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Abstract

Online multiple hypothesis testing has attracted
a lot of attention in many applications, e.g.,
anomaly status detection and stock market price
monitoring. The state-of-the-art generalized α-
investing (GAI) algorithms can control online
false discovery rate (FDR) on p-values only un-
der specific dependence structures, a situation
that rarely occurs in practice. The e-LOND al-
gorithm (Xu & Ramdas, 2024) utilizes e-values
to achieve online FDR control under arbitrary
dependence but suffers from a significant loss
in power as testing levels are derived from pre-
specified descent sequences. To address these
limitations, we propose a novel framework on
valid e-values named e-GAI. The proposed e-GAI
can ensure provable online FDR control under
more general dependency conditions while im-
proving the power by dynamically allocating the
testing levels. These testing levels are updated not
only by relying on both the number of previous
rejections and the prior costs, but also, differing
from the GAI framework, by assigning less α-
wealth for each rejection from a risk aversion per-
spective. Within the e-GAI framework, we intro-
duce two new online FDR procedures, e-LORD
and e-SAFFRON, and provide strategies for the
long-term performance to address the issue of α-
death, a common phenomenon within the GAI
framework. Furthermore, we demonstrate that
e-GAI can be generalized to conditionally super-
uniform p-values. Both simulated and real data
experiments demonstrate the advantages of both
e-LORD and e-SAFFRON in FDR control and
power.
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1. Introduction
The online multiple hypothesis testing problem arises from
a range of applications. For example, regulators record the
number of NYC taxi passengers every 30 minutes, aim-
ing to detect the anomalous intervals corresponding to spe-
cial events (Lavin & Ahmad, 2015); economists build on-
line monitoring procedures based on monthly stock market
prices to identify bubbles in financial series (Genoni et al.,
2023); industrial factories monitor machine operation sta-
tus in real time for fault detection, thereby enabling early
warnings for potential system issues (Ahmad et al., 2017).
These different scenarios can all be formulated as the on-
line multiple testing problem, which is concerned with the
investigation of an online sequence of null hypotheses. At
each time t, we must immediately make a real-time decision
on whether to reject the current hypothesis based on all the
observed data so far, without having knowledge of future
data or the total number of hypotheses.

Consider an online sequence of null hypotheses
H1, . . . ,Ht, . . .. Define θt = 0/1 if Ht is true/false
for each time t and a class of online decision rules
δt = {δj : j = 1, . . . , t}, where δt = 1 indicates that Ht

is rejected and δt = 0 otherwise. It is necessary to control
the error rates of those decisions δt. A natural quantity to
control is the false discovery rate (FDR) at target level α
as introduced by Benjamini & Hochberg (1995), that is,
the ratio of falsely rejected nulls to the total number of
rejections. The online FDR is defined as:

FDR(t) = E[FDP(t)] = E

 ∑
j∈H0(t)

δj(∑t
j=1 δj

)
∨ 1

 ≤ α,

where H0(t) = {j ≤ t : θj = 0} is the true null set up to
time t.

Related works. Methods for online FDR control were pio-
neered by Foster & Stine (2008), who proposed the so-called
α-investing (AI) strategy. It was further extended by the
generalized α-investing (GAI) procedure, which has served
as the fundamental framework for online testing problem
(Aharoni & Rosset, 2014; Javanmard & Montanari, 2018).
GAI deals with a sequence of p-values p1, . . . , pt, . . . and
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encompasses a wide class of algorithms to assign the testing
levels α1, . . . , αt in an online fashion, effectively reject-
ing the t-th null hypothesis whenever pt ≤ αt (Ramdas
et al., 2017; 2018; Tian & Ramdas, 2019). The GAI ensures
provable online FDR control only for the p-values with in-
dependence or positive regression dependence on a subset
(PRDS; Benjamini & Yekutieli, 2001), which is rarely the
case in practice; see definition of PRDS in Appendix B.1.
In fact, many applications involve unknown complex de-
pendence, such as time dependence in stock market prices.
Hence, it is important to develop online multiple testing
procedures under more general dependency conditions.

Xu & Ramdas (2022) proposed the SupLORD algorithm
with the aim of false discovery exceedance control and dis-
covered that, under a weaker baseline assumption, i.e., the
null p-values are conditionally super-uniform as formalized
in (1) in the subsequent text, it ensures valid FDR control at
arbitrary stopping times. However, the SupLORD algorithm
necessitates the selection of multiple parameters, which are
intricately linked to its performance, and currently lacks
well-established criteria for their optimal selection.

To deal with the problem introduced by dependence, another
strategic direction is proposed by Wang & Ramdas (2022)
to utilize e-values as potential alternatives to p-values as
measures of uncertainty, significance, and evidence. The e-
values have gained considerable attention, and many works
have devoted significant effort to constructing valid e-values
(Vovk & Wang, 2021; Ren & Barber, 2024; Li & Zhang,
2025) and applying e-values to ensure offline FDR control
(Wang & Ramdas, 2022). In the online testing problem,
a related work is Xu & Ramdas (2024), which exploited
e-values and proposed the e-LOND algorithm to provide
online FDR control under arbitrary, possibly unknown, de-
pendence. However, the e-LOND algorithm does not make
full use of the entire error budget and assigns testing levels
only by some pre-specified descending sequences related to
the number of rejections. Hence, e-LOND yields conserva-
tive FDR and sacrifices power, which hampers its practical
use. Xu & Ramdas (2024) proposed to improve e-LOND
by incorporating independent randomization, though this
operation only achieves a smaller improvement in power
while introducing additional randomness.

Therefore, a natural question is whether it is possible to con-
struct a GAI-like framework based on e-values to achieve
online FDR control under more general dependence, i.e.,
conditional validity in (2), while efficiently and effectively
assigning testing levels to achieve high power.

Our contributions. To address this challenge, this pa-
per proposes a novel framework based on e-values, named
e-value-based generalized α-investing (e-GAI). Our contri-
butions are summarized as follows:

• The e-GAI framework ensures online FDR control
based on conditional valid e-values with theoretical
guarantees, which is achieved through a new FDP esti-
mator. In contrast to GAI, we propose a novel investing
strategy named risk aversion investing (RAI) built on
the new FDP estimator, enabling e-GAI to dynamically
allocate testing levels based on both prior rejections
and costs and assign less α-wealth for each rejection
to save budget.

• Within the e-GAI framework, we propose two new
algorithms called e-LORD and e-SAFFRON. Further-
more, considering the long-term performance, we pro-
pose corresponding algorithms, mem-e-LORD and
mem-e-SAFFRON, to address the issue of α-death,
a common phenomenon in the GAI framework.

• Moreover, the e-GAI framework can be generalized to
conditionally super-uniform p-values while preserving
guaranteed FDR control. Numerical results demon-
strate that the algorithms within the e-GAI framework
are effective for online FDR control and achieve higher
power compared to existing methods.

We compare the e-GAI with several commonly used algo-
rithms and summarize their characteristics in Table 1.

2. Preliminaries
2.1. p-values & e-values

In this paper, the goal is to make a real-time decision δt
while controlling online FDR at a user-specific level α. The
rejection decision δt with p-values or e-values is defined as,
respectively,

δt =

{
1 {pt ≤ αt} , if using p-values,

1

{
et ≥ 1

αt

}
, if using e-values.

Denote Ft = σ(δ1, . . . , δt) as the sigma-field at time t,
which is generated by historical decisions in the past. Here
the testing level αt is required to be predictable at time t,
that is αt is Ft−1-measurable, i.e. αt ∈ Ft−1.

In the studies of online testing, a valid p-value pt satisfies
the conditionally super-uniformly property under the null:

P(pt ≤ u | Ft−1) ≤ u for all u ∈ [0, 1] if θt = 0. (1)

Meanwhile, a non-negative variable et is a valid e-value if
it satisfies the conditional validity:

E[et | Ft−1] ≤ 1 if θt = 0. (2)

In contrast to the condition on the distribution of a p-value
in (1), (2) only requires that the expectation of the e-value
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Table 1. Online testing algorithms with their properties and performance of FDR control.

Framework Algorithm Statistics Dependence conditions αt relying on prior costs

GAI
LORD++ (Ramdas et al., 2017) p-value Independence or PRDS
SAFFRON (Ramdas et al., 2018) p-value Independence or PRDS
SupLORD (Xu & Ramdas, 2022) p-value (1)

e-GAI
e-LOND (Xu & Ramdas, 2024) e-value Arbitrary dependence
e-LORD e-value (2)
e-SAFFRON e-value (2)

exists and is bounded. This relaxed restriction provides
greater flexibility in constructing valid e-values for various
practical purposes (Vovk & Wang, 2021; Wang & Ramdas,
2022; Ren & Barber, 2024; Li & Zhang, 2025).

2.2. Recap: GAI

The GAI rules are capable of handling an infinite stream of
hypotheses and incorporating informative domain knowl-
edge into a dynamic decision-making process. Beginning
with a pre-specified α-wealth, the key idea in GAI algo-
rithms is that each rejection gains some extra α-wealth,
which may be subsequently used to make more discoveries
at later time points.

