
Generalized Polyak Step Size for First Order Optimization with Momentum

Xiaoyu Wang 1 Mikael Johansson 2 Tong Zhang 1

Abstract
In machine learning applications, it is well known
that carefully designed learning rate (step size)
schedules can significantly improve the conver-
gence of commonly used first-order optimization
algorithms. Therefore how to set step size adap-
tively becomes an important research question. A
popular and effective method is the Polyak step
size, which sets step size adaptively for gradient
descent or stochastic gradient descent without the
need to estimate the smoothness parameter of the
objective function. However, there has not been
a principled way to generalize the Polyak step
size for algorithms with momentum accelerations.
This paper presents a general framework to set the
learning rate adaptively for first-order optimiza-
tion methods with momentum, motivated by the
derivation of Polyak step size. It is shown that
the resulting techniques are much less sensitive
to the choice of momentum parameter and may
avoid the oscillation of the heavy-ball method
on ill-conditioned problems. These adaptive step
sizes are further extended to the stochastic set-
tings, which are attractive choices for stochastic
gradient descent with momentum. Our methods
are demonstrated to be more effective for stochas-
tic gradient methods than prior adaptive step size
algorithms in large-scale machine learning tasks.

1. Introduction
We consider stochastic optimization problems on the form

min
x∈Rd

f(x) := Eξ∼Ξ[f(x; ξ)] (1)

where ξ is a random variable with probability distribution
Ξ and f(x; ξ) is the instantaneous realization of f with
respect to ξ. We use X∗ to denote the set of minimizers of

1The Hong Kong University of Science and Technology 2Royal
Institute of Technology (KTH). Correspondence to: Xiaoyu Wang
<maxywang@ust.hk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(1), which we assume is non-empty. In other words, there is
at least one x∗ ∈ Rd such that f∗ = f(x∗) = min f(x).

Stochastic gradient descent (SGD) (Robbins & Monro,
1951) has been the workhorse for training machine learning
models. To accelerate its practical performance, one often
adds a momentum term to SGD, leading to algorithms such
as SGDM (Sutskever et al., 2013). SGDM has been widely
used in deep neural networks due to its empirical success
and is a default choice in machine learning libraries (Py-
Torch and TensorFlow). However, its practical performance
relies heavily on the choice of the step size (learning rate)
that controls the rate at which the model learns.

In the traditional optimization literature, Polyak’s heavy ball
(momentum) method (Polyak, 1964) is a well-known tech-
nique to accelerate gradient descent. By accounting for the
history of the iterates, it achieves a linear convergence that is
substantially faster than gradient descent on ill-conditioned
problems. However, to achieve its optimal performance,
the heavy-ball method relies on a specific combination of
momentum parameter β and step size η adapted to the con-
dition number of the problem. One downside of the method
is that its empirical performance is very sensitive to the
momentum factor β ∈ (0, 1) (see Figure 4), which makes
the method difficult to use when the condition number is
unknown. For the heavy-ball method, each component of
the decision vector is updated independently and shares the
same step size. Even in very simple examples, the method
exhibits a zigzag phenomenon in the dimension with large
curvature (Polyak, 1964), leading to a slow and oscillatory
convergence. Thus, an adaptive step size is important for
the best practical behavior of the heavy-ball method.

For convex functions whose optimal value is known a priori,
the Polyak step size, which depends on the current function
value and the magnitude of the gradient (subgradient), is
optimal in a certain sense (Polyak, 1987; Camerini et al.,
1975; Brännlund, 1995). Hazan & Kakade (2019) revisited
the Polyak step size and proved near-optimal convergence
even when the optimal value is unknown. Still, it is im-
practical to use the deterministic Polyak step size due to
the computation of exact function values and gradients in
each iteration. Recently, there has been a strong interest
in developing adaptive step size policies that are inspired
by the classical Polyak step size (Rolinek & Martius, 2018;

1

Generalized Polyak Step Size with Momentum

Prazeres & Oberman, 2021; Berrada et al., 2020; Loizou
et al., 2021; Sebbouh et al., 2021). This line of research has
been particularly successful on overparameterized models.
Loizou et al. (2021) extended the Polyak step size to the
stochastic setting and proposed a stochastic Polyak step size
(SPS). Berrada et al. (2020) made explicit use of the inter-
polation property to design a step size policy for SGD in a
closed form (called ALI-G) and incorporated regularization
as a constraint to promote generalization. The experiments
in Berrada et al. (2020; 2021) used momentum without and
theoretical guarantee and demonstrated that it could signifi-
cantly improve the practical performance. This highlights
the importance of adaptive step size policies for momentum
methods. However, the existing research on Polyak step
sizes has focused on SGD, and rarely designed adaptive step
sizes for heavy-ball and momentum algorithms.

1.1. Motivation

To demonstrate the challenges that arise in adapting the
Polyak step size to momentum algorithms, we consider the
approach that underpins L4Mom (Rolinek & Martius, 2018).
The key idea is to linearize the loss function at the current
iterate, f(xk − ηdk) ≈ f(xk) − η ⟨∇f(xk), dk⟩ and then
choose ηk so that the linearized prediction of f at the next
iterate equals f⋆. To account for the inaccuracy of the linear
approximation, L4Mom introduces a hyperparameter α > 0

and uses η = α f(xk)−f∗

⟨∇f(xk),dk⟩ . However, we have found that
this algorithm is quite unstable in practice, and fails on
standard experiments such as the CIFAR100 experiments
in Section 5.2. This sensitivity is also observed in (Berrada
et al., 2020). One reason is that ⟨∇f(xk), dk⟩ is not always
guaranteed to be positive. We experience difficulties with
the algorithm even in a simple least-squares problem with
condition number κ = 104 and f∗ = 0. The parameter α is

10 3 10 2 10 1 100

10 17

10 14

10 11

10 8

10 5

10 2

101

Lo
ss

 (
lo

g
) L4Mom

HB-optimal
= 0.01
= 0.008

10 20 30 40 50 60 70 80
Iteration

2

1

0

1

2

3

4

5

6

d
k
,

f(
x k

)
|

f(
x k

)|
2

×103

= 0.02
= 0.015
= 0.01
= 0.008
= 0.005

dk, f(xk) = 0

crucial for the empirical convergence: for large values of α,
the algorithm easily explodes, while small values of α result
in slow convergence. In brief, L4 is not an ideal approach for
finding an adaptive step size for heavy-ball or momentum
acceleration. Besides, there is no theoretical guarantee for
the L4Mom algorithm. Our goal is to find adaptive step
sizes for the momentum acceleration algorithms that are
more stable and efficient in practice.

1.2. Contribution

A new perspective on adaptive step sizes for momentum.
Inspired by the success of the Polyak step size for subgra-
dient methods and SGD, and the absence and insufficiency
of adaptive Polyak step sizes for momentum accelerations,
we propose a generic Adaptive Learning Rate (ALR) frame-
work for two variants of momentum methods: heavy-ball
(HB) and moving averaged gradient (MAG). We call corre-
sponding adaptive algorithms ALR-HB and ALR-MAG and
make the following contributions:

(i) We prove global linear convergence of ALR-MAG on
semi-strongly convex and smooth functions, improv-
ing the results for modified subgradient methods in
(Brännlund, 1995), under less restrictive assumptions.

(ii) For least-squares problems, we demonstrate that ALR-
HB and ALR-MAG are less sensitive to the choice
of β than the original heavy-ball method. Our algo-
rithms are significantly better than heavy-ball, gradient
descent with Polyak step size, and L4Mom if the con-
dition number is unknown a priori.

(iii) The proposed framework is also applicable to Nes-
terov accelerated gradient (NAG) (Nesterov, 1983) and
performs better than the original Nesterov momentum
under optimal parameters (see Appendix A).

Stochastic extensions of ALR-HB and ALR-MAG. We
extend ALR-HB and ALR-MAG to the stochastic setting
and call them ALR-SHB and ALR-SMAG, respectively. We
make the following contributions:

(i) Under the assumption of interpolation (overparame-
terized models), we prove a linear convergence rate
for ALR-SMAG on semi-strongly convex and smooth
functions. Such a result did not exist for SGD with
momentum under this class of step sizes.

(ii) We demonstrate the superiority of ALR-SHB and ALR-
SMAG over state-of-the-art adaptive methods and the
popular step-decay step size (Ge et al., 2019) on logis-
tic regression and deep neural network training. By in-
corporating a warmup technique into the upper bound
of the step size, the performance of ALR-SHB and
ALR-SMAG can be improved further and performs
better than step-decay.

(iii) We incorporate weight-decay into the update of ALR-
SMAG to improve the generalization. The algorithm
performs better than ALI-G with momentum and step-
decay step size and is comparable to cosine step size
without restart (Loshchilov & Hutter, 2017).

2

Generalized Polyak Step Size with Momentum

2. Adaptive Step Sizes
Consider a general first-order method with momentum ac-
celeration on the form

xk+1 = xk − ηkdk + γ(xk − xk−1) (2)

where −dk is a descent direction. A natural question
that arises is how far we should move in this direction
to converge quickly. In theoretical analyses, the quantity
∥x− x∗∥2 is often used to measure the convergence of the
algorithms. We therefore propose to optimize ηk to ensure
that xk+1(ηk) minimizes this quantity, i.e.,

min
ηk

∥xk+1(ηk)− x∗∥2 . (3)

Minimizing (3) w.r.t ηk suggests that

ηk =
⟨dk, xk − x∗⟩
∥dk∥2

+ γ
⟨dk, xk − xk−1⟩

∥dk∥2
. (4)

In general, the minimizer x∗ is not accessible. However,
when f is convex, we can often evaluate a lower bound of
⟨dk, xk − x∗⟩ and minimize an upper bound of (3)

∥xk+1 − x∗∥2 = ∥xk − x⋆∥22 + η2
k∥dk∥22

− ηkγ⟨dk, xk − xk−1⟩ − ηk ⟨dk, xk − x∗⟩ . (5)

For example, if dk ∈ ∂f(xk) and γ = 0, the method of
(2) reduces to the subgradient method. By the convex-
ity of f , ⟨∇f(xk), xk − x∗⟩ ≥ f(xk) − f∗, and mini-
mizing the upper bound of (5) results in the Polyak step
size ηk = (f(xk)− f∗)/ ∥dk∥2 (Bazaraa & Sherali, 1981).
Whatever other model we may have that provides a lower
bound on the inner product ⟨dk, xk − x∗⟩ will also work in
this framework. In the rest of this paper, we focus on two
popular variants of momentum acceleration.

2.1. Adaption for Heavy-Ball

We first consider the heavy-ball (HB) method (Polyak, 1964;
Ghadimi et al., 2015) given by

xk+1 = xk − ηk∇f(xk) + β(xk − xk−1) (6)

where β ∈ (0, 1) is a constant. Clearly, heavy ball is a spe-
cial case of (2) where γ = β and dk = ∇f(xk). By the con-
vexity of f , we have a lower bound for ⟨∇f(xk), xk − x∗⟩
by f(xk)−f∗ and minimizing the upper bound of (5) yields
the adaptive learning rate for heavy-ball (ALR-HB)

ηk =
f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2
. (7)

If the objective function f is also L-smooth then
⟨∇f(xk), xk − x∗⟩ ≥ f(xk) − f(x∗) + 1

2L ∥∇f(xk)∥2 ,

Algorithm 1 ALR-HB

1: Input: initial point x1, β ∈ (0, 1), v0 = 0
2: while xk does not converge do do
3: k ← k + 1
4: ηk ← f(xk)−f(x∗)

∥∇f(xk)∥2 + β ⟨∇f(xk),xk−xk−1⟩
∥∇f(xk)∥2 (v1);

ηk ← 1
2L + f(xk)−f∗

∥∇f(xk)∥2 + β ⟨∇f(xk),xk−xk−1⟩
∥∇f(xk)∥2 (v2)

5: vk ← −ηk∇f(xk) + βvk−1

6: xk+1 ← xk + vk
7: end while

which is a tighter lower bound for ⟨∇f(xk), xk − x∗⟩. It re-
sults in the formula (8) below, named ALR-HB(v2), which
has an additional constant term 1/(2L) compared to (7):

ηk =
1

2L
+

f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2
. (8)

The ALR-HB algorithms are shown in Algorithm 1. Our
next example shows that ALR-HB (v2) can find the exact
solution for a simple least-squares problem in a single step.

Example 1. Consider one-dimensional least-squares prob-
lem f(x) = 1

2hx
2. For Polyak with gradient descent and

L4Mom, we need at least k = log2(x0/ϵ) steps for an ϵ-
accurate solution (|x− x∗| ≤ ϵ). For ALR-HB(v2), given
x0, x1, we only need one step to find the exact solution.

Proof. The step size of ALR-HB(v2) can be written as

ηk =
1

2L
+

f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2

=
1

h
+ β

1

h

(
1− xk−1

xk

)
Applying the step size to the iterate of HB gives

xk+1 = xk − ηkhxk + β(xk − xk−1) = 0.

Thus, we believe that the model (3) is a good choice for
designing adaptive step sizes for the heavy-ball method.

2.2. Adaptive Step Size for MAG

Next, we consider the moving averaged gradient (MAG),
another widely used momentum variant for deep learning

dk = ∇f(xk) + βdk−1, xk+1 = xk − ηkdk (9)

where β ∈ (0, 1). Note that if the step size is constant, ηk =
η, then the formulas (6) and (9) are equivalent. However, we
consider adaptive step sizes that change with k, and in this
case, the two methods are different variants of momentum.

