
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRACE RECONSTRUCTION WITH LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The general trace reconstruction problem seeks to recover an original sequence
from its noisy copies independently corrupted by deletions, insertions, and substi-
tutions. This problem arises in applications such as DNA data storage, a promising
storage medium due to its high information density and longevity. However, er-
rors introduced during DNA synthesis, storage, and sequencing require correction
through algorithms and codes, with trace reconstruction often used as part of data
retrieval. In this work, we propose TReconLM, which leverages a language model
trained on next-token prediction for trace reconstruction. We pretrain the model
on synthetic data and fine-tune on real-world data to adapt to technology-specific
error patterns. TReconLM outperforms state-of-the-art trace reconstruction algo-
rithms, including prior deep learning approaches, recovering a substantially higher
fraction of sequences without error.

1 INTRODUCTION

Trace reconstruction is a central problem in biological data analysis (Antkowiak et al., 2020; Bar-
Lev et al., 2025; Organick et al., 2018). Given multiple noisy copies of a sequence (traces), the goal
is to reconstruct the original sequence from as few traces as possible.

For example, in DNA data storage, the sequences to be reconstructed typically consist of 50-200
bases of adenine (A), cytosine (C), guanine (G), and thymine (T). For some sequences, as few
as 2-10 noisy traces are available, each independently corrupted by insertions, deletions, and sub-
stitutions. However, existing trace reconstruction methods, including general algorithms such as
MUSCLE (Edgar, 2004) as well as algorithms specifically developed for DNA data storage (Qin
et al., 2024), struggle when few traces are available and error rates are high.

Existing trace reconstruction algorithms either assume a fixed error model (Srinivasavaradhan et al.,
2021; Viswanathan & Swaminathan, 2008) or rely on observed traces, often using dynamic pro-
gramming techniques such as computing the longest common subsequence (Edgar, 2004; Gopalan
et al., 2018; Sabary et al., 2024). Fixed error models fail to capture error dependencies observed in
practice, such as error probabilities increasing with sequence length (Gimpel et al., 2023). Relying
only on observed traces ignores known error statistics, which can provide useful prior information,
especially when few traces are available. These limitations motivate a data-driven approach that
can be trained on synthetic data generated from an error model and fine-tuned on real-world data to
capture observed error dependencies.

In this work, we frame the trace reconstruction problem for DNA data storage as a next-token pre-
diction task and train a decoder-only transformer model to generate sequence estimates from a set of
traces. Our method, TReconLM (Trace Reconstruction with a Language Model), outperforms exist-
ing state-of-the-art approaches for reconstructing DNA sequences from few traces, including both
classical methods and specialized deep-learning-based approaches. To address the lack of large-
scale real data, we pretrain TReconLM on synthetic data and then fine-tune on data from existing
DNA data storage systems to mitigate distribution shifts and to improve performance.

In addition to providing a simple state-of-the-art method for trace reconstruction, we study why
and how transformers learn to perform trace reconstruction so well: First, we study scaling laws to
understand how model size affects trace reconstruction performance. We find that relatively small
models (e.g., 38M parameters) perform best, and that increasing model size does not improve per-
formance. We support this empirical finding with a theoretical analysis explaining this behavior.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Synthetic training data generation

x = ACTTGAT

y1 = ACTTTGAT

yN = A-TTTAT

insertions,
substitutions,

deletions

...

Trace reconstruction as next-token prediction

ACTTTGAT | . . . | ATTTAT : ACTTGAT

Language model

y1 yN x̂

Figure 1: Left: Trace reconstruction aims to recover a sequence x from N noisy copies yi, each
corrupted by insertions, deletions, and substitutions. Right: We reformulate trace reconstruction as
a next-token prediction task and train a transformer model to reconstruct x from its noisy traces.

Second, we theoretically characterize and empirically validate how transformers solve trace recon-
struction under substitution errors.

We make our code and models publicly available. Despite its conceptual simplicity, perhaps sur-
prisingly, our approach outperforms existing approaches on a challenging algorithmic problem. Our
results highlight the potential of language models for algorithmic problems and contribute to emerg-
ing literature showing that challenging signal reconstruction problems can be efficiently solved with
learning-based approaches.

2 RELATED WORK

Theoretical work on the trace reconstruction problem typically studies the minimum number of
traces required to reconstruct a binary string corrupted by deletions with high probability (Chase,
2021; De et al., 2017; Holden & Lyons, 2020). However, perfect reconstruction from a small number
of traces, which is the regime we focus on in this paper, is generally not possible.

Several trace reconstruction methods have been proposed in previous work. For traces corrupted by
deletions, Batu et al. (2004) introduced the bitwise majority alignment (BMA) algorithm, which uses
symbol-wise majority voting. Viswanathan & Swaminathan (2008) extended BMA for insertions,
deletions, and substitutions, and Gopalan et al. (2018) proposed another BMA-based approach.

Antkowiak et al. (2020) performed trace reconstruction using multiple sequence alignment (MSA)
with the MUSCLE algorithm (Edgar, 2004), followed by majority voting across alignment columns.
Sabary et al. (2024) proposed several dynamic programming-based methods, including shortest
common supersequence and longest common subsequence algorithms. Their iterative algorithm
(ITR) achieves state-of-the-art performance for trace reconstruction in DNA data storage. Srini-
vasavaradhan et al. (2021) introduced TrellisBMA, which combines the BCJR algorithm (Bahl et al.,
1974) with BMA-based methods.

Qin et al. (2024) proposed RobuSeqNet, a neural network-based approach that combines an attention
mechanism, a conformer encoder, and an LSTM decoder. Input sequences are one-hot encoded,
padded to a fixed length, and represented as matrices, which are then aggregated across traces. The
attention module downweights misclustered sequences. On large clusters, RobuSeqNet performs
slightly worse than the state-of-the-art ITR algorithm.

Bar-Lev et al. (2025) proposed DNAformer, an end-to-end DNA data storage framework that in-
cludes a coding scheme and a transformer-based trace reconstruction model. Their neural archi-
tecture differs from ours in several key aspects. First, as in Qin et al. (2024), input sequences are
one-hot encoded. Second, the model uses a two-branch structure with shared weights processing for-
ward and reversed sequences. Third, DNAformer includes a learned alignment module, followed by
a transformer encoder without positional embeddings or causal masks, and relies on postprocessing
with dynamic programming. DNAformer achieves similar performance to the ITR algorithm.

Nahum et al. (2021) proposed a sequence-to-sequence transformer for single-read trace reconstruc-
tion, where noisy sequences are grouped by length and processed by separate transformer networks.
Their model acts as a sequence classifier, mapping each noisy sequence to one of 256 predefined
codewords. In contrast, our work uses next-token prediction instead of sequence-to-sequence map-
ping.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dotan et al. (2023) introduced BetaAlign, an encoder-decoder transformer for aligning biological
sequences.

3 BACKGROUND AND PROBLEM STATEMENT

In this paper, we study the trace reconstruction problem. Given a set of noisy copies y1, . . . ,yN of
a sequence x, independently corrupted by unknown deletions, insertions, and substitutions, the goal
is to compute a sequence estimate x̂ of the original sequence x. Figure 1, left panel, illustrates the
problem statement.

We focus on the trace reconstruction problem in DNA data storage, where the sequence x is a
DNA strand of length 50-200 bases that can be modeled as a random sequence over the quaternary
alphabet. To motivate this setting, we briefly outline the DNA data storage pipeline.

In DNA data storage, digital information is first partitioned into short segments to accommodate
current synthesis limitations, which prevent reliably writing long DNA strands. Each segment is
then encoded using an error-correcting code and mapped to a DNA sequence xi ∈ {A,C,T,G}L
of length L, resulting in a set D = {x1, . . . ,xM}. The sequences in D are synthesized, amplified,
and can be stored over long periods.

At readout, a subset of DNA sequences is sampled and sequenced, resulting in multiple unordered,
noisy traces of the original sequences. The number of traces per sequence varies due to amplification
bias and random sampling.

To recover the stored information, the first step is typically clustering, where the goal is to group
traces originating from the same sequence xi. However, clustering is imperfect; a single original
sequence can give rise to multiple clusters, and a single cluster can have traces from different original
sequences (Antkowiak et al., 2020; Organick et al., 2018; Rashtchian et al., 2017).

After clustering, the next step is to reconstruct a candidate sequence for each cluster. Given clusters
containing N ∈ N0 noisy copies y1, . . . ,yN of a DNA sequence x, each independently corrupted
by unknown deletions, insertions, and substitutions, the goal is to compute cluster-wise sequence
estimates x̂i of the original sequences xi, which is the trace reconstruction problem defined at the
beginning of this section.

We assume that the sequences x consist of bases chosen uniformly at random over the alphabet
{A,C,T,G}. This assumption is reasonable, as many existing DNA data storage systems randomize
their sequences by adding a pseudorandom sequence, uniformly distributed over the four bases, to
the input data before encoding (Antkowiak et al., 2020; Organick et al., 2018).

After trace reconstruction, a decoder typically corrects any remaining errors in the sequence esti-
mates x̂i using the redundancy introduced during encoding to recover the original information.

4 METHOD

We formulate the trace reconstruction problem as a next-token prediction task and train a decoder-
only transformer to solve it. Given a set of N traces

C =
{
y1, . . . ,yN

}
,

we train a model fθ with parameters θ to predict an estimate x̂ of the original sequence x of length
L when prompted with the concatenation of traces

p = y1 | y2 | . . . | yN−1 | yN : . (1)

We introduce the | token to concatenate traces and the : token to mark the end of all traces. The
model’s vocabulary is V = {A,C,G,T, |, :, #}, where # is the padding token.

Given prompt p as in Equation 1, the model generates L tokens in an autoregressive manner via
multiple forward passes. We use greedy decoding, selecting the most likely token at each step to
obtain the final sequence estimate x̂. See Figure 1, right panel, for an illustration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10

Cluster size N

0.001

0.01

0.1
d
L

2 3 4 5 6 7 8 9 10

Cluster size N

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

ra
te

RobuSeqNet VS MUSCLE BMALA TrellisBMA ITR DNAformer TReconLM

Figure 2: Average Levenshtein distances dL and failure rates on synthetic data with sequence length
L = 110. TReconLM is averaged over three runs with different seeds. Shaded bands and error bars
show ± one standard deviation. TReconLM achieves best performance in both metrics and across
all cluster sizes.

In Appendix B, we additionally compare with beam search decoding and consider alignment-based
target representations followed by majority voting to obtain a sequence estimate, finding that directly
predicting the sequence estimate performs best.