Ramdas et al. (2017) provided a statistical perspective on
online FDR procedures and proposed to design new algo-
rithms by keeping an estimate of online FDP less than α.
Specifically, Ramdas et al. (2017) proposed an oracle ap-
proximation of online FDP as:

FDP∗(t) =

∑
j∈H0(t)

αj(∑t
j=1 δj

)
∨ 1

. (3)

This FDP∗(t) overestimates the unknown FDP(t) and pro-
vides guidance for online FDR procedures based on inde-
pendent p-values, including LORD++ (Ramdas et al., 2017),
SAFFRON (Ramdas et al., 2018) and ADDIS (Tian & Ram-
das, 2019) algorithms.

Specifically, LORD++ (Ramdas et al., 2017) realizes on-
line FDR control by providing a simple upper bound of
FDP∗(t):

F̂DP
LORD

(t) =

∑t
j=1 αj(∑t

j=1 δj

)
∨ 1

. (4)

If the proportion of alternatives is non-negligible, then

LORD++ with F̂DP
LORD

(t) yields very conservative re-
sults due to the overestimation of FDP∗(t).

Motivated by Storey-BH (Storey, 2002), SAFFRON (Ram-
das et al., 2018) was derived from an adaptive upper bound

estimate by approximating the proportions of nulls:

F̂DP
SAFFRON

(t) =

∑t
j=1 αj

1{pj>λ}
1−λ(∑t

j=1 δj

)
∨ 1

, (5)

where λ ∈ (0, 1) is a user-chosen parameter.

If the null p-values are independent of each other and of
the non-nulls, and {αt} is chosen to be a (coordinate-wise)
monotone function of δt−1, then LORD++ and SAFFRON
control the FDR at all times. Fisher (2024) considered
the performance of LORD++ and SAFFRON and proved
online FDR control when the popular PRDS condition (Ben-
jamini & Yekutieli, 2001) holds. However, the conditions
of independence or PRDS are usually violated in practical
applications.

3. e-GAI: e-value-based GAI
In this section, we first define the oracle estimate of FDP
that is tailored for e-values and demonstrate the theoretical
results for FDR control (Section 3.1). We then design a new
investing strategy based on the new proposed FDP estimator,
and propose our testing algorithms, e-LORD (Section 3.2)
and e-SAFFRON (Section 3.3), from the risk aversion per-
spective to optimize the use of a limited budget.

3.1. Online FDR Control with e-values

Suppose we observe valid e-values e1, . . . , et, . . . and make
decision δt = 1{et ≥ 1/αt} at each time t. Inspired by
(3), we define an oracle e-value-based estimate of FDP and
bound this overestimate to realize FDR control. Denote
Rt =

∑t
j=1 δj as the rejection size up to t.

Theorem 3.1. Suppose the online e-values are valid in (2).
Let the oracle e-value-based estimate of FDP be given as

FDP∗
e(t) =

∑
j∈H0(t)

αj

Rj−1 + 1
. (6)

If E [FDP∗
e(t)] ≤ α, then FDR(t) ≤ α for all t.

Theorem 3.1 provides a general theoretical result for FDR
control with conditionally valid dependent e-values, guiding
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and inspiring the construction of testing levels {αt}, which
will be detailed in the following subsection. The proof of
Theorem 3.1 and any other necessary proofs will be detailed
in Appendix A.

Before pursuing further, we discuss the effect of the denomi-
natorRj−1+1 of FDP∗

e(t) in (6). To avoid the dependence
inflating FDR, the denominator Rj−1+1 of FDP∗

e(t) plays
an important role in “predicting” the number of possible
future rejections at each rejection moment. As the true de-
nominator Rt ∨ 1 of FDP is unobservable at time j − 1 and
Rj−1 + 1 ≤ (Rt ∨ 1) holds for each j ∈ {ℓ ≤ t : δℓ = 1},
we use Rj−1 + 1 as a substitute that serves as a (j − 1)-
measurable lower bound for Rt ∨ 1. Since it is placed in the
denominator, this results in an overestimation of the oracle
FDP, which can subsequently be leveraged to achieve FDR
control.

When complex dependence exists, the correlation between
the number of false rejections and the total number of re-
jections cannot be characterized, making it impossible to
control their proportion. For instance, consider that the se-
quential e-values are strongly positively correlated. When
a false rejection occurs, it indicates that the next e-value
is likely to belong to the null but be falsely rejected as
well, leading to an increased FDR. Hence, it implies that
one can expect a quantity between Rj−1 + 1 and Rt that
provides a more efficient approximation for the denomina-
tor of FDP∗

e(t) when knowing some specific dependence
structure among e-values, which warrants further study for
improving the efficiency of e-GAI. Typically, the denom-
inator of FDP∗

e(t) in (6) can be directly chosen as Rt for
independent e-values; see details in Appendix B.5.

3.2. e-LORD

Inspired by the GAI framework, we design testing levels αt

by proposing an upper bound for (6) to realize FDR control
according to Theorem 3.1.

One natural overestimate of FDP∗
e(t) is to define

F̂DP
LORD

e (t) :=

t∑
j=1

αj

Rj−1 + 1
. (7)

Since F̂DP
LORD

e (t) ≥ FDP∗
e(t), any rejection rule al-

gorithm assigning αt in an online fashion such that

F̂DP
LORD

e (t) ≤ α holds for all t can control online FDR.

Proposition 3.2. Suppose online e-values are valid in (2).

For αt ∈ Ft−1 satisfying F̂DP
LORD

e (t) ≤ α, we have
FDR(t) ≤ α for all t.

Note that F̂DP
LORD

e (t) in (7) is constituted by the sum-
mation of terms associated with both αt and Rt−1 at each

time point and illustrates that the prior costs associated with
each testing (investing) will affect the current test. The
target FDR level α is considered as the limited budget (α-
wealth) of the entire testing procedure, and Proposition 3.2
reveals that it cannot be increased once the testing begins.
Unlike GAI’s updating strategy, we cannot compensate for
α-wealth in the subsequent testing process based on the
estimate of FDP in e-GAI, as the complex correlations make
it difficult to measure the future loss of one false discovery
effectively. In contrast, we adopt a risk aversion investing
(RAI) strategy to update αt as follows.

Intuitively, one may update testing levels by allocating a
prescribed proportion of the remaining budget to satisfy the
condition in Proposition 3.2. Therefore, we dynamically
allocate testing levels as α1 = αω1 and for t ≥ 2,

αt = ωt

α−
t−1∑
j=1

αj

Rj−1 + 1

 (Rt−1 + 1), (8)

where ω1, . . . , ωt ∈ (0, 1) control the proportion of the re-
maining α-wealth allocated to the current testing. It’s noted
that a larger ωt indicates that more α-wealth is currently
invested, which also implies a greater possibility of reject-
ing the current hypothesis. However, since rejections are
not able to gain additional wealth and each test consumes
a proportion ωt of the remaining wealth, e-GAI views the
entire testing process as a risky investment. When failing to
reject the current hypothesis, one may consider increasing
the investment proportion ωt to encourage further testing.
Upon hypothesis rejection (deciding to invest), this deci-
sion carries both the risk of a false discovery and induces a
significant downward bias in the denominator of the FDP
estimator at earlier time points. As each rejection introduces
new risks akin to an investment, we prioritize updating ωt

from the RAI perspective as

ωt+1 = ωt + ω1φ
t−Rt(1− δt)− ω1ψ

Rtδt (9)

= ω1 + ω1

t−Rt∑
j=1

φj −
Rt∑
j=1

ψj


with convention

∑0
j=1 φ

j =
∑0

j=1 ψ
j = 0, where ω1 ∈

(0, 1) is a user-defined initial allocation coefficient, and
φ > 0, ψ > 0 are user-defined parameters that characterize
the investment stimulation intensity post-acceptance and the
risk regulation level post-rejection, respectively.
Remark 3.3. To ensure that ωt ∈ (0, 1) for each time t, we
can select any ω1 ∈ (0, 0.5), φ ∈ [0, 0.5], and ψ ∈ [0, 0.5].
In fact, the conditions can be relaxed to ensure that ωt is
Ft−1-measurable and ωt ∈ (0, 1). We suggest choosing
ω1 = O(1/T ) with the total number of hypotheses T to
avoid spending too much wealth in the early stages while
retaining sufficiently effective wealth for testing at each
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Algorithm 1 e-LORD
1: Input: target FDR level α, initial allocation coefficient
ω1 ∈ (0, 1), parameters φ and ψ ∈ (0, 1), sequence of
e-values e1, e2, . . ..

