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Abstract

The emergence of Vec2Text — a method for
text embedding inversion — has raised serious
privacy concerns for dense retrieval systems
which use text embeddings. This threat comes
from the ability for an attacker with access to
embeddings to reconstruct the original text.

In this paper, we take a new look at Vec2Text
and investigate how much of a threat it poses
to the different attacks of corpus poisoning,
whereby an attacker injects adversarial pas-
sages into a retrieval corpus with the intention
of misleading dense retrievers. Theoretically,
Vec2Text is far more dangerous than previous
attack methods because it does not need access
to the embedding model’s weights and it can
efficiently generate many adversarial passages.

We show that under certain conditions, cor-
pus poisoning with Vec2Text can pose a
serious threat to dense retriever system in-
tegrity and user experience by injecting
adversarial passaged into top ranked posi-
tions. Code and data are made available
at https://anonymous.4open.science/r/
vec2text-corpus-poisoning-2BF5.

1 Introduction

Text embeddings are dense vector representations
which capture semantic information about the text
they encode (Muennighoff et al., 2023). Search
engines that leverage these embeddings often em-
ploy dense retrievers (DRs) (Tonellotto, 2022; Zhao
et al., 2022; Guo et al., 2022; Bruch, 2024). These
retrievers utilize text embedding models to encode
both queries and documents into embeddings; a
similarity metric, such as cosine similarity, is then
used to estimate relevance. DRs have demonstrated
improved retrieval effectiveness compared to tra-
ditional exact term-matching search systems, ar-
guably due to the rich semantic information en-
coded in the embeddings (Yates et al., 2021).
However, a recent study conducted by Morris
et al. (2023) raises serious privacy concerns regard-

ing DRs. This study explored the issue of invert-
ing textual embeddings: recovering the original
text from its embedding. The proposed Vec2Text
method iteratively corrects and generates text to
reconstruct the original text based on the given in-
put embedding. Vec2Text can accurately recover
92% of short text and reveal sensitive information
(such as patient names in clinical notes) with high
accuracy. Even more concerning is that training
Vec2Text does not require access to the embed-
ding model parameters; all that is required is the
text-embedding pairs from the training data.

In this paper we demonstrate that Vec2Text can
also be employed to conduct corpus poisoning at-
tacks on dense retrievers. A corpus poisoning at-
tack involves a malicious actor generating adver-
sarial passages designed to trick the ranker into re-
trieving such passaged for all unseen user queries,
thus undermining the user experience of the tar-
geted search system (Zhong et al., 2023). Vec2Text
is potentially a more dangerous method for corpus
poisoning for a dense retriever than previous ap-
proaches because it does not require access to the
embedding model parameters and can efficiently
generate large numbers of adversarial passages. To
date, there has been no study yet to investigate
how Vec2Text performs in corpus poisoning at-
tacks. In this paper, we present our results of ap-
plying Vec2Text to the corpus poisoning task. Our
findings demonstrate that Vec2Text could pose a
serious threat to current DR systems.

2 Background

2.1 The Vec2Text Method

Given an input embedding, Vec2Text generates the
text the embedding represents (Morris et al., 2023).
Vec2Text has two stages. In the first state, a hy-
pothesis text generation model is trained, utilising
a conditional transformer generative model that ex-
clusively takes the embedding as the model input.
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Figure 1: Overview of corpus poisoning attack with Vec2Text. The attacker does not need the access to the embedding model
weights. Instead, the attacker only need to know which Embedding model API is used for the retriever.

The training objective is to produce the original text.
This simplistic model is insufficient for generating
highly accurate original text (Morris et al., 2023);
thus the text generated by this first stage model
is just treated as a hypothesis. The second stage
then trains another transformer generative model
that aims to generate satisfactory text by refining
the initial hypothesis. Refinement is achieved by
iterative re-embedding and correction training ob-
jectives. In each iteration step, the model takes the
ground-truth embedding, the generated text, and
its embedding from the last iteration step as inputs
(the O step uses the hypothesis text generated from
the first stage model). The output target is the orig-
inal text. This iterative process allows the model to
focus on the differences between the generated text
and the original text in the embedding space and
gradually reduce these differences.