If the search direction dk is defined by (9) and γ = 0,
the update of (2) reduces to the MAG algorithm. By

3

Generalized Polyak Step Size with Momentum

the convexity of f , if ηi ≤ f(xi)−f∗

∥di∥2 for all i ≤ k − 1,
Lemma 4.2 in our subsequent theoretical analysis shows that
⟨dk−1, xk − x∗⟩ ≥ 0. We therefore provide a lower bound
for ⟨dk, xk − x∗⟩ = ⟨∇f(xk) + βdk−1, xk − x∗⟩ ≥
⟨∇f(xk), xk − x∗⟩ ≥ f(xk) − f∗. Minimizing the upper
bound of (5) results in step size:

ηk =
f(xk)− f∗

∥dk∥2
. (10)

We refer to this adaptive momentum version, detailed in Al-
gorithm 2, as ALR-MAG. Lemma 4.3 in Section 4.1 shows
that the iterates of ALR-MAG decrease monotonically w.r.t.
the distance ∥x− x∗∥2. This guarantees that the iterates
come closer and closer to the optimum. Our next example
in Section 2.3 demonstrates that the step size of ALR-MAG
is able to avoid oscillations of the heavy-ball method.

Algorithm 2 ALR-MAG

1: Input: initial point x1, β ∈ (0, 1), d0 = 0
2: while xk does not converge do
3: k ← k + 1
4: dk ← βdk−1 +∇f(xk)

5: ηk ← f(xk)−f∗

∥dk∥2

6: xk+1 ← xk − ηkdk
7: end while

2.3. Justification of ALR-MAG

To demonstrate the advantages of ALR-MAG, we consider
a simple two-dimensional least-squares problem f(x, y) =
1
2 (x − 1)2 + κ

2 (y + 1)2 with x ∈ R and y ∈ R. We set
κ = 100 and use the initial point (x0, y0) = (48,−28). For
the classic heavy-ball method, the iterates can be re-written
as xk+1 = xk − ηk(xk − 1) + β(xk − xk−1); yk+1 =
yk − ηkκ(yk + 1) + β(yk − yk−1). Note that the variables
x and y are updated independently and share the same step
size. Our baseline is the optimal parameters for heavy-ball
from (Polyak, 1964), β∗ = (

√
κ−1)2/(

√
κ+1)2 and η∗ =

(1+
√
β∗)2/L (called HB-optimal). From Figure 1(left), we

observe a pronounced zigzag behavior in the y-dimension
for HB-optimal. The step size η∗ is large and results in
an undamped and slow convergence in the dimension with
large curvature (i.e., y). We apply ALR-MAG with the same
β∗ and f⋆ = 0. ALR-MAG adapts the step size to start from
a small value to avoid the instability in the y-dimension and
finally reaches a value that is comparable to η∗.

3. Related Work
Adaptive methods for deterministic momentum. For de-
terministic problems with µ-strongly convex and L-smooth
objective functions, Polyak (1964) demonstrated that the

0 10 20 30 40 50
Iteration

100

75

50

25

0

25

50

75

100

y

HB-optimal
ALR-MAG

0 10 20 30 40 50
Iteration

0.00

0.01

0.02

0.03

0.04

0.05

St
ep

 s
iz

e

HB-optimal
ALR-MAG

Figure 1. The trace of variable y (left) and the step sizes (right)

fastest local convergence of the heavy-ball method is at-
tained for the optimal parameters β∗ = (

√
κ+ 1)2/(

√
κ+

1)2 and η∗ = (1 +
√
β∗)2/L where κ = L/µ is the con-

dition number. Fast linear convergence is also achieved
for Nesterov’s accelerated gradient method with β =
(
√
κ− 1)/(

√
κ+ 1) and η = 1/L (Nesterov, 2003). How-

ever, while L is relatively easy to estimate on-line, µ (and
therefore κ) is often inaccessible. A number of recent con-
tributions suggest ideas for approximating these optimal
hyper-parameters at each iteration. Barré et al. (2020) adap-
tively estimate the strong convexity constant by the inverse
of the Polyak step size and use this estimate in place of
the true µ in the momentum parameter for Nesterov mo-
mentum. Saab et al. (2022) approximate the Lipschitz and
strongly convexity constants employing the absolute differ-
ences of current and previous model parameters and their
gradients. However, its empirical performance, at least in
the least-squares problem in Figure 2 (labeled AHB), is poor.
Malitsky & Mishchenko (2020) estimate the Lipschitz con-
stant similarly to (Saab et al., 2022) and the strong convexity
constant µ by the inverse smoothness of the conjugate func-
tion. They also add a conservation bound for the estimators
of µ,L, leading to a method with four hyperparameters that
need to be tuned.

Adaptive step sizes for stochastic algorithms. Vaswani
et al. (2019) extend line search methods to the stochastic
setting (called SLS) using the function and gradient of a
mini-batch and guarantee linear convergence under interpo-
lation. But its many hyper-parameter makes it difficult to
use in practice. Malitsky & Mishchenko (2020) use their
estimation technique for L (discussed above) to develop
an adaptive step size for SGD (called AdSGD). Under in-
terpolation, the iteration complexity is κ times higher than
SGD.

Adaptive gradient methods. Adaptive gradient methods,
such as AdaGrad (Duchi et al., 2011), RMSProp (Tiele-
man & Hinton, 2012), Adam (Kingma & Ba, 2015), and
AdamW (Loshchilov & Hutter, 2018) are very popular in
practice. However, adaptive gradient methods have poor
generalization compared to SGD in supervising learning
tasks (Wilson et al., 2017). Liu et al. (2019) suggest a learn-
ing rate warmup heuristic in the early stage of training that
can improve the generalization of adaptive methods.

4

Generalized Polyak Step Size with Momentum

4. Preliminaries and Convergence Analysis
Before presenting our theoretical results, we introduce a few
key concepts and the notation used throughout the paper.

Definition 4.1. f : Rd 7→ R is semi-strongly convex if
there exists a constant µ̂ > 0 such that µ̂

2 ∥x− x∗∥2 ≤
f(x)− f∗,∀x ∈ Rd.

This condition is also called the quadratic growth property
of f . If the function is convex and smooth, semi-strong
convexity is equivalent to the Polyak-Łojasiewicz (PL) con-
dition (Karimi et al., 2016). This is a weaker condition than
the strong convexity. The definitions of convexity, strong
convexity, and L-smoothness are provided in Appendix B.

Interpolation. We say that the interpolation condition
holds if there exists x∗ ∈ X ∗ such that individual func-
tions minx f(x; ξ) = f(x∗; ξ) for all ξ ∈ Ξ. All loss
functions f(x; ξ) meet with a common minimizer x∗. The
interpolation property is satisfied in many machine learn-
ing models, including linear classifiers with separable data,
over-parameterized deep neural networks (Ma et al., 2018;
Zhang et al., 2021), non-parametric regression (Liang &
Rakhlin, 2020), and boosting (Bartlett et al., 1998).

4.1. ALR-MAG in Deterministic Optimization

We first provide convergence guarantees for the ALR-MAG
method on deterministic convex optimization problems
where the exact gradient and function values are available.

Our first lemma shows that the direction dk−1 forms an
acute angle with the direction from xk to the minimizer x∗.

Lemma 4.2. Let f be convex and assume that {xi}ki=0 has
been generated by ALR-MAG with ηi ≤ (f(xi)−f∗)/ ∥di∥2
for all i ≤ k − 1. Then, ⟨dk−1, xk − x∗⟩ ≥ 0.

The next lemma establishes that the MAG iterates under the
step size (10) are monotone decreasing with respect to the
distance ∥x− x∗∥2. This guarantees that the next iterate
xk+1 is closer to the minimizer x∗ than the current xk.

Lemma 4.3. Let {xk} be generated by MAG with the step
size defined in (10). Then, if f is convex

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ηk (f(xk)− f∗) .

If, in addition, f is L-smooth, then

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
(
ηk +

(1− β)

L

)
(f(xk)− f∗) .

From Lemma 4.3, we can note that if f is smooth, there is
an extra decrease compared to when f is only convex. If
the function is also semi-strongly convex, then we have the
following linear convergence result.

Theorem 4.4. Suppose that function f is convex and L-
smooth and consider the ALR-MAG algorithm under the
step size (10). If f is semi-strongly convex with µ̂ > 0, then

∥xk − x∗∥2 ≤ (1− ρ)k ∥x1 − x∗∥2 (11)

where ρ = (1− β)(2κ)−1 and κ = L/µ̂.

Brännlund (1995) generalizes the subgradient method to
use a convex combination of previous subgradients. Hence,
the MAG algorithm (9) can be seen as a special case of
Brännlund (1995). Since the sequence ∥xk+1 − x∗∥2 is
monotone decreasing, it is enough to require L-smoothness
for all x with ∥x − x⋆∥ ≤ ∥x0 − x⋆∥, which matches
the smoothness assumption of Theorem 2.6 in (Brännlund,
1995). However, compared to (Brännlund, 1995), we do not
have the extra restriction ∥dk∥ ≤ ∥∇f(xk)∥. In fact, this
requirement on dk is, in general, not satisfied for β ∈ (0, 1).
Note that Theorem 4.4 improves the dependence of the
condition number κ from κ2 to κ in the convergence of
(Brännlund, 1995; Shor, 2012) and only requires semi-
strong convexity (while Theorem 2.12 in (Shor, 2012) as-
sumes strong convexity). More results of ALR-MAG for
functions without smoothness are provided in Appendix B.

4.2. Convergence of ALR-MAG in Stochastic Settings

Next, we extend the adaptive step size for HB and MAG to
the case when gradients and function values are sampled
from an underlying (data) distribution. It is typically not
practical to compute the exact function value and gradient in
every step. Instead, we evaluate a mini-batch Sk of gradient
and function value samples in each iteration

fSk
(x) =

1

|Sk|
∑
i∈Sk

f(x; ξi),∇fSk
(x) =

1

|Sk|
∑
i∈Sk

∇f(x; ξi)

and propose to use the following adaption of (10):

ηk = min

{
fSk (xk)− f∗

Sk

c ∥dk∥2
, ηmax

}
(12)

Here, dk = βdk−1 + ∇fSk
(xk) and f∗

Sk
= infx fSk

(x).
We refer to the stochastic version of MAG as SMAG, and as
ALR-SMAG when we use the adaptive step size (12).

Their step size (12) has three modifications compared to (10).
First, while the immediate extension of (10) would replace
f∗ = f(x∗) by fSk

(x∗), we suggest to use f∗
Sk

instead. For
example, in many machine learning problems with unregu-
larized surrogate loss functions, we have f∗

Sk
= 0 (Bartlett

et al., 2006). For the loss with regularization for example ℓ2
regularization, when the mini-batches contain a single data,
then f∗

Sk
can be computed in a closed form for some stan-

dard loss function (Loizou et al., 2021; Bartlett et al., 2006).
Second, we introduce a hyper-parameter c > 0 that con-
trols the scale of the step size to account for the inaccuracy

5

Generalized Polyak Step Size with Momentum

in function and gradients. Third, due to the convergence
reason and to make it applicable to wide applications even
nonconvex problems, we may restrict the step size to be
upper bounded by ηmax > 0.

In the following results, we assume the finite optimal objec-
tive function difference which has been used in the analysis
of stochastic Polyak step size (Loizou et al., 2021).

Assumption 4.5. (Finite optimal objective difference)

σ2 = E[fSk
(x∗)− f∗

Sk
] = f(x∗)− E[f∗

Sk
] < +∞

where f∗
Sk

= inf fSk
(x).

Under interpolation, each individual function f(x; ξ) attains
its optimum at x∗ which implies that σ = 0. We focus on
semi-strongly convex and smooth functions.

Theorem 4.6. Suppose that the individual function f(x; ξ)
is convex and L-smooth for any ξ ∈ Ξ and that Assumption
4.5 holds. Consider ALR-SMAG with c > 1, if f is semi-
strongly convex with µ̂, then

E[∥xK+1 − x∗∥2] ≤ (1− ρ1)
K ∥x1 − x∗∥2 + 2ηmaxσ

2

ρ1(1− β)

where ρ1 = min
{

(1−β)(c−1)µ̂
2c2L , (2c−1)µ̂ηmax

2c

}
.

When β = 0, step size (12) reduces to SPS max. Our result
in Theorem 4.6 is comparable to theorem 3.1 of SPS max
for strongly convex functions. However, the numerical re-
sults show the superior performance of ALR-SMAG com-
pared to SPS in a wide range of machine learning applica-
tions. In Theorem 4.6, we assume c > 1 to ensure that the
step size is not too aggressive. For example, in the exper-
iments on logistic regression in Section C.2, we will use
c = 5. For the deep learning tasks (nonconvex), we suggest
that c < 1. This coincides with parameter c from SPS max
(they set c = 0.2) (Loizou et al., 2021).

An important property of SPS (Loizou et al., 2021) is that
the step size is lower and upper-bounded. This is not the
case for our step size. Since dk is a convex combination
of all previous stochastic gradients, the scale of dk is con-
trolled by the previous stochastic gradients. In general, it is
not clear how ∥dk∥ is related to ∥∇fSk

(xk)∥, which makes
it challenging to analyze the convergence of SMAG under
(12). A key step in our analysis is to establish the inequality
(18) to handle the moving averaged gradient. The main nov-
elty of ALR-SMAG is that it provides a principled way to
adapt the step size for SGD with momentum and guarantees
linear convergence, which earlier techniques were unable to
do (Rolinek & Martius, 2018; Berrada et al., 2020; 2021).

The constant term in the inequality in Theorem 4.6 can not
be made arbitrarily small by decreasing the upper bound
ηmax. We also observe this limitation in the stochastic

Polyak step size; see Theorem 3.1 and Corollary 3.3 in
SPS (Loizou et al., 2021). Theorem 4.6 suggests that β = 0
achieves the best result in theory. This is also an issue for
the stochastic momentum analysis (Yan et al., 2018; Liu
et al., 2020).

Our next corollary provides a stronger convergence result if
the model is expressive enough to interpolate the data. In
this setting, we use no maximal learning rate.

Corollary 4.7. Assume interpolation (σ = 0) and suppose
that all assumptions of Theorem 4.6 hold. Consider the step
size (12) and ηmax =∞. Then

E[∥xK+1 − x∗∥2] ≤
(
1− ρ

′

1

)K
∥x1 − x∗∥2

where ρ
′

1 = (1−β)(c−1)µ̂
2c2L .

Under interpolation, ALR-SMAG can converge to the opti-
mal solution x∗ and achieves the fast linear convergence rate
O
(
(1− (1− β)µ̂/L)k

)
under semi-strong convexity. We

also provide the convergence results of ALR-SMAG for gen-
eral convex functions in Theorem B.10 (see Appendix B).

In the end, we will compare the analysis above with other
adaptive step sizes and stochastic momentum methods. The
iterate complexity of AdSGD (Malitsky & Mishchenko,
2020) is κ higher compared to SGD for adaptive estimation
of the stepsize. Clearly, the complexity of ALR-SMAG
under interpolation is better than that of AdSGD. SMAG
under constant step size is equivalent to stochastic heavy-
ball (SHB) (Yan et al., 2018) and SGDM (Liu et al., 2020).
In proposition 2 (Liu et al., 2020), the constant step size is
restricted to be smaller than a small number (1− β)/(5L)
when the common choice β = 0.9 is applied. While Corol-
lary 4.7 does not have any restriction for ηmax.

4.3. Stochastic Extension of ALR-HB.

The same idea to ALR-SMAG in Section 4.2, we con-
sider applying the mini-batch of the function fSk

=
1

|Sk|
∑

i∈Sk
f(x; ξi) to the framework (3). A natural ex-

tension of ALR-HB to the stochastic setting is

ηk = min

{
fSk (xk)− f∗

Sk

c ∥∇fSk (xk)∥2
+

β ⟨∇fSk (xk), xk − xk−1⟩
∥∇fSk (xk)∥2

, ηmax

}
.

(13)

We call the stochastic version of HB as SHB, and the algo-
rithm SHB with step size (13) as ALR-SHB. Three changes
are made compared to the direct generalization of (7). A
similar discussion can be found in Section 4.2, which we
omit here. In Appendix B.3, we provide a theoretical guar-
antee for truncated ALR-HB on least-squares but leave other
possible results of ALR-HB and ALR-SHB for the future.

6

Generalized Polyak Step Size with Momentum

5. Numerical Evaluations
In this section, we evaluate the practical performance of the
proposed adaptive step sizes. We start with experiments on
the least-squares problems for ALR-MAG and ALR-HB,
and continue by exploring the performance of the stochas-
tic versions, ALR-SMAG and ALR-SHB, on large-scale
convex optimization problems and deep neural networks
training. For space concerns, the experiments in the convex
interpolation setting are reported in appendix C.2.

5.1. Empirical Results on Ill-Conditioned Least-Squares

We use the procedure described in (Lenard & Minkoff, 1984)
to generate test problems with f(x) = 1

2 ∥Ax− b∥2 where
A ∈ Rd1×d is positive definite, b ∈ Rd1 is a random vector,
and the optimum f∗ = 0. We report results for problems
with d1 = d = 1000 for which the condition number κ of
ATA is 104. The strong convexity constant µ and smooth-
ness constant L are the smallest and largest eigenvalues of
the matrix ATA, respectively.

We test ALR-HB and ALR-MAG against with several im-
portant methods including (1) gradient descent with Polyak
step size (named GD-Polyak); (2) heavy-ball with the op-
timal parameters, i.e., β∗ = (

√
κ − 1)2/(

√
κ + 1)2 and

step size η∗ = (1 +
√
β∗)2/L (Polyak, 1964) (named HB-

optimal); (3) L4Mom (Rolinek & Martius, 2018); (4) AGM
(variant II) (Barré et al., 2020); (5) AHB (Saab et al., 2022);
(6)AdGD-accel (Malitsky & Mishchenko, 2020).

If µ and L are known a priori, we set β = β∗ for ALR-HB
and ALR-MAG, as HB-optimal. We perform a grid search
for parameters that are not specified (see Appendix C.1).
The results are shown in Figure 2. ALR-HB (v2) performs
the best among these methods. For the case that µ and
L are not known, momentum parameter β is tuned from
{0.5, 0.9, 0.95, 0.99} for HB, L4Mom, ALR-HB, and ALR-
MAG. The results in Figure 3 show that ALR-HB and ALR-
MAG are much better than HB with best-tuned constant
step size, L4Mom, and the other algorithms.

To illustrate the behavior of different step sizes, we plot
ALR-HB and ALR-MAG with the theoretically optimal
step size η∗ for HB in Figure 2(right). We can see how
ALR-HB (v2) oscillates in a small range around η∗ and
ALR-MAG converges to a value that is slightly different
than η∗. Without knowledge of µ and L, ALR-HB still
varies around η∗ and captures the function’s curvature (see
Figure 3(right)). We also plot the final loss of the algorithms
in Figure 4 on different β selected from the interval [0.9, 1),
which includes β∗. Clearly, ALR-HB is less sensitive to
β than the original heavy-ball method while L4Mom is far
worse.

0 200 400 600 800 1000 1200 1400
Iteration

10 21

10 17

10 13

10 9

10 5

10 1

103

f(
x

t)
f

GD-Polyak
AHB
HB-optimal
L4Mom
AGM (variant II)
ALR-MAG
ALR-HB
ALR-HB (v2)

0 200 400 600 800 1000 1200 1400
Iteration

10 2

10 1

S
te

p
-s

iz
e

ALR-MAG
ALR-HB
ALR-HB (v2)
HB-optimal

Figure 2. Least-squares with knowledge of µ and L (left: sub-
optimality; right: step size)

0 200 400 600 800 1000 1200 1400
Iteration

10 10

10 8

10 6

10 4

10 2

100

102

104

f(
x

t)
f GD-Polyak

AHB
AdGD-accel
HB best-tuned
L4Mom
ALR-MAG
ALR-HB

0 200 400 600 800 1000 1200 1400
Iteration

10 3

10 2

10 1

S
te

p
-s

iz
e

ALR-MAG
ALR-HB
HB best-tuned
HB-optimal

Figure 3. Least-squares without knowledge of µ and L (left: sub-
optimality; right: step size)

5.2. Experimental Results on Deep Neural Networks

To show the practical implications of ALR-SMAG and ALR-
SHB, we conduct experiments with deep neural network
training on the CIFAR (Krizhevsky et al., 2009) and Tiny-
ImageNet200 (Le & Yang, 2015) datasets. We compare
ALR-SMAG and ALR-SHB against SGD with momentum
(SGDM) under: constant step sizes; step-decay (Ge et al.,
2019; Wang et al., 2021), where the step size is divided by 10
after the same number of iterations, and cosine decay with-
out restart (Loshchilov & Hutter, 2017); the adaptive step
size methods SPS max (Loizou et al., 2021) and SLS with
acceleration (SLS-acc) (Vaswani et al., 2019); L4Mom (Ro-
linek & Martius, 2018); AdSGD (Malitsky & Mishchenko,
2020); and Adam (Kingma & Ba, 2015). To eliminate the
influence of randomness, we repeat the experiments 5 times
with different seeds and report the averaged results. The
over-parameterized deep neural networks satisfy interpola-
tion (Zhang et al., 2021). In all Polyak-based algorithms,
we use f∗

Sk
= 0 throughout.

5.2.1. RESULTS ON CIFAR10 AND CIFAR100

We consider the benchmark experiments for CIFAR10 and
CIFAR100 with two standard image-classification architec-
tures: 28×10 wide residual network (WRN) (Zagoruyko &
Komodakis, 2016) and DenseNet121 (Huang et al., 2017),
without implementation of weight-decay. The maximum
epochs call is 200 and the batch size is 128. For the space
concern, the details of the parameters are shown in Ap-
pendix C.3. The results on CIFAR10 and Tiny-ImageNet

7

Generalized Polyak Step Size with Momentum

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
10 24

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

103
f(x

T)
f

HB
L4Mom
ALR-MAG
ALR-HB
ALR-HB (v2)

=

Figure 4. Least-squares under different β

Table 1. The results of CIFAR100 on WRN and DenseNet

METHOD
WRN-28-10 DENSENET121

TEST ACCURACY (%)

SGDM-CONST 75.36 ± 0.28 74.20 ± 1.56
ADAM 72.70 ± 0.19 72.08 ± 0.15
L4MOM 66.84 ± 0.60 67.55 ± 0.32
SPS max 74.39 ± 0.50 73.97 ± 0.87
SLS-ACC 75.74 ± 0.19 74.81 ± 0.26
ADSGD 75.71 ± 0.29 74.72 ± 0.40
ALR-SHB 76.36 ± 0.15 74.50 ± 0.95
ALR-SMAG 76.51 ± 0.32 75.25 ± 0.49
SGDM-STEP 76.49 ± 0.37 75.12 ± 0.32

are presented in Appendix C.3 and C.4, respectively.

First, we report the results of CIFAR100 on WRN-28-10
and DenseNet121 in Figure 5 and Table 1. From Figure
5, we observe that ALR-SMAG and ALR-SHB result in
the best training loss and achieves the highest accuracy.
Table 1 shows that our algorithms ALR-SMAG and ALR-
SHB perform better than the adaptive step size methods
SPS max, L4Mom, SLS-acc and AdSGD, and are com-
parable to SGDM with step-decay step size (denoted by
SGDM-step). Note that L4Mom failed in one run of the
experiment but we still report the averaged results from the
4 successful runs.

In this experiment, we borrow the idea of warmup
from (Vaswani et al., 2017) to update the upper bound
ηmax of ALR-SHB and ALR-SMAG as ηmax =
η0 min(10−4k, 1). The warmup heuristic has been used
to mitigate the issue of converging to bad local minima for
many optimization methods. The averaged result of test
accuracy for each algorithm is reported in Table 2. When
we incorporate the warmup (WP) technique for the maximal
learning rate, our algorithms outperform SGDM with step-
decay. The performance of ALR-SMAG shown in Figure 10
is insensitive to the hyper-parameter c, see Appendix C.3.

0 25 50 75 100 125 150 175 200
Epochs

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss

SGDM-const
SPS_max
Adam
L4Mom

SLS-acc
AdSGD
ALR-SHB
ALR-SMAG

0 25 50 75 100 125 150 175 200
Epochs

60%

62%

64%

66%

68%

70%

72%

74%

76%

Te
st

 a
cc

ur
ac

y

SGDM-const
SPS_max
Adam
L4Mom

SLS-acc
AdSGD
ALR-SHB
ALR-SMAG

Figure 5. CIFAR100 - WRN-28-10: training loss (left) and test
accuracy (right)

Table 2. Results of different step size policies under warmup

METHOD
WRN-28-10 DENSENET121

TEST ACCURACY (%)

SGDM-CONST + WP 75.77 ± 0.48 74.4 ± 0.47
ALR-SHB + WP 77.57 ± 0.42 77.03 ± 0.35
ALR-SMAG + WP 77.63 ± 0.21 77.24 ± 0.16
SGDM-STEP + WP 77.27 ± 0.26 76.89 ± 0.28

5.3. Enabling Weight-Decay to Improve Generalization

In neural network training, it is often desirable to incorporate
weight-decay (ℓ2-regularization) to improve generalization.
It is, therefore, important to make our step sizes efficient
also in this setting. However, the typical way of adding ℓ2
regularization (f + λ

2 ∥·∥
2) to the objective function is not

applicable for Polyak-based algorithms because the corre-
sponding f∗

Sk
is often inaccessible or expensive to compute.

ALI-G (Berrada et al., 2020) incorporates regularization as
a constraint on the feasible domain. However, promoting
regularization as a constraint does not work well for our step
sizes. Instead, we use a similar idea as Loshchilov & Hutter
(2017) and decouple the loss and regularization terms. In
ALR-SMAG, this is done by adding λxk to the updated
direction dk and use the search direction dk + λxk; see
Algorithm 3 of Appendix C.5 where λ > 0 is the parameter
of weight-decay. In this way, we still set f∗

Sk
to be zero

because nothing changes in the networks.

8

Generalized Polyak Step Size with Momentum

We test the performance of ALR-SMAG with weight-decay
on CIFAR100 with WRN-28-10 and compare with other
state-of-the-art algorithms: AdamW under step-decay step
size (denoted by AdamW-step) with λ = 0.0001; SGDM
under warmup (SGDM + WP), step-decay (SGDM-step),
and cosine (SGDM-cosine) step sizes with λ = 0.0005; and
ALI-G (Berrada et al., 2020) with and without Nesterov
momentum. For ALR-SMAG with weight-decay, we set
λ = 0.0005 and c = 0.3. We train for 200 epochs and use
batch size 128. More details are given in Appendix C.5.

The results are shown in Table 3. In addition to the best
test accuracy, we also record the results at 60, 120, and
180 epochs. We observe that ALR-SMAG is able to reach a
relatively high accuracy at 120 epochs. But after 120 epochs,
the training process is basically saturated and the accuracy
does not improve much (it even drops a little). Since c is less
than 1, the step size of ALR-SMAG is still aggressive. As
a result, the iteration oscillates locally, and it is difficult to
converge to a certain point. In order to converge, in the final
training phase (last 20% of iterations) of ALR-SMAG, we
introduce a fine-tuning phase that increases c exponentially.
From the last row in Table 3 we see that fine-tuning (FT)
does improve the solution accuracy.

Table 3. CIFAR100 - WRN-28-10 with weight-decay (WD)

METHOD
TEST ACCURACY (%)

#60 #120 #180 BEST

ADAMW-STEP 70.60 75.28 75.93 76.19 ± 0.13
ALI-G 72.27 72.83 73.12 73.40 ± 0.22
ALI-G + MOM 67.06 78.99 79.88 80.21 ± 0.14
SGDM + WP 69.88 72.02 72.32 73.47 ± 0.40
SGDM-STEP 60.15 75.38 80.91 81.22 ± 0.16
SGDM-COSINE 64.52 71.17 81.42 81.85 ± 0.19
ALR-SMAG 63.64 80.20 80.69 81.18 ± 0.28
ALR-SMAG + FT 63.64 80.20 81.64 81.89 ± 0.20

6. Conclusion
We proposed a novel approach for generalizing the popular
Polyak step size to first-order methods with momentum. The
resulting algorithms are significantly better than the original
heavy-ball method and gradient descent with Polyak step
size if the condition number is inaccessible. We demon-
strated our methods are less sensitive to the choice of β than
the original heavy-ball method and may avoid the instability
of heavy-ball on the ill-conditioned problems. Furthermore,
we extended our step sizes to the stochastic settings and
demonstrated superior performance in logistic regression
and deep neural network training compared to the state-of-
the-art adaptive methods. In Appendix A, we extend our
framework to Nesterov accelerated gradient (NAG) and pro-
vide preliminary experiments on least-squares problems. It
will be interesting to study how this step size performs on a
wider range of applications. Another interesting extension

would be to develop techniques for adjusting the learning
rate in second-order adaptive gradient methods, such as Ada-
Grad (Duchi et al., 2011) and Adam (Kingma & Ba, 2015)
which are widely used in deep learning.

Acknowledgements
This work was supported partially by GRF 16310222, GRF
16201320, and VR 2019-05319. Xiaoyu Wang is supported
by Innovation and Technology Commission of Hong Kong
China under the project PRP/074/19FX.

References
Barré, M., Taylor, A., and d’Aspremont, A. Complexity

guarantees for Polyak steps with momentum. In Proceed-
ings of Thirty Third Conference on Learning Theory, vol-
ume 125 of Proceedings of Machine Learning Research,
pp. 452–478. PMLR, 09–12 Jul 2020.

Bartlett, P., Freund, Y., Lee, W. S., and Schapire, R. E.
Boosting the margin: A new explanation for the effective-
ness of voting methods. The annals of statistics, 26(5):
1651–1686, 1998.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. Convexity,
classification, and risk bounds. Journal of the American
Statistical Association, 101(473):138–156, 2006. doi:
10.1198/016214505000000907.

Bazaraa, M. S. and Sherali, H. D. On the choice of step
size in subgradient optimization. European Journal of
Operational Research, 7(4):380–388, 1981. doi: https:
//doi.org/10.1016/0377-2217(81)90096-5.

Berrada, L., Zisserman, A., and Kumar, M. P. Training
neural networks for and by interpolation. In International
conference on machine learning, pp. 799–809. PMLR,
2020.

Berrada, L., Zisserman, A., and Kumar, M. P. Comment
on stochastic Polyak step-size: Performance of ALI-G.
arXiv preprint arXiv:2105.10011, 2021.

Boyd, S., Xiao, L., and Mutapcic, A. Subgradient methods.
lecture notes of EE392o, Stanford University, Autumn
Quarter, 2004:2004–2005, 2003.

Brännlund, U. A generalized subgradient method with
relaxation step. Mathematical Programming, 71(2):207–
219, 1995.

Camerini, P. M., Fratta, L., and Maffioli, F. On improv-
ing relaxation methods by modified gradient techniques.
In Nondifferentiable optimization, pp. 26–34. Springer,
1975.

9

Generalized Polyak Step Size with Momentum

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Freund, R. M. and Lu, H. New computational guarantees
for solving convex optimization problems with first or-
der methods, via a function growth condition measure.
Mathematical Programming, 170(2):445–477, 2018.

Ge, R., Kakade, S. M., Kidambi, R., and Netrapalli, P. The
step decay schedule: A near optimal, geometrically de-
caying learning rate procedure for least squares. In Ad-
vances in Neural Information Processing Systems, pp.
14977–14988, 2019.

Ghadimi, E., Feyzmahdavian, H. R., and Johansson, M.
Global convergence of the heavy-ball method for con-
vex optimization. In 2015 European control conference
(ECC), pp. 310–315. IEEE, 2015.

Gower, R., Sebbouh, O., and Loizou, N. SGD for structured
nonconvex functions: Learning rates, minibatching and
interpolation. In International Conference on Artificial
Intelligence and Statistics, pp. 1315–1323. PMLR, 2021.

Hardt, M., Ma, T., and Recht, B. Gradient descent learns
linear dynamical systems. Journal of Machine Learning
Research, 19:1–44, 2018.

Hazan, E. and Kakade, S. Revisiting the Polyak step size.
arXiv preprint arXiv:1905.00313, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4700–4708, 2017.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the Polyak-Łojasiewicz condition. In Joint European con-
ference on machine learning and knowledge discovery in
databases, pp. 795–811. Springer, 2016.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical Report, 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Lenard, M. L. and Minkoff, M. Randomly generated test
problems for positive definite quadratic programming.
ACM Transactions on Mathematical Software (TOMS),
10(1):86–96, 1984.

Liang, T. and Rakhlin, A. Just interpolate: Kernel “ridge-
less” regression can generalize. The Annals of Statistics,
48(3):1329–1347, 2020.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate
and beyond. In International Conference on Learning
Representations, 2019.

Liu, Y., Gao, Y., and Yin, W. An improved analysis of
stochastic gradient descent with momentum. In Advances
in Neural Information Processing Systems, volume 33,
pp. 18261–18271, 2020.

Loizou, N., Vaswani, S., Laradji, I. H., and Lacoste-Julien, S.
Stochastic Polyak step-size for SGD: An adaptive learn-
ing rate for fast convergence. In International Conference
on Artificial Intelligence and Statistics, pp. 1306–1314.
PMLR, 2021.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2017.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018.

Ma, S., Bassily, R., and Belkin, M. The power of interpola-
tion: Understanding the effectiveness of SGD in modern
over-parameterized learning. In International Conference
on Machine Learning, pp. 3325–3334. PMLR, 2018.

Malitsky, Y. and Mishchenko, K. Adaptive gradient descent
without descent. In Proceedings of the 37th International
Conference on Machine Learning, pp. 6702–6712, 2020.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2003.

Nesterov, Y. and Polyak, B. T. Cubic regularization of New-
ton method and its global performance. Mathematical
Programming, 108(1):177–205, 2006.

Nesterov, Y. E. A method for solving the convex program-
ming problem with convergence rate O(1/k2). Dokl.
akad. nauk Sssr, 269:543–547, 1983.

Polyak, B. Introduction to Optimization. Optimization
Software, 1987.

10

Generalized Polyak Step Size with Momentum

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. Ussr computational mathematics
and mathematical physics, 4(5):1–17, 1964.

Prazeres, M. and Oberman, A. M. Stochastic gradient de-
scent with Polyak’s learning rate. Journal of Scientific
Computing, 89:1–16, 2021.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp. 400–
407, 1951.

Rolinek, M. and Martius, G. L4: Practical loss-based step-
size adaptation for deep learning. In Advances in neural
information processing systems, volume 31, 2018.

Saab, S., Phoha, S., Zhu, M., and Ray, A. An adaptive
Polyak heavy-ball method. Machine Learning, 111(9):
3245–3277, 2022.

Sebbouh, O., Gower, R. M., and Defazio, A. Almost sure
convergence rates for stochastic gradient descent and
stochastic heavy ball. In Proceedings of Thirty Fourth
Conference on Learning Theory, volume 134, pp. 3935–
3971. PMLR, 2021.

Shamir, O. and Zhang, T. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. In International Conference on
Machine Learning, pp. 71–79, 2013.

Shor, N. Z. Minimization methods for non-differentiable
functions, volume 3. Springer Science & Business Media,
2012.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International Conference on Machine Learning,
pp. 1139–1147. PMLR, 2013.

Tieleman, T. and Hinton, G. Lecture 6.5-RMSProp, cours-
era: Neural networks for machine learning. Technical
Report, University of Toronto, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, volume 30, 2017.

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G.,
and Lacoste-Julien, S. Painless stochastic gradient: Inter-
polation, line-search, and convergence rates. In Advances
in neural information processing systems, volume 32,
2019.

Wang, X., Magnússon, S., and Johansson, M. On the conver-
gence of step decay step-size for stochastic optimization.
In Advances in Neural Information Processing Systems,
volume 34, pp. 14226–14238, 2021.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The marginal value of adaptive gradient methods in
machine learning. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Yan, Y., Yang, T., Li, Z., Lin, Q., and Yang, Y. A unified
analysis of stochastic momentum methods for deep learn-
ing. In Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence, IJCAI’18, pp. 2955–2961.
AAAI Press, 2018.

Yang, T. and Lin, Q. RSG: Beating subgradient method
without smoothness and strong convexity. Journal of
Machine Learning Research, 19(6):1–33, 2018.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

11

Generalized Polyak Step Size with Momentum

A. Application to Nesterov Accelerated Gradient (NAG)
In Sections 2.1 and 2.2, we have shown how our framework applies to the heavy-ball and moving averaged gradient methods.
However, the magic does not stop there. For instance, we further incorporate Nesterov accelerated gradient (NAG) (Nesterov,
1983)

vk+1 = βvk − ηk∇f(xk + βvk)

xk+1 = xk + vk+1

into the proposed framework in Section 2. In (2), let dk = ∇f(xk + β(xk − xk−1)) and γ = β, then it reduces to the NAG
algorithm. By using the convexity of f at xk + βvk, that is ⟨∇f(xk + βvk), xk + βvk − x∗⟩ ≥ f(xk + βvk) − f∗, we
optimize the upper bound of ∥xk+1 − x∗∥2 with respect to the step size variable ηk, it results in the adaptive step size for
NAG:

ηk =
f(xk + βvk)− f∗

∥∇f(xk + βvk)∥2
. (14)

We refer to the NAG algorithm with the step size (14) as ALR-NAG. One intuitive interpretation behind the ALR-NAG
algorithm is that first, you move a momentum step β(xk − xk−1) at the current point xk, and then you stand at this new
point x̃k = xk + β(xk − xk−1) and perform the Polyak step size along −∇f(x̃k).

Next, we conduct preliminary experiments to test ALR-NAG on a least-squares problem where the condition number
κ = 104. The first interesting result on the least-squares problem shows that ALR-NAG can obtain a more accurate solution
than the original NAG (Nesterov, 1983) under optimal parameters and the accelerated gradient method (AGM) (Barré
et al., 2020). Barré et al. (2020) evaluate the strong convexity constant µ̂ by the inverse of the Polyak step size and set
the momentum parameter β = (

√
L−
√
µ̂)/(
√
L+
√
µ̂) for Nesterov momentum with the knowledge of the smoothness

parameter L. Besides, for each β ∈ (0, 1), ALR-NAG automatically adjusts the step size which makes it less sensitive to β
than NAG with 1/L step size where L is the largest eigenvalue of the least-squares problem. Another observation is that the
optimal parameter β for ALR-NAG is not consistent with the original NAG of which the theoretical optimal momentum
parameter is β∗ = (

√
κ− 1)/(

√
κ+ 1) (Nesterov, 1983) where κ is the condition number of the problem.

0.90 0.92 0.94 0.96 0.98 1.00
10 18

10 15

10 12

10 9

10 6

10 3

100

103

f(x
)

f

NAG with 1/L
AGM (variant II)
ALR-NAG

= = 1
+ 1

Figure 6. Results of NAG and ALR NAG with different β on least-squares

B. Proofs of Section 4
In this section, before describing the details of the proofs, we first provide the basic definitions that omit in the main content.

Definition B.1. (Strongly convex) We say that a function f is µ-strongly convex on Rd if f(y) ≥ f(x) + ⟨g, y − x⟩ +
µ
2 ∥y − x∥2 , ∀x, y ∈ Rd, g ∈ ∂f(x), with µ > 0.

Definition B.2. (Convex) The function f is convex on Rd if f(y) ≥ f(x) + ⟨g, y − x⟩ for any g ∈ ∂f(x) and x, y ∈ Rd.

Definition B.3. (Quasar convexity (Gower et al., 2021)) Let ζ ∈ (0, 1] and x∗ ∈ X ∗. A function f is ζ-quasar convex with
respect to x∗ if f∗ ≥ f(x) + 1

ζ ⟨g, x
∗ − x⟩ for any x ∈ Rd and g ∈ ∂f(x).

12

Generalized Polyak Step Size with Momentum

In general, a ζ-quasar convex function f does not need to be convex. The parameter ζ controls the non-convexity of the
function. If ζ = 1, the quasar convex is reduced to the well-known star convexity (Nesterov & Polyak, 2006), which is a
generalization of convexity. For example, f(x) = (x2 + 1

4)
1
4 is quasar-convex with ζ = 1/2. Learning linear dynamical

systems is the practical example of a quasar-convex function and is nonconvex (Hardt et al., 2018).

In Section 4, we have provided the definition of the semi-strongly convex functions. Here we give one simple example to
clarify that the semi-strongly convex function is not necessarily strongly convex. For example, f(x) = x2 + 2 sin(x)2 is
semi-strongly convex with µ̂ = 2, while the second-order derivative∇2f(x) can be negative.

Definition B.4. (L-smooth) When the function f is differentiable on Rd, we say that f is L-smooth on Rd if there exists
a constant L > 0 such that ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥. This also implies that f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L
2 ∥x− y∥2 for any x, y ∈ Rd.

In this paper, we also consider a special family of non-smooth and non-strongly convex problems, whose epigraph is a
polyhedron (Yang & Lin, 2018).

Definition B.5. (Polyhedral convex) For a convex minimization problem (1), suppose that the epigraph of f over X is a
polyhedron.

The convex polyhedral problem implies the polyhedral error condition (Yang & Lin, 2018): there exists a constant κ1 > 0
such that

∥x− x∗∥ ≤ 1

κ1
(f(x)− f∗)

for all x ∈ X . Some interesting applications for example ℓ1 and ℓ∞-constrained or regularized piece-wise linear minimiza-
tion, and a submodular function minimization are polyhedral convex (Yang & Lin, 2018).

Assumption B.6. For the problem (1), we assume that (i) ∀x0 ∈ Rd, we know there exists δ > 0 such that f(x0) −
minx∈Rd f(x) ≤ δ; (ii) there exists a constant G > 0 such that maxg∈∂f(x) ∥g∥

2 ≤ G2 for any x ∈ Rd.

The first assumption of Assumption B.6 implies that there is a lower bound for f∗, which is also made in (Freund & Lu,
2018). This is satisfied in most machine learning applications for which we have f∗ ≥ 0. Assumption B.6(ii) is a standard
assumption to be made in the non-smooth optimization (Boyd et al., 2003; Shamir & Zhang, 2013).

B.1. Proofs of Theorems and Lemmas in Section 4.1

In this part, we provide detailed proofs for the results of ALR-MAG in deterministic optimization.

Proof. (of Lemma 4.2)

For k = 1, we have ⟨dk−1, xk − x∗⟩ = ⟨d0, x1 − x∗⟩ = 0. For k > 1, suppose that ⟨dk−2, xk−1 − x∗⟩ ≥ 0 holds, we have

⟨dk−1, xk − x∗⟩ = ⟨dk−1, xk − xk−1 + xk−1 − x∗⟩ = ⟨dk−1,−ηk−1dk−1 + xk−1 − x∗⟩

= −ηk−1 ∥dk−1∥2 + ⟨∇f(xk−1) + βdk−2, xk−1 − x∗⟩

= −ηk−1 ∥dk−1∥2 + ⟨∇f(xk−1), xk−1 − x∗⟩+ β ⟨dk−2, xk−1 − x∗⟩
(a)

≥ −ηk−1 ∥dk−1∥2 + (f(xk−1)− f(x∗)) + β ⟨dk−2, xk−1 − x∗⟩ ≥ 0.

where (a) follows from the convexity of f that ⟨∇f(xk−1), xk−1 − x∗⟩ ≥ f(xk−1)− f(x∗) and ηk−1 ≤ f(xk−1)−f(x∗)

∥dk−1∥2 .
By induction, we claim that ⟨dk−1, xk − x∗⟩ ≥ 0 for all k ≥ 1.

Proof. (of Lemma 4.3)

First, we consider the general convex functions without the smoothness assumption, then

⟨dk, xk − x∗⟩ = ⟨∇f(xk) + βdk−1, xk − x∗⟩ ≥ ⟨∇f(xk), xk − x∗⟩ ≥ (f(xk)− f∗) (15)

13

Generalized Polyak Step Size with Momentum

where ⟨dk−1, xk − x∗⟩ ≥ 0 holds by Lemma 4.2. By applying Inequality (15), the distance ∥xk+1 − x∗∥2 can be estimated
as:

∥xk+1 − x∗∥2 = ∥xk − ηkdk − x∗∥2 = ∥xk − x∗∥2 − 2ηk ⟨dk, xk − x∗⟩+ η2k ∥dk∥
2

≤ ∥xk − x∗∥2 − 2
(f(xk)− f(x∗))2

∥dk∥2
+

(f(xk)− f(x∗))2

∥dk∥2

= ∥xk − x∗∥2 − (f(xk)− f(x∗))2

∥dk∥2
= ∥xk − x∗∥2 − ηk (f(xk)− f(x∗)) . (16)

As we can see, this choice of step size leads to a decrease of ∥xk+1 − x∗∥2.

Next, if the function is also L-smooth, by (Nesterov, 2003, Theorem 2.1.5), we have

⟨∇f(xk), xk − x∗⟩ ≥ f(xk)− f∗ +
1

2L
∥∇f(xk)∥2 .

In this case, we claim that for all k ≥ 2

⟨dk−1, xk − x∗⟩ ≥ 1

2L

k−1∑
i=1

βk−1−i ∥∇f(xi)∥2 . (17)

When k = 2, we can see that

⟨d1, x2 − x∗⟩ = ⟨∇f(x1),−η1∇f(x1) + x1 − x∗⟩ = −η1 ∥∇f(x1)∥2 + ⟨∇f(x1), x1 − x∗⟩

≥ − (f(x1)− f∗) + ⟨∇f(x1), x1 − x∗⟩ ≥ 1

2L
∥∇f(x1)∥2 .

Then the claim (17) holds at k = 2. For k > 2, if ⟨dk−2, xk−1 − x∗⟩ ≥ 1
2L

∑k−2
i=1 βk−2−i ∥∇f(xi)∥2, we have

⟨dk−1, xk − x∗⟩ = ⟨dk−1, xk − xk−1 + xk−1 − x∗⟩ = −ηk−1 ∥dk−1∥2 + ⟨dk−1, xk−1 − x∗⟩

= −ηk−1 ∥dk−1∥2 + ⟨∇f(xk−1), xk−1 − x∗⟩+ ⟨βdk−2, xk−1 − x∗⟩

= −f(xk−1)− f∗

∥dk−1∥2
∥dk−1∥2 +

(
f(xk−1)− f∗ +

1

2L
∥∇f(xk−1)∥2

)
+ ⟨βdk−2, xk−1 − x∗⟩

≥ 1

2L
∥∇f(xk−1)∥2 + β

1

2L

k−2∑
i=1

βk−2−i ∥∇f(xi)∥2 =
1

2L

k−1∑
i=1

βk−1−i ∥∇f(xi)∥2 .

By induction, the claim (17) is correct for all k ≥ 2. Then applying this claim (17), we can get that

⟨dk, xk − x∗⟩ = ⟨∇f(xk) + βdk−1, xk − x∗⟩

≥
(
f(xk)− f∗ +

1

2L
∥∇f(xk)∥2

)
+ β

1

2L

k−1∑
i=1

βk−1−i ∥∇f(xi)∥2

= (f(xk)− f∗) +
1

2L

k∑
i=1

βk−i ∥∇f(xi)∥2 .

The distance ∥xk+1 − x∗∥2 can be evaluated as

∥xk+1 − x∗∥2 = ∥xk − ηkdk − x∗∥2 = ∥xk − x∗∥2 − 2ηk ⟨dk, xk − x∗⟩+ η2k ∥dk∥
2

≤ ∥xk − x∗∥2 − ηk (f(xk)− f∗)− 2ηk
1

2L

k∑
i=1

βk−i ∥∇f(xi)∥2

≤ ∥xk − x∗∥2 − ηk (f(xk)− f∗)− 1

L

f(xk)− f∗

∥dk∥2
k∑

i=1

βk−i ∥∇f(xi)∥2

(a)

≤ ∥xk − x∗∥2 − ηk (f(xk)− f∗)− (1− β)

L
(f(xk)− f∗)

14

Generalized Polyak Step Size with Momentum

where (a) follows from the fact that

∥dk∥2 = ∥βdk−1 +∇f(xk)∥2 = β2 ∥dk−1∥2 + ∥∇f(xk)∥2 + 2β ⟨dk−1,∇f(xk)⟩
(a)

≤ β2 ∥dk−1∥2 + ∥∇f(xk)∥2 + β

(
τ ∥dk−1∥2 +

1

τ
∥∇f(xk)∥2

)
= β ∥dk−1∥2 +

1

1− β
∥∇f(xk)∥2

(b)

≤ 1

(1− β)

k∑
i=1

βk−i ∥∇f(xi)∥2 (18)

where (a) uses the Cauchy-Schwarz inequality and we let τ = 1 − β and (b) follows from the induction that ∥di∥2 ≤
β ∥di−1∥2 + 1

1−β ∥∇f(xi)∥2 for all i = 1, · · · , k with d0 = 0. Then the proof is complete.

Theorem B.7. (ALR-MAG on non-smooth problems) Consider the iterative scheme of MAG defined by (9) and the step
size is selected by (10), we derive the convergence guarantees for MAG in the following cases:

• Suppose that the function f is convex and its gradient is bounded, then f(xk)− f(x∗)→ 0 (k →∞).

• If the objective function f is convex and its gradient (or subgradient) is bounded by G2 (i.e. ∥∂f(x)∥2 ≤ G2), we get
that f(x̂k)− f∗ ≤ G∥x1−x∗∥

(1−β)
√
k

where x̂k = 1
k

∑k
i=1 xi.

• If the function f is µ-strongly convex and its gradient is bounded by G2, then ∥xk − x∗∥2 ≤ 4G2

(1−β)2µ2
1
k .

• If the function is a polyhedral convex on Rd with κ1 > 0 and satisfies Assumption B.6, then ∥xk − x∗∥2 promotes
linear convergence with a rate at least 1− (1−β)2κ2

1

G2 .

Proof. (of Theorem B.7)

• Convergence (suppose that convex and gradient is bounded): Applying the result of Lemma 4.3(i) and summing it
from k = 0, · · · ,∞ gives

lim
k→∞

k∑
i=1

f(xk)− f(x∗)2

∥dk∥2
≤ ∥x1 − x∗∥2 (19)

Because the gradient is bounded by G2, from (18), we have

∥dk∥2 = ∥βdk−1 +∇f(xk)∥2 ≤
1

(1− β)

k∑
i=1

βk−i ∥∇f(xi)∥2 ≤
G2

(1− β)2
, (20)

then f(xk)− f(x∗)→ 0 (k →∞).

• If the function is only convex and gradient is bounded, then f(x̂k)− f(x∗) ≤ O(1/
√
k). Applying the result of

Lemma 4.3(i) and ηk = f(xk)−f∗

∥dk∥2 with ∥dk∥2 ≤ G2/(1− β)2, we have(
1

k

k∑
i=1

(f(xi)− f(x∗))

)2
(a)

≤ 1

k

k∑
i=1

[f(xi)− f(x∗)]2 ≤ G2

(1− β)2k

(
∥x1 − x∗∥2 − ∥xk+1 − x∗∥2

)
≤ G2

(1− β)2k
∥x1 − x∗∥2

where (a) uses the Cauchy-Schwarz inequality that
(

1
k

∑k
i=1 αi

)2
≤ 1

k

∑k
i=1 α

2
i for all αi ≥ 0. By the convexity of

f , we can obtain that

f(x̂k)− f∗ ≤ 1

k

k∑
i=1

(f(xi)− f(x∗)) ≤ G ∥x1 − x∗∥
(1− β)

√
k

.

15

Generalized Polyak Step Size with Momentum

• If the objective function is strongly convex and the gradient is bounded, then ∥xk − x∗∥2 ≤ O(1/k).

If the objective function is µ-strongly convex, we have f(xk)− f(x∗) ≥ µ
2 ∥xk − x∗∥2. Due to the fact that gradient

is bounded by G2, by (20), we have ∥dk∥2 ≤ G2

(1−β)2 and

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2
(
1− (1− β)2µ2

4G2
∥xk − x∗∥2

)
We can achieve that ∥xk − x∗∥2 ≤ 4G2

(1−β)2µ2
1
k by induction.

• If the function is polyhedral convex and Assumption B.6 holds, in this case, we know that the polyhedral error
bound condition holds: there exists a constant κ1 > 0 such that

∥x− x∗∥ ≤ 1

κ1
(f(x)− f∗), ∀x ∈ X

Because the gradient (or subgradient) is bounded by G2, that is maxg∈∂f(xk) ∥g∥
2 ≤ G2, from (20), we can achieve

that

∥dk∥2 ≤
G2

(1− β)2
.

Applying the result of Lemma 4.3 (i) and using the definition of ηk in (10), we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ηk(f(xk)− f∗) = ∥xk − x∗∥2 − (f(xk)− f∗)2

∥dk∥2

≤ ∥xk − x∗∥2 − (1− β)2

G2
(f(x)− f∗)2 ≤ ∥xk − x∗∥2 − (1− β)2κ2

1

G2
∥xk − x∗∥2

≤
(
1− (1− β)2κ2

1

G2

)
∥xk − x∗∥2 .

In this case, ∥xk − x∗∥2 promotes linear convergence with a rate at least 1 − (1−β)2κ2
1

G2 . We must make sure that

1− (1−β)2κ2
1

G2 > 0. If not, we can increase G or decrease κ1 to make the condition 1− (1−β)2κ2
1

G2 > 0 hold.

Proof. (Proof of Theorem 4.4)

By the convexity and smoothness, we know that Lemma 4.3(ii) holds. Then suppose that the objective function f is
semi-strongly convex with µ̂, we can achieve that

∥xk+1 − x∗∥2 ≤
(
1− µ̂

2

(
ηk +

(1− β)

L

))
∥xk − x∗∥2 ≤

(
1− µ̂(1− β)

2L

)
∥xk − x∗∥2

where ηk ≥ 0. That is ∥xk − x∗∥2 promotes globally linear convergence with a rate at least (1− (1− β)(2κ)−1) where
κ = L/µ̂.

B.2. Proofs of Theorems in Section 4.2

We provide the essential lemmas and the proofs for the important theorems in Section 4.2. The results of ALR-SMAG for
polyhedral convex and non-smooth functions and general convex functions which do not appear in the main content are
presented in this part.

The first lemma follows the result of Lemma 4.2 of ALR-MAG in the deterministic case but it is more complicated.

16

Generalized Polyak Step Size with Momentum

Lemma B.8. For convex functions, if the step size ηk ≤
fSk

(xk)−f∗
Sk

c∥dk∥2 for all k ≥ 1, the iterates of SMAG satisfy that

⟨dk−1, xk − x∗⟩ ≥
(
1− 1

c

)∑k−1
i=1 βk−1−i

(
fSi(xi)− f∗

Si

)
+
∑k−1

i=1 βk−1−i
(
f∗
Si
− fSi(x

∗)
)

for all k ≥ 2.

Proof. (of Lemma B.8) For k = 2, we have

⟨d1, x2 − x∗⟩ = ⟨∇fS1
(x1), x1 − η1∇fS1

(x1)− x∗⟩ = −η1 ∥∇fS1
(x1)∥2 + ⟨∇fS1

(x1), x1 − x∗⟩

≥ −1

c

(
fS1

(x1)− f∗
S1

)
+ fS1

(x1)− fS1
(x∗) =

(
1− 1

c

)(
fS1

(x1)− f∗
S1

)
+ f∗

S1
− fS1

(x∗).

For k > 2, if the claim ⟨dk−2, xk−1 − x∗⟩ ≥
(
1− 1

c

)∑k−2
i=1 βk−2−i

(
fSi(xi)− f∗

Si

)
+
∑k−2

i=1 βk−2−i
(
f∗
Si
− fSi(x

∗)
)

holds at k − 2, we have

⟨dk−1, xk − x∗⟩ = ⟨dk−1, xk − xk−1 + xk−1 − x∗⟩ = ⟨dk−1,−ηk−1dk−1 + xk−1 − x∗⟩

= −ηk−1 ∥dk−1∥2 +
〈
∇fSk−1

(xk−1) + βdk−2, xk−1 − x∗〉
= −ηk−1 ∥dk−1∥2 +

〈
∇fSk−1

(xk−1), xk−1 − x∗〉+ β ⟨dk−2, xk−1 − x∗⟩
(a)

≥ −ηk−1 ∥dk−1∥2 +
(
fSk−1

(xk−1)− fSk−1
(x∗)

)
+ β ⟨dk−2, xk−1 − x∗⟩

≥ −1

c

(
fSk−1

(xk−1)− f∗
Sk−1

)
+
(
fSk−1

(xk−1)− fSk−1
(x∗)

)
+ β

k−2∑
i=1

βk−2−i
(
f∗
Si
− fSi

(x∗)
)

+ β

(
1− 1

c

) k−2∑
i=1

βk−2−i
(
fSi(xi)− f∗

Si

)
=

(
1− 1

c

) k−1∑
i=1

βk−1−i
(
fSi

(xi)− f∗
Si

)
+

k−1∑
i=1

βk−1−i
(
f∗
Si
− fSi

(x∗)
)

where (a) follows from the convexity of f that
〈
∇fSk−1

(xk), xk − x∗〉 ≥ fSk−1
(xk) − fSk−1

(x∗) and ηk−1 ≤
fSk−1

(xk−1)−f∗
Sk−1

∥dk−1∥2 . That is to say, this claim holds at k − 1. By induction, we can conclude that ⟨dk−1, xk − x∗⟩ ≥(
1− 1

c

)∑k−1
i=1 βk−1−i

(
fSi(xi)− f∗

Si

)
+
∑k−1

i=1 βk−1−i
(
f∗
Si
− fSi(x

∗)
)

for all k ≥ 2. The proof is complete.

Proof. (Proof of Theorem 4.6)

In this case, the formula of step size for the stochastic version of ALR-MAG is

ηk = min

{
fSk

(xk)− f∗
Sk

c ∥dk∥2
, ηmax

}
.

By the definition of step size, we have ηk ≤
fSk

(xk)−f∗
Sk

c∥dk∥2 . By Lemma B.8, we get that

⟨dk, xk − x∗⟩ ≥ ⟨∇fSk
(xk), xk − x∗⟩+

(
1− 1

c

) k−1∑
i=1

βk−i
(
fSi

(xi)− f∗
Si

)
−

k−1∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
≥
(
fSk

(xk)− f∗
Sk

)
+

(
1− 1

c

) k−1∑
i=1

βk−i
(
fSi

(xi)− f∗
Si

)
−

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
.

To make the analysis to be clear, we define a 0-1 event Xk. If ηk =
fSk

(xk)−f∗
Sk

c∥dk∥2 ≤ ηmax, it implies that Xk happens
(i.e., Xk = 1); otherwise, Xk = 0. Let Pk = P (Xk = 1). First, we consider the event Xk happens, then the distance

17

Generalized Polyak Step Size with Momentum

∥xk+1 − x∗∥2 can be estimated as

∥xk+1 − x∗∥2 = ∥xk − ηkdk − x∗∥2 = ∥xk − x∗∥2 − 2ηk ⟨dk, xk − x∗⟩+ η2k ∥dk∥
2

≤ ∥xk − x∗∥2 − 2
(fSk

(xk)− f∗
Sk
)2

c ∥dk∥2
+

(fSk
(xk)− f∗

Sk
)2

c2 ∥dk∥2

− 2

c

(
1− 1

c

)
fSk

(xk)− f∗
Sk

∥dk∥2
k−1∑
i=1

βk−i
(
fSi

(xi)− f∗
Si

)
+ 2ηk

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
≤ ∥xk − x∗∥2 − 1

c2
(fSk

(xk)− f∗
Sk
)2

∥dk∥2
− 2 (c− 1)

c2
fSk

(xk)− f∗
Sk

∥dk∥2
k∑

i=1

βk−i
(
fSi(xi)− f∗

Si

)
+ 2ηk

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
. (21)

The L-smooth property of fSi
for i = 1, · · · , k gives

k∑
i=1

βk−i
(
fSi(xi)− f∗

Si

)
≥ 1

2L

k∑
i=1

βk−i ∥∇fSi(xi)∥2 . (22)

By (18), we know that ∥dk∥2 ≤ 1
(1−β)

∑k
i=1 β

k−i ∥∇fSi
(xi)∥2. Applying (22) and (18) into (21), we can achieve that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1− β)
(c− 1)

c2L

(
fSk

(xk)− f∗
Sk

)
+ 2ηk

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
≤ ∥xk − x∗∥2 − (1− β)

(c− 1)

c2L

(
fSk

(xk)− f∗
Sk

)
+ 2ηmax

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
≤ ∥xk − x∗∥2 − (1− β)

(c− 1)

c2L
(fSk

(xk)− fSk
(x∗)) + 2ηmax

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
(23)

where ηk ≤ ηmax and f∗
Sk
≤ fSk

(x∗). Taking conditional expectation w.r.t. Fk
1 on the above inequalities gives

E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 1}] ≤
(
1− (1− β) (c− 1) µ̂

2c2L

)
∥xk − x∗∥2 + 2ηmax

(1− β)
σ2.

where the semi-strongly convexity of f implies that E[fSk
(xk) − fSk

(x∗) | Fk ∩ {Xk = 1}] = E[fSk
(xk) − fSk

(x∗) |
Fk] = f(xk)− f(x∗) ≥ µ̂

2 ∥xk − x∗∥2, and we also use the Assumption 4.5 for f∗
Si

at each step i.

If ηk = ηmax <
fSk

(xk)−f∗
Sk

c∥dk∥2 , that is Xk = 0, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2ηmax(fSk
(xk)− f∗

Sk
) + ηmax

(fSk
(xk)− f∗

Sk
)

c ∥dk∥2
∥dk∥2

+ 2ηmax

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
− 2ηmax

(
1− 1

c

) k−1∑
i=1

βk−i
(
fSi

(xi)− f∗
Si

)
(a)

≤ ∥xk − x∗∥2 −
(
2− 1

c

)
ηmax(fSk

(xk)− f∗
Sk
) + 2ηmax

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
(b)

≤ ∥xk − x∗∥2 −
(
2− 1

c

)
ηmax(fSk

(xk)− fSk
(x∗)) + 2ηmax

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
(24)

1Fk is the σ-algebra of the set
{
(x1,∇fS1(x1)), · · · , (xk−1,∇fSk−1(xk−1)), xk

}
18

Generalized Polyak Step Size with Momentum

where (a) uses the truth that c > 1 and fSi
(xi) ≥ f∗

Si
for each i ≥ 1, and (b) follows from the fact that fSk

(x∗) ≥ f∗
Sk

=
min fSk

(x). We then take the conditional expectation on the above inequality and achieve that

E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 0}] ≤ ∥xk − x∗∥2 −
(
2− 1

c

)
ηmaxE[(fSk

(xk)− fSk
(x∗)) | Fk ∩ {Xk = 0}]

+ 2ηmax

k∑
i=1

βk−iE[
(
fSi

(x∗)− f∗
Si

)
| Fk ∩ {Xk = 0}]

(a)

≤
(
1− (2c− 1)µ̂ηmax

2c

)
∥xk − x∗∥2 + 2ηmax

(1− β)
σ2

where (a) uses the facts that E[fSk
(xk)− fSk

(x∗) | Fk ∩ {Xk = 0}] = E[fSk
(xk)− fSk

(x∗) | Fk] = f(xk)− f(x∗) ≥
µ̂
2 ∥xk − x∗∥2 and the assumption on f∗

Sk
. Overall, no matter

fSk
(xk)−f∗

Sk

c∥dk∥2 ≤ ηmax or not, we have

E[∥xk+1 − x∗∥2 | Fk] = E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 1}] + E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 0}]

≤ max
(
E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 1}],E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 0}]

)
≤ (1− ρ1) ∥xk − x∗∥2 + 2ηmaxσ

2

(1− β)

where ρ1 = min
{

(1−β)(c−1)µ̂
2c2L , (2c−1)µ̂ηmax

2c

}
. Telescoping the above inequality from k = 1 to K gives that

E[∥xK+1 − x∗∥2 | FK] ≤ (1− ρ1)
K ∥x1 − x∗∥2 + 2ηmaxσ

2

ρ1(1− β)
.

The proof is complete.

Next, we consider the convergence of SMAG with (12) for the polyhedral convex functions which is a special category of
nonsmooth and non-strongly convex functions.
Theorem B.9. (Polyhedral convex and non-smooth functions) Under interpolation (σ = 0), we suppose that function f
is polyhedral convex with κ̂ and the gradient of each realization ∇f(x; ξ) is bounded by G2. Consider the step size (12)
with c > 1/2 and ηmax =∞, we get that

E[∥xk+1 − x∗∥2] ≤ (1− ρ2)
k ∥x1 − x∗∥2

where ρ2 = κ̂2(1−β)2(2c−1)
c2bG2 .

For the interpolated functions, Theorem B.9 generalizes the linear convergence rate beyond the smooth and semi-strongly
convex functions.

Proof. (Proof of Theorem B.9) Under the interpolation setting, it has min f(x; ξ) = f∗ = f(x∗) and all loss function
fi agrees with one common minimizer x∗. We assume that the function f(x) is polyhedral convex with κ̂ > 0, that is
∥x− x∗∥ ≤ 1

κ̂ (f(x)− f(x∗)). Each realization function f(x; ξ) is Lipschitz continuous (that is ∥∇f(x; ξ)∥2 ≤ G2 for all
x). We consider the SMAG algorithm with the step size defined by (12) and ηmax =∞. In this case, L-smooth property
does not hold, that is to say, we can not use the Inequality (22). Due to that ∥∇f(xk; ξ)∥2 ≤ G2 which induces that
∥∇fSk

(xk)∥2 ≤ G2. By the relationship ∥dk∥2 ≤ 1
1−β

∑k
i=1 β

k−i ∥∇fSi
(xi)∥2 ≤ G2

(1−β)2 , we still can achieve that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1− β)2 (2c− 1)

c2

(
fSk

(xk)− f∗
Sk

)2
∥dk∥2

+ 2ηk

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
≤ ∥xk − x∗∥2 − (1− β)2

(2c− 1)

c2

(
fSk

(xk)− f∗
Sk

)2
G2

+ 2ηk

k∑
i=1

βk−i
(
fSi

(x∗)− f∗
Si

)
(a)
= ∥xk − x∗∥2 − (1− β)2

(2c− 1)

c2
(fSk

(xk)− fSk
(x∗))

2

G2
(25)

19

Generalized Polyak Step Size with Momentum

where (a) uses the fact that f∗
Sk

= fSk
(x∗) for each k ≥ 1. Taking conditional expectation on the both side, we have

E[∥xk+1 − x∗∥2 | Fk] ≤ ∥xk − x∗∥2 − (1− β)2 (2c− 1)

c2bG2
E[(fSk

(xk)− fSk
(x∗))

2 | Fk]

≤ ∥xk − x∗∥2 − (1− β)2 (2c− 1)

c2G2
(E[fSk

(xk)− fSk
(x∗) | Fk])

2

= ∥xk − x∗∥2 − (1− β) (2c− 1)

c2G2
(f(xk)− f∗])

2

≤
(
1− κ̂2(1− β)2 (2c− 1)

c2G2

)
∥xk − x∗∥2

For k = 1, · · · ,K, we can achieve the linear convergence with a rate ρ = 1 − κ̂2(1−β)2(2c−1)
c2G2 . We now complete the

proof.

Theorem B.10. (General convex functions) Assume that each individual function f(x; ξ) is convex and L-smooth for
ξ ∈ Ξ. Consider SMAG under step size (12) with c > 1, we can achieve that

E[f(x̂K)− f∗] ≤ 1

Q

∥x1 − x∗∥2

K
+

2ηmaxσ
2

Q(1− β)

where Q = min
(
(2− 1/c)ηmax, (1− β)(c− 1)/(c2L)

)
and x̂ = 1

K

∑K
k=1 xk.

The first observation is that the size of the solution’s neighborhood is also proportional to ηmax, similar to the semi-strongly
convex case of Theorem 4.6. If the interpolation condition holds, SMAG under (12) can achieve an O(1/K) convergence
rate to reach the optimum f∗.

Proof. (Proof of Theorem B.10) In this case, we consider the function is convex and L-smooth.

Similar to Theorem 4.6, (23) and (24) still hold. The only difference from Theorem 4.6 is that we do not have f(xk)−f(x∗) ≥
µ
2 ∥xk − x∗∥2. Thus

E[∥xk+1 − x∗∥2 | Fk] = E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 1}] + E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 0}]

≤ max
(
E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 1}],E[∥xk+1 − x∗∥2 | Fk ∩ {Xk = 0}]

)
≤ ∥xk − x∗∥2 −Q (E[fSk

(xk)− fSk
(x∗)) + 2ηmax

k∑
i=1

βk−iE[(fSk
(x∗)− f∗

Sk
) | Fk]

= ∥xk − x∗∥2 −Q (f(xk)− f(x∗)) +
2ηmaxσ

2

1− β

where Q = min
{

(1−β)(c−1)
c2L , (2c−1)ηmax

c

}
. Summing the above inequality from k = 1 to K and dividing Q to both side,

we have

f(x̂K)− f∗ =
1

K

K∑
k=1

(f(xk)− f∗) ≤ 1

K

K∑
k=1

∥xk − x∗∥2 − E[∥xk+1 − x∗∥2 | Fk]

Q
+

2ηmaxσ
2

(1− β)Q

≤ ∥x1 − x∗∥2

KQ
+

2ηmaxσ
2

(1− β)Q
.

Now, the proof is complete.

We now investigate the convergence of ALR-SMAG for a class of nonconvex functions. The quasar convex functions with
respect to x∗ ∈ X ∗ is an extension of star convexity (Nesterov & Polyak, 2006) and convexity.

20

Generalized Polyak Step Size with Momentum

Theorem B.11. (Quasar convex functions) Under interpolation (σ = 0), we assume that each individual function f(x; ξ)
is ζ-quasar-convex and L-smooth for ξ ∈ Ξ. Consider ALR-SMAG with c > 1/ζ, we can achieve that

min
i=1,··· ,K

f(xi)− f∗ ≤ Lc2

(1− β)(ζc− 1)

∥x1 − x∗∥2

K
.

Under interpolation, Theorem B.11 provides an O (1/K) convergence guarantee to reach the optimum f∗ for a class of
nonconvex functions for ALR-SMAG.

Proof. (Proofs of Theorem B.11) We assume that each individual function f(x; ξ) is ζ-quasar-convex and L-smooth.
Under interpolation, it implies that each component function f(x; ξ) agrees with a common minimizer x∗. That is to say:
the mini-batch functions fSk

(x) is also ζ-quasar-convex and satisfies

⟨∇fSk
(xk), xk − x∗⟩ ≥ ζ

(
fSk

(xk)− f∗
Sk

)
where ζ ∈ (0, 1] and k ≥ 1. In this case, the result of Lemma B.8 is

⟨dk−1, xk − x∗⟩ ≥
(
ζ − 1

c

) k−1∑
i=1

βk−1−i
(
fSi(xi)− f∗

Si

)
+ ζ

k−1∑
i=1

βk−1−i
(
f∗
Si
− fSi(x

∗)
)

=

(
ζ − 1

c

) k−1∑
i=1

βk−1−i
(
fSi

(xi)− f∗
Si

)
where ζ > 1/c. Then

⟨dk, xk − x∗⟩ ≥ ⟨∇fSk
(xk), xk − x∗⟩+

(
ζ − 1

c

) k−1∑
i=1

βk−i
(
fSi

(xi)− f∗
Si

)
≥ ζ

(
fSk

(xk)− f∗
Sk

)
+

(
ζ − 1

c

) k−1∑
i=1

βk−i
(
fSi(xi)− f∗

Si

)
.

We consider the step size (12) and ηmax =∞. The distance of ∥xk+1 − x∗∥2 can be evaluated as

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2ηk ⟨dk, xk − x∗⟩+ η2k ∥dk∥
2

≤ ∥xk − x∗∥2 −
2(fSk

(xk)− f∗
Sk
)

c ∥dk∥2

(
ζ
(
fSk

(xk)− f∗
Sk

)
+

(
ζ − 1

c

) k−1∑
i=1

βk−i
(
fSi

(xi)− f∗
Si

))

+ ηk
(fSk

(xk)− f∗
Sk
)

c ∥dk∥2
∥dk∥2 . (26)

By the smoothness property of each f(x; ξ) and ∥dk∥2 ≤ 1
1−β

∑k
i=1 β

k−i ∥∇fSi(xi)∥2, we obtain that

k−1∑
i=1

βk−i
(
fSi(xi)− f∗

Si

)
≥ 1

2L

k∑
i=1

βk−i ∥∇fSi(xi)∥2 ≥
(1− β)

2L
∥dk∥2 .

Incorporating the above inequality to (26) gives that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − (1− β)(ζc− 1)

Lc2
(
fSk

(xk)− f∗
Sk

)
−
(
2ζ − 1

c

)
ηk
(
fSk

(xk)− f∗
Sk

)
≤ ∥xk − x∗∥2 − (1− β)(ζc− 1)

Lc2
(
fSk

(xk)− f∗
Sk

)
(27)

where the last inequality holds since ζ > 1/c. Taking conditional expectation w.r.t. Fk on the both side of (27), we achieve
that

E[∥xk+1 − x∗∥2 | Fk] ≤ ∥xk − x∗∥2 − (1− β)(ζc− 1)

Lc2
(f(xk)− f∗.)

21

Generalized Polyak Step Size with Momentum

Diving the above inequality by a constant Q1 = (1−β)(ζc−1)
Lc2 and summing over k = 1, · · · ,K gives that

min
i=1,··· ,K

f(xi)− f∗ ≤ 1

K

K∑
i=1

(f(xi)− f∗) ≤ 1

Q1

(
E[∥xk − x∗∥2]− E[∥xk+1 − x∗∥2]

)
≤ Lc2 ∥x1 − x∗∥2

K(1− β)(ζc− 1)
.

We now complete the proof.

B.3. Theoretical Guarantees of ALR-HB on Least-Squares Problems

In this part, we consider the theoretical convergence of HB under the step size defined by (7) or (8) and get the fast linear
convergence rate for ALR-HB on least-squares problems.

We recall the step size (8) that is ALR-HB(v2):

ηk =
1

2L
+

f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2
.

In general, the step size (8) may be not positive if ⟨∇f(xk), xk − xk−1⟩ ≪ − (f(xk)− f∗). It means that the momentum
direction xk − xk−1 has an acute angle with −∇f(xk) and it also promotes the reduction on the function values, just as
−∇f(xk). In this way, from the formula (8), the weight on −∇f(xk) will be reduced. However, we still choose to trust
−∇f(xk) more which is the exact descent direction, compared to the momentum direction xk − xk−1. Thus, we truncate
the step size to be a constant when the inner product ⟨∇f(xk), xk − xk−1⟩ ≤ − (f(xk)− f∗). We define

η̃k =
f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2
− 1− β

2L
.

When ⟨∇f(xk), xk − xk−1⟩ ≥ − (f(xk)− f∗), we can see that η̃k ≥ 0. Then the step size can be re-written as

ηk =
1

2L
+

f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2
=

2− β

2L
+ η̃k (Truncated ALR-HB(v2))

If ⟨∇f(xk), xk − xk−1⟩ < − (f(xk)− f∗), we set η̃k = 0 and the step size ηk = 2−β
2L . In the numerical experiment on

least-squares in Section 5.1, such a lower bound (2− β)/(2L) for ALR-HB(v2) never hits. For the step size defined by (7)
without L, the truncated lower bound is (1− β)/(2L). This is a very small number for example when we set β = 0.9 which
is commonly used in practice.

Theorem B.12. (ALR-HB(v2) for least-squares problems) For the least-squares problem, consider the heavy-ball method
defined by (6) and truncated step size by (Truncated ALR-HB(v2)), we can derive the following property:∥∥∥∥[xk+1 − x∗

xk − x∗

]∥∥∥∥2 =

∥∥∥∥[(1 + β)Id − α̂A −βId
Id 0

] [
xk − x∗

xk−1 − x∗

]∥∥∥∥2 − η̃2k ∥∇f(xk)∥2 .

where α̂ = (2 − β)/(2L). Especially, if the problem is µ-strongly convex and L-smooth, we set β =
(√

κ−1√
κ+1

)2
where

κ = L/µ and µ = λmin(A), L = λmax(A), we can achieve the linear convergence rate at least∥∥∥∥[xk+1 − x∗

xk − x∗

]∥∥∥∥2 = ρk
∥∥∥∥[x2 − x∗

x1 − x∗

]∥∥∥∥2 .
where ρ = 1− 4−

√
15

2(
√
κ+1)

.

Proof. (of Theorem B.12) We consider the least-squares problem,

f(x) =
1

2
xTAx+ ⟨x, b⟩+ c =

1

2
∥x− x∗∥2A + f∗

22

Generalized Polyak Step Size with Momentum

where A ∈ Rd×d is symmetric and positive definite, x∗ = −A−1b and f∗ = − 1
2b

TA−1b+c, and its gradient∇f(x) = Ax+

b = A(x−x∗). Recall the truncated step size of ALR-HB(v2), we let α̂ = 2−β
2L and η̃k = f(xk)−f∗

∥∇f(xk)∥2 +β ⟨∇f(xk),xk−xk−1⟩
∥∇f(xk)∥2 −

1−β
2L . When ⟨∇f(xk), xk − xk−1⟩ ≥ − (f(xk)− f∗), we can see that η̃k ≥ 0 and

ηk =
1

2L
+

f(xk)− f∗

∥∇f(xk)∥2
+ β
⟨∇f(xk), xk − xk−1⟩

∥∇f(xk)∥2
=

2− β

2L
+ η̃k

If ⟨∇f(xk), xk − xk−1⟩ ≤ − (f(xk)− f∗), we have η̃k = 0 and ηk = 2−β
2L . The iterative formula of HB can be re-written

as [
xk+1 − x∗

xk − x∗

]
=

[
(1 + β)Id −βId

Id 0

] [
xk − x∗

xk−1 − x∗

]
− ηk

[
∇f(xk)

0

]

=

[
(1 + β)Id − α̂A −βId

Id 0

] [
xk − x∗

xk−1 − x∗

]
− η̃k

[
∇f(xk)

0

]
.

Then ∥∥∥∥[xk+1 − x∗

xk − x∗

]∥∥∥∥2 =

∥∥∥∥[(1 + β)Id − α̂A −βId
Id 0

] [
xk − x∗

xk−1 − x∗

]
− η̃k

[
∇f(xk)

0

]∥∥∥∥2
=

∥∥∥∥[(1 + β)Id − α̂A −βId
Id 0

] [
xk − x∗

xk−1 − x∗

]∥∥∥∥2 + η̃2k ∥∇f(xk)∥2

− 2η̃k
[
∇f(xk)

T 0T
] [(1 + β)Id − α̂A −βId

Id 0

] [
xk − x∗

xk−1 − x∗

]
=

∥∥∥∥[(1 + β)Id − α̂A −βId
Id 0

] [
xk − x∗

xk−1 − x∗

]∥∥∥∥2 + η̃2k ∥∇f(xk)∥2

− 2η̃k

(
⟨∇f(xk), xk − x∗⟩+ β ⟨∇f(xk), xk − xk−1⟩ − α̂ ∥∇f(xk)∥2

)
(a)

≤
∥∥∥∥[(1 + β)Id − α̂A −βId

Id 0

] [
xk − x∗

xk−1 − x∗

]∥∥∥∥2 + η̃2k ∥∇f(xk)∥2

− 2η̃k

(
f(xk)− f∗ +

1

2L
∥∇f(xk)∥2 + β ⟨∇f(xk), xk − xk−1⟩ −

2− β

2L
∥∇f(xk)∥2

)
(b)
=

∥∥∥∥[(1 + β)Id − α̂A −βId
Id 0

] [
xk − x∗

xk−1 − x∗

]∥∥∥∥2 − η̃2k ∥∇f(xk)∥2 (28)

where (a) follows from ⟨∇f(xk), xk − x∗⟩ ≥ f(xk) − f∗ + 1
2L ∥∇f(xk)∥2 and ∇f(xk) = A(xk − x∗), and (b) uses

the formula of step size η̃k = f(xk)−f(x∗)

∥∇f(xk)∥2 + β ⟨∇f(xk),xk−xk−1⟩
∥∇f(xk)∥2 − 1−β

2L . If ⟨∇f(xk), xk − xk−1⟩ ≤ − (f(xk)− f∗), the
above result is also correct due to that η̃k = 0. Overall, we can derive that∥∥∥∥[xk+1 − x∗

xk − x∗

]∥∥∥∥2 =

∥∥∥∥[(1 + β)Id − α̂A −βId
Id 0

] [
xk − x∗

xk−1 − x∗

]∥∥∥∥2 − η̃2k ∥∇f(xk)∥2 . (29)

Let

yk :=

[
xk − x∗

xk−1 − x∗

]
, D :=

[
(1 + β)Id − α̂A −βId

Id 0

]
.

By (29), we obtain the exponential decrease in ∥yk∥2:

∥yk+1∥ ≤ ∥Dyk∥ ≤
∥∥Dky1

∥∥ ≤ ∥∥Dk
∥∥
2
∥y1∥ ≤ (ρ(D) + o(1)))

k ∥y1∥

23

Generalized Polyak Step Size with Momentum

where ρ(D) is the spectrum of D. In order to explicitly derive the convergence rate of ALR-HB (v2), we will turn to the
eigenvalues of D. Furthermore, we can see that D is permutation-similar to a block diagonal matrix with 2× 2 block Di,
that is

D ∼


D1 0 · · · 0
0 D2 · · · 0
... · · ·

...
0 0 · · · Dd

 whereDi =

[
1 + β − α̂λi −β

1 0

]
for i = 1, 2, · · · , d1.

Therefore, to get the eigenvalues of D, it is sufficient to compute the eigenvalues for all Di. For any i ∈ [d1], the eigenvalues
of the 2× 2 matrix are the roots of the quadratic function:

L(s) := s2 − (1 + β − α̂λi)s+ β = 0, where ∆i = (1 + β − α̂λi)
2 − 4β (30)

where α̂ = (2− β)/(2L) and L = λmax. Because λi/L ≤ 1, we have 1+ β − α̂λi = 1+ β − (2− β)λi/(2L) ≥ 1+ β −

(2− β)/2 = 3β
2 > 0. In this case, if ∆i ≤ 0, it is equivalent to 1 + β − α̂λi ≤ 2

√
β. If β ≥ mini

(
1−

√
λi(L+λi)

2L2

)2

:=(
1−

√
(1+κ)
2κ2

)2

, then ∆i ≤ 0 for each i. The best convergence rate is achieved by choosing β = β̂ :=

(
1−

√
(1+κ)
2κ2

)2

.

The convergence rate is linear with ρ(D) =
√
β.

In the numerical experiments, we found that β = β∗ performs better. What is its convergence rate if we set β = β∗ < β̂?
That is to say: there are ∆i for i ∈ [d1] such that ∆i > 0. The quadratic function L(s) must have two solutions denoted by
s1 < s2. Because L(0) = β > 0 and L(1) = α̂λi > 0, s1s2 = β > 0, and s1 + s2 = 1 + β − α̂λi > 0. We can claim that
s1 ∈ (0, β) and s2 ∈ (β, 1). The worst-case convergence is decided by the value of s2. Next, we show that if β = β∗,

s2 =
(1 + β)− 2−β

2L λi +

√(
(1 + β)− 2−β

2L λi

)2
− 4β

2

=
(1 + β)− 2−β

2L λi +
√
(1− β)2 − 1

κ

2
≤ 1− 4−

√
15

2(
√
κ+ 1)

+ o

(
1√
κ+ 1

)

In this case, the convergence rate is at least ρk where ρ ≈ 1 − 4−
√
15

2(
√
κ+1)

< 1. Therefore, we have proved the linear

convergence for ALR-HB(v2) with the rate at least ρ = 1− 4−
√
15

2(
√
κ+1)

.

C. Supplementary Numerical Results and Details
C.1. Details of Section 5.1 for Least-Squares Problems

In this part, we provide the details of the experiments on the least-squares problem. The dimension d1 = d = 1000
and the condition number κ = 104. The theoretical optimal momentum parameter β∗ = 0.9606. The initial point
is randomly generated and then fix it for the different test algorithms. If the step size is not specified, we select
it from the set

{
10−3, 10−2, 10−1, 1, 101, 102

}
. For the L4Mom method, we choose the momentum parameter from

β ∈ {0.5, 0.9, 0.95, β∗, 0.99} and the hyper-parameter α ∈ {0.0001, 0.001, 0.01, 0.015, 0.1, 0.15, 1} as the original pa-
per (Rolinek & Martius, 2018).

If parameters µ and L are unknown a priori, the details of the parameters are listed below: HB with best-tuned constant step
size η = 0.01 and the best-tuned momentum parameter β = 0.99 (its optimal value β∗ = 0.9606); For ALR-MAG and
ALR-HB, we set β = 0.95; In L4Mom, we choose β = 0.95 and α = 0.01.

24

Generalized Polyak Step Size with Momentum

C.2. Results on Logistic Regression Problems

To illustrate the practical behavior of ALR-SMAG and ALR-SHB in the convex interpolation setting, we perform experiments
on logistic regression with both synthetic data and a classification dataset from LIBSVM 2. We test our algorithms ALR-SHB
and ALR-SMAG and compare with SPS max (Loizou et al., 2021), SGDM under constant step size, AdSGD (Malitsky &
Mishchenko, 2020), SAHB (Saab et al., 2022), and L4Mom (Rolinek & Martius, 2018). Note that we do not estimate f∗

Sk

every iterate but set f∗
Sk

= 0.

First, we follow the experiments described in section 4.1 of SPS (Loizou et al., 2021) on synthetic data for logistic
regression. We do the grid search for all the parameters that are not specified and choose the best based on their practical
performance. The details of the parameters in synthetic experiments are given below: (1) SPS max (Loizou et al.,
2021) with c ∈ {0.1, 0.2, 0.5, 1, 5, 10, 20} and ηmax = {0.01, 0.1, 1, 10, 100}: we set ηmax = 100 and c = 5; (2) SGD
with momentum (SGDM) with best tuned constant step size: η ∈ {0.01, 0.1, 1, 10, 100} and we choose η = 10 and
β = 0.9; (3) AdSGD (Malitsky & Mishchenko, 2020): λ0 = 1 with the pair of the parameters (

√
1 + 0.01θ, 1/Lk); (4)

SAHB (Saab et al., 2022): we set γ1 = 1.2, γ = 1, C = 10; (5) L4Mom (Rolinek & Martius, 2018), the main parameter
α ∈ {0.001, 0.0015, 0.01, 0.015, 0.10.15} (0.15 is recommended value, but we found that α = 0.01 works better in this
case) and β = 0.9; (6) Our algorithms: c ∈ {0.1, 0.5, 1, 5, 10}, ηmax = {0.01, 0.1, 1, 10, 100} and β = 0.9: for ALR-
SMAG, we choose ηmax = 100 and c = 5; for ALR-SHB, we set ηmax = 100 and c = 5. The result is reported in Figure
7a. We observe that for HB and ALR-HB, the function value drops faster than other algorithms at the early stage of the
training. After 400 steps, our algorithms ALR-SHB and ALR-SMAG perform better than others.

0 200 400 600 800 1000
Iteration

10 2

10 1

100

f(x
k)

- f

SPS_max
AdSGD
SGDM-const
L4Mom
SAHB
ALR-SMAG
ALR-SHB

(a) Results on synthetic dataset

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

101

f(x
k)

- f
SPS_max
AdSGD
SGDM-const
L4Mom
SAHB
ALR-SMAG
ALR-SHB

(b) Results on rcv1

Figure 7. Logistic regression

Similar to the synthetic dataset, we test logistic regression on a real binary classification dataset RCV1 (n = 20242; d =
47236) where a 0.75 partition of the dataset is used for training, and the rest is for the test. The batch size b = 100
and the maximum epoch call is 100. We can see that the optimality f(x) − f̃∗3 for ALR-SHB and ALR-SMAG drops
faster than others. The details of the algorithms are: for SPS max (Loizou et al., 2021), we set ηmax = 100 and c = 0.5
(recommended from their paper); We set η = 10 for SGDM and momentum parameter β = 0.9; For L4Mom (Rolinek
& Martius, 2018), the parameter α = 0.0015 (0.15 is recommended value, but we found that α = 0.0015 works better)
and β = 0.9; For AdSGD (Malitsky & Mishchenko, 2020), we set (

√
(1 + 0.01θ), 1/Lk) . For SAHB (Saab et al., 2022),

we set γ1 = 1, γ = 0.5, C = 100. For our algorithms ALR-SHB and ALR-SMAG, we set ηmax = 100 and c = 5 for
ALR-SMAG and ηmax = 100 and c = 10 for ALR-SHB.

C.3. Numerical Results on CIFAR10 and Parameters Details of Section 5.2

First, we provide the results on CIFAR10 with ResNet34 (He et al., 2016). In this experiment, we set the parameters
for the tested algorithms as below: SGDM under constant step size η = 0.01; Adam with step size η = 0.001 and

2https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
3f̃∗ is the estimation of f∗ by running heavy-ball for a very long time.

25

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Generalized Polyak Step Size with Momentum

(β1, β2) = (0.9, 0.999); L4Mom (Rolinek & Martius, 2018) with α = 0.01; SPS max (Loizou et al., 2021) with η0 = 0.1
and c = 0.2 with smoothing technique to update ηmax; SLS-acc (Vaswani et al., 2019) with η0 = 1 and c = 0.1; ALR-SHB
with c = 0.5 and ηmax = 0.01 (with the warmup, under ηmax = 0.1min(10−4k, 1) and c = 0.5); ALR-SMAG with c = 0.1
and ηmax = 0.01 (with warmup under ηmax = 0.1min(10−4k, 1) and c = 0.1).

0 25 50 75 100 125 150 175 200
Epochs

10 5

10 4

10 3

10 2

10 1

100

101

102

Tr
ai

ni
ng

 lo
ss

SGDM-const
Adam
L4Mom
SPS_max
SLS-acc

ALR-SHB
ALR-SHB + warmup
ALR-SMAG
ALR-SMAG + warmup
AdSGD

0 25 50 75 100 125 150 175 200
Epochs

88%

89%

90%

91%

92%

93%

94%

95%

Te
st

 a
cc

ur
ac

y

SGDM-const
Adam
L4Mom
SPS_max
SLS-acc

ALR-SHB
ALR-SHB + warmup
ALR-SMAG
ALR-SMAG + warmup
AdSGD

Figure 8. CIFAR10 - ResNet34: training loss (left) and test accuracy (right)

For the experiments of CIFAR100 on WRN-28-10, the details of the algorithms: SGDM under constant step size is shown
below: η ∈ {0.001, 0.01, 0.1, 1} and we set η = 0.1; SGDM with step-decay ηk = η0/10

⌊k/K0⌋ where K0 = ⌈K/3⌉
where K is the total number of iterations and we set η0 = 0.1; Adam with η = 0.001 and (β1, β2) = (0.9, 0.999); L4Mom:
we set α = 0.15; stochastic line search with momentum (SLS-acc) (Vaswani et al., 2019) with c = 0.1; SPS max (Loizou
et al., 2021): we set c = 0.2 and ηmax = 1 with smoothing technique; AdSGD with parameters (

√
1 + 0.02θ, 1/Lk). For

our algorithms: ALR-SHB: ηmax = 0.1 and c = 0.5, ALR-SMAG: ηmax = 0.1 and c = 0.05 (for warmup, we set c = 0.5
for ALR-SHB and c = 0.05 for ALR-SMAG, and ηmax = min(10−4k, 1)). In Figure 9, we present the adaptive step sizes
of ALR-SMAG with and without warmup. The step size is not stably decreasing but hits the upper bound at the beginning
of training, later drops for some iterations, and then hits the upper bound again in a somewhat irregular pattern.

The details of the algorithms on the experiment of CIFAR100 on DenseNet121: SGDM under constant step size η = 0.01;
SGDM with step-decay ηk = η0/10

⌊k/K0⌋ where K0 = ⌈K/3⌉ and η0 = 0.01. For our algorithms: ALR-SHB with
c = 0.5 and ηmax = 0.01, ALR-SMAG with c = 0.1 and ηmax = 0.01; For warmup, we set c = 0.5 for ALR-SHB and
c = 0.1 for ALR-SMAG, and ηmax = 0.1min(10−4k, 1). For the other algorithms, the parameters are the same as those on
WRN-28-10.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

St
ep

-s
iz

e

Step-size

ALR-SMAG

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

St
ep

-s
iz

e

Step-size

ALR-SMAG with warmup

Figure 9. The plot of step sizes of ALR-SMAG and ALR-SMAG under warmup

26

Generalized Polyak Step Size with Momentum

0.1 0.2 0.3 0.4 0.5
c

74%

75%

76%

77%

78%

79%

80%

Te
st

 a
cc

ur
ac

y

ALR-SMAG
ALR-SMAG + warmup

Figure 10. The behavior of the parameter c of ALR-SMAG on CIFAR100 - WRN-28-10

Finally, we show how the hyper-parameter c > 0 is related to the performance of ALR-SMAG. The parameter c is tested
from the set {0.05, 0.1, 0.2, 0.3, 0.5}. The result is reported in Figure 10. We can see that the hyper-parameter c is insensitive
to the performance of ALR-SMAG in a small range c ∈ [0, 1, 0.5]. In this case, the results for c = 0.05, 0.1, 0.2 are similar.
We suggest that we might set the hyper-parameter c to 0.1 in the experiments on CIFARs (CIFAR10 and CIFAR100).

C.4. Results on Tiny-ImageNet200

We now turn our attention to Tiny-ImageNet200 (Le & Yang, 2015) on ResNet18 (He et al., 2016) with the pre-trained
model. This dataset includes 50000 images (200 classes) for training and 10000 images for the test. In this experiment, we
compare our algorithms ALR-SHB and ALR-SMAG against SGD with momentum under constant step size, the popular
step-decay (Ge et al., 2019) and cosine decay (Loshchilov & Hutter, 2017) step sizes, L4Mom (Rolinek & Martius, 2018)
and Adam (Kingma & Ba, 2015). The results are reported in Table 4. The maximal epoch call is 200 and the batch size is
256.

The details of the algorithms are shown below: SGD with momentum (SGDM) under constant step size η = 0.01; step-decay
ηk = η0/10

⌊k/K0⌋ where K0 = ⌈K/3⌉; cosine decay step size ηk = 0.5η0(cos(kπ/K)+1) where K is the total number of
iterations and η0 = 0.01; Adam with constant step size η = 0.001; L4Mom with α = 0.15. For our algorithm ALR-SMAG,
we set η0 = 0.01 and c = 0.5; with warmup, we set ηmax = η0 min(10−6k, 1) with η0 = 0.1 and c = 0.5.

Table 4. The result of test accuracy on Tiny-ImageNet200 - ResNet18

METHOD
TEST ACCURACY (%)

#60 #120 #180 BEST

SGDM-CONST 64.88 65.05 65.17 65.87 ± 1.37
ADAM 58.37 58.37 58.70 59.56 ± 0.35
L4MOM 65.84 65.58 65.51 66.87 ± 1.48
SGDM-STEP 65.2 67.08 67.15 67.35 ± 1.24
SGDM-COSINE 65.75 66.69 66.95 67.13 ± 1.13
ALR-SMAG 66.29 66.11 66.05 66.71 ± 1.69
ALR-SMAG + WARMUP 67.36 67 67.09 67.66 ± 1.05

For a wide range of problem classes, we can select c from a small range c ∈ {0.1, 0.5}. If the problem is ’difficult’ to solve,
i.e., necessitates a small step size, we recommend c = 0.3 or c = 0.5. For the problem at the level of training CIFARs, we
can use c = 0.1. If a user does not have any prior information about the problems and does not want to pay any effort to
tune c, we recommend using c = 0.3 since it works well for a wide range of problems and does not give significantly worse
performance than a better-tuned value.

27

Generalized Polyak Step Size with Momentum

C.5. Details of the Experiments in Section 5.3

In the experiments for ALR-SMAG with weight-decay, the details of the algorithms are addressed as below: AdamW
with step-decay step size:η0 = 0.001 and ηk = η0/10

⌊k/K0⌋ where K0 = ⌈K/3⌉; SGDM with warmup: ηk =

η0 min
(
10−6k, 1√

k

)
and η0 = 0.1; SGDM under step-decay step size ηk = η0/10

⌊k/K0⌋ with η0 = 0.1 and K0 = ⌈K/3⌉;
SGDM under cosine step size without restart ηk = 0.5η0(cos(kπ/K) + 1) where K is the total number of iterations and
η0 = 0.1; ALR-SMAG: ηmax = 0.1 and c = 0.3, λ = 0.0005. In the fine-tuning phase, the parameter c is exponentially

increased after Kmid steps and c = c0 exp

(
k−Kmid
K−Kmid

)
ln(cmax/c0). In this experiment, Kmid = 0.8K and cmax = 100c0

where c0 = 0.3.

Algorithm 3 ALR-SMAG with weight-decay

1: Input: x1, β ∈ (0, 1), c > 0, ηmax, λ > 0, ϵ = 10−5

2: while xk does not converge do
3: k ← k + 1
4: gk ← 1

|Sk|
∑

i∈Sk
∇f(xk; ξi)

5: fSk
(xk)← 1

|Sk|
∑

i∈Sk
f(xk; ξi)

6: dk ← βdk−1 + gk

7: ηk ← min
{
ηmax,

fSk
(xk)

c∥dk∥2+ϵ

}
8: xk+1 ← xk − ηk(dk + λxk)
9: end while

28