2: Calculate α1 = αω1 and decide δ1 = 1

{
e1 ≥ 1

α1

}
;

3: Update R1 = δ1 and ω2 by (9);
4: for t = 2, 3, . . . do
5: Update testing level αt by (8);
6: Make decision δt = 1

{
et ≥ 1

αt

}
;

7: Update Rt = Rt−1 + δt and ωt+1 by (9);
8: end for
9: Output: decision set {δ1, δ2, . . .}.

time point; more detailed discussions are provided in Ap-
pendix B.2. Note that the choice of ωt satisfying the above
conditions does not affect the guarantee of the FDR control.
This observation opens up greater flexibility, enhances the
applicability of our algorithms, and enables users to leverage
domain knowledge for dynamically adjusting the allocation.

The whole algorithm is referred to as e-LORD and summa-
rized in Algorithm 1. In e-LORD, the testing levels {αt}
are updated not only by relying on both the number of pre-
vious rejections and the prior costs, but also by assigning
less α-wealth for each rejection using the RAI strategy.

We find that the e-LOND algorithm proposed by Xu &
Ramdas (2024) can be converted into the e-LORD al-
gorithm. Let αe-LOND

t and Re-LOND
t denote the testing

level and the number of rejections at time t in the e-
LOND algorithm, respectively. Xu & Ramdas (2024) as-
signed αe-LOND

t = αγt
(
Re-LOND

t−1 + 1
)
, where {γt} is pre-

specified non-negative sequence summing to one. It can be

verified that F̂DP
LORD

e (t) in (7) satisfies

F̂DP
LORD

e (t) =

t∑
j=1

αe-LOND
j

Re-LOND
j−1 + 1

= α

t∑
j=1

γt = α.

Furthermore, if choosing γt = ωt

∏t−1
j=1 (1− ωj) in e-

LOND with {ωt} in e-LORD, then we have αe-LOND
t equals

αt in (8) for any t; refer to (18) in Appendix B.6 for more
details. In this case, at each time t, the rejection set of e-
LOND will be identical to the result of Algorithm 1. Thus,
we can consider e-LOND as operating on a special type of
e-LORD by designing ωt from a given sequence {γt}.

3.3. e-SAFFRON

To approximate FDP∗
e(t), the estimate F̂DP

LORD

e (t) is cal-
culated by summing all non-negative terms over time. Thus,
it serves as a crude and conservative overestimate if the
proportion of alternatives is non-negligible. Inspired by
Storey-BH (Storey, 2002) and SAFFRON (Ramdas et al.,

2018), we further propose an adaptive estimate defined as

F̂DP
SAFFRON

e (t) :=

t∑
j=1

αj

Rj−1 + 1

1

{
ej <

1
λj

}
1− λj

,

where {λt}∞t=1 is a predictable sequence of user-chosen
parameters in the interval (0, 1). Here the term adaptive
means that it is based on an estimate of the proportion of
true nulls as in Storey (2002); Ramdas et al. (2018).

In contrast to F̂DP
LORD

e (t), the summation in

F̂DP
SAFFRON

e (t) includes only those test levels associated

with relatively small e-values. Although F̂DP
SAFFRON

e (t)
is not necessarily always larger than FDP∗

e(t), we can

verify that E
[
F̂DP

SAFFRON

e (t)

]
≥ E [FDP∗

e(t)], which is

sufficient for FDR control according to Theorem 3.1. The
properties of the adaptive estimate are formalized below.

Proposition 3.4. Given a predictable sequence {λt}∞t=1, if
online e-values are valid in (2), then for αt ∈ Ft−1 satisfy-

ing F̂DP
SAFFRON

e (t) ≤ α, we have:

(a) E
[
F̂DP

SAFFRON

e (t)

]
≥ E [FDP∗

e(t)] and

(b) FDR(t) ≤ α for all t.

In the following, we consider λt ≡ λ ∈ (0, 1) for simplic-
ity. Embracing the RAI principle, we propose an adaptive
algorithm, called e-SAFFRON. The e-SAFFRON allocates
testing levels as α1 = α(1− λ)ω1 and for t ≥ 2,

αt = ωt

α(1− λ)−
t−1∑
j=1

αj1
{
ej <

1
λ

}
Rj−1 + 1

 (Rt−1 + 1),

(10)
where ωt ∈ (0, 1) is updated by (9).

We summarize e-SAFFRON in Algorithm 2. In particular,
setting λ = 0 in Algorithm 2 simplifies it to Algorithm 1,
demonstrating that e-SAFFRON serves as the adaptive coun-
terpart to e-LORD, similar to the relationship between SAF-
FRON and LORD++ within the GAI framework.
Remark 3.5. Note that the choice of λ will affect the total
“wealth” α(1−λ), which will be no further increased in the
subsequent period of e-SAFFRON. We prefer a relatively
small value λ to preserve wealth, with λ = 0.1 as the default
choice in our numerical experiments, which differs from the
value recommended in the SAFFRON procedure (Ramdas
et al., 2018). The latter, SAFFRON with independent p-
values, allows for additional rewards when a hypothesis is
rejected and suggests λ = 0.5.
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Algorithm 2 e-SAFFRON
1: Input: target FDR level α, initial allocation coefficient
ω1 ∈ (0, 1), parameters λ, φ and ψ ∈ (0, 1), sequence
of e-values e1, e2, . . ..

2: Calculate α1 = α(1 − λ)ω1 and decide δ1 =

1

{
e1 ≥ 1

α1

}
;

3: Update R1 = δ1 and ω2 by (9);
4: for t = 2, 3, . . . do
5: Update testing level αt by (10);
6: Make decision δt = 1

{
et ≥ 1

αt

}
;

7: Update Rt = Rt−1 + δt and ωt+1 by (9);
8: end for
9: Output: decision set {δ1, δ2, . . .}.

4. Further Discussions on e-GAI
In this section, we further investigate the properties of the
e-LORD and e-SAFFRON algorithms within the e-GAI
framework.

4.1. Long-Term Performance

We provide strategies for the long-term performance of our
methods to address the issue of α-death, halting rejections
once α-wealth tends to zero, a common phenomenon within
the GAI framework (Ramdas et al., 2017).

α-death. In a long-term testing process, there may be ex-
tended periods during which no hypotheses are rejected,
particularly when the true alternatives are rare, leading to
a continuous accumulation of the allocation proportion ωt.
As a result, testing levels may become severely diminished
in the later stages, making it difficult to achieve any fur-
ther rejections. This phenomenon is referred to as α-death,
which induces a loss of power and ultimately compromises
the long-term efficacy of our online testing algorithm.

mem-FDR control. To alleviate α-death over a long pe-
riod (potentially infinite), Ramdas et al. (2017) defined de-
caying memory FDR (mem-FDR) to allow more attention to
recent rejections by introducing a user-defined decay param-
eter d ∈ (0, 1] and proposed mem-LORD++ that controls
mem-FDR under independence. Specifically, mem-FDR is
defined as

mem-FDR(t) := E

[∑
j∈H0(t)

dt−jδj∑t
j=1 d

t−jδj

]
.

To address the issue, we adapt e-GAI and design mem-e-
GAI to control mem-FDR in our setting. The technique
used here is similar to the e-GAI framework to control FDR
in Section 3. Denote Rd

t =
∑t

j=1 d
t−jδj for simplicity.

Theorem 4.1. Suppose the online e-values are valid in (2).
Let the oracle e-value-based estimate of mem-FDP be

mem-FDP∗(t) :=
∑

j∈H0(t)

αj

dRd
j−1 + 1

. (11)

If E [mem-FDP∗(t)] ≤ α, then mem-FDR(t) ≤ α for all
t.

Theorem 4.1 provides an oracle estimate of mem-FDP, and
offers insights and guidance for designing algorithms that
control mem-FDR. Note that (11) is facilitated by an under-
standing of the unknown denominator Rd

t of the true mem-
FDP. A natural choice that can serve as a (j−1)-measurable
lower bound for predicting Rd

t is dt−j
(
dRd

j−1 + 1
)

since
this predicted value dt−j

(
dRd

j−1 + 1
)
≤

(
Rd

t ∨ 1
)

holds
for each j with δj = 1.

mem-e-LORD & mem-e-SAFFRON. Adopting the core
idea of the e-GAI framework, we can construct upper
bounds for mem-FDP∗(t) (11) and design the testing levels
accordingly to achieve mem-FDR control.

One natural overestimate of mem-FDP∗(t) is

mem- F̂DP
LORD

(t) :=

t∑
j=1

αj

dRd
j−1 + 1

(12)

and any algorithm is referred to as mem-e-LORD that allo-

cates testing levels {αt} satisfying mem- F̂DP
LORD

(t) ≤
α. As an example, adopting the RAI strategy, mem-e-LORD
allocates testing levels as α1 = αω1 and for t ≥ 2,

αt = ωt

α−
t−1∑
j=1

αj

dRd
j−1 + 1

(
dRd

t−1 + 1
)
, (13)

where ωt ∈ (0, 1) is updated by (9).