4.1 TRAINING AND DATA GENERATION

We generate our synthetic data by first sampling an original sequence x ∈ {A,C,G,T}L of length
L uniformly at random from the set of all sequences. We then generate each trace yj by introducing,
for each base in the original sequence x, either a deletion, insertion, substitution, or no error, with
probabilities pD, pI, pS, and pT = 1−pD−pI−pS, respectively. If a deletion is sampled, we append
no base to trace yj and process the next base xℓ+1. If an insertion is sampled, we append a random
base chosen uniformly from the set {A,C,G,T} to trace yj and reprocess the current base xℓ. If a
substitution is sampled, we append a random base different from xℓ to trace yj and process the next
base. If correct transmission is sampled, we append xℓ to trace yj and process the next base.

The traces y1, . . . ,yN are concatenated with the original sequence to form a training instance

y1 | y2 | . . . | yN−1 | yN : x. (2)

For each training instance, we sample the error probabilities uniformly at random from the interval
[0.01, 0.1] and the number of traces N uniformly at random between 2 and 10, as this represents a
practically relevant and challenging regime.

The transformer model is trained on the synthetic data by minimizing cross-entropy loss between
the predicted sequence x̂ and the original sequence x.

4.2 FINETUNING ON REAL DATA

In practice, error probabilities are often correlated and may vary with the position in the DNA se-
quence, leading to a distribution shift between our synthetic training data and real-world data. To
mitigate this shift, we fine-tune on two real-world datasets (Antkowiak et al., 2020; Srinivasavarad-
han et al., 2021), as discussed in Sections 5.3.1 and 5.3.2.

For each ground-truth sequence x in the datasets, we associate noisy traces y1, . . . ,yN to construct
training examples as in Equation 2. We then fine-tune the model analogously to pretraining. Al-
ternatively, fine-tuning or direct training on simulated data that better matches the characteristics of
the respective channel is possible. However, this requires an accurate characterization of the DNA
channel for the technology used, which is not necessarily straightforward.

5 EXPERIMENTS

In this section, we evaluate our proposed method TReconLM for trace reconstruction on both syn-
thetic data and datasets from existing DNA data storage systems. We find that TReconLM outper-
forms the state-of-the-art ITR algorithm (Sabary et al., 2024) across all evaluated regimes.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10

k

0.0

0.1

0.2

0.3

0.4

0.5

d
L

0 1 2 3 4 5 6 7 8 9 10

k

0.0

0.2

0.4

0.6

0.8

1.0

F
a
il
u
re

ra
te

10

20

30

40

50

F
ix

ed
N

RobuSeqNet VS MUSCLE BMALA TrellisBMA ITR DNAformer TReconLM

Figure 3: Left: Average Levenshtein distances dL under increasing noise levels k. Right: Failure
rates of TReconLM under increasing noise levels when trained with fixed cluster size N .

We measure performance using the following two metrics:

• Levenshtein distance dL(x, x̂): The minimum number of edits (deletions, insertions, and
substitutions) required to transform the reconstructed sequence x̂ into the original sequence
x, normalized by the length L of the original sequence.

• Failure rate: The fraction of test examples in which the reconstructed sequence x̂ differs
from the original sequence x.

5.1 BASELINES

We compare TReconLM to both dynamic programming-based and deep learning-based reconstruc-
tion methods. For dynamic programming-based methods, we consider the ITR algorithm (Sabary
et al., 2024), trace reconstruction using MUSCLE (Edgar, 2004) with majority voting, Trellis-
BMA (Srinivasavaradhan et al., 2021), BMALA (Gopalan et al., 2018), and VS (Viswanathan &
Swaminathan, 2008). For deep learning-based methods, we consider RobuSeqNet (Qin et al., 2024)
and DNAformer (Bar-Lev et al., 2025). Detailed descriptions of these architectures, as well as hy-
perparameters and implementation details for all baselines, are provided in Appendix G.

We also compare TReconLM with GPT-4o mini under zero- and few-shot prompting in Ap-
pendix F.3.

5.2 EVALUATION ON SYNTHETIC DATA

We first evaluate reconstruction performance on synthetic data generated as described in Section 4.1
for three sequence lengths L = 60, 110, and 180, which are representative of existing DNA data
storage systems.

We train a decoder-only transformer model with ∼38M parameters on ∼300M examples (∼440B
tokens), totaling 1.0 × 1020 FLOPs. We chose the model size based on the scaling law analysis
in Section 5.4, which shows that increasing the number of parameters further does not improve
performance.

We train our deep learning baselines, RobuSeqNet (∼3M parameters) and DNAformer (∼100M pa-
rameters), on the same training set. We do not match compute budgets since RobuSeqNet’s smaller
size would require significantly longer training. In Appendix F, we additionally show that TRe-
conLM also outperforms RobuSeqNet when controlling for model size, and DNAformer based on
the performance reported in the original paper (Bar-Lev et al., 2025). We evaluate all reconstruction
algorithms on a shared test set of 50K randomly generated examples, constructed in the same way
as the training data.

Figure 2 shows the average Levenshtein distances and failure rates. TReconLM outperforms all
baseline methods across all cluster sizes N ∈ [2, 10] considered. Results for sequence lengths
L = 60 and L = 180 are provided in Appendix A, showing that TReconLM also outperforms
baseline methods on synthetic data for both shorter and longer sequence lengths.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10

Cluster size N

0.2

0.3

0.4

0.6

d
L

2 3 4 5 6 7 8 9 10

Cluster size N

0.6

0.8

1.0

F
a
il
u

re
ra

te

RobuSeqNet MUSCLE BMALA TrellisBMA ITR TReconLM (p.) DNAformer TReconLM

Figure 4: Average Levenshtein distances dL and failure rates on the out-of-distribution Noisy-DNA
dataset. Fine-tuned TReconLM is the mean of three runs with different seeds from the same pre-
trained model, with shaded bands and error bars showing ± one standard deviation. The fine-tuned
model achieves the lowest Levenshtein distances and failure rates across all cluster sizes.

5.2.1 GENERALIZATION TO HIGHER NOISE LEVELS AND LARGE CLUSTER SIZES

We next evaluate the robustness of TReconLM on traces with higher noise levels and under increas-
ing cluster sizes. We sweep over 10 noise levels by sampling insertion, deletion, and substitution
probabilities uniformly from [0.01 + 0.01k, 0.10 + 0.01k] for k = 1, . . . , 10, where k = 0 corre-
sponds to the pretraining interval [0.01, 0.10] and k = 10 to the interval [0.11, 0.20].

Figure 3, left panel, shows the average Levenshtein distances between reconstructed and ground-
truth sequences for TReconLM and baselines, evaluated on a shared test set of 5K randomly sampled
examples per noise level k. TReconLM can reconstruct sequences even under higher noise levels,
outperforming the baselines despite a mismatch between training and test error distributions.

Figure 3, right panel, shows the failure rates of TReconLM for different cluster sizes N ∈
{10, 20, . . . , 50}. For each cluster size, we train a separate model on error probabilities sampled
uniformly from [0.01, 0.10] and evaluate it on 5K test sequences at each noise level k. All models
are trained to reconstruct sequences of length L = 110 with a fixed compute budget of 1.0 × 1020

FLOPs. Increasing the cluster size from N = 10 to N = 20 improves reconstruction performance,
with diminishing gains for larger N . The panel also compares a model pretrained on varying cluster
sizes N ∈ [2, 10] (solid line) with a model trained on a fixed cluster size N = 10 (dashed line),
showing only a small trade-off when training on varying cluster sizes.

5.3 EXPERIMENTS ON REAL DATA

In this section, we show that fine-tuning on real-world data improves reconstruction performance
relative to a pretrained model. Appendix C shows results when TReconLM is trained from scratch
only on real data, without pretraining.

We consider two datasets. The first is the Noisy-DNA dataset from Antkowiak et al. (2020), which
uses a cost-efficient writing technology at the expense of higher error probabilities. The second is the
Microsoft dataset (Srinivasavaradhan et al., 2021), which uses nanopore sequencing with similarly
high error probabilities. In both datasets, recovering the stored information is challenging, and trace
reconstruction was originally used to reconstruct the data.

5.3.1 REAL DATA EXPERIMENT 1: NOISY-DNA DATASET

The Noisy-DNA dataset (Antkowiak et al., 2020) consists of M = 16, 383 ground-truth sequences
of length L = 60 bases and their unclustered traces. Estimated error probabilities are pI = 0.057
(insertions), pD = 0.06 (deletions), and pS = 0.026 (substitutions), significantly higher than in
other DNA data storage systems (Goldman et al., 2013; Grass et al., 2015; Erlich & Zielinski, 2017;
Organick et al., 2018). Error probabilities vary by position within sequences, with the insertion
probability increasing toward the end to reach up to pI = 0.3, making this dataset well-suited for
evaluating whether fine-tuning can adapt to real-world error statistics.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10

Cluster size N

0.001

0.01

0.1
d
L

2 3 4 5 6 7 8 9 10

Cluster size N

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

ra
te

RobuSeqNet MUSCLE BMALA TrellisBMA ITR TReconLM (p.) DNAformer TReconLM

Figure 5: Average Levenshtein distances dL and failure rates on the out-of-distribution Microsoft
dataset. Fine-tuned TReconLM is the mean of three runs with different seeds from the same pre-
trained model, with shaded bands and error bars showing ± one standard deviation. Both pretrained
and fine-tuned TReconLM outperform the baselines.

We construct our fine-tuning dataset by clustering traces by sequence index and discarding traces
with index errors. This simple and efficient approach may cluster traces from different sequences
together, which allows us to test how TReconLM handles misclustered reads.

After clustering, we split the dataset into 80% train, 10% validation, and 10% test clusters. Clus-
ters with more than ten traces are divided into smaller subclusters to fit within our model’s context
window. For validation and test sets, we precompute fixed subclusters by sampling cluster sizes
between 2 and 10, yielding 15,578 validation and 15,696 test examples. During training, we apply
dynamic subclustering to increase diversity. To prevent data leakage, we remove traces too simi-
lar to test-set ground-truth sequences based on Levenshtein distance. Details of our preprocessing
pipeline, including C-tail removal and similarity thresholds, are provided in Appendix D.

We fine-tune the pretrained TReconLM model and deep learning baselines from Appendix A, all
pretrained on synthetic data for sequences of length L = 60. TReconLM is fine-tuned with a
compute budget of 1× 1018 FLOPs, with baselines fine-tuned on the same dataset for an equivalent
number of steps.

Figure 4 shows average Levenshtein distances and failure rates for different cluster sizes. While the
pretrained model fails to generalize to technology-dependent error statistics, fine-tuning significantly
improves performance, recovering 13% more sequences on average across cluster sizes compared
to the state-of-the-art ITR algorithm. Appendix E analyzes data efficiency when fine-tuning on a
subset of the training data.

5.3.2 REAL DATA EXPERIMENT 2: MICROSOFT DATASET

We next evaluate the performance of TReconLM on the Microsoft dataset from Srinivasavaradhan
et al. (2021), which consists of M = 10,000 ground-truth sequences of length L = 110 and 269,707
traces. The traces are pre-clustered using the algorithm from Rashtchian et al. (2017), with each
cluster corresponding to a single ground-truth sequence. Estimated error probabilities are pI =
0.017 (insertions), pD = 0.02 (deletions), and pS = 0.022 (substitutions).

As with the Noisy-DNA dataset (Antkowiak et al., 2020), we split the data into 80% train, 10%
validation, and 10% test clusters. Subclusters are precomputed for the validation and test sets and
dynamically sampled during training to fit within the model’s context length. We obtain 4,977 and
5,109 examples for the validation and test sets, respectively, each with cluster sizes N ≤ 10. For the
train set, we obtain 7,976 examples with cluster sizes N ∈ Z.

Figure 5 shows reconstruction performance after fine-tuning TReconLM from Section 5.2 using a
compute budget of 1× 1019 FLOPs. The deep learning baselines are fine-tuned on the same dataset
for an equivalent number of steps. Both the pretrained and fine-tuned TReconLM models outperform
all non-deep learning baselines. The pretrained TReconLM performs comparably to the fine-tuned
DNAformer, suggesting that TReconLM can generalize to some extent from synthetic data to the
Microsoft dataset, despite differences in error statistics.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1M 10M 300M

Parameters

0.08

0.13

0.17

T
e
st

lo
ss

1e17 3e18 1e20

FLOPs

3M

10M

20M

38M

P
a
ra

m
e
te

rs

1e17 3e18 1e20

FLOPs

1B

10B

100B

440B

T
o
k
e
n
s

1e17

6e19

Figure 6: IsoFLOP curves for trace reconstruction. Left: Test loss for models ranging from 450K to
680M parameters, trained on sequences of length L = 110 across nine compute budgets from 1017

to 6× 1019 FLOPs. Center: Number of parameters of the best-performing models versus compute,
showing a plateau at high compute budgets. Right: Number of tokens versus compute, following
scaling laws observed in language modeling.

5.4 SCALING LAWS FOR TRACE RECONSTRUCTION

We study how performance scales with compute and determine the best model size for reconstructing
sequences of length L = 110 at a fixed compute budget. Following Approach 2 of Hoffmann et al.
(2022), we train a suite of models ranging from Np = 450K to 680M parameters at nine compute
budgets C ∈ {1, 3, 6} × 1017,18,19 FLOPs, where each model is trained on T = C

6Np
tokens.

We fix all optimization hyperparameters across runs, varying only the batch size (between 8 and
1.2K) to match the compute budget, and scale the learning rate accordingly. The embedding dimen-
sion to depth ratio ranges from approximately 28 to 122. Other optimization hyperparameters are
listed in Table 1 in Appendix A.

Figure 6 shows the IsoFLOP curves across the considered compute budgets, plotting test loss against
model size (log scale, left panel). Under our hyperparameter settings, we observe that after a com-
pute budget of 3× 1018 FLOPs, the optimal model size plateaus at approximately 38M parameters
(center panel). We provide a possible theoretical explanation for this behavior in Section 6. The
number of tokens processed versus compute follows a standard power law relationship (right panel).

6 THEORY

To understand the scaling behavior observed in Figure 6 and whether TReconLM learns meaningful
algorithms for trace reconstruction, we analyze a simplified setting with only substitution errors. We
consider substitution errors only, because for this setting an optimal estimator is known, whereas the
optimal estimator for insertions and deletions remains unknown and therefore it is difficult to make
theoretical statements beyond substitution errors.

6.1 SCALING BEHAVIOR UNDER SUBSTITUTION-ONLY ERRORS

We consider a sequence x̃ ∈ {−1, 1}n and assume that we have m noisy copies of the sequence
x̃1, . . . , x̃m, where each copy is obtained by independently flipping each of the entries in x̃ with
probability p < 1/2. Our goal is to estimate the sequence x̃ based on the noisy copies. This is
a special case of the trace reconstruction problem considered in this paper, where we only have
substitutions, as opposed to substitutions, deletions, and insertions.

We consider a linear estimator with kn ≤ mn many parameters for estimating each of the positions
of x. Without loss of generality we focus on estimating the first position of the sequence, y = [x̃]1.
Our estimator takes the form:

ŷ = sign

(
k∑

i=1

wT
i x̃i

)
= sign(wTx).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The Bayes optimal estimator only uses the coordinates [x̃1]1, . . . , [x̃k]1 since the other coordinates
are independent of [x̃]1, and is wB = [1, 0, ..., 1, 0, ..., 1, 0, ...] (or a scaled version thereof).

We consider a linear estimator with weights bounded by ∥w∥2 ≤ B =
√
kn and we have ∥x∥2 ≤

R =
√
kn. We perform logistic regression to learn an estimator of the form sign(wTx) from N

examples. We consider the logistic regression estimate

ŵ = arg min
w : ∥w∥2≤B

R̂(w), where R̂(w) =
1

N

N∑
i=1

ℓ(wTxi, yi), (3)

where ℓ(z, y) = log(1 + e−yz) is the logistic loss.
Proposition 1. With probability at least 1 − δ, the 0/1-error of the logistic regression estimate is
bounded by

P
[
sign(ŵTx) ̸= y

]
≤ e−2k(1/2−p)2 +

1√
N

(
8BR+ 6

√
log(2/δ)/2

)
. (4)

The proof of the proposition is in Appendix I.1. The first term in Equation 4 is (a bound on) the
error of the Bayes optimal estimator with kn parameters. As the number of parameters increases
(from k up to m) the error decreases. The second term is the error induced by learning this estimator
based on N examples. The behavior in Figure 6 is consistent with such a bound. Once the model
is sufficiently large, the first term in the bound is close to zero and does not significantly improve
further by increasing the model size. The second term describes a power law in the number of
training examples, N , which is what we also observe empirically.

6.2 TRANSFORMER ANALYSIS FOR SUBSTITUTION-ONLY RECONSTRUCTION

We extend the analysis from linear models to transformers. Under i.i.d substitution errors with
rate ps < 0.25, uniform sequence priors, and independent traces, the Bayes-optimal estimator that
minimizes cross-entropy loss reduces to majority voting, which selects the base that appears most
frequently at each position across traces (the proof is in Appendix I.2).
Theorem 1. There exists a 2-layer transformer with hidden dimension d = |V| + L, where |V| is
the vocabulary size and L is the sequence length, that implements majority voting for trace recon-
struction.

The construction is detailed in Appendix I.3. We next show that any estimator with near-optimal
loss must approximate this majority voting behavior.
Theorem 2. Let fθ be any estimator achieving cross-entropy loss L(θ) ≤ L∗ + δ, where L∗ is the
Bayes-optimal loss. Then

E [∥Pθ [·]− Pmaj [·] ∥TV] ≤
√

δ
2 ,

where Pθ [·] and Pmaj [·] denote the output distributions of fθ and the Bayes-optimal estimator.

This result, proven in Appendix I.4, implies that any estimator with near-optimal loss must make
predictions close to those of majority voting. While convergence of gradient descent remains an
open theoretical question, experiments in Appendix I.5 show that transformers trained with gradient
descent achieve δ < 2 × 10−4, showing strong correlation between vote margin and prediction
confidence.

7 CONCLUSION AND LIMIATIONS

In this work, we proposed a deep learning-based approach for trace reconstruction and validated it
in the context of DNA data storage. Our method, TReconLM, achieves lower Levenshtein distances
and failure rates than state-of-the-art methods across small cluster sizes and a wide range of noise
levels on both synthetic and real-world data.

Such a learning-based approach to trace reconstruction is suitable whenever training data can be
simulated, which is often the case, also beyond DNA data storage.

The main limitation of TReconLM over classical, non-deep learning based methods is that it requires
training data and can perform poorly if the test data is very different from the training data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LLM USAGE

Large language models were used as writing assistance tools for editing and polishing the text, as
well as for generating code to format and style figures in this submission.

REFERENCES

Philipp L. Antkowiak, Jory Lietard, Mohammad Zalbagi Darestani, Mark M. Somoza, Wendelin J.
Stark, Reinhard Heckel, and Robert N. Grass. Low cost DNA data storage using photolithographic
synthesis and advanced information reconstruction and error correction. Nature Communications,
2020.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear codes for minimizing symbol
error rate (corresp.). IEEE Transactions on Information Theory, 1974.

Daniella Bar-Lev, Itai Orr, Omer Sabary, Tuvi Etzion, and Eitan Yaakobi. Scalable and robust dna-
based storage via coding theory and deep learning. Nature Machine Intelligence, 2025.

Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 2006.

Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing strings
from random traces. In SODA, 2004.

Zachary Chase. New lower bounds for trace reconstruction. In Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, 2021.

Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for trace
reconstruction. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, 2017.

Edo Dotan, Yonatan Belinkov, Oren Avram, Elya Wygoda, Noa Ecker, Michael Alburquerque, Omri
Keren, Gil Loewenthal, and Tal Pupko. Multiple Sequence Alignment as a Sequence-to-Sequence
Learning Problem. In The Eleventh International Conference on Learning Representations, 2023.

Robert C. Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 2004.

Yaniv Erlich and Dina Zielinski. Dna fountain enables a robust and efficient storage architecture.
Science, 2017.

Andreas L Gimpel, Wendelin J Stark, Reinhard Heckel, and Robert N Grass. A digital twin for dna
data storage based on comprehensive quantification of errors and biases. Nature Communications,
2023.

Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeProust, Botond
Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information stor-
age in synthesized dna. Nature, 2013.

Parikshit S. Gopalan, Sergey Yekhanin, Siena Dumas Ang, Nebojsa Jojic, Miklos Racz, Karen
Strauss, and Luis Ceze. Trace reconstruction from noisy polynucleotide sequencer reads. U.S.
Patent Application 15/536,115, 2018.

Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wendelin J Stark. Ro-
bust chemical preservation of digital information on dna in silica with error-correcting codes.
Angewandte Chemie International Edition, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv:2203.15556, 2022.

Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. The Annals of Applied
Probability, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT, 2025. URL
https://github.com/karpathy/nanoGPT. GitHub repository.

Yotam Nahum, Eyar Ben-Tolila, and Leon Anavy. Single-read reconstruction for dna data storage
using transformers. arXiv:2109.05478, 2021.

Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin
Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, et al. Ran-
dom access in large-scale dna data storage. Nature biotechnology, 2018.

Yun Qin, Fei Zhu, Bo Xi, and Lifu Song. Robust multi-read reconstruction from noisy clusters using
deep neural network for DNA storage. Computational and Structural Biotechnology Journal,
2024.

Cyrus Rashtchian, Konstantin Makarychev, Miklos Racz, Siena Ang, Djordje Jevdjic, Sergey
Yekhanin, Luis Ceze, and Karin Strauss. Clustering billions of reads for dna data storage. Ad-
vances in Neural Information Processing Systems, 2017.

Omer Sabary, Alexander Yucovich, Guy Shapira, and Eitan Yaakobi. Reconstruction algorithms for
dna-storage systems. Scientific Reports, 2024.

Sundara Rajan Srinivasavaradhan, Sivakanth Gopi, Henry D. Pfister, and Sergey Yekhanin. Trellis
bma: Coded trace reconstruction on ids channels for dna storage. In 2021 IEEE International
Symposium on Information Theory (ISIT), 2021.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics.
Springer, New York, NY, 2009. ISBN 978-0-387-79051-0. doi: 10.1007/b13794.

Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over insertion-
deletion channels. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, 2008.

E. Zorita, P. Cuscó, and G. J. Filion. Starcode: Sequence clustering based on all-pairs search.
Bioinformatics, 2015.

11

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10

Cluster size N

0.001

0.01

0.1
d
L

2 3 4 5 6 7 8 9 10

Cluster size N

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

ra
te

RobuSeqNet VS MUSCLE BMALA TrellisBMA ITR DNAformer TReconLM

Figure 7: Average Levenshtein distances dL and failure rates on synthetic data with sequence length
L = 60. TReconLM is averaged over three runs with different seeds. Shaded bands and error bars
show ± one standard deviation.

2 3 4 5 6 7 8 9 10

Cluster size N

0.001

0.01

0.1

d
L

2 3 4 5 6 7 8 9 10

Cluster size N

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

ra
te

RobuSeqNet VS MUSCLE BMALA TrellisBMA ITR DNAformer TReconLM

Figure 8: Average Levenshtein distances dL and failure rates on synthetic data with sequence length
L = 180. TReconLM is averaged over three runs with different seeds. Shaded bands and error bars
show ± one standard deviation.

A ADDITIONAL RESULTS ON SYNTHETIC DATA AND IMPLEMENTATION
DETAILS

Here, we additionally evaluate TReconLM’s performance on reconstructing sequences of length
L = 60 and L = 180. We use the same model size of ∼38M parameters and the same compute
budget of 1.0 × 1020 FLOPs as in Section 5.2. Both models are trained on ∼440B tokens. The
number of training examples is adjusted based on the context length to match the fixed compute
budget, with ∼551M examples for L = 60 and ∼184M examples for L = 180.

Optimization hyperparameters are listed in Table 1, largely following Karpathy (2025). We apply
gradient clipping with a maximum norm of 1.0. The learning rate is scaled based on batch size. The
base learning rate is 1e-4 for batch size 16, and we scale it proportionally to

√
batch size/16. We

use a 5% warmup phase followed by cosine learning rate decay. For pretraining with a fixed cluster
size and for fine-tuning, we use fixed learning rates without scaling based on batch size. Unless
stated otherwise, we evaluate the checkpoint with the lowest validation loss.

Figure 7 shows Levenshtein distances and failure rates for sequence length L = 60. Figure 8 shows
the corresponding results for sequence length L = 180. For both sequence lengths, TReconLM
achieves lower Levenshtein distances and failure rates across all cluster sizes considered and outper-
forms the state-of-the-art reconstruction algorithm ITR (Sabary et al., 2024) as well as other neural
approaches (Bar-Lev et al., 2025; Qin et al., 2024).

B MULTIPLE SEQUENCE ALIGNMENT TARGET

In this section, we evaluate different neural network targets for the trace reconstruction problem and
compare greedy decoding with beam search decoding. As proposed by Dotan et al. (2023), we can
train a model fθ to learn the alignment of the traces. For N traces y1, . . . ,yN , one training instance

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10

Cluster size N

0.001

0.01

0.1
d
L

2 3 4 5 6 7 8 9 10

Cluster size N

0.2

0.4

0.6

0.8

1.0

F
a
il

u
re

ra
te

MUSCLE NESTED MSA CPRED CRED (beam=2) CRED (beam=4)

Figure 9: Comparison of different neural network targets. The candidate prediction target (CPRED)
gives the lowest Levenshtein distances and failure rates.

Table 1: Optimization hyperparameters used during pretraining and fine-tuning.

Setting Details Batch Iter.* nemb nhead nlayers Adam β Weight decay LR Dropout

Pretraining
L = 60 800 688,318 512 8 12 (0.9, 0.95) 0.1 7e-4 0.0
L = 110 800 367,103 512 8 12 (0.9, 0.95) 0.1 7e-4 0.0
L = 180 800 229,439 512 8 12 (0.9, 0.95) 0.1 7e-4 0.0

Fixed N

N = 10 800 367,103 512 8 12 (0.9, 0.95) 0.1 7e-4 0.0
N = 20 512 315,368 512 8 12 (0.9, 0.95) 0.1 1e-4 0.1
N = 30 256 383,260 512 8 12 (0.9, 0.95) 0.1 1e-4 0.2
N = 40 256 311,503 512 8 12 (0.9, 0.95) 0.1 1e-4 0.2
N = 50 256 263,579 512 8 12 (0.9, 0.95) 0.1 1e-4 0.2

Finetuning Noisy DNA 8 685,307 ∗∗ 512 8 12 (0.9, 0.95) 0.1 1e-5 0.1
Microsoft 25 566,046 512 8 12 (0.9, 0.95) 0.001 1e-5 0.1

* Iterations are chosen to meet a fixed compute budget for each experiment.
** Early stopped after 165,000 iterations for total compute of 2.5 × 1017 .

is formed as
y1 | y2 | . . . | yN−1 | yN : MSA

(
y1,y2, . . . ,yN−1,yN

)
#. (5)

The vocabulary for the alignment task is given by

VMSA = {A,C,T,G, |, :, -, #}, (6)

where we have an additional deletion token - to achieve a column-wise matching of the aligned
traces. For pretraining, we know the positions of deletions, insertions, and substitutions and con-
struct the correct sequence alignment. During inference, we prompt the model with input p (Equa-
tion 1) and generate alignment tokens one by one until the padding token #.

To obtain the sequence estimate x̂, we arrange the aligned traces ŷ1, . . . , ŷN , each of length LMSA,
as rows in a matrix:

ŷ1,1 ŷ1,2 · · · · · · ŷ1,LMSA−1 ŷ1,LMSA

ŷ2,1 ŷ2,2 · · · · · · ŷ2,LMSA−1 ŷ2,LMSA

...
...

...
ŷN,1 ŷ1,2 · · · · · · ŷN,LMSA−1 ŷN,LMSA .

(7)

We then compute x̂ by performing a column-wise majority vote over the aligned traces. The j-th
entry of the estimated sequence x̂ can be calculated as

x̂j = argmax
a∈{A,C,T,G}

N∑
i=1

1(ŷi,j = a), (8)

where 1(·) denotes the indicator function.

We evaluate the following targets for the trace reconstruction: candidate prediction (CPRED) as
described in Section 4, the MSA target as given in Equation 5 and a NESTED alignment target,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Effect of pretraining on the Noisy-DNA and Microsoft datasets. Columns (p.) report
performance with pretraining.

Dataset Average dL Average dL (p.) Failure rate Failure rate (p.)
Noisy-DNA 0.259 0.239 0.903 0.834
Microsoft 0.014 0.009 0.342 0.205

where we perform a token-wise nesting of the ground-truth alignment MSA
(
y1, . . . ,yN

)
. All deep

learning models are trained under a fixed compute budget of 1.0 × 1020 FLOPs. We also evaluate
MUSCLE to compare neural network-based alignment to dynamic programming-based alignment.

Figure 9 shows reconstruction distances for all target types. The candidate prediction (CPRED) tar-
get achieves the best overall performance. In contrast, alignment-based targets require longer context
lengths and cannot be used for fine-tuning, as ground-truth alignments are generally unavailable for
real-world data. Using CPRED with beam search decoding gives only a small performance gain at
the cost of increased inference time.

C PRETRAINING ABLATION

To assess the effect of pretraining, we train TReconLM from scratch on the Noisy-DNA and Mi-
crosoft datasets, matching the compute budget and hyperparameters of the pretraining runs. Table 2
shows average Levenshtein distances and failure rates across cluster sizes, showing that pretraining
improves performance on both datasets.

D NOISY-DNA DATASET PREPROCESSING DETAILS

This section provides detailed preprocessing steps for the Noisy-DNA dataset experiments described
in Section 5.3.1.

We construct our fine-tuning dataset by clustering traces by sequence index and discarding traces
with index errors. Although more advanced approaches (e.g., the similarity-based method of Zorita
et al. (2015)) could reduce failure rates through more accurate clustering, our goal is to compare the
relative performance of different reconstruction methods.

For validation and test sets, we precompute fixed subclusters by repeatedly sampling a cluster size
between 2 and 10 and selecting that many traces without replacement until fewer than two remain,
which are discarded. During training, we apply the same subclustering procedure but sample only
one subcluster per example in each epoch, using the 13,104 training examples whose cluster size
can exceed 10. Dynamic subclustering increases training diversity by generating more combinations
of noisy reads, effectively augmenting the data.

Given a sequence length L = 60 and estimated error probabilities pI = 0.057, pD = 0.060, and
pS = 0.026, the expected number of edit operations per trace is L× (pI+pD+pS) = 8.58. We set a
conservative threshold and remove all traces from the train (30,546 of 690,395) and validation (3,905
of 87,429) sets whose Levenshtein distance to any test-set ground-truth sequence falls between 5 and
13. We further discard any clusters with fewer than two remaining reads (2 in the training set, 1 in
the validation set).

For the non-deep learning baselines and our pretrained TReconLM model, we perform an additional
preprocessing step on the test set that removes trailing C bases from all traces to improve perfor-
mance. During library preparation, a C-rich tail is artificially added to each sequence for chemical
reasons. Under normal conditions, this tail remains outside the 60-base sequencing window. How-
ever, a high deletion rate during synthesis can shift the C-rich tail into the sequencing window. For
fine-tuning, we do not apply this preprocessing step to allow the model to learn and adapt to the
dataset’s error characteristics.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Fine-tuning data efficiency on the Noisy-DNA dataset. Both metrics improve as the fraction
of fine-tuning data increases.

Metric 0% 5% 10% 25% 50% 75% 100%
Levenshtein distance 0.307 0.267 0.259 0.252 0.242 0.240 0.236
Failure rate 0.999 0.887 0.866 0.851 0.840 0.834 0.831

E FINE-TUNING DATA EFFICIENCY

We analyze how sensitive TReconLM’s performance is to the amount of fine-tuning data. We fine-
tune the pretrained model (sequence length L = 60) on different fractions of the Noisy-DNA training
set (5%, 10%, 25%, 50%, 75%), and compare against both the zero-shot pretrained model (0%)
and the fully fine-tuned model (100%). We focus on Noisy-DNA because it shows a large gap
between pretrained and fine-tuned performance, whereas on the Microsoft dataset the pretrained
model already performs strongly, so we expect less sensitivity to the amount of fine-tuning data.

Table 3 reports Levenshtein distance and failure rate (averaged across cluster sizes). Both metrics
improve as the fraction of fine-tuning data increases, with the largest gains observed when training
on the full dataset.

F ADDITIONAL COMPARISONS

Here, we provide additional comparisons to RobuSeqNet, DNAformer, and GPT-4o mini.

F.1 ROBUSEQNET

We compare the performance of TReconLM to RobuSeqNet (Qin et al., 2024) when controlling
for model size and compute. RobuSeqNet is a small model with ∼3M parameters and uses an
LSTM decoder with a hidden dimension of 256. We train a TReconLM model with the same hidden
dimension and total parameter count (∼3M), using the same compute budget (6× 1017 FLOPs) and
training dataset (∼21M examples).

Figure 10, left panel, shows results for sequence length L = 110, evaluated on 50K test examples
(identical to the test set used in Figure 2 of the main paper, where we did not control for model size).
TReconLM also outperforms RobuSeqNet when controlling for model size and compute.

F.2 DNAFORMER

We compare the self-reported performance of DNAformer (Bar-Lev et al., 2025), trained on syn-
thetic data and evaluated on the Microsoft dataset with up to 16 reads per example, to that of TRe-
conLM. For a fair comparison, we evaluate our pretrained TReconLM (input length L = 110) and
recluster the noisy reads by index, as in Bar-Lev et al. (2025). Since the Microsoft dataset lacks
explicit indices, we follow their approach and use the shortest unique prefix of each ground-truth
sequence as an index. We then cap each cluster at a maximum of 10 reads to match TReconLM’s
context length. This results in 9,729 test examples.

Bar-Lev et al. (2025) report a failure rate of 0.146 for DNAformer, whereas TReconLM achieves
0.111 with fewer reads and no dynamic-programming post-processing. While DNAformer was
trained on synthetic data generated using error statistics derived from the real dataset, TReconLM
was pretrained on a fixed noise distribution and was not tuned to the Microsoft dataset. Thus,
TReconLM performs better under worse initial conditions.

F.3 GPT-4O MINI

As an additional baseline, we compare TReconLM to GPT-4o mini. We prompt GPT-4o mini as
shown in Figure 13 to reconstruct sequences of length L = 60 using zero-, three-, and five-shot

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2 3 4 5 6 7 8 9 10

Cluster size N

0.01

0.1

0.2

0.3

d
L

2 5 10

Cluster size N

0.01

0.1

0.2

0.3

d
L

RobuSeqNet TReconLM GPT-4o Mini 0-shot GPT-4o Mini 3-shot GPT-4o Mini 5-shot

Figure 10: Left: Comparison of TReconLM and RobuSeqNet at equal model size and compute for
ground-truth sequence length L = 110 and cluster sizes N ∈ [2, 10]. Right: Average Levenshtein
distances dL of GPT-4o mini and TReconLM on trace reconstruction for sequence length L = 60,
using two, five, and ten noisy reads (right panel). GPT-4o mini is evaluated with zero-, three-, and
five-shot prompting.

prompting. For TReconLM, we use a 3M-parameter model with the same architecture as in Sec-
tion F, trained on ∼39.5M examples with a compute budget of 6 × 1017 FLOPs. The training set
used here is larger than in Section F because of the shorter target length (L = 60 vs. 110).

We evaluate both models on 250 synthetic test instances per cluster size (2, 5, and 10), generated by
the IDS channel with error probabilities drawn uniformly from U [0.01, 0.1]. The few-shot examples
shown to GPT-4o mini are sampled from the same distribution as the test set.

Figure 10, right panel, shows that TReconLM achieves lower Levenshtein distances than GPT-4o
mini across all tested cluster sizes.

G BASELINE METHODS

Here, we describe the implementation details and hyperparameters for all baseline methods used in
our experiments.

G.1 NON-DEEP LEARNING METHOD PARAMETERS

We evaluate each non-deep baseline using the parameters specified in their original publications.
When error probabilities pI, pD, pS are required, we use estimates for the real datasets (Antkowiak
et al., 2020; Srinivasavaradhan et al., 2021), and the mean values of the corresponding noise dis-
tributions for synthetic data, except for TrellisBMA at increased noise levels (Section 5.2.1). For
TrellisBMA, we found that using the true mean values at higher noise levels led to noticeably worse
performance. Instead, we fixed the error parameters to the mean of the base noise distribution (cor-
responding to k = 0).

For BMALA and VS, we adopt the parameters from Sabary et al. (2024). BMALA uses a window
size of w = 3. For the VS algorithm, we compute δ = (1 + pS)/2 and set γ = 3/4, r = 2, and
l = 5.

For TrellisBMA, we use the same parameters as in Srinivasavaradhan et al. (2021), setting βb = 0
for all cluster sizes N from 2 to 10, and adapting βe and βi based on the cluster size. For cluster
sizes N ∈ {2, 3}, we use (βe, βi) = (0.1, 0.5); for cluster sizes N ∈ {4, 5}, (1.0, 0.1); for cluster
sizes N ∈ {6, 7}, (0.5, 0.1); for cluster sizes N ∈ {8, 9}, (0.5, 0.5); and for cluster size N = 10,
(0.5, 0.0).

G.2 DEEP-LEARNING BASELINES

To give context for evaluating TReconLM against other deep-learning approaches, we first briefly
describe the two baselines we consider, RobuSeqNet (Qin et al., 2024) and DNAFormer (Bar-Lev
et al., 2025), and then list the hyperparameters used in our experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.2.1 ROBUSEQNET

RobuSeqNet takes clusters of one-hot encoded, padded DNA reads as input and outputs per-position
nucleotide predictions for the reconstructed sequence. The model consists of five main blocks:

• Read-Weighting Module: Computes a weight for each read (from a convolutional fea-
ture representation) and multiplies this weight with the original one-hot-encoded read.
Weighted reads are summed to produce a single consensus sequence.

• Linear Projection Module: Projects the combined representation through a linear layer to
map from the noisy input length to the target label length.

• Convolutional Upsampling Module: A 2D convolutional module that increases the fea-
ture size.

• Conformer Block: Combines self-attention, depthwise convolutions, and feed-forward
layers to update the feature representation.

• RNN Output Module: A two-layer LSTM processes the sequence representation and out-
puts per-position logits over the four nucleotides via a final linear layer.

Training Setup. We adapt the original implementation to dynamically generate synthetic data, using
the same noise distribution as in TReconLM pretraining. Because our data loader does not rely on a
fixed dataset, we train for a single epoch with cosine learning rate decay and 5% linear warm-up.

We increase the pretraining batch size to 1.5K for L = 60, 800 for L = 110, and 600 for L = 180
to match larger compute budgets, using maximum learning rates of lrmax = 6.1× 10−4, 7.1× 10−4,
and 9.7 × 10−4, respectively. This configuration performed slightly better than the default batch
size of 64 used in the original implementation. For finetuning, we use batch sizes of 8 (Noisy DNA)
and 52 (Microsoft), with a maximum learning rate of 1 × 10−5. All other hyperparameters follow
the original implementation (Qin et al., 2024). Dropout is set to 0.1 for convolutional, RNN, and
conformer-attention layers, and training uses Adam with β = (0.9, 0.98).

G.2.2 DNAFORMER

DNAFormer likewise takes clusters of one-hot encoded, padded DNA reads as input and outputs
per-position nucleotide predictions. It consists of five main modules:

• Alignment Module. Learns a per-read alignment representation using four convolutional
blocks with kernel sizes (1, 3, 5, 7) along the sequence dimension. The extracted features
are concatenated and passed through a feed-forward block.

• Embedding Module: Merges aligned read features into a single cluster representation by
summing over the read dimension, followed by convolutional blocks and a feed-forward
projection to the target label length.

• Transformer Encoder: Uses multi-head self-attention to model dependencies across se-
quence positions and outputs updated embeddings.

• Output Module: Maps the Transformer output to nucleotide logits using three 1D convo-
lution layers.

• Fusion Module: Each cluster is processed twice (original and reversed order) through
shared-weight modules (a–d). The two logits sequences are combined position-wise using
learned weights to produce the final sequence estimate.

Training Setup. As with RobuSeqNet, we adapt the data loader to dynamically generate synthetic
data using the same noise distribution as in TReconLM pretraining. We train for a single epoch with
cosine learning rate decay and 5% linear warm-up. We follow the optimization hyperparameters
from the original implementation, using the Adam optimizer with lrmax = 3×10−5, lrmin = 1×10−7,
batch size 64, β = (0.9, 0.999), and no dropout or weight decay. We also tested larger batch sizes
with scaled learning rates but observed slightly worse performance. For finetuning, we use batch
sizes of 8 (Noisy DNA) and 52 (Microsoft), with maximum learning rate 1 × 10−5. Dropout is set
to 0.1 for Noisy DNA and 0 for Microsoft.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160 180

Prompt p

0
2
0

4
0

6
0

P
re

d
ic

te
d
x̂

y1 y2 y3

0.00

0.25

0.50

0.75

1.00

A
tt

e
n
ti

o
n

sc
o
re

Figure 11: Visualization of the attention matrix for a prompt p consisting of the concatenation of
three traces, y1, y2, and y3. Red lines indicate the ends of the traces.

H ATTENTION MATRIX

To provide some interpretability of the underlying algorithm of TReconLM, we visualize the atten-
tion matrix of our pretrained 38M-parameter model. We consider sequences of length L = 60 and
show a heatmap of the attention matrix for a prompt p consisting of N = 3 reads. We plot the
attention scores from the last layer using min-max normalization.

Figure 11 shows a diagonal structure, where read position j attends to sequence estimate position
j. Earlier layers have broader attention patterns, where multiple read positions contribute to one
sequence estimate position. This structure gradually becomes more focused across layers, resulting
in the pattern shown in the final layer.

I PROOFS FOR SECTION 6

Here we provide the proofs for the theoretical results in Section 6 and empirical validate how trans-
formers solve trace reconstruction under substitution errors.

I.1 PROOF OF PROPOSITION 1

The proof of Proposition 1 is relatively standard.

The logistic (population) risk is

R(w) = E
[
ℓ(wTx, y)

]
,

where ℓ(z, y) = log(1 + e−yz) is the logistic loss. The empirical risk of the examples is defined in
Equation 3.

From Bartlett et al. (2006), we have that the 0/1-excess loss for w is related to the logistic excess
loss as follows. For any w, we have that

P
[
sign(wTx) ̸= y

]
− P

[
sign(wT

Bx) ̸= y
]
≤ 2(R(w)−R(w∗)). (9)

where sign(wT
Bx) is the Bayes optimal classifier and w∗ is the optimal logistic classifier. Therefore,

we have that

P
[
sign(ŵTx) ̸= y

]
≤ P

[
sign(wT

Bx) ̸= y
]
+ 2(R(ŵ)−R(w∗)) (10)

≤ e−2k(1/2−p)2 + 4

(
2
BR√
N

+

√
9 log(2/δ)

2N

)
, (11)

where the last inequality holds with probability at least 1 − δ. Here, we used that the Bayes error
probability is the probability that at least half of the entries were flipped and is bounded by

P
[
sign(wT

Bx) ̸= y
]
=

k∑
b=⌈k/2⌉

(
k

b

)
pb(1− p)k−b ≤ e−2k(1/2−p)2 .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Moreover, we used the following bound, proven below. With probability at least 1− δ,

R(ŵ)−R(w∗) ≤ 2

(
2
BR√
N

+

√
9 log(2/δ)

2N

)
. (12)

It remains to prove Bound 12.

We consider the function class

G =
{
(x, y) 7→ ℓ(wTx, y)

∣∣ ∥w∥2 ≤ B
}
.

Thus, z = ywTx lies in the interval [−BR,BR]. Because of this bound, the logistic loss is bounded
by

0 < ℓ(z) = log(1 + e−z) ≤ log(1 + eBR).

From a standard generalization bound based on the Rademacher complexity (Bartlett et al., 2006),
we get, for 1-Lipschitz loss and for all w with ∥w∥2 ≤ B that

R(w) ≤ R̂(w) + 2rN (G) +
√

9 log(2/δ)

2n

≤ R̂(w) + 2
BR√
N

+

√
9 log(2/δ)

2n
, (13)

where rN is the Rademacher complexity. For the second inequality, we used the bound rN (G) ≤
BR√
N

on the Rademacher complexity of linear estimators.

We have that

R(ŵ) = R̂(ŵ) +R(ŵ)− R̂(ŵ) (14)

≤ R̂(w∗) +R(ŵ)− R̂(ŵ) (15)

≤ R(w∗) + 2

(
2
BR√
N

+

√
9 log(2/δ)

2n

)
, (16)

where first inequality holds because ŵ minimizes the empirical risk, and therefore R̂(ŵ) ≤ R̂(w∗),
and for the last equality, we applied the generalization Bound 13 twice, once to bound R̂(w∗), and
once to bound R(ŵ)− R̂(ŵ). This concludes the proof of Bound 12.

I.2 OPTIMALITY OF MAJORITY VOTING

We show that under i.i.d. substitution errors with uniform sequence priors and independent traces,
the Bayes-optimal estimator reduces to majority voting.

For each position i, the posterior factorizes as

P
[
xi | {yji }

N
j=1

]
∝

N∏
j=1

P
[
yji | xi

]
, where P

[
yji | xi = b

]
=

{
1− ps if yji = b,

ps/3 otherwise.

Let nb denote the number of traces with base b at position i. Then

x̂i = argmax
b

(1− ps)
nb
(
ps

3

)N−nb .

and taking the logarithm (which preserves the argmax) gives

x̂i = argmax
b

nb · log
(

3(1−ps)
ps

)
.

For ps < 0.25, the coefficient is positive, so x̂i = argmaxb nb, which is the majority voting rule
that selects the base that appears most frequently at position i across all traces.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I.3 PROOF OF THEOREM 1

We construct a transformer that takes as input concatenated traces as in Equation 1 and outputs xi

according to majority voting.

Each token is embedded as h ∈ Rd where d = |V| + L with vocabulary size |V| = 7 for
V = {A,C,G,T, |, :, #} and maximum sequence length L. We concatenate token embeddings
(dimension |V|), which are one-hot vectors etoken ∈ R|V|, with position embeddings (dimension L),
which are one-hot vectors epos ∈ RL.

For the j-th token in the concatenated input:

hj = [etoken; epos] =


[eb; ek] if token j is base b ∈ {A,C,G,T} at position k

[e|;0] if token j is separator |
[e:;0] if token j is colon :

where ev denotes the standard basis vector with 1 in position v and 0 elsewhere.

Let the first layer be a single-head self-attention layer with weight matrices WQ,WK ,WV ∈ RL×d

defined as follows. The key matrix WK extracts position information:

WK =
[
0L×|V| IL×L

]
where I is the identity matrix. Thus kj = WKhj extracts the position encoding from token j. The
query matrix WQ implements position lookup with shift:

WQ =

[
w: 01×L

0(L−1)×|V| S(L−1)×L

]
where w: = e6 ∈ R|V| detects the colon token (position 6 in vocabulary), and S is the shift matrix
with ones on the subdiagonal, such that

qn = WQhn =

{
e1 if hn is the colon token
ei+1 if hn has position encoding ei

The attention scores between the query (from the current position) and each token j in the input for
predicting the next token are:

sj = qTkj =

{
1 if token j is at the target position in some trace
0 otherwise

where j ∈ {1, . . . , n} indexes all tokens in the current input sequence (q and kj are both one-hot
vectors in RL, so their dot product is 1 if they encode the same position and 0 otherwise).

The self-attention mechanism computes attention weights via softmax. By scaling the scores with a
sufficiently large constant M , we can construct:

αj =
exp(M · sj)∑n

j′=1 exp(M · sj′)
≈

{
1
Ni

if sj = 1

0 if sj = 0

where Ni is the number of tokens at position i across all traces. This gives uniform weight to all
tokens at the target position.

We define the value matrix WV as

WV =

[
I4×4 04×(|V|−4+L)

0(L−4)×4 0(L−4)×(|V|−4+L)

]
such that vj = WV hj extracts the nucleotide one-hot encoding if token j is a base or returns zeros
otherwise, padded to dimension L. The final attention output is:

z =
∑
j

αjvj =

[
nA

Ni
,
nC

Ni
,
nG

Ni
,
nT

Ni
, 0, . . . , 0

]
(17)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where nb counts how many traces have nucleotide b at position i. This gives us the proportion of
votes for each nucleotide, which is what we need to determine the majority vote.

The second layer implements majority selection. The first sublayer uses large weights to threshold
the vote proportions in Equation 17:

W1 = M · IL×L, b1 = −M(1/4− ϵ) · 14

where M is large and ϵ > 0. After ReLU, only nucleotides with vote proportion > 1/4− ϵ become
non-zero:

[h(1)]b = ReLU(M · [(nb/Ni)− (1/4− ϵ)])

The second sublayer with W2 =
[
I4×4 04×(L−4)

]
maps to the 4 nucleotides and softmax gives a

distribution concentrated on the most frequent nucleotide(s).

I.4 PROOF OF THEOREM 2

The difference to the Bayes-optimal loss can be written as

L(θ)− L∗ = E
xi,{y

j
i
}

[
log Pmaj

[
xi | {yji }

]
− log Pθ

[
xi | {yji }

]]
= E

{yj
i
}

∑
xi

Ptrue

[
xi | {yji }

]
log

Pmaj

[
xi | {yji }

]
Pθ

[
xi | {yji }

]


= E
{yj

i
}

[
KL
[
Pmaj

[
· | {yji }

]
∥ Pθ

[
· | {yji }

]]]
,

where the last equality follows from optimality of majority voting.

By Pinsker’s inequality (see, e.g., Lemma 2.5 in Tsybakov (2009)) we have

∥Pmaj

[
· | {yji }

]
− Pθ

[
· | {yji }

]
∥TV ≤

√
1
2 KL

[
Pmaj

[
· | {yji }

]
∥ Pθ

[
· | {yji }

]]
.

Taking expectations and applying Jensen’s inequality (since
√
· is concave) we get

E
{yj

i
}

[
∥Pmaj

[
· | {yji }

]
− Pθ

[
· | {yji }

]
∥TV

]
≤ E

{yj
i
}

[√
1
2 (L(θ)− L∗)

]
≤
√

δ
2 .

I.5 EMPIRICAL VALIDATION

We train three models with compute budgets of 6×1017, 1×1018, and 3×1018 FLOPs on data with
substitution errors only (rates sampled uniformly from [0.01, 0.1]). We use the same architecture
as in Section 5.2 but with batch size 16 and learning rate 10−4, and evaluate on 50K test examples
generated with the same error distribution as the training data.

The excess losses L(θ) − L∗ relative to the Bayes optimal loss decrease with compute budget:
1.8 × 10−4 (6 × 1017 FLOPs), 1.6 × 10−4 (1 × 1018 FLOPs), and 1.5 × 10−4 (3 × 1018 FLOPs).
By Theorem 3, these small excess losses imply that all three models approximate majority voting
behavior. To validate this empirically, we compare the vote margin in the data with the model’s
probability margins and entropies at each token position. The vote margin is defined as the difference
between the most frequent and second most frequent bases at a position, normalized by the cluster
size. For the model, the probability margin is the difference between the highest and second highest
predicted base probabilities, and the entropy is computed only over the DNA bases, excluding other
vocabulary tokens.

Figure 12 shows vote margin versus model confidence aggregated across all cluster sizes. As vote
margins increase, the model shows higher probability margins and lower entropy (less uncertainty),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

Vote margin

0.00

0.25

0.50

0.75

1.00

M
ea

n
p
ro

b
.

m
a
rg

in

6× 1017 FLOPs

1× 1018 FLOPs

3× 1018 FLOPs

0.0 0.2 0.4 0.6 0.8 1.0

Vote margin

0.00

0.25

0.50

0.75

1.00

M
ea

n
en

tr
o
p
y

6× 1017 FLOPs

1× 1018 FLOPs

3× 1018 FLOPs

Figure 12: Vote margin versus model confidence metrics for substitution-only reconstruction.

matching the expected behavior of majority voting. For small clusters (N=2-3), we observe strong
linear correlations (Pearson r=0.82 for the model trained with compute 3 × 1018 FLOPs) between
vote margins and confidence metrics, with the correlation decreasing for larger clusters (r=0.29 for
N=4-6, r=0.08 for N=7-10 for compute 3× 1018 FLOPs) because both vote and probability margins
concentrate near 1.0, reducing variance.

For the model trained with compute 3 × 1018 FLOPs, we further probe the last-layer hidden repre-
sentations with a linear classifier to test whether the model encodes per-position base counts directly.
Training a linear probe to predict base frequencies achieves a test mean squared error of 0.0034 (KL
divergence of 0.105), consistent with our theoretical construction in Section I.3 where the attention
output directly encodes base frequency information.

Our empirical findings support our theoretical analysis that in the substitution-only setting, trans-
formers learn the optimal majority voting strategy. These initial results suggest that language models
trained with next-token prediction can discover optimal algorithmic strategies for sequence recon-
struction tasks, though our theoretical analysis is limited to substitution errors.

J DETAILED NUMERICAL RESULTS

For better readability and comparison, we provide tables with the numerical results (Levenshtein dis-
tances and failure rates) for the experiments in the main paper. We include tables for the evaluation
on synthetic data for L = 110 (Figure 2) and for real-world data experiments with the Noisy-DNA
dataset (Figure 4) and the Microsoft dataset (Figure 5). Tables report results for our pretrained and,
for real-world datasets, fine-tuned models, alongside baselines. Reported standard deviations are
across test examples (not random seeds). For TReconLM, the main paper plots averages over three
runs with different seeds, whereas the tables show the default run with seed 100.

Table 4: Results for synthetic data of length L = 110 (see Figure 2).

Levenshtein distance dL

N RobuSeqNet VS MUSCLE BMALA TrellisBMA ITR DNAformer TReconLM
2 3.96e-1 (7.08e-2) 1.59e-1 (5.27e-2) 2.07e-1 (6.62e-2) 2.39e-1 (7.67e-2) 4.19e-1 (6.63e-2) 1.55e-1(5.41e-2) 2.66e-1 (8.58e-2) 1.42e-1 (5.31e-2)
3 3.85e-1 (7.23e-2) 1.58e-1 (5.28e-2) 1.50e-1 (6.21e-2) 1.74e-1 (7.77e-2) 4.04e-1 (7.19e-2) 2.47e-1 (8.86e-2) 1.45e-1 (9.23e-2) 6.56e-2 (4.11e-2)
4 3.73e-1 (7.41e-2) 1.69e-1 (5.68e-2) 1.07e-1 (5.19e-2) 1.46e-1 (7.65e-2) 1.43e-1 (8.33e-2) 7.36e-2 (4.86e-2) 8.70e-2 (7.63e-2) 3.81e-2 (3.12e-2)
5 3.62e-1 (7.57e-2) 1.62e-1 (5.49e-2) 8.11e-2 (4.66e-2) 1.19e-1 (7.38e-2) 1.01e-1 (7.01e-2) 4.45e-2 (3.97e-2) 4.95e-2 (5.66e-2) 2.17e-2 (2.33e-2)
6 3.55e-1 (7.59e-2) 1.62e-1 (5.55e-2) 7.23e-2 (4.32e-2) 9.84e-2 (6.83e-2) 1.10e-1 (8.20e-2) 2.28e-2 (2.62e-2) 2.90e-2 (4.09e-2) 1.27e-2 (1.73e-2)
7 3.49e-1 (7.62e-2) 1.65e-1 (5.68e-2) 6.64e-2 (4.07e-2) 8.22e-2 (6.37e-2) 8.11e-2 (6.84e-2) 1.44e-2 (2.01e-2) 1.83e-1 (3.00e-2) 7.75e-3 (1.32e-2)
8 3.45e-1 (7.45e-2) 1.70e-1 (5.85e-2) 5.81e-2 (3.79e-2) 7.36e-2 (6.05e-2) 6.30e-2 (5.93e-2) 9.19e-3 (1.51e-2) 1.18e-2 (2.27e-2) 4.79e-3 (1.01e-2)
9 3.39e-1 (7.43e-2) 1.75e-1 (6.14e-2) 4.98e-2 (3.48e-2) 6.23e-2 (5.62e-2) 4.86e-2 (5.15e-2) 5.53e-3 (1.11e-2) 7.46e-3 (1.69e-2) 2.90e-3 (7.63e-3)

10 3.34e-1 (7.50e-2) 1.78e-1 (6.15e-2) 4.49e-2 (3.26e-2) 5.37e-2 (5.27e-2) 3.62e-2 (4.25e-2) 3.77e-3 (8.86e-3) 5.05e-3 (1.41e-2) 1.75e-3 (5.87e-3)

Failure rate

N RobuSeqNet VS MUSCLE BMALA TrellisBMA ITR DNAformer TReconLM
2 1.00e+0 1.00e+0 1.00e+0 1.00e+0 1.00e+0 1.00e+0 1.00e+0 9.99e-1
3 1.00e+0 1.00e+0 9.99e-1 9.96e-1 1.00e+0 9.99e-1 9.73e-1 9.62e-1
4 1.00e+0 1.00e+0 9.94e-1 9.85e-1 9.88e-1 9.45e-1 8.97e-1 8.44e-1
5 1.00e+0 1.00e+0 9.79e-1 9.63e-1 9.62e-1 8.45e-1 7.67e-1 6.73e-1
6 1.00e+0 1.00e+0 9.71e-1 9.25e-1 9.50e-1 6.66e-1 6.22e-1 4.91e-1
7 1.00e+0 1.00e+0 9.64e-1 8.90e-1 9.01e-1 5.20e-1 4.80e-1 3.43e-1
8 1.00e+0 1.00e+0 9.44e-1 8.58e-1 8.58e-1 3.98e-1 3.83e-1 2.32e-1
9 1.00e+0 9.99e-1 9.17e-1 8.10e-1 7.85e-1 2.80e-1 2.61e-1 1.52e-1

10 1.00e+0 9.99e-1 9.00e-1 7.65e-1 7.06e-1 2.12e-1 1.88e-1 9.52e-2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Results for the Noisy-DNA dataset (see Figure 4). Pretrained models (p) and finetuned
models (f).

Levenshtein distance dL

N RobuSeqNet (f) VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) DNAformer (f) TReconLM (f)
2 4.05e-1 (1.27e-1) 3.92e-1 (1.75e-1) 4.35e-1 (1.32e-1) 4.39e-1 (1.15e-1) 5.44e-1 (1.06e-1) 3.83e-1 (1.77e-1) 3.89e-1 (1.39e-1) 4.07e-1 (1.64e-1) 3.33e-1 (1.95e-1)
3 3.77e-1 (1.34e-1) 3.86e-1 (1.71e-1) 4.12e-1 (1.45e-1) 4.07e-1 (1.35e-1) 5.23e-1 (1.11e-1) 5.57e-1 (1.50e-1) 3.45e-1 (1.52e-1) 3.47e-1 (1.72e-1) 2.95e-1 (2.07e-1)
4 3.68e-1 (1.30e-1) 3.85e-1 (1.64e-1) 3.71e-1 (1.40e-1) 3.98e-1 (1.36e-1) 4.51e-1 (2.00e-1) 3.71e-1 (1.60e-1) 3.23e-1 (1.55e-1) 3.19e-1 (1.74e-1) 2.74e-1 (2.11e-1)
5 3.48e-1 (1.33e-1) 3.88e-1 (1.62e-1) 3.48e-1 (1.44e-1) 3.78e-1 (1.45e-1) 3.90e-1 (2.08e-1) 3.58e-1 (1.74e-1) 2.98e-1 (1.56e-1) 2.79e-1 (1.83e-1) 2.36e-1 (1.16e-1)
6 3.45e-1 (1.33e-1) 3.78e-1 (1.65e-1) 3.47e-1 (1.41e-1) 3.72e-1 (1.53e-1) 4.27e-1 (2.09e-1) 3.12e-1 (1.70e-1) 2.89e-1 (1.52e-1) 2.62e-1 (1.80e-1) 2.16e-1 (2.15e-1)
7 3.26e-1 (1.33e-1) 3.66e-1 (1.67e-1) 3.34e-1 (1.45e-1) 3.54e-1 (1.61e-1) 3.74e-1 (2.20e-1) 2.93e-1 (1.77e-1) 2.71e-1 (1.55e-1) 2.38e-1 (1.86e-1) 1.93e-1 (2.12e-1)
8 3.23e-1 (1.32e-1) 3.77e-1 (1.60e-1) 3.30e-1 (1.46e-1) 3.51e-1 (1.56e-1) 3.09e-1 (1.87e-1) 2.76e-1 (1.75e-1) 2.64e-1 (1.54e-1) 2.27e-1 (1.85e-1) 1.77e-1 (2.12e-1)
9 3.18e-1 (1.29e-1) 3.77e-1 (1.56e-1) 3.19e-1 (1.43e-1) 3.45e-1 (1.68e-1) 2.91e-1 (1.85e-1) 2.69e-1 (1.76e-1) 2.59e-1 (1.55e-1) 2.14e-1 (1.82e-1) 1.66e-1 (2.09e-1)

10 3.22e-1 (1.30e-1) 3.80e-1 (1.51e-1) 3.21e-1 (1.47e-1) 3.46e-1 (1.68e-1) 3.37e-1 (2.17e-1) 2.67e-1 (1.78e-1) 2.61e-1 (1.58e-1) 2.18e-1 (2.29e-1) 1.66e-1 (2.10e-1)

Failure rate

N RobuSeqNet (f) VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) DNAformer (f) TReconLM (f)
2 9.99e-1 9.94e-1 1.00e+0 1.00e+0 1.00e+0 9.93e-1 1.00e+0 9.99e-1 9.83e-1
3 9.99e-1 9.96e-1 9.99e-1 1.00e+0 1.00e+0 1.00e+0 1.00e+0 9.92e-1 9.45e-1
4 1.00e-0 9.97e-1 9.98e-1 1.00e+0 9.98e-1 9.91e-1 9.99e-1 9.82e-1 9.19e-1
5 9.98e-1 9.95e-1 9.94e-1 1.00e+0 9.95e-1 9.89e-1 1.00e+0 9.61e-1 8.57e-1
6 9.98e-1 9.95e-1 9.96e-1 9.99e-1 9.92e-1 9.79e-1 9.98e-1 9.51e-1 8.20e-1
7 9.98e-1 9.93e-1 9.97e-1 1.00e+0 9.91e-1 9.70e-1 1.00e+0 9.13e-1 7.59e-1
8 9.98e-1 9.96e-1 9.94e-1 1.00e+0 9.87e-1 9.66e+0 9.99e+0 8.91e-1 7.12e-1
9 9.97e-1 9.97e-1 9.93e-1 9.99e-1 9.91e-1 9.61e-1 9.99e+0 8.84e-1 6.85e-1

10 9.97e-1 9.95e-1 9.91e-1 1.00e+0 9.86e-1 9.67e+0 9.99e+0 8.77e-1 6.54e-1

Table 6: Results for the Microsoft dataset (see Figure 5). Pretrained models (p) and finetuned models
(f).

Levenshtein distance dL

N RobuSeqNet (f) VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) DNAformer (f) TReconLM (f)
2 1.92e-1 (8.01e-2) 5.67e-2 (2.90e-2) 6.69e-2 (3.11e-2) 1.25e-1 (6.62e-2) 1.91e-1 (8.78e-2) 5.39e-2 (3.03e-2) 5.34e-2 (2.87e-2) 7.34e-2 (4.77e-2) 4.22e-2 (2.88e-2)
3 1.37e-1 (6.68e-2) 5.73e-2 (2.96e-2) 4.82e-2 (2.39e-2) 5.19e-2 (4.01e-2) 1.55e-1 (7.25e-2) 9.04e-2 (3.97e-2) 1.55e-2 (1.52e-2) 1.82e-2 (2.26e-2) 1.22e-2 (1.60e-2)
4 1.14e-1 (6.39e-2) 7.33e-2 (5.91e-2) 1.45e-2 (1.30e-2) 3.98e-2 (3.57e-2) 1.49e-2 (1.60e-2) 7.84e-3 (1.12e-2) 7.34e-3 (1.08e-2) 8.61e-3 (1.84e-2) 4.10e-3 (9.10e-3)
5 1.04e-2 (5.92e-2) 6.30e-2 (3.95e-2) 9.22e-3 (1.03e-2) 2.81e-2 (3.22e-2) 1.11e-2 (1.37e-2) 5.53e-3 (9.27e-3) 4.50e-3 (8.98e-3) 5.25e-3 (1.54e-2) 2.70e-3 (7.58e-3)
6 8.85e-2 (5.64e-2) 6.10e-2 (3.92e-2) 8.20e-3 (9.74e-3) 2.18e-2 (2.56e-2) 7.05e-3 (1.15e-2) 2.83e-3 (5.96e-3) 2.29e-3 (6.00e-3) 2.26e-3 (8.31e-3) 1.41e-3 (5.00e-3)
7 8.04e-2 (5.41e-2) 6.17e-2 (4.40e-2) 8.61e-3 (1.00e-2) 1.54e-2 (2.14e-2) 5.48e-3 (1.01e-2) 1.96e-3 (5.14e-3) 1.74e-3 (5.38e-3) 1.39e-3 (4.78e-3) 1.04e-3 (4.37e-3)
8 7.39e-2 (5.24e-2) 6.26e-2 (4.62e-2) 4.78e-3 (7.10e-3) 1.31e-2 (2.15e-2) 4.82e-3 (1.01e-2) 1.68e-3 (4.72e-3) 1.50e-3 (5.05e-3) 1.30e-3 (8.58e-3) 5.39e-4 (3.05e-3)
9 6.57e-2 (4.69e-2) 6.50e-2 (4.77e-2) 3.86e-3 (6.64e-3) 1.06e-2 (1.71e-2) 4.49e-3 (9.51e-3) 1.52e-3 (4.13e-3) 1.19e-3 (4.62e-3) 1.05e-3 (5.58e-3) 6.36e-4 (3.48e-3)

10 7.36e-2 (5.49e-2) 7.04e-2 (5.07e-2) 3.32e-3 (5.85e-3) 8.95e-3 (1.83e-2) 3.42e-3 (8.34e-3) 1.27e-3 (3.90e-3) 1.14e-3 (4.47e-3) 1.08e-3 (6.23e-3) 4.15e-4 (2.92e-3)

Failure rate

N RobuSeqNet (f) VS MUSCLE BMALA TrellisBMA ITR TReconLM (p) DNAformer (f) TReconLM (f)
2 9.95e-1 9.75e-1 9.92e-1 9.95e-1 9.99e-1 9.51e-1 9.61e-1 9.70e-1 8.93e-1
3 9.99e-1 9.99e-1 9.82e-1 9.03e-1 9.93e-1 9.91e-1 6.35e-1 6.14e-1 4.87e-1
4 9.81e-1 9.69e-1 7.39e-1 8.61e-1 6.09e-1 4.22e-1 3.89e-1 3.41e-1 2.16e-1
5 9.75e-1 9.71e-1 5.76e-1 7.30e-1 4.96e-1 3.38e-1 2.41e-1 2.10e-1 1.37e-1
6 9.53e-1 9.73e-1 5.32e-1 6.36e-1 3.54e-1 2.19e-1 1.49e-1 1.17e-1 8.81e-2
7 9.49e-1 9.55e-1 5.78e-1 5.00e-1 2.79e-1 1.49e-1 1.04e-1 8.96e-2 6.11e-2
8 9.32e-1 9.60e-1 3.65e-1 5.17e-1 2.31e-1 1.36e-1 9.23e-2 5.71e-2 3.30e-2
9 9.14e-1 9.50e-1 3.05e-1 4.15e-1 2.35e-1 1.35e-1 7.00e-2 4.97e-2 3.61e-2

10 9.15e-1 9.57e-1 2.79e-1 3.22e-1 1.71e-1 1.10e-1 6.85e-2 4.34e-2 2.28e-2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Example prompt for GPT-4o mini:

We consider a reconstruction problem of DNA sequences. We want to reconstruct a DNA sequence
consisting of 60 characters (either A,C,T or G) from 5 noisy DNA sequences.
These noisy DNA sequences were generated by introducing random errors (insertion, deletion, and
substitution of single characters).
The task is to provide an estimate of the ground truth DNA sequence.

Here are some examples:
Example #1
Input DNA sequences:
1. GATACGGATTGTGCTCGAGTGGATACTGGTATAGAGAAGAGAGTAATGCTAAGGTAG
2. ATATAGGACTGTTCCTCGAAGTGGATACTGTACAAAAATCAGAAGCGAGTAAGGTAG
3. GATCAGGATTGTACTCGAGTGCTACTGTACAAAGCGTCAGAGGTGCCATAGGTACG
4. GATAAAGGGACGTTGCCCGAGTGATACTGTCAAAGCGTAAAAGAGATGCTAGGTG
5. GGATCAAGGATTGCTTGTCGAGTGTGATACTGTACAATGATCAGAAGAGATTAATAG
Correct output:
GATAAAGGATTGTTGCTCGAGTGGATACTGTACAAAGAGTCAGAAGAGATGCTAAGGTAG

Example #2
Input DNA sequences:
1. AAACCCTTACGGGTCGAATACATCTTATCCGAGCGCCTCAAGGAGTAGCGATTCCTAC
2. AAACCCATAGGGTCCAAAAATATTTACCGTGCACTCCGAAAGGGAGTATCGTTGATA
3. AAACACTTGGGGTCGAAAAAATACTATCCGTGTACCCCAGAGGTGTAGTGTCTCATAC
4. AACCTGAGGGTCGAAACTGTTGATCCGTGCACCTCATGAGGGTGTCGCGGCATGC
5. AAACCTTAGGGCTCGAATACATATTTACCGTGCACCTCCAGAGGAGTAGCGTTTCAA
Correct output:
AAACCCTTAGGGTCGAATACATATTTATCCGTGCACCTCCAGAGGAGTAGCGTTTCATAC

Example #3
Input DNA sequences:
1. TGCCCCGACGATATGCCGGCGGATACACTCTCACGATCGTCAAGTATATCCGTTAA
2. ATGCCCGACGCTTCTGGCCGGATACACTCAACAATCGTCACCGTTTATCCGATAA
3. ATGCCCGACGAATGCTGGCCGGATACACTTACACGATGTCAATGATATCCGAGTG
4. ATGCCCACGAGTATGCTGCCGGATCCTCACAAATCGTCAAGTTATATCCCGATAT
5. ATGCCCGATAATATATGGCGGACTCCACTCTACACGTCGTCAAGTTATATCCCGTTAG
Correct output:
ATGCCCGACGATATGCTGGCCGGATACACTCTACACGATCGTCAAGTTATATCCCGTTAT

Task:
Reconstruct the DNA sequence from the following noisy input sequences.
Input DNA sequences:
1. GGTCCCTAGAAGGATTGGATGCTGTTCGCGGGTATCTAATGTTGTGCCTTGGTGCAT
2. AGGTCGCCCAGAAGTGATATGGTCGCTGGCGCGGCATCTAATTTGTGACATCTTGAT
3. AGGTTACCCTGATAGTGATGTAGTGTGCATTTCGCGGCTCTATGTTGTGCCTGTTGCT
4. AGGTCCTAGTAAGGTATATGCATGCGGTCGCGGCTCTAATGTTGTGCTTGAGTTGCT
5. AGCTCCGTAGAGGAATGATGCTGTTCGCCGGCATTAGATGTGTGCCTCGGTTGCT
Provide an estimate of the ground truth DNA sequence consisting of 60 characters in the
format ***estimated DNA sequence*** - use three * on each side of the estimated DNA sequence.

Figure 13: Three-shot prompt example for GPT-4o mini.

24

	Introduction
	Related work
	Background and problem statement
	Method
	Training and data generation
	Finetuning on real data

	Experiments
	Baselines
	Evaluation on synthetic data
	Generalization to higher noise levels and large cluster sizes

	Experiments on real data
	Real data experiment 1: Noisy-DNA dataset
	Real data experiment 2: Microsoft dataset

	Scaling Laws for trace reconstruction

	Theory
	Scaling behavior under substitution-only errors
	Transformer analysis for substitution-only reconstruction

	Conclusion and limiations
	Additional results on synthetic data and implementation details
	Multiple sequence alignment target
	Pretraining ablation
	Noisy-DNA dataset preprocessing details
	Fine-tuning data efficiency
	Additional comparisons
	RobuSeqNet
	DNAformer
	GPT-4o mini

	Baseline methods
	Non-deep learning method parameters
	Deep-Learning Baselines
	RobuSeqNet
	DNAFormer

	Attention matrix
	Proofs for Section 6
	Proof of Proposition 1
	Optimality of majority voting
	Proof of Theorem 1
	Proof of Theorem 2
	Empirical validation

	Detailed numerical results

