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Abstract
The emergence of Vec2Text — a method for001
text embedding inversion — has raised serious002
privacy concerns for dense retrieval systems003
which use text embeddings. This threat comes004
from the ability for an attacker with access to005
embeddings to reconstruct the original text.006

In this paper, we take a new look at Vec2Text007
and investigate how much of a threat it poses008
to the different attacks of corpus poisoning,009
whereby an attacker injects adversarial pas-010
sages into a retrieval corpus with the intention011
of misleading dense retrievers. Theoretically,012
Vec2Text is far more dangerous than previous013
attack methods because it does not need access014
to the embedding model’s weights and it can015
efficiently generate many adversarial passages.016

We show that under certain conditions, cor-017
pus poisoning with Vec2Text can pose a018
serious threat to dense retriever system in-019
tegrity and user experience by injecting020
adversarial passaged into top ranked posi-021
tions. Code and data are made available022
at https://anonymous.4open.science/r/023
vec2text-corpus-poisoning-2BF5.024

1 Introduction025

Text embeddings are dense vector representations026

which capture semantic information about the text027

they encode (Muennighoff et al., 2023). Search028

engines that leverage these embeddings often em-029

ploy dense retrievers (DRs) (Tonellotto, 2022; Zhao030

et al., 2022; Guo et al., 2022; Bruch, 2024). These031

retrievers utilize text embedding models to encode032

both queries and documents into embeddings; a033

similarity metric, such as cosine similarity, is then034

used to estimate relevance. DRs have demonstrated035

improved retrieval effectiveness compared to tra-036

ditional exact term-matching search systems, ar-037

guably due to the rich semantic information en-038

coded in the embeddings (Yates et al., 2021).039

However, a recent study conducted by Morris040

et al. (2023) raises serious privacy concerns regard-041

ing DRs. This study explored the issue of invert- 042

ing textual embeddings: recovering the original 043

text from its embedding. The proposed Vec2Text 044

method iteratively corrects and generates text to 045

reconstruct the original text based on the given in- 046

put embedding. Vec2Text can accurately recover 047

92% of short text and reveal sensitive information 048

(such as patient names in clinical notes) with high 049

accuracy. Even more concerning is that training 050

Vec2Text does not require access to the embed- 051

ding model parameters; all that is required is the 052

text-embedding pairs from the training data. 053

In this paper we demonstrate that Vec2Text can 054

also be employed to conduct corpus poisoning at- 055

tacks on dense retrievers. A corpus poisoning at- 056

tack involves a malicious actor generating adver- 057

sarial passages designed to trick the ranker into re- 058

trieving such passaged for all unseen user queries, 059

thus undermining the user experience of the tar- 060

geted search system (Zhong et al., 2023). Vec2Text 061

is potentially a more dangerous method for corpus 062

poisoning for a dense retriever than previous ap- 063

proaches because it does not require access to the 064

embedding model parameters and can efficiently 065

generate large numbers of adversarial passages. To 066

date, there has been no study yet to investigate 067

how Vec2Text performs in corpus poisoning at- 068

tacks. In this paper, we present our results of ap- 069

plying Vec2Text to the corpus poisoning task. Our 070

findings demonstrate that Vec2Text could pose a 071

serious threat to current DR systems. 072

2 Background 073

2.1 The Vec2Text Method 074

Given an input embedding, Vec2Text generates the 075

text the embedding represents (Morris et al., 2023). 076

Vec2Text has two stages. In the first state, a hy- 077

pothesis text generation model is trained, utilising 078

a conditional transformer generative model that ex- 079

clusively takes the embedding as the model input. 080
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Figure 1: Overview of corpus poisoning attack with Vec2Text. The attacker does not need the access to the embedding model
weights. Instead, the attacker only need to know which Embedding model API is used for the retriever.