The models in Vec2Text are parameterised as a
standard encoder-decoder transformer conditioned
on the previous output. One challenge is inputting
conditioning embeddings into the transformer en-
coder, which requires a sequence of embeddings as
input. To address this, a small multi layer percep-
tron is used to project a single embedding vector
to a larger size and reshape it to match the input
requirements of the encoder.

During inference, beam search guides the gen-
eration. At each step of correction, the possible
corrections are considered, and the top unique con-
tinuations are selected based on their distance in
embedding space to the ground-truth embedding.

2.2 Existing Corpus Poisoning Attack Method

The first corpus poisoning attack for dense retriev-
ers was a gradient-based approach. Inspired by

the HotFlip method (Ebrahimi et al., 2018; Wal-
lace et al., 2019), it generates a small set of ad-
versarial passages by perturbing discrete tokens in
randomly initialized passages to maximize their
similarity with a provided set of training queries.
These adversarial passages are then inserted into
the retrieval corpus, and the success of the attack
is determined by the retrieval of these adversarial
passages at a high rank in response to future unseen
queries. These adversarial passages can be used to
harm retrieval effectiveness and/or inject spam or
misinformation into the search engine result list.

The current HotFlip-based corpus poisoning
method has two drawbacks (from an attacker per-
spective). First, the gradient-based method requires
access to the embedding model weights. Conse-
quently, attackers cannot employ this method to
target DR systems built with closed-source embed-
ding models (e.g., OpenAl models). Second, the
method is iterative, with only one token in the ad-
versarial passage selected and perturbed at each it-
eration. This process cannot be parallelized within
each adversarial passage (the perturbation of the
next token depends on the previous). This makes
the method time-consuming and resource intensive:
we used HotFlip as a baseline in our experiments
and found that with a single H100 GPU, HotFlip
takes approximately 2 hours to generate a single
adversarial passage. The use of Vec2Text for cor-
pus poisoning that we demonstrate in this paper is
not affected by this issue.

3 Corpus Poisoning with Vec2Text

As Vect2Text does not require access to the model
weights, once trained, it can directly generate the
adversarial passage from the embedding using stan-



dard language model generation inference. Further-
more, it can efficiently generate many adversarial
passages (being far less computationally intensive
than HotFlip).

To formally define corpus poisoning with
Vec2Text, let @ = {q1,q2,.--,q|0|} be a set of
training queries and ¢ is the embedding model.
The goal is to use Vec2Text to generate an adver-
sarial passage a whose embedding maximizes the
similarity to all the training query embeddings:
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where ¢ is the average embedding or centroid em-
bedding of all the training query embeddings. The
maximum similarity is achieved when ¢(a’) = ¢g.
In practice, the corpus could be poisoned with mul-
tiple adversarial passages (like Zhong et al. (2023)).
This could be done by first using k-means cluster-
ing to cluster the training queries based on their
embeddings; then generating an adversarial pas-
sage for each cluster.

Vec2Text can solve this optimization problem
through the three-stage process shown in Figure 1:

1. The first stage is the standard training of
Vec2Text, which involves sending text to em-
bedding model API and collecting the returned
embeddings to form a Vec2Text training dataset
(i.e., text-embedding pairs). Then a Vec2Text
model is trained with the collected training data.

2. The second stage involves computing the cen-
troid embedding of training queries, which can
be done by sending the training queries to the
embedding model API to obtain all the query
embeddings and use k-means clustering algo-
rithm to compute the centroid embeddings of
the clusters.

3. Finally, inputting each of the centroid embed-
dings to the trained Vec2Text to generate an
adversarial passage for each centroid embeding.
A perfect Vec2Text would generate adversarial
passages whose embedding is exactly the same
as the query centroid.

Once again, we emphasize that the entire pro-
cess does not require access to model weights.

Moreover, generating an adversarial passage with
Vec2Text is efficient: generating a single passage
took 5 seconds on a single Nvidia H100, employing
beam search with 50 steps and a width of 4.

4 Results and Analysis

Corpus poisoning experiments used the GTR-base
embedding model as the DR system, utilizing the
NQ dataset (in the version released with BEIR)
as the target corpus, which comprises of approxi-
mately 2.68 million passages. NQ training queries
were used to encode the query centroid embedding
and then to generate adversarial passages. We set
number of centroid (clusters) £ to 10, 100, 1000.
For the Vec2Text model, we use an open-sourced
model! that is also trained on the NQ dataset and
targeted at inverting GTR-base embeddings.

Evaluation was then done using NQ test queries
with evaluation measure of success@n: the percent-
age of queries for which at least one adversarial
passage was retrieved in the top-n results. Higher
success @n indicates greater vulnerability to corpus
poisoning.

Table 1 presents corpus poisoning results. When
only 10 adversarial passages were generated
(grouping training queries with 10-means cluster-
ing), both HotFlip and Vec2Text performed poorly
on success @ 10 and 20; however, HotFlip did work
when injecting adversarial passages into the top-
n=100 or 1000 rank positions. If the embedding
model weights were available, HotFlip was a more
potent corpus poisoning attack method when ap-
plied to longer rank lists of 100 or 1000.

Vec2Text has the advantage of being able to
generate many more adversarial passages; when
k = 100 or k£ = 1000, HotFlip was too computa-
tionally expensive and thus largely impractical. For
these cases Vec2Text success rate improved, with
k = 1000 making Vec2Text a considerable threat
in corpus poisoning. With 1000 generated passages
injected into the NQ dataset, in fact, at least one
generated passage could be retrieved in the top-10
results for 27% of the queries, and in the top 100
for over half of the queries in the NQ dataset.

The adversarial passages were generated from
query embeddings — they are synthetic and may
not appear like real passages. Figure 2 shows the
two adversarial passages most closely matching a

1https: //huggingface.co/ielabgroup/vec2text_
gtr-base-st_inversion and https://huggingface.co/
ielabgroup/vec2text_gtr-base-st_corrector
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Table 1: Results of applying Vec2Text to the task of corpus poisoning, compared to existing HotFlip approach. Vec2Text has the
advantage of being able to produce numerous adversarial passages (k) without model weights. Both Vec2Text and HotFlip are
well below the upper bound, indicating that better methods could pose a serious risk in corpus poisoning.

Attack method #Adversarial passages Success@
/ Clusters k& 10 20 100 1000
HotFlip (Zhong et al., 2023) 10 | 0.006 0.015 0.105 0.532
Vec2Text 10 | 0.006 0.012 0.036 0.101
Query centroid (upper bound) 10 | 0.206 0.304 0.575 0.926
HotFlip 100 | --- Too computationally expensive - - -
Vec2Text 100 | 0.061 0.091 0.189 0.401
Query centroid (upper bound) 100 | 0.493 0.620 0.868 0.994
HotFlip 1000 | --- Too computationally expensive - - -
Vec2Text 1000 | 0.268 0.335 0.521 0.791
Query centroid (upper bound) 1000 | 0.779 0.873 0.980 1.000
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(a) HotFlip. Cosine similarity of this passage to the query
centroid embedding is cos(¢(a), pg) = 0.96.

a = “when does the 7 episode season of
the new two come out </s>”

(b) Vect2Text. Cosine similarity of this passage to the
query centroid embedding is cos(¢(a), po) = 0.85.

Figure 2: Sample adversarial passages most closely matching
the NQ training query centroid.

sampled query centroid ¢ for both HotFlip and
Vec2Text. Recall that HotFlip works by flipping
tokens one at a time, whereas Vec2Text is a lan-
guage model decoder. This difference may explain
why Vec2Text appears to generate more natural
language. Also note that a prospective malicious
agent would likely add a payload to these generated
passages, where the payload is, for example, a link
to a phishing website.

The embeddings of the adversarial passages in
Figure 2 still differ from the query centroid embed-
dings (cosine similarity being 0.96 for HotFlip and
0.85 for Vec2Text). Recall that a perfect Vec2Text
would generate an adversarial passage for which
the embedding is exactly the same as the query em-
bedding. To understand how this best case scenario
affects success@k we run an additional experiment
which involved directly inserting the query centroid
embeddings into the vector index and then evaluat-
ing the success @k. This serves as an upper bound

for the HotFlip and Vec2Text corpus poisoning at-
tacks — an analysis overlooked in the original cor-
pus poisoning paper (Zhong et al., 2023). Results
are shown in Table 1 as “Query centroid (upper
bound)”. For both different values of k and differ-
ent success@n, the upper bound is much higher
than both HotFlip or Vec2Text. This tells us that
neither method is optimal yet for the corpus poison-
ing attack. It also highlights that if a much more
effective corpus poising method — one closer to
the upper bound — was developed, it could have
serious adverse consequences for dense retrievers.

5 Conclusion

Dense retrievers are an effective and efficient re-
trieval method widely adopted in working systems.
Much of their benefit comes from using text embed-
dings to represent and compare information. How-
ever, the reliance on text embeddings also opens
up dense retrievers to possible threats that exploit
such embeddings.

We identify that Vec2Text (a method to invert
embeddings to their original text) could be a threat
to the completely different task of corpus poisoning,
whereby adversarial passages are generated and
inserted into a corpus such that they are likely be
retrieved for any query. Vect2Text poses a real risk
here because it can easily generate large numbers
of adversarial passages without access to model
weights. We show that under certain conditions,
corpus poisoning with Vec2Text can pose a serious
threat to dense retriever system integrity and user
experience. This work is designed to stimulate
the development of counter measures to to prevent
such corpus poisoning attacks.



6 Limitations

Corpus poisoning with Vec2Text has two major
limitations. First, our results show that a large
number of adversarial passages, although still an
insignificant fraction of the full corpus, is required
for Vec2Text to be effective in the corpus poisoning
task. This makes the use of Vec2Text for corpus
poisoning somewhat cumbersome, as it requires
the target search engine to index all the generated
adversarial passages. Second, compared to the
HotFlip method, Vec2Text does not support the
insertion of a prefix message into the adversarial
passage (e.g., a payload that the attacker may use
for phishing). In addition, while the passages pro-
duced by Vec2Text appear at first to be better than
those from HotFlip as they contain actual words
(see Figure 2), they are still not meaningful and
thus not likely to attract user clicks if displayed in
the search engine result page of a search engine like
Google or Bing. However, these passages might
still negatively impact Retrieval-Augmented Gen-
eration (RAG) systems (Xue et al., 2024; Zou et al.,
2024; Cho et al., 2024). In RAG systems, users
are not directly exposed to the actual retrieved pas-
sages: these are instead acquired by the system
and used to inform the generation of an answer,
which is then displayed to users. This means that
users might be less likely to identify the presence
of such adversarial passages among the evidence
the system used.

7 Ethical Statement

This paper does actually describe a method to
perform an unethical action, namely intentionally
adding adversarial content to a corpus to adversely
impact information retrieval systems that use that
corpus. In presenting this work we in no way con-
done the use of this method. Our explicit purpose
in describing the method is to raise awareness that
it could pose a threat to retrieval systems, and to
explicitly quantify the associated risk. Our hope is
that this work directly informs an effective defence
measure to prevent corpus poisoning.
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