When the proportion of alternatives is non-negligible, it is
preferable to employ an adaptive overestimate defined as

mem- F̂DP
SAFFRON

(t) :=

t∑
j=1

αj

dRd
j−1 + 1

1

{
ej <

1
λj

}
1− λj

,

where {λt}∞t=1 satisfying λt ∈ (0, 1) is a predictable se-
quence of user-chosen. We refer to an algorithm as mem-
e-SAFFRON that allocates testing levels {αt} satisfying

mem- F̂DP
SAFFRON

(t) ≤ α. For simplicity, we consider
λt ≡ λ ∈ (0, 1) and employ mem-e-SAFFRON from RAI
perspective, allocating testing levels as α1 = α(1 − λ)ω1

and for t ≥ 2,

αt = ωt

α(1− λ)−
t−1∑
j=1

αj1
{
ej <

1
λ

}
dRd

j−1 + 1

(
dRd

t−1 + 1
)
,
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and updating ωt ∈ (0, 1) as in (9).

According to Theorem 4.1, both mem-e-LORD and mem-e-
SAFFRON achieve mem-FDR control.

Proposition 4.2. Suppose online e-values are valid in (2).

(a) For αt ∈ Ft−1 satisfying mem- F̂DP
LORD

(t) ≤ α,
we have mem-FDR(t) ≤ α for all t.

(b) Given a predictable sequence {λt}∞t=1, for αt ∈ Ft−1

satisfying mem- F̂DP
SAFFRON

(t) ≤ α, we have

E
[
mem- F̂DP

SAFFRON
(t)

]
≥ E [mem-FDP∗(t)]

and mem-FDR(t) ≤ α for all t.

4.2. Extension to p-values

While the e-GAI framework is initially developed based
on the study of e-values, we demonstrate that it can also
be generalized to p-values satisfying conditionally super-
uniformity in (1), enriching the proposed framework and
making the theory more comprehensive and complete.

Suppose we observe valid p-values p1, . . . , pt, . . . and make
decision δt = 1{pt ≤ αt} at each time t. When using
p-values for online testing, we demonstrate that FDP∗

e(t) in
(6) can still serve as an oracle estimate of FDP, in which the
denominator involves the number of rejections Rt relevant
to p-values. By controlling this estimator to be bounded,
we can achieve FDR control for p-values satisfying the
conditional super-uniformity property in (1).

Theorem 4.3. Suppose the online p-values are condition-
ally super-uniform in (1). If FDP∗

e(t) in (6) satisfies
E [FDP∗

e(t)] ≤ α, then FDR(t) ≤ α for all t.

Theorem 4.3 provides a general theoretical result for FDR
control with conditionally super-uniform p-values. Building
upon the analogous strategy outlined in Section 3 and Sec-
tion 4.1, the e-GAI framework can be naturally extended to
p-value-compatible algorithms and corresponding versions
for the long-term performance. For precise algorithmic
differentiation, we denote the p-value-adapted variants of
e-LORD and e-SAFFRON as pL-RAI and pS-RAI, respec-
tively, emphasizing the adoption of p-values as the test statis-
tics and the dynamic updating mechanism of testing levels
αt through the RAI strategy. We provide more detailed
discussions and technical explanations in Appendix B.4.

5. Numerical Experiments
In this section, we evaluate the performance of our on-
line testing framework on both synthetic and real data.
We compare e-LORD, e-SAFFRON, pL-RAI, and pS-RAI
with e-LOND, LORD++, SAFFRON, and SupLORD in
terms of FDR and power. We validate the performance
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Figure 1. Empirical FDR and power with standard error versus
proportion of alternative hypotheses π1 for various online methods,
with ρ = 0.5, L = 30 and µc = 3.

of mem-e-LORD and mem-e-SAFFRON through simu-
lated numerical experiments in Appendix C.2. The code
for all numerical experiments in this paper is available at
https://github.com/zijianwei01/e-GAI.

5.1. Simulation: Testing with Gaussian Observations

We use an experimental setup that tests the mean of a Gaus-
sian distribution with the total number of data T = 500. The
null hypothesis takes Ht : µt = 0 for each time t ∈ [T ]. The
true labels θt is generated from Bernoulli(π1). The Gaus-
sian variates (X1, . . . , XT )

⊤ is from N (µ,Σ) with mean
vector µ ∈ RT and covariance matrix Σ ∈ RT×T . The
elements in µ = (µ1, . . . , µT )

⊤ satisfy µt = 0 if θt = 0
and µt = µc > 0 if θt = 1, where µc is the signal param-
eter. Additionally, the signals of the true alternatives are
correlated with the correlation coefficient ρ. The covariance
matrix satisfies Σ ≻ 0, and Σij = ρ|i−j| · 1 {|i− j| ≤ L}.
Note that the data at different time points will influence each
other, which is in line with real-life online scenarios.

Under the normality assumption at each time point t, we
compute the e-value as the corresponding likelihood-ratio
statistic and the p-value by evaluating the conditional distri-
bution. We take ω1 = 0.005, φ = ψ = 0.5 in e-LORD and
pL-RAI, and additionally λ = 0.1 in e-SAFFRON and pS-
RAI, while we use default parameters from the R package
onlineFDR (Robertson et al., 2022) for other benchmarks.
The target FDR level is set as α = 0.05.
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Table 2. Proportion of points rejected out of anomalous regions.
e-LORD, e-SAFFRON and e-LOND control the estimated FDP
under α = 0.1.

Method e-LORD e-SAFFRON e-LOND

F̂DP 0.085 0.087 0.061
Num Discovery 47 46 33

Figure 1 show the results of various methods with ρ = 0.5
and µc = 3. The empirical results show that SAFFRON
will inflate the FDR heavily, while others realize the FDR
control. However, there is no theoretical guarantee of the
control of FDR with complex dependent data for LORD++,
which makes the rejection decisions not as safe as they seem.
Owing to dynamically updating the testing levels, both e-
LORD and e-SAFFRON lead to much higher power than
e-LOND, and pL-RAI and pS-RAI lead to higher power
than LORD++ and SupLORD. Similar performance can be
found for other settings, as presented in Appendix C.1.

5.2. Real Data: NYC Taxi Anomaly Detection

We analyze the NYC taxi dataset from the Numenta
Anomaly Benchmark (NAB) repository (Lavin & Ahmad,
2015). The dataset captures the number of NYC taxi pas-
sengers every 30 minutes from July 1, 2014, to January 31,
2015. Five known anomalous intervals correspond to no-
table five events such as the NYC marathon, Thanksgiving,
Christmas, New Year’s Day, and a snowstorm. We visualize
the time series data with the known anomalous intervals
highlighted using red rectangles in Figure 2. The anomaly
detection problem is formulated as an online sequential
multiple testing problem.

We employ the R package stlplus to perform STL de-
composition (Cleveland et al., 1990) to remove the seasonal
and trend components. We derive tests on the residuals,
which are assumed to form an independent sequence. The
first 2000 time points are taken as the initial sequence for
model calibration. We focus on the comparisons among e-
value-based methods and apply e-LORD, e-SAFFRON and
e-LOND to analyze this dataset. We use estimated likeli-
hood ratio as e-values (shown in Equation (21)). We choose
ω1 = 0.0001 and λ = 0.1 and set both ψ and φ as 0.5.

We compare their performance in terms of the proportion of
discoveries out of marked anomalous regions, denoted here
as F̂DP, and the number of discovered anomalous regions
in Table 2. Our e-GAI effectively maintains F̂DP below
the target level. As illustrated in Figure 2, e-LORD and
e-SAFFRON demonstrate higher power than e-LOND, as
both identify more points within the anomalous regions,
shown in black squares. More comparisons for p-value-
based methods are shown in Appendix C.3.

5.3. Real Data: Dating Financial Bubbles

We follow Genoni et al. (2023), building a sequential test
on stock market prices for financial bubbles. Online testing
procedures enable decision-making regarding bubble occur-
rence based on current observation before the subsequent
one is observed. Controlling FDR is a proper guarantee to
make decisions with a controllable proportion of mistakes.

The analysis is performed on the monthly stock price of
the Nasdaq series. The calibration is implemented by using
the first 1/3 observations, assuming the related period to
be free of bubbles. Genoni et al. (2023) uses the standard
p-values of the ADF test (R package urca), which is calcu-
lated point-wise and thus does not satisfy the conditionally
super-uniformity property. Moreover, such a valid p-value
is difficult to construct for time series. We follow Dickey
& Fuller (1981) to construct the unit root test likelihood
ratio as sequential e-values. Then we divide the estimated
conditional expectation under H0 to guarantee conditional
validity. The task is to identify the bubble beginning date
(BBD) and bubble ending date (BED).