The training objective is to produce the original text.081

This simplistic model is insufficient for generating082

highly accurate original text (Morris et al., 2023);083

thus the text generated by this first stage model084

is just treated as a hypothesis. The second stage085

then trains another transformer generative model086

that aims to generate satisfactory text by refining087

the initial hypothesis. Refinement is achieved by088

iterative re-embedding and correction training ob-089

jectives. In each iteration step, the model takes the090

ground-truth embedding, the generated text, and091

its embedding from the last iteration step as inputs092

(the 0 step uses the hypothesis text generated from093

the first stage model). The output target is the orig-094

inal text. This iterative process allows the model to095

focus on the differences between the generated text096

and the original text in the embedding space and097

gradually reduce these differences.098

The models in Vec2Text are parameterised as a099

standard encoder-decoder transformer conditioned100

on the previous output. One challenge is inputting101

conditioning embeddings into the transformer en-102

coder, which requires a sequence of embeddings as103

input. To address this, a small multi layer percep-104

tron is used to project a single embedding vector105

to a larger size and reshape it to match the input106

requirements of the encoder.107

During inference, beam search guides the gen-108

eration. At each step of correction, the possible109

corrections are considered, and the top unique con-110

tinuations are selected based on their distance in111

embedding space to the ground-truth embedding.112

2.2 Existing Corpus Poisoning Attack Method113

The first corpus poisoning attack for dense retriev-114

ers was a gradient-based approach. Inspired by115

the HotFlip method (Ebrahimi et al., 2018; Wal- 116

lace et al., 2019), it generates a small set of ad- 117

versarial passages by perturbing discrete tokens in 118

randomly initialized passages to maximize their 119

similarity with a provided set of training queries. 120

These adversarial passages are then inserted into 121

the retrieval corpus, and the success of the attack 122

is determined by the retrieval of these adversarial 123

passages at a high rank in response to future unseen 124

queries. These adversarial passages can be used to 125

harm retrieval effectiveness and/or inject spam or 126

misinformation into the search engine result list. 127

The current HotFlip-based corpus poisoning 128

method has two drawbacks (from an attacker per- 129

spective). First, the gradient-based method requires 130

access to the embedding model weights. Conse- 131

quently, attackers cannot employ this method to 132

target DR systems built with closed-source embed- 133

ding models (e.g., OpenAI models). Second, the 134

method is iterative, with only one token in the ad- 135

versarial passage selected and perturbed at each it- 136

eration. This process cannot be parallelized within 137

each adversarial passage (the perturbation of the 138

next token depends on the previous). This makes 139

the method time-consuming and resource intensive: 140

we used HotFlip as a baseline in our experiments 141

and found that with a single H100 GPU, HotFlip 142

takes approximately 2 hours to generate a single 143

adversarial passage. The use of Vec2Text for cor- 144

pus poisoning that we demonstrate in this paper is 145

not affected by this issue. 146

3 Corpus Poisoning with Vec2Text 147

As Vect2Text does not require access to the model 148

weights, once trained, it can directly generate the 149

adversarial passage from the embedding using stan- 150
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dard language model generation inference. Further-151

more, it can efficiently generate many adversarial152

passages (being far less computationally intensive153

than HotFlip).154

To formally define corpus poisoning with
Vec2Text, let Q = {q1, q2, ..., q|Q|} be a set of
training queries and ϕ is the embedding model.
The goal is to use Vec2Text to generate an adver-
sarial passage a whose embedding maximizes the
similarity to all the training query embeddings:

a = argmax
a′

1

|Q|
∑
qi∈Q

ϕ(qi)
Tϕ(a′) (1)

= argmax
a′

ϕ(a′)T
1

|Q|
∑
qi∈Q

ϕ(qi) (2)

= argmax
a′

ϕ(a′)TϕQ, (3)

where ϕQ is the average embedding or centroid em-155

bedding of all the training query embeddings. The156

maximum similarity is achieved when ϕ(a′) = ϕQ.157

In practice, the corpus could be poisoned with mul-158

tiple adversarial passages (like Zhong et al. (2023)).159

This could be done by first using k-means cluster-160

ing to cluster the training queries based on their161

embeddings; then generating an adversarial pas-162

sage for each cluster.163

Vec2Text can solve this optimization problem164

through the three-stage process shown in Figure 1:165

1. The first stage is the standard training of166

Vec2Text, which involves sending text to em-167

bedding model API and collecting the returned168

embeddings to form a Vec2Text training dataset169

(i.e., text-embedding pairs). Then a Vec2Text170

model is trained with the collected training data.171

2. The second stage involves computing the cen-172

troid embedding of training queries, which can173

be done by sending the training queries to the174

embedding model API to obtain all the query175

embeddings and use k-means clustering algo-176

rithm to compute the centroid embeddings of177

the clusters.178

3. Finally, inputting each of the centroid embed-179

dings to the trained Vec2Text to generate an180

adversarial passage for each centroid embeding.181

A perfect Vec2Text would generate adversarial182

passages whose embedding is exactly the same183

as the query centroid.184

Once again, we emphasize that the entire pro-185

cess does not require access to model weights.186

Moreover, generating an adversarial passage with 187

Vec2Text is efficient: generating a single passage 188

took 5 seconds on a single Nvidia H100, employing 189

beam search with 50 steps and a width of 4. 190

4 Results and Analysis 191

Corpus poisoning experiments used the GTR-base 192

embedding model as the DR system, utilizing the 193

NQ dataset (in the version released with BEIR) 194

as the target corpus, which comprises of approxi- 195

mately 2.68 million passages. NQ training queries 196

were used to encode the query centroid embedding 197

and then to generate adversarial passages. We set 198

number of centroid (clusters) k to 10, 100, 1000. 199

For the Vec2Text model, we use an open-sourced 200

model1 that is also trained on the NQ dataset and 201

targeted at inverting GTR-base embeddings. 202

Evaluation was then done using NQ test queries 203

with evaluation measure of success@n: the percent- 204

age of queries for which at least one adversarial 205

passage was retrieved in the top-n results. Higher 206

success@n indicates greater vulnerability to corpus 207

poisoning. 208

Table 1 presents corpus poisoning results. When 209

only 10 adversarial passages were generated 210

(grouping training queries with 10-means cluster- 211

ing), both HotFlip and Vec2Text performed poorly 212

on success@10 and 20; however, HotFlip did work 213

when injecting adversarial passages into the top- 214

n=100 or 1000 rank positions. If the embedding 215

model weights were available, HotFlip was a more 216

potent corpus poisoning attack method when ap- 217

plied to longer rank lists of 100 or 1000. 218

Vec2Text has the advantage of being able to 219

generate many more adversarial passages; when 220

k = 100 or k = 1000, HotFlip was too computa- 221

tionally expensive and thus largely impractical. For 222

these cases Vec2Text success rate improved, with 223

k = 1000 making Vec2Text a considerable threat 224

in corpus poisoning. With 1000 generated passages 225

injected into the NQ dataset, in fact, at least one 226

generated passage could be retrieved in the top-10 227

results for 27% of the queries, and in the top 100 228

for over half of the queries in the NQ dataset. 229

The adversarial passages were generated from 230

query embeddings — they are synthetic and may 231

not appear like real passages. Figure 2 shows the 232

two adversarial passages most closely matching a 233

1https://huggingface.co/ielabgroup/vec2text_
gtr-base-st_inversion and https://huggingface.co/
ielabgroup/vec2text_gtr-base-st_corrector
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Table 1: Results of applying Vec2Text to the task of corpus poisoning, compared to existing HotFlip approach. Vec2Text has the
advantage of being able to produce numerous adversarial passages (k) without model weights. Both Vec2Text and HotFlip are
well below the upper bound, indicating that better methods could pose a serious risk in corpus poisoning.

Attack method #Adversarial passages Success@
/ Clusters k 10 20 100 1000

HotFlip (Zhong et al., 2023) 10 0.006 0.015 0.105 0.532
Vec2Text 10 0.006 0.012 0.036 0.101

Query centroid (upper bound) 10 0.206 0.304 0.575 0.926
HotFlip 100 · · · Too computationally expensive · · ·
Vec2Text 100 0.061 0.091 0.189 0.401

Query centroid (upper bound) 100 0.493 0.620 0.868 0.994
HotFlip 1000 · · · Too computationally expensive · · ·
Vec2Text 1000 0.268 0.335 0.521 0.791

Query centroid (upper bound) 1000 0.779 0.873 0.980 1.000

a = “That drawings promises Key kot iner
jor Respond machines AK <pad> ance pe
izi very nie <pad> <pad> Doar ceapa Weg
MEN Am OK Jamie words Um Imp refers
” War Hop nism the serving Bol auto
Palatul fries rome lighter (1 49 fetch
19 cities can counting 16, As”

(a) HotFlip. Cosine similarity of this passage to the query
centroid embedding is cos(ϕ(a), ϕQ) = 0.96.

a = “when does the 7 episode season of
the new two come out </s>”
(b) Vect2Text. Cosine similarity of this passage to the
query centroid embedding is cos(ϕ(a), ϕQ) = 0.85.

Figure 2: Sample adversarial passages most closely matching
the NQ training query centroid.

sampled query centroid ϕQ for both HotFlip and234

Vec2Text. Recall that HotFlip works by flipping235

tokens one at a time, whereas Vec2Text is a lan-236

guage model decoder. This difference may explain237

why Vec2Text appears to generate more natural238

language. Also note that a prospective malicious239

agent would likely add a payload to these generated240

passages, where the payload is, for example, a link241

to a phishing website.242

The embeddings of the adversarial passages in243

Figure 2 still differ from the query centroid embed-244

dings (cosine similarity being 0.96 for HotFlip and245

0.85 for Vec2Text). Recall that a perfect Vec2Text246

would generate an adversarial passage for which247

the embedding is exactly the same as the query em-248

bedding. To understand how this best case scenario249

affects success@k we run an additional experiment250

which involved directly inserting the query centroid251

embeddings into the vector index and then evaluat-252

ing the success@k. This serves as an upper bound253

for the HotFlip and Vec2Text corpus poisoning at- 254

tacks — an analysis overlooked in the original cor- 255

pus poisoning paper (Zhong et al., 2023). Results 256

are shown in Table 1 as “Query centroid (upper 257

bound)”. For both different values of k and differ- 258

ent success@n, the upper bound is much higher 259

than both HotFlip or Vec2Text. This tells us that 260

neither method is optimal yet for the corpus poison- 261

ing attack. It also highlights that if a much more 262

effective corpus poising method — one closer to 263

the upper bound — was developed, it could have 264

serious adverse consequences for dense retrievers. 265

5 Conclusion 266

Dense retrievers are an effective and efficient re- 267

trieval method widely adopted in working systems. 268

Much of their benefit comes from using text embed- 269

dings to represent and compare information. How- 270

ever, the reliance on text embeddings also opens 271

up dense retrievers to possible threats that exploit 272

such embeddings. 273

We identify that Vec2Text (a method to invert 274

embeddings to their original text) could be a threat 275

to the completely different task of corpus poisoning, 276

whereby adversarial passages are generated and 277

inserted into a corpus such that they are likely be 278

retrieved for any query. Vect2Text poses a real risk 279

here because it can easily generate large numbers 280

of adversarial passages without access to model 281

weights. We show that under certain conditions, 282

corpus poisoning with Vec2Text can pose a serious 283

threat to dense retriever system integrity and user 284

experience. This work is designed to stimulate 285

the development of counter measures to to prevent 286

such corpus poisoning attacks. 287
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6 Limitations288

Corpus poisoning with Vec2Text has two major289

limitations. First, our results show that a large290

number of adversarial passages, although still an291

insignificant fraction of the full corpus, is required292

for Vec2Text to be effective in the corpus poisoning293

task. This makes the use of Vec2Text for corpus294

poisoning somewhat cumbersome, as it requires295

the target search engine to index all the generated296

adversarial passages. Second, compared to the297

HotFlip method, Vec2Text does not support the298

insertion of a prefix message into the adversarial299

passage (e.g., a payload that the attacker may use300

for phishing). In addition, while the passages pro-301

duced by Vec2Text appear at first to be better than302

those from HotFlip as they contain actual words303

(see Figure 2), they are still not meaningful and304

thus not likely to attract user clicks if displayed in305

the search engine result page of a search engine like306

Google or Bing. However, these passages might307

still negatively impact Retrieval-Augmented Gen-308

eration (RAG) systems (Xue et al., 2024; Zou et al.,309

2024; Cho et al., 2024). In RAG systems, users310

are not directly exposed to the actual retrieved pas-311

sages: these are instead acquired by the system312

and used to inform the generation of an answer,313

which is then displayed to users. This means that314

users might be less likely to identify the presence315

of such adversarial passages among the evidence316

the system used.317

7 Ethical Statement318

This paper does actually describe a method to319

perform an unethical action, namely intentionally320

adding adversarial content to a corpus to adversely321

impact information retrieval systems that use that322

corpus. In presenting this work we in no way con-323

done the use of this method. Our explicit purpose324

in describing the method is to raise awareness that325

it could pose a threat to retrieval systems, and to326

explicitly quantify the associated risk. Our hope is327

that this work directly informs an effective defence328

measure to prevent corpus poisoning.329
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