GPL-based update, the TD3 actor stays around the
CEM elite actor while maximizing its critic value.

Q-critic Filtering It is important to generate a good population, since it not only leads N(µ,Σ)
to be better but also encourages the TD3 to be trained well by filling the replay buffer with good
experience. However, one cannot know which actor is better before the evaluation. To estimate the
potential in advance, we use the Q-critic as a surrogate model (Jin, 2011). It can sort out promising
actors from the set of actors sampled from N(µ,Σ) before the evaluation.

Proposition1 If Ea∼πi(·|s)[QTD3(s, a)] ≥ Ea∼πTD3(·|s)[QTD3(s, a)] for all s,
Ea∼πi(·|s)[Qπi(s, a)] ≥ Ea∼πTD3(·|s)[QTD3(s, a)]

Specific proof is described in Appendix C. We assume that a higher Ea∼πi(·|s)[QTD3(s, a)] indicates
a higher Ea∼πi(·|s)[Qπi(s, a)]. In this assumption, Es∼SS [QTD3(s, πi(s))] is used as the relative
potential of the actor i (πi) where SS is the set of states in the replay buffer. The overall procedure is
as follows: M (�N) actors are sampled from N(µ,Σ), and then Q-critic fills half of the population
with the actors with higher relative potential by filtering M actors. The remaining half consists of the
elite actor and the actors sampled from N(µ,Σ) for the exploration.

Increasing Interaction Steps In order to efficiently control the trade-off between the frequency of
searches and stable performance estimation of actors, we used evaluation steps scheduling, where the
evaluation steps between actor and environment increase with cumulative evaluation step by equation
(4).

T = min(Tinit + 100×mod(cumulative evaluation steps, Tinter), Tmax) (4)
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where T is the current evaluation step, which means that each actor can maximally interact with the
environment as much as T . Tinit is the initial evaluation step, Tinter is the interval for increasing
evaluation step, and Tmax is the maximum evaluation step depending on the task.

The evaluation step should be sufficiently long for stable performance estimation of the population, but
it reduces the number of the CEM generation and delays the update of the TD3. Short evaluation steps
make it possible to carry out more population-based searches and frequent TD3 updates but causes
unstable performance estimation. As the arbitration approach, we used the increasing evaluation steps.
This approach guarantees more searches and frequent updates at the beginning stage of learning and
fine estimation at the later stage of learning.

5 EXPERIMENTS

5.1 COMPARISON TO BASELINES

Environment The proposed algorithm (PGPS) was empirically evaluated on five games in Mujoco
managed by OpenAI Gym, which is widely used as continuous control benchmarks.

Baseline Algorithms We compared the performance of PGPS with various EA, PG, and EAPG
algorithms, such as CEM, PPO(Schulman et al., 2017), DDPG(Lillicrap et al., 2015), TD3(Fujimoto
et al., 2018), SAC(Haarnoja et al., 2018), CERL(Khadka et al., 2019), PDERL(Bodnar et al., 2019),
and CEMRL(Pourchot & Sigaud, 2018). Almost algorithms were implemented using the code
provided by its authors. However, the DDPG is implemented by the code provided by the authors of
the TD3. OpenAI Spinningup (Achiam, 2018) was used to implement PPO. PGPS and CEM were
implemented using PyTorch. Our code is available at http://github.com/NamKim88/PGPS.

Hyper-parameter Setting For stable learning, we performed tuning on the architecture of the
neural network and the hyper-parameters of the learning rate, population size, the period of copying
TD3 actors to the population, increasing evaluation steps, and Q-critic filtering. The detailed setting
is described in Appendix D. Adam (Kingma & Ba, 2014) was used to train the neural networks in the
TD3. The hyper-parameters of baseline algorithms were set as the same as the reference code.

Performance Evaluation Metrics Each algorithm learns five times at different seeds for a task.
Each learning runs for a million timesteps. That is, the total numbers of interacting all agents with the
environment are a million. The evaluation tests are performed every 10,000 steps. Each evaluation
test performed without any exploration behavior and reports the average reward over ten episodes,
where the evaluation step of a episode is 1,000. For the evaluation test of the PGPS, the current mean
(µ) of N(µ,Σ) was used as the parameters of the evaluation policy. If the learning is performed at
seed 1, the evaluation test will proceed at random seed 1 + 100. This approach is the same as the
original code of the TD3 (Fujimoto et al., 2018) and applied to all baseline algorithms. The curves in
Figure 4 reported over the average performance of policies trained at five random seeds from 1 to 5.

Results In Figure 4 the performance of all baseline algorithms is similar to that reported in the orig-
inal author’s papers and reference papers. Some differences come from the training seed, evaluation
metrics, the variance of algorithms, and the version of MuJoCo and Pytorch.

The results show that all PG algorithms suffer from a deceptive gradient in Swimmer-v2. In contrast,
the CEM, which is a direct policy search method, yields the best result over a deceptive gradient in
Swimmer-v2. The CERL and PDERL as a combining algorithm between GA and PG show better
performance than PG algorithms. However, their performances are lower than the CEM because the
knowledge propagated from the PG to the GA disturbs the direct policy search of the GA. Despite
the CEMRL combining algorithm between the CEM and TD3, it shows similar performance to
the TD3. This result comes from that the gradient-based update of half of the population ruins the
population-based search of the CEM.

In the remaining four tasks which are advantageous to the gradient-based method, advanced PG
algorithms show much better performance than the CEM. The performances of CERL and PDERL
are located between an advanced PG algorithm and the CEM in most cases. Especially, CERL yields
lower performance than the TD3, which is one part of CERL. This is due to the failure of GA and
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Figure 4: Learning curves obtained on 5 continuous control tasks.

TD3 to combine effectively. CEMRL outperforms all baseline algorithms in four tasks since the
gradient-based update for multiple actors amplifies the advantage of the gradient method.

PGPS carried out gradient-based update on the TD3, and then the TD3 actor is periodically copied to
the last actor of the CEM population. It keeps the computational cost lower and also minimizes the
disturbance from the gradient method on a direct policy search. As a result, the PGPS can achieve
results comparable to the CEM in Swimmer-v2 which is advantageous to a direct policy search.
Furthermore, the PGPS shows an outstanding performance in the remaining four tasks, which are
advantageous to the gradient-based method. That performance is due to the additional interaction
processes for coupling two algorithms efficiently, such as mutual guidance (PG-EA), Q-critic filtering,
and increasing evaluation steps.

5.2 ABLATIONS STUDIES

In this subsection, we performed ablations studies to investigate the effect on the final performance
and computational time when a specific process is cumulatively added to the base model. The added
sequence is as follows: PG guides EA (P to E), EA guides PG (E to P), Q-filtering, and increasing
evaluation steps. HalfCheetah-v2, Walker2d-v2, and Ant-v2 are used for the ablation studies. Each
task was learned five times at random seeds of 1 to 5. Each learning runs for a million timesteps.
Table 1 reports the average over 15 (three games×five learning) runs. Evaluation test is performed
using the µ of the CEM except for the Base model.

Base model The experience from CEM is saved to a replay buffer. However, the TD3 and CEM
are trained independently without any guidance. Two evaluation tests are performed using the TD3
and the µ of the CEM at the end of learning. A better one is selected for the final performance.

Table 1: Ablation studies on 3 continuous control tasks.

Normalized computational time
Model Average

normalized score Sum TD3
update

Actors
evaluation

Population
generation

CEM
update

(1) Base model 1.00 1 0.934 0.065 0.001 ≈ 0
(2) (1) + P to E 3.73 1 0.934 0.065 0.001 ≈ 0
(3) (2) + E to P 4.26 1.107 1.041 0.065 0.001 ≈ 0
(4) (3) + Q-filtering 4.44 1.134 1.041 0.065 0.028 ≈ 0
(5) (4) + Increasing 5.26 1.134 1.041 0.065 0.028 ≈ 0

P to E shows the most noteworthy performance improvement within the proposed algorithm. A good
experience is essential to train TD3’s actor and critic functions well. As the TD3 actor directly guides
the population to be better, the population fills the replay buffer with good experience, and then it
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makes sure the TD3 will be trained well again. For the perspective of the CEM, the TD3 actor is a
good exploration, which cannot be developed from a random sampling, and improves the population
to be better. For the perspective of the TD3, the experience from the population is a richer set of
exploration behavior, which is better than PG-based action space exploration (Plappert et al., 2017).
The other processes also additionally contribute to performance improvement of about 4 ∼ 18% The
remarkable point is that these processes incur a low additional computational cost. The Q-filtering
requires a relatively highest computational cost, but it is only about 11% of that of the TD3 alone.

Figure 5: Learning curves of TD3
with(out) EA guidance on Swimmer-v2

The effect of EA guidance In contrast to the existing hy-
brid algorithm (Bodnar et al., 2019; Khadka et al., 2019) in
which the PG only guides the EA, the proposed algorithm
lets the EA also guides the TD3. It is beneficial to pull the
TD3 agent out of the inferior solution, especially if it is
captured due to a deceptive gradient. Figure 5 represents
the effect of EA guidance (EA guides PG) in swimmer-v2.
As shown in Figure 5, the TD3 actor without EA guidance
stays on the inferior solution most of the time, whereas
the TD3 actor with EA guidance quickly gets out of the
inferior solution and goes on searching for a better space.
The proposed algorithm will also perform robust learning
even if both deceptive and general gradient occurs in the environment since It lets CEM lead TD3
when a deceptive gradient occurs and lets TD3 lead CEM when the general gradient occurs.

Figure 6: Average Return of filtered ac-
tors and sampled actors during running

The effect of Q-critic filtering The proposed algorithm
selects half of the population using Q-critic (Q-filter), and
the remaining half is sampled from a multivariate Gaussian
(Random). Figure 6 shows the average Return of Q-filter
and Random in HalfCheetah-v2. Q-filter shows a 7.7%
higher average performance than Random. (Because the
evaluation steps were controlled, the average Return in
Figure 6 is lower than the test episode return in Figure 4.)
This result is additional evidence that Q-critic filtering is
meaningful for sorting out promising actors. The remaining
concern is the effect of Q-critic filtering on the exploration.
If Q-critic selects similar actors, it might deteriorate the

exploration behavior for both the EA and the PG. To further improve exploration, the distance-based
criteria introduced in (Bodnar et al., 2019) can also be used with Q-critic filtering.

6 CONCLUSIONS

In this paper, we proposed another hybrid algorithm coupling the Cross-Entropy Method (CEM)
and the Twin Delayed Deep Deterministic Policy Gradient (TD3), which is called Policy Gradient
with Population-based Search (PGPS). Proposed algorithm is not only robust to a deceptive gradient,
which is difficult to be learned by the TD3 alone, but it also achieves higher sample efficiency, which
is deficient in the EA alone. To be robust to a deceptive gradient with low additional computational
cost, we revised the existing hybrid algorithm framework to make it an improved structure. Also,
to enhance the performance, we introduced new interaction processes such as mutual guidance
(PG↔EA), Q-critic filtering, and increasing evaluation step. First, mutual guidance is the most crucial
process, where the TD3 guides the CEM to make it better, and the CEM also guides the TD3 that has
fallen into the inferior solution to make it better. Second, Q-critic helps the population to consist of
more promising actors by filtering the set of actors sampled from a multivariate Gaussian. Lastly,
the increasing evaluation step controls the trade-off between the frequency of searches and stable
estimation. It takes the frequent searches and updates when searching on a coarse policy space far
from the optimal at the beginning stage of learning and fine estimation close to the optimal at the later
stage of learning. Our experiments on a MuJoCo confirmed that the proposed algorithm outperforms
state-of-the-art PG and hybrid algorithms, while its computational cost is kept at about 13.5% higher
than the TD3 algorithm.
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A APPENDIX A. THE SHAPE OF SWIMMER-V2

(a)

(d)

(b)

(e)

(c)

(f)

Figure 7: The graphs represent the change of average episodic discounted reward average episodic
return of a linear policy actor by the value change of a single parameter in the Swimmer, where the
other parameters were fixed and we evaluated thirty times at different seeds for each policy.
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where γ = 0.99, and the architecture of the linear policy : [state dim, action dim]→ tanh

To find the reason why the previous state-of-the-art policy gradient methods, such as TRPO, PPO,
SAC, and TD3, were hard to solve the Swimmer in the Mujoco Environment, we performed an
interesting two-steps experiment. In the first step, we sat an actor, following a simple linear policy,
and executed the CEM algorithm to find an optimal policy parameters θ in the Swimmer. When the
Return value of the actor reached over 200, we saved the policy parameters θ200. In the next step,
while changing one parameter value, we evaluated the changed policy thirty times with different
seeds and recorded the all Discounted Rewards (J(S0)) and Returns. We represents the some cases
of the experiment in Figure 1. As you can find in the Figure 1, we can discover interesting facts: 1)
on the graphs (a), (d), and (f) in Figure 1, we can find wide regions, where the gradients ∇θJ(S0)
are near zero; 2) except for (b) in Figure 1, at particular parameter value, the gradient of J(S0) and
Return is steep enough to be seen as a piece-wise; and 3) on the graphs (c), (d) and (e), the graphs
are shaped like valleys neat at those steep points. We suspected the above facts as the cause of the
deceptive gradient problem of the Swimmer, and raised the question in the Introduction. Finally, by
considering those issues, we propose the combined algorithm with TD3 and CEM.
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B APPENDIX B. PSEUDOCODE OF PGPS ALGORITHM

Algorithm 1 Coupling Policy Gradient with Population based Search Algorithm

Set hyper-parameters: TD3: lractor, lrcritic, τ, γ, and κ ; CEM: pop-size N , top K, Σinit,Σend,
and τΣ ; Mutual guidance: FTD3→CEM , βinit, and Dtarget ; Q-critic filtering: Tstart−Q and SR ;
Increasing interaction steps: Tmax, Tinit, and Tinterval

1: Initialize the mean µ of the multivariate Gaussian of the CEM
2: Initialize the TD3 actor πTD3 and TD3 critic QTD3

3: initialize replay buffer R
4: total_steps = 0
5: for generation=1:∞ do
6: if total_steps ≥ Tstart−Q then
7: pop← Q-critic Filtering(N, πelite, µ,Σ, QTD3, R)
8: else
9: pop[1]← πelite, pop[2 : N ] are sampled from N(µ,Σ)

10: end if
11: if generation mod FTD3→CEM = 0 then
12: pop[N ]← πTD3

13: end if

14: T = min(Tinit + 100×mod(total_steps, Tinterval), Tmax)

15: interaction_steps = 0
16: for i=1:pop_size N do
17: Set the current actor π as pop[i].
18: Returni, (st, at, rt, st+1)t=1:tend(tend≤T ) ← Evaluate(π, T )
19: Fill replay buffer R with (st, at, rt, st+1)t=1:tend

20: interaction_steps = interaction_steps + tend
21: end for
22: total_steps = total_steps + interaction_steps

23: Update (πelite, µ, Σ) with the top-K Return actors

24: num_update = interaction_steps / 5
25: if generation mod FTD3→CEM = 0 and ReturnN < MEAN(Returns)-STD(Returns) then
26: for i=1:5 do
27: Sampled states 2 (SS2) are drawn from R

28: Update β =

{
β × 2 if Es∼SS2

[||πTD3(s)− πelite(s)||22] > Dtarget × 1.5

β / 2 if Es∼SS2
[||πTD3(s)− πelite(s)||22] < Dtarget / 1.5

29: Train QTD3 for num_update mini-batches from R using a standard TD3 algorithm
30: Train πTD3 for num_update mini-batches from R to minimize LA(πTD3, πelite, β)
31: end for
32: else
33: for i=1:5 do
34: Train QTD3 for num_update mini-batches from R using a standard TD3 algorithm
35: Train πTD3 for num_update mini-batches from R to minimize LO(πTD3)
36: end for
37: end if
38: end for

In contrast to a standard TD3(Fujimoto et al., 2018) performing one step interaction with environment
and then one update repeatedly, our TD3 carries out as many updates as the sum of the evaluation
steps of the current generation after the evaluation. In proposed algorithm, the total updates steps is
divided into 5 iterations. At each iteration, a critic firstly trained for a fixed number of steps followed
by an actor is trained for same steps. If total update steps are 10,000, at each iteration, critics is
firstly trained for 2,000 minibatches, and then actor is trained for 2,000 minibatches for the direction
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to maximize critic. For stabilizing the volatility of critic, it is widely used in the implementation
(Achiam, 2018; Hill et al., 2018; Pourchot & Sigaud, 2018). LO(πTD3) is original TD3 Loss in
equation (1). LA(πTD3, πelite, β) is augmented loss for guided policy learning in equation (2).

Algorithm 2 Function Q-critic Filtering

1: procedure Q-critic Filtering(N, πelite, µ,Σ, QTD3, R)
2: pop[1]← πelite, pop[2 : N/2] are sampled from N(µ,Σ)
3: πj=1:M(=SR∗N) are sampled from N(µ,Σ)
4: Sampled states 1 (SS1) are drawn from replay buffer R
5: for j=1:M do
6: Pj = Es∼SS1

[QTD3(SS1, πj)]
7: end for
8: pop[N/2 + 1, N ]← Select policies (πs) with higher Pj among πj=1:M

9: Return pop
10: end procedure

Algorithm 3 Function Evaluate

1: procedure Evaluate(πelite, T )
2: returns, t, buffer (BF ) = 0, 0, [ ]
3: Reset environment and get initial state s0

4: while env is not done and t ≤ T do
5: Select action at = π(st)
6: Execute action at and receive reward rt and next state st+1

7: Fill BF with stat transition (st, at, rt, st+1)
8: returns = returns+ rt and t = t+ 1
9: end while

10: Return returns,BF
11: end procedure

In a standard TD3 algorithm, Gaussian noise or Ornstein-Uhlenbeck(Uhlenbeck & Ornstein, 1930)
noise are added to the action at for exploration. It is usually known as action space noise. Pourchot
& Sigaud (2018) empirically showed that action space noise does not contribute the performance
improvement. We also cannot find any evidence for the advantage about action space noise. Therefore,
proposed algorithm does not use action space noise.

13



Under review as a conference paper at ICLR 2021

C APPENDIX C. PROOF OF PROPOSITION 1

In this section, we prove Proposition 1.

Proposition1 If Ea∼πi(·|s)[QTD3(s, a)] ≥ Ea∼πTD3(·|s)[QTD3(s, a)] for all s,
Ea∼πi(·|s)[Qπi

(s, a)] ≥ Ea∼πTD3(·|s)[QTD3(s, a)]

Proof. For arbitrary st

VπTD3
(st)

= Eat∼πTD3(·|st)[QπTD3
(st, at)]

≤ Eat∼πi(·|st)[QπTD3
(st, at)]

= Eat∼πi(·|st)[r
πi
t + γEat+1∼πTD3(·|st+1)[QπTD3

(st+1, at+1)]

≤ Eat∼πTD3(·|st)[r
πi
t + γEat+1∼πi(·|st+1)[QπTD3

(st+1, at+1)]

= Eat∼πi(·|st)[r
πi
t + γrπi

t+1 + γ2Eat+2∼πTD3(·|st+2)[QπTD3
(st+2, at+2)]

≤ Eat∼πi(·|st)[r
πi
t + γrπi

t+1 + γ2Eat+2∼πTD3(·|st+2)[QπTD3
(st+2, at+2)]

. . .

≤ Eat∼πi(·|st)[r
πi
t + γrπi

t+1 + γ2rπi
t+2 + · · ·+ γ∞rπi

∞ + · · · ]
∼= Eat∼πi(·|st)[

∑∞
k=t γ

k−trπi

k ]

∼= Ea∼πi(·|s)[Qπi(s, a)]

= Vπi(st)

We assumed that higher Ea∼πi(·|s)[QTD3(s, a)] means higher Ea∼πi(·|s)[Qπi
(s, a)]. Therefore, the

policy π with higher Ea∼π(·|s)[QTD3(s, a)] is better. We used sampled state (SS) from repay
buffer to estimate the performance of policy. That is, Es∼SS [QTD3(s, πi(s))] is a estimator for
Ea∼π(·|s)[QTD3(s, a)] for all s. Sum up, the policy with higher Es∼SS [QTD3(s, πi(s))] is better
policy.
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D APPENDIX D. DETAILED HYPERPARAMETERS SETTING

Table 2 includes the architecture of the neural networks. Table 3 represents the hyperparameters that
kept constant across all tasks. Table 4 describes the hyperparameters that vary with the task.

Table 2: The architecture of the neural networks.

Actor Critic
[state dim, 400]

elu
[400, 300]

elu
[300, action dim]

tanh

[state dim + action dim, 400]
elu

[400, 300]
elu

[300, 1]
-

Table 3: Hyperparameters constant across all tasks.

Hyperparameter Value
Target weight (τ )

TD3 Actor learning rate (lractor)
TD3 Critic learning rate (lrcritic)

Discount factor (γ)
Replay buffer size

Batch size (κ)

0.005
2e-3
1e-3
0.99
1e-6
256

CEM initial covariance (Σinit)
CEM limit covariance (Σlimit)

7.5e-3
1e-5

Initial distance weight (βinit)
Target distance (Dtarget)

Sampled states 2 (SS2) size

1
0.05
512

Q-filtering start step (Tstart−Q)
Multiple sample ratio (SR)
Sampled states 1 (SS1) size

150000
50
64

Max interaction (Tmax)
Initial interaction steps (Tinit)

Interval for increasing step (Tinter)

1000
400

100000

Table 4: Hyperparameters varying across tasks.
Task Swimmer HalfCheetah Hopper Walker2d Ant

Population size (N)
top K

Frequency of TD3 to CEM (FTD3→CEM )
Decaying covariance constant (τΣ)

10
5
3

0.01

10
5
1

0.03

6
3
1

0.03

6
3
1

0.03

6
3
1

0.03
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