As shown in Figure 3, with a significance level of α = 0.005,
e-LOND only detects the initial potential change associated
with the gradual emergence of technology companies in the
marketplace. The e-LORD and e-SAFFRON exhibit similar
behavior, providing a comprehensive characterization of the
entire potential bubble influence region by marking a dense
rejection region. The date 1990-01-20, corresponding to the
onset of the bubble, has been identified, aligning with the
classical view. The BED in Figure 3 is determined based
on empirical experience due to the long-term effects of the
dot-com bubble burst. Specifically, while the burst of the
dot-com bubble led to a reset in valuations, NASDAQ’s
volatility remained elevated, exceeding pre-bubble levels
and establishing the groundwork for subsequent financial
cycles. As a result, this sustained volatility led to persis-
tent rejections in online procedures even after BBD. The
e-LORD region also includes other historical events after
BED.

6. Summary
In this paper, we propose a novel framework named e-GAI
that introduces an oracle estimate of online FDP and ensures
online FDR control under conditional validity with theoreti-
cal guarantees. The e-GAI dynamically allocates testing lev-
els from the RAI perspective, which relies on both the num-
ber of previous rejections and prior costs and assigns less
α-wealth for each rejection. Within the e-GAI framework,
we propose two new algorithms, e-LORD and e-SAFFRON,
respectively. Both e-LORD and e-SAFFRON are more pow-
erful than e-LOND under complicated dependence. We also
propose mem-e-LORD and mem-e-SAFFRON correspond-
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Figure 2. Anomaly points detected by e-LORD (above), e-SAFFRON (middle) and e-LOND (below). Rejection points of all procedures
are marked by dark blue points. Red regions refer to known anomalies. The testing level is chosen as 0.1. Red squares indicate additional
discovery of e-LORD and e-SAFFRON compared to e-LOND. e-SAFFRON loses some power due to a tiny proportion of large e-value.

Figure 3. Dating of BBD and BED in the Nasdaq series. Blue and
red points refer to e-LORD and e-LOND rejection points under
α = 0.005, respectively. Blue and red regions refer to bubble
influence regions detected by e-LORD and e-LOND. Blue and red
dashed line refers to BBD and BED marked by the Nasdaq series.
Significant historical events are marked.

ingly for the long-term performance to alleviate α-death.
Moreover, we demonstrate that e-GAI can be generalized
to conditionally super-uniform p-values, making e-GAI a
more versatile tool with reliable theoretical guarantees and
increased practical value.

We conclude this work with two remarks. Firstly, although
e-SAFFRON provides an adaptive online FDR procedure,

how to more accurately approximate the proportions of
nulls like ADDIS (Tian & Ramdas, 2019) deserves further
research. Secondly, as discussed in Section 3.1, a more
accurate approximation of FDP∗

e(t) can be expected when
knowing a more specific dependent structure. It warrants
future study on the relationship between the denominator of
FDP∗

e(t) and the dependent structure, and how to design a
more efficient strategy to assign testing levels under such
cases.
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A. Proofs
Here, we include all the proofs of the results throughout the paper.

A.1. Proof of Theorem 3.1

Proof. Suppose a desired level α is given. For all time t, we have

FDR(t) =E

[∑
j∈H0(t)

δj

Rt ∨ 1

]
(i)

≤ E

 ∑
j∈H0(t)

δj
Rj−1 + 1

 = E

 ∑
j∈H0(t)

1{ej ≥ 1
αj

}
Rj−1 + 1

 (ii)

≤ E

 ∑
j∈H0(t)

ejαj

Rj−1 + 1


=E

 ∑
j∈H0(t)

E [ej | Fj−1]αj

Rj−1 + 1

 (iii)

≤ E

 ∑
j∈H0(t)

αj

Rj−1 + 1

 = E [FDP∗
e(t)]

(iv)

≤ α,

where the inequality (i) holds since Rj−1 + 1 ≤ (Rt ∨ 1) for every j ∈ {j ≤ t : δj = 1} by definition, the inequality (ii)
holds since 1{y ≥ 1} ≤ y for any y > 0, the inequality (iii) follows after taking iterated expectations by conditioning
on Fj−1 and then applying the property of e-values, and inequality (iv) holds by condition. Thus, we finish the whole
proof.

A.2. Proof of Proposition 3.2

Proof. To prove the property, we only need to verify that E
[
F̂DP

LORD

e (t)

]
≥ E [FDP∗

e(t)] for all t, then we can obtain

the desired result by Theorem 3.1. This holds trivially since F̂DP
LORD

e (t) ≥ FDP∗
e(t) by construction.

A.3. Proof of Proposition 3.4

Proof. Given a desired level α and predictable sequence {λt}∞t=1, for all t,

E
[
F̂DP

SAFFRON

e (t)

]
=

t∑
j=1

E

 αj

Rj−1 + 1

1

{
ej <

1
λj

}
1− λj


≥

∑
j∈H0(t)

E

 αj

Rj−1 + 1

1

{
ej <

1
λj

}
1− λj


=

∑
j∈H0(t)

E

 αj

Rj−1 + 1

E
[
1

{
ej <

1
λj

}
| Fj−1

]
1− λj


(i)

≥
∑

j∈H0(t)

E
[

αj

Rj−1 + 1

]
= E [FDP∗

e(t)] ,

where inequality (i) holds because E
[
1

{
ej <

1
λj

}
| Fj−1

]
≥ 1− λj by the property of e-values. This concludes the proof

of part (a), and then (b) can be derived by Theorem 3.1, which completes the proof.
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A.4. Proof of Theorem 4.1

Proof. Suppose a desired level α is given. For all time t, we have

mem-FDR(t) =E

[∑
j∈H0(t)

dt−jδj

Rd
t ∨ 1

]
(i)

≤ E

 ∑
j∈H0(t)

dt−jδj
dt−j(dRd

j−1 + 1)

 = E

 ∑
j∈H0(t)

1{ej ≥ 1
αj

}
dRd

j−1 + 1


(ii)

≤ E

 ∑
j∈H0(t)

ejαj

dRd
j−1 + 1

 = E

 ∑
j∈H0(t)

E [ej | Fj−1]αj

dRd
j−1 + 1

 (iii)

≤ E

 ∑
j∈H0(t)

αj

dRd
j−1 + 1


=E [mem-FDP∗(t)]

(iv)

≤ α,

where the inequality (i) holds since Rd
t =

∑j−1
k=1 d

t−kδk + dt−jδj +
∑t

k=j+1 d
t−kδk ≥ dt−j+1Rd

j−1 + dt−jδj and hence
dt−j(dRj−1 + 1) ≤ (Rd

t ∨ 1) for every j ∈ {j ≤ t : δj = 1} by definition, the inequality (ii) holds since 1{y ≥ 1} ≤ y
for any y > 0, the inequality (iii) follows after taking iterated expectations by conditioning on Fj−1 and then applying the
property of e-values, and inequality (iv) holds by condition. Thus, we finish the whole proof.

A.5. Proof of Proposition 4.2

Proof. (a) To prove the property, we only need to verify that E
[
mem- F̂DP

LORD
(t)

]
≥ E [mem-FDP∗(t)] for all t, then

we can obtain the desired result by Theorem 4.1. This holds trivially since mem- F̂DP
LORD

(t) ≥ mem-FDP∗(t) by
construction.

(b) Given a desired level α and predictable sequence {λt}∞t=1, for all t,

E
[
mem- F̂DP

SAFFRON
(t)

]
=

t∑
j=1

E

 αj

dRd
j−1 + 1

1

{
ej <

1
λj

}
1− λj


≥

∑
j∈H0(t)

E

 αj

dRd
j−1 + 1

1

{
ej <

1
λj

}
1− λj


=

∑
j∈H0(t)

E

 αj

dRd
j−1 + 1

E
[
1

{
ej <

1
λj

}
| Fj−1

]
1− λj


(i)

≥
∑

j∈H0(t)

E

[
αj

dRd
j−1 + 1

]
= E [mem-FDP∗(t)] ,

where inequality (i) holds because E
[
1

{
ej <

1
λj

}
| Fj−1

]
≥ 1− λj by the property of e-values. By Theorem 4.1, we

have mem-FDR(t) ≤ α for all t.

A.6. Proof of Theorem 4.3

Proof. Recall that the decision δt = 1{pt ≤ αt} for each time t. Suppose a desired level α is given. For all time t, we have

FDR(t) =E

[∑
j∈H0(t)

δj

Rt ∨ 1

]
(i)

≤ E

 ∑
j∈H0(t)

δj
Rj−1 + 1

 = E

 ∑
j∈H0(t)

1{pj ≤ αj}
Rj−1 + 1


=E

 ∑
j∈H0(t)

E [1{pj ≤ αj} | Fj−1]

Rj−1 + 1

 (ii)

≤ E

 ∑
j∈H0(t)

αj

Rj−1 + 1

 = E [FDP∗
e(t)]

(iii)

≤ α,
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where the inequality (i) holds since Rj−1 + 1 ≤ (Rt ∨ 1) for every j ∈ {j ≤ t : δj = 1} by definition, the inequality (ii)
follows after taking iterated expectations by conditioning on Fj−1 and then applying the conditionally super-uniformity
property of p-values, and inequality (iii) holds by condition. Thus, we finish the whole proof.

B. Deferred Discussions
B.1. Definition of PRDS

Fisher (2024) introduced an online version of the well-known positive regression dependence on a subset (PRDS) condition
proposed by Benjamini & Yekutieli (2001), considered the performance of LORD++ and SAFFRON, and proved online
FDR control when the testing statistics, p-values, are conditional PRDS.

Before formally defining PRDS, it is necessary to first introduce the concept of increasing sets. A set I ∈ RK is called
increasing if x ∈ I implies y ∈ I for all y ≥ x. Here y ≥ x implies that each component of y is no smaller than the
corresponding component of x.

Definition B.1. (Conditional PRDS between p-values; Fisher, 2024) The p-values are conditional PRDS if for each time
t, any j ≤ t satisfying j ∈ H0(t), and increasing set I ⊂ Rt, the probability P ((p1, . . . , pt) ∈ I | pj = u,Fj−1) is
non-decreasing in u.

Wang & Ramdas (2022) discussed the PRDS condition on the studies of e-values in the offline setting. We generalize it to
the version applicable to the online scenario. A set D ∈ RK is called decreasing if x ∈ I implies y ∈ I for all y ≤ x.

Definition B.2. (Conditional PRDS between e-values) The e-values are conditional PRDS if for each time t, any j ≤ t
satisfying j ∈ H0(t), and decreasing set D ⊂ Rt, the probability P ((e1, . . . , et) ∈ D | ej = u,Fj−1) is non-increasing in
u.

B.2. Choices for ω1

In this section, we further elaborate on the motivation and advantage of updating ωt in (9) from the RAI perspective.
Building on this, we provide a theoretical justification for the recommended choice of ω1 = O(1/T ) and present supporting
experimental results.

In the e-LORD and e-SAFFRON algorithms, ωt controls the proportion of the remaining α-wealth allocated to the current
testing. A larger ωt indicates that more α-wealth is currently invested, which also implies a greater possibility of rejecting
the current hypothesis, and meanwhile, it will be more possible to exhaust the entire wealth. Therefore, we prioritize
updating ωt from the RAI perspective, dynamically allocating the testing levels and enabling data-driven updates to achieve
higher power. In contrast, the testing levels αt in e-LOND are derived from a pre-specified decay sequence that sums to 1
(Xu & Ramdas, 2024).

A simplified version of (9) is to set φ = ψ = 0 and thus ωt = ω1 for all t. In this case, a natural and reasonable way to
choose ω1 is to assign equal weight at each time point, i.e., ω1 = 1/T , motivating the choice of initial value for dynamic
updates.

Empirical results support this analysis. The power results for different choices of ω1 across varying T under an AR(1)
model, introduced in Appendix C.2, are shown in Table 3. From Table 3, our algorithms with ω1 = 1/T achieve the highest
power and have the latest time of the last rejection and the largest tail testing level, supporting potential subsequent long-term
testing. Moreover, it can be seen that the updates in e-LORD and e-SAFFRON are data-driven: as T varies, the remaining
wealth for these algorithms does not change significantly and shows robustness. In contrast, e-LOND uses a pre-specified
allocation ratio, and as T increases, the α-wealth at time T of e-LOND diminishes progressively.

B.3. Recursive Update Forms of e-LORD & e-SAFFRON

In this section, we provide recursive update forms of e-LORD and e-SAFFRON, respectively. The computation is highly
efficient and memory-friendly since the update of both ωt (expressed in a recursive form in (9)) and αt can be expressed in a
recursive form as follows.
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Table 3. Average results under an AR(1) model over 100 repetitions with µc = 4, π1 = 0.4, and α = 0.05.

T Method ω1 Power (%) Time of the last rejection αT /α(×10−4)

500

e-LORD
1/T 70.0 498 1031.0
1/

√
T 22.2 275 0.0

1/T 2 8.6 483 0.7

e-SAFFRON
1/T 70.5 498 1368.1
1/

√
T 38.7 441 0.0

1/T 2 8.0 483 0.6

e-LOND – 30.9 491 2.5

1000

e-LORD
1/T 70.1 998 1029.0
1/

√
T 16.2 406 0.0

1/T 2 4.5 962 0.2

e-SAFFRON
1/T 70.9 998 1366.7
1/

√
T 28.0 706 0.0

1/T 2 4.2 958 0.2

e-LOND – 23.9 983 1.0

To compute αt of e-LORD in Algorithm 1, we define the remaining wealth as

rwe-LORD
t = α−

t−1∑
j=1

αj

Rj−1 + 1

and update
αt = ωt rw

e-LORD
t (Rt−1 + 1).

A similar recursive form of αt of e-SAFFRON in Algorithm 2 can be obtained by defining the remaining wealth as

rwe-SAFFRON
t = α(1− λ)−

t−1∑
j=1

αj1{ej < 1/λ}
Rj−1 + 1

and update
αt = ωt rw

e-SAFFRON
t (Rt−1 + 1).

Through these formulations, the update of testing levels αt is expressed as a recursive relationship based on information
from the previous time step, allowing us to compute it recursively and efficiently.

We evaluate the runtime of various algorithms in the experiments under an AR(1) model, introduced in Appendix C.2, and
the results are included in Table 4. It shows that the e-LORD and e-SAFFRON algorithms are computationally efficient.

Table 4. Average runtime of different algorithms under an AR(1) model over 100 repetitions.

e-LORD e-SAFFRON e-LOND LORD++ SAFFRON SupLORD

Runtime (×10−4s) 9.7 18.8 18.0 9.9 8.1 72.1

B.4. Extension of the e-GAI Framework to p-values

In this section, we adapt the e-GAI framework to p-values and analyze the corresponding algorithms for the long-term
performance following the same strategy in Section 3 and Section 4.1. Recall that the decision δt = 1{pt ≤ αt} for each
time t.
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Extension of e-LORD & e-SAFFRON to p-values. Theorem 4.3 in the main text provides a general theoretical result
for FDR control with conditionally super-uniform p-values. Leveraging Theorem 4.3, both e-LORD and e-SAFFRON can
be adapted to the corresponding version applicable to p-values by replacing 1{et ≥ 1/αt} with 1{pt ≤ αt}. Specifically,

F̂DP
LORD

e (t) in (7) and the update rule for αt in (8) of the e-LORD algorithm can be directly adapted to p-values. The
e-SAFFRON algorithm estimates the proportion of true nulls, requiring a slight modification when converting e-values to
p-values. Considering λt ≡ λ, the modified FDP overestimate and testing levels of e-SAFFRON are respectively given by∑t

j=1
αj

Rj−1+1
1{pj>λ}

1−λ and αt = ωt

(
α(1− λ)−

∑t−1
j=1

αj1{pj>λ}
Rj−1+1

)
(Rt−1 + 1).

To clearly distinguish the algorithms, we refer to the versions of e-LORD and e-SAFFRON adapted to p-values as pL-RAI
and pS-RAI, respectively, emphasizing that the testing statistics are p-values and testing levels αt are updated by the RAI
strategy. Both pL-RAI and pS-RAI can realize provable FDR control under conditional super-uniformity. To avoid notational

confusion, we define F̂DP
pL-RAI

(t) := F̂DP
LORD

e (t) =
∑t

j=1
αj

Rj−1+1 and F̂DP
pS-RAI

(t) :=
∑t

j=1
αj

Rj−1+1
1{pj>λ}

1−λ .

Proposition B.3. Suppose the online p-values are conditionally super-uniform in (1).

(a) For αt ∈ Ft−1 satisfying F̂DP
pL-RAI

(t) ≤ α, we have FDR(t) ≤ α for all t.

(b) Given a predictable sequence {λt}∞t=1, for αt ∈ Ft−1 satisfying F̂DP
pS-RAI

(t) ≤ α, we have: (i)

E
[
F̂DP

pS-RAI
(t)

]
≥ E [FDP∗

e(t)] where FDP∗
e(t) is defined in (6), and (ii) FDR(t) ≤ α for all t.

The proof strategy for Proposition B.3 follows the same approach as Proposition 3.2 and Proposition 3.4, with the key
distinction residing in the application of the inequality E [1 {pj > λj} | Fj−1] ≥ 1 − λj , which is derived from the
conditionally super-uniformity property of p-values. Hence, we omit the detailed derivations.

Long-Term Performance of pL-RAI & pS-RAI. To control mem-FDR using p-values, we demonstrate that
mem-FDP∗(t) in (11) can still serve as an oracle estimate of mem-FDP. By controlling this estimator to be bounded, we
can achieve mem-FDR control for p-values satisfying the conditional super-uniformity property in (1).

Theorem B.4. Suppose the online p-values are conditionally super-uniform in (1). If mem-FDP∗(t) in (11) satisfies
E [mem-FDP∗(t)] ≤ α, then mem-FDR(t) ≤ α for all t.

Leveraging Theorem B.4, both mem-e-LORD and mem-e-SAFFRON can be adapted to the corresponding version applicable

to p-values. Specifically, mem- F̂DP
LORD

(t) in (12) and the update rule for αt in (13) of the mem-e-LORD algorithm can
be directly adapted to p-values. Considering λt ≡ λ, the modified mem-FDP overestimate and testing levels of mem-e-
SAFFRON are respectively given by

∑t
j=1

αj

dRd
j−1+1

1{pj>λ}
1−λ and αt = ωt

(
α(1− λ)−

∑t−1
j=1

αj1{pj>λ}
dRd

j−1+1

)
(dRd

t−1 + 1).

To clearly distinguish the algorithms, we refer to the versions of mem-e-LORD and mem-e-SAFFRON adapted to p-
values as mem-pL-RAI and mem-pS-RAI, respectively. Both mem-pL-RAI and mem-pS-RAI can realize provable

mem-FDR control under conditional super-uniformity. To avoid notational confusion, we define mem- F̂DP
pL-RAI

(t) :=

mem- F̂DP
LORD

(t) =
∑t

j=1
αj

dRd
j−1+1

and mem- F̂DP
pS-RAI

(t) :=
∑t

j=1
αj

dRd
j−1+1

1{pj>λ}
1−λ .

Proposition B.5. Suppose the online p-values are conditionally super-uniform in (1).

(a) For αt ∈ Ft−1 satisfying mem- F̂DP
pL-RAI

(t) ≤ α, we have mem-FDR(t) ≤ α for all t.

(b) Given a predictable sequence {λt}∞t=1, for αt ∈ Ft−1 satisfying mem- F̂DP
pS-RAI

(t) ≤ α, we have: (i)

E
[
mem- F̂DP

pS-RAI
(t)

]
≥ E [mem-FDP∗(t)] where mem-FDP∗(t) is defined in (11), and (ii) mem-FDR(t) ≤ α

for all t.

We omit the proofs of Theorem B.4 and Proposition B.5, as they follow analogous reasoning and use identical techniques to
those previously demonstrated.
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B.5. Connection to Existing Methods in GAI under Independence

In this section, we demonstrate the FDR control with independent e-values, and compare the e-GAI framework with the
GAI methods, highlighting that e-GAI is a unified framework.

When working with independent e-values, the correlation between the number of false rejections and the total number of
rejections can be analyzed using the leave-one-out technique (Ramdas et al., 2018, Lemma 1), which ensures the control of
FDR. This property is formalized as follows, paralleling Theorem 3.1 in the independent situation.

Theorem B.6. Suppose online e-values are valid in (2), and the null e-values are independent of each other and of the
non-nulls. Under independence, let the oracle e-value-based estimate of FDP be given as

FDP∗
e-ind(t) =

∑
j∈H0(t)

αj

Rt ∨ 1
. (14)

If E [FDP∗
e-ind(t)] ≤ α and {αt} is a monotone function of δt−1 for all t, then FDR(t) ≤ α for all t.

Proof. To control online FDR, we have

FDR(t) =E

[∑
j∈H0(t)

δj

Rt ∨ 1

]
= E

∑
j∈H0(t)

1

{
ej ≥ 1

αj

}
Rt ∨ 1

 = E

 ∑
j∈H0(t)

E

1
{

1
ej

≤ αj

}
Rt ∨ 1

| Fj−1


(i)

≤E

 ∑
j∈H0(t)

E
[

αj

Rt ∨ 1
| Fj−1

] = E

[∑
j∈H0(t)

αj

Rt ∨ 1

]
≤ α,

where the inequality (i) uses the transformation from e-values into p-values and the leave-one-out technique as in the
(Ramdas et al., 2017, Lemma 1) and (Ramdas et al., 2018, Lemma 1) due to the independence. Thus we finish the whole
proof.

Theorem B.6 builds a bridge between our framework and previous methods based on p-values in prior works introduced in
Section 2.2. Specifically, we established the connection between e-LORD and LORD, as well as between e-SAFFRON and
SAFFRON, respectively.

e-LORD & LORD++. Within the e-GAI framework, we can overestimate FDP∗
e-ind(t) in (14) by F̂DP

LORD

e-ind (t) :=∑t
j=1 αj

Rt∨1 , same as F̂DP
LORD

(t) in (4), in the independent scenario. Then the process of generating testing levels {αt} by

LORD++ (Ramdas et al., 2017) can be regarded as the e-LORD algorithm, as it satisfies the condition F̂DP
LORD

e-ind (t) ≤ α.
Therefore, LORD++ can be included within the e-GAI framework.

Furthermore, we can show the equivalence between e-LORD and LORD++. On the one hand, when the independent
e-values {et} are available at each time, then 1/et is a valid p-value by (23) in Appendix B.7, and applying LORD++ to
{1/et} is equivalent to applying e-LORD to {et}, wherein the testing levels {αt} for e-LORD are derived following the
LORD++ procedure (Ramdas et al., 2017), i.e.,

αLORD++
t = γtW0 + (α−W0) γt−τ1 + α

∑
j:τj<t,τj ̸=τ1

γt−τj , (15)

where W0 > 0 is the initial α-wealth, τt is the time of the t-th rejection and {γt} is pre-specified non-negative sequence
summing to one.

On the other hand, when the independent p-values {pt} are available instead, then 1{pt ≤ αt}/αt is a valid e-value. This is
because

E
[
1{pt ≤ αt}

αt
| Ft−1

]
≤ 1

due to the conditionally super-uniform property of pt. Define et = 1{pt ≤ αt}/αt and applying LORD++ to {pt} is
equivalent to applying e-LORD to {et} with the testing levels {αt} generated in the same manner as LORD++ (Ramdas

16



e-GAI: e-value-based Generalized α-Investing for Online False Discovery Rate Control

et al., 2017). To prove it, denote δpt = 1{pt ≤ αp
t } and δet = 1{et ≥ 1

αe
t
} respectively to easily distinguish. It can be readily

verified that δp1 = δe1. Suppose for all j ≤ t − 1, we have δpj = δej . Then for time t, αp
t = αe

t are both generated by the
same LORD++ algorithm in (15) and hence we omit the superscript. If δpt = 1, it follows that pt ≤ αt, which implies that
et = 1/αt and consequently δet = 1. Conversely, if δpt = 0, it also holds that δet = 0. The proof can then be concluded
through recursive reasoning.

e-SAFFRON & SAFFRON. It is natural to derive the relationship between e-SAFFRON and SAFFRON. In the

independent scenario, we can overestimate FDP∗
e-ind(t) in (14) by F̂DP

SAFFRON

e-ind (t) :=
∑t

j=1 αj
1{ej<1/λ}

1−λ

Rt∨1 , same as

F̂DP
SAFFRON

(t) in (5) when pt = 1/et. Therefore, the process of generating testing levels {αt} by SAFFRON (Ramdas

et al., 2018) can be regarded as the e-SAFFRON algorithm as it satisfies F̂DP
SAFFRON

e-ind (t) ≤ α.

However, the conclusion on the equivalence between e-SAFFRON and SAFFRON differs from that between e-LORD
and LORD++. When the independent e-values {et} are available at each time, applying SAFFRON to valid p-values
{pt = 1/et} is equivalent to applying e-SAFFRON to {et}, wherein the testing levels {αt} for e-SAFFRON are derived
following the SAFFRON procedure (Ramdas et al., 2018), i.e.,

αSAFFRON
t = min

λ,W0γt−C0+
+ ((1− λ)α−W0) γt−τ1−C1+

+
∑
j≥2

(1− λ)αγt−τj−Cj+

 . (16)

Here λ ∈ (0, 1) is a user-chosen parameter and Ci+(t) =
∑t−1

j=τi+1 1{pj ≤ λ}.

The situation changes when the independent p-values are available. In addition to the conditions of independence, if the
p-values further satisfy the conditionally uniformly distributed in (1), then there are no valid e-values in (2) such that
applying SAFFRON to {pt} is equivalent to applying e-SAFFRON to those e-values, wherein the testing levels {αt} for
e-SAFFRON are derived following the SAFFRON procedure (Ramdas et al., 2018). We demonstrate it by contradiction.
Suppose there exists valid e-values {et} with et = f c(pt) such that applying SAFFRON to {pt} is equivalent to applying
e-SAFFRON to {et}, wherein the testing levels {αt} for e-SAFFRON are derived following the SAFFRON procedure in
(16). Since the p-values are conditionally uniformly distributed, the p-values are also continuously distributed. Note that the
p-values play three different roles in the SAFFRON algorithm: rejection if pt ≤ αt, candidate if α < pt ≤ λ, and inclusion
in the estimate of FDP∗ if pt > λ. Correspondingly, the e-values f c(pt) satisfy f c(pt) ≥ 1/αt if pt ≤ αt, f c(pt) ≥ 1/λ if
α < pt ≤ λ, and f c(pt) < 1/λ if pt > λ. By the above assumptions, we have

E [f c(pt)] =

∫
f c(p)1{p ≤ αt}dp+

∫
f c(p)1{αt < p ≤ λ}dp+

∫
f c(p)1{p > λ}dp

≥
∫

1

αt
1{p ≤ αt}dp+

∫
1

λ
1{αt < p ≤ λ}dp+

∫
f c(p)1{p > λ}dp

≥1 +

∫
1

λ
1{αt < p ≤ λ}dp

>1

with αt generated by SAFFRON, which contradicts the assumption that f c(pt) is a valid e-value. In summary, there are no
valid e-values transformed by p-values that also serve the three roles accordingly in e-SAFFRON. This conclusion implies
that there may be a loss of power when testing by e-values compared to using p-values in the independent case.

B.6. Alternative Expressions of e-LORD & e-SAFFRON

In this section, we provide alternative expressions of e-LORD and e-SAFFRON, respectively. These expressions may aid in
better understanding the dynamics of the allocation process and how the e-LOND algorithm can be considered as a special
case within the e-GAI framework with design ωt from a given sequence {γt}.

e-LORD. Recall the e-LORD algorithm updates testing levels as α1 = αω1 and for t ≥ 2:

αt = ωt

α−
t−1∑
j=1

αj

Rj−1 + 1

 (Rt−1 + 1), (17)

17



e-GAI: e-value-based Generalized α-Investing for Online False Discovery Rate Control

where ω1, . . . , ωt ∈ Ft−1 are the allocation coefficients, updated as in (9). By recursion and calculation, (17) can be
simplified to

αt = α(Rt−1 + 1)ωt

t−1∏
j=1

(1− ωj). (18)

e-SAFFRON. We follow the same routine as above. Recall the e-SAFFRON algorithm updates testing levels as α1 =
α(1− λ)ω1 and for t ≥ 2:

αt = ωt

α(1− λ)−
t−1∑
j=1

αj1
{
ej <

1
λ

}
Rj−1 + 1

 (Rt−1 + 1), (19)

where ω1, . . . , ωt ∈ Ft−1 are the allocation coefficients, updated as in (9). By recursion and calculation, (19) can be
simplified to

αt = α(1− λ)(Rt−1 + 1)ωt

t−1∏
j=1

(1− ωj1 {ej < 1/λ}) . (20)

(18) and (20) provide an alternative perspective for understanding the allocation process. In addition to the item regarding
the number of previous rejections, the remaining items focus on the process of wealth allocation, in which the total wealth α
is dynamically allocated by ωt and the prior allocation coefficients {ωj}t−1

j=1.

B.7. Construction of Online e-values

In this section, we offer useful suggestions about the construction of valid e-values that can be applied to the online setting.
Recall that a non-negative variable et is a valid online e-value if it satisfies the conditional validity property:

E[et | Ft−1] ≤ 1 if θt = 0.

Likelihood ratio e-values. Assume that the null conditional distribution F0,t|Ft−1
is known for all t and denote the

corresponding density function f0,t|Ft−1
. At each time t, the conditional distribution Ft|Ft−1

and the corresponding density
ft|Ft−1

are unknown, and we can estimate ft|Ft−1
using parametric or nonparametric methods. Then we can construct the

likelihood ratio e-value as

et =
f̂t|Ft−1

(xt)

f0|Ft−1
(xt)

(21)

for each time t. The e-value et in (21) is valid since

E [et | Ft−1] =

∫
f̂t|Ft−1

(xt)

f0|Ft−1
(xt)

f0|Ft−1
(xt)dxt =

∫
f̂t|Ft−1

(xt)dxt = 1.

p-value-based e-values. In case the p-values associated with each hypothesis are available, it is possible to convert them
to e-values using a ‘p-to-e calibrator’ (Shafer et al., 2011), albeit with possible power loss (Vovk & Wang, 2021). A ‘p-to-e
calibrator’ is a decreasing function f c : [0, 1] 7→ [0,∞], such that

∫ 1

0
f c(s)ds = 1. Then we can construct the p-value-based

e-value as
et = f c(pt) (22)

for each time t, where pt is the corresponding p-value. The e-value et in (22) is valid as long as the p-value pt is
conditionally super-uniformly distributed under the null. Note that the choices for f c vary. For example, we can simply take
f c(s) = ηsη−1 for some η ∈ (0, 1) (Shafer, 2021; Vovk & Wang, 2021).

Note that an e-value et can be naturally transformed into a p-value pt by pt = min{1/et, 1}. This is because

P(pt ≤ u | Ft−1) ≤ P(et ≥ 1/u | Ft−1) ≤ uE[et | Ft−1] ≤ u (23)

for all u ∈ (0, 1) by Markov’s inequality.
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(a) ω1 = 0.001
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(b) ω1 = 0.005
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(c) ω1 = 0.01

0.01

0.02

0.03

0.04

0.05

0.0 0.1 0.2 0.3 0.4 0.5
ψ

F
D

R

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
ψ

P
ow

er

φ0 φ1 φ2 φ3 φ4 φ5

(d) ω1 = 0.05

Figure 4. Empirical FDR and power with standard error versus ψ for e-LORD, with ρ = 0.5, L = 30, µc = 3 and π1 = 0.2. The
φ0, φ1, . . . , φ5 methods correspond to φ = 0, 0.1, . . . , 0.5, respectively. The parameter configuration (ω1 = 0.005, ϕ = 0.5, φ = 0.5)
yielded the most favorable performance.

C. Additional Simulation Results
C.1. Simulation: FDR control

In this section, we investigate the impact of different parameters on the performance of our proposed method and, based on
our findings, provide recommendations for appropriate parameter choices. Simulation results under other settings are also
present to show the performance of e-LORD, e-SAFFRON, pL-RAI, pS-RAI and other algorithms.

Updating ωt with different parameters ω1, φ, ψ. To investigate the performance of e-GAI with varying parameters
ω1, φ, ψ, we conduct a series of experiments on e-LORD, e-SAFFRON (λ = 0.1), pL-RAI and pS-RAI (λ = 0.1), following
the settings outlined in Section 5.1, with α = 0.05, ρ = 0.5, L = 30, µc = 3, and π1 = 0.2.

We vary ω1, φ, and ψ, comparing the performance of the e-LORD, e-SAFFRON, pL-RAI, and pS-RAI under various
parameter settings. Figures 4 to 7 show the results of e-LORD, e-SAFFRON, pL-RAI, and pS-RAI with different parameters,
respectively. As shown in Figures 4 to 7, the e-LORD, e-SAFFRON, pL-RAI, and pS-RAI algorithms successfully achieve
FDR control across all settings, which aligns with the theoretical guarantees. The power of the algorithm is affected by
variations in the parameters ω1, φ, ψ. When ω1 = 0.005, φ = ψ = 0.05, all of e-LORD, e-SAFFRON, pL-RAI, and pS-RAI
demonstrate high statistical power. Therefore, the parameter settings are chosen as ω1 = 0.005, φ = ψ = 0.05 in our
experiments.

Using different constant parameter λ in e-SAFFRON & pS-RAI. To evaluate the performance of e-SAFFRON and
pS-RAI with different values of λ, we adopt the same experimental settings as described in Section 5.1.

Figure 8 show the results of e-SAFFRON and pS-RAI with different λ. As illustrated in Figure 8, both e-SAFFRON and
pS-RAI maintain FDR control across all different values of λ, which is consistent with the theoretical guarantees. It is
evident that when λ = 0.1, both the e-SAFFRON and pS-RAI algorithms attain the highest statistical power. Therefore, we
recommend setting λ = 0.1 as the default value when applying the e-SAFFRON and pS-RAI algorithms.

Setting different correlation parameter ρ. To assess the performance of e-LORD, e-SAFFRON, pL-RAI and pS-RAI
under varying levels of dependence, we adopt the same experimental settings as described in Section 5.1, and compare them
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Figure 5. Empirical FDR and power with standard error versus ψ for e-SAFFRON, with λ = 0.1, ρ = 0.5, L = 30, µc = 3 and π1 = 0.2.
The φ0, φ1, . . . , φ5 methods correspond to φ = 0, 0.1, . . . , 0.5, respectively. The parameter configuration (ω1 = 0.005, ϕ = 0.5, φ =
0.5) yielded the most favorable performance.
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Figure 6. Empirical FDR and power with standard error versus ψ for pL-RAI, with ρ = 0.5, L = 30, µc = 3 and π1 = 0.2. The
φ0, φ1, . . . , φ5 methods correspond to φ = 0, 0.1, . . . , 0.5, respectively. The parameter configuration (ω1 = 0.005, ϕ = 0.5, φ = 0.5)
yielded the most favorable performance.
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Figure 7. Empirical FDR and power with standard error versus ψ for pS-RAI, with λ = 0.1, ρ = 0.5, L = 30, µc = 3 and π1 = 0.2. The
φ0, φ1, . . . , φ5 methods correspond to φ = 0, 0.1, . . . , 0.5, respectively. The parameter configuration (ω1 = 0.005, ϕ = 0.5, φ = 0.5)
yielded the most favorable performance.
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(a) e-SAFFRON
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Figure 8. Empirical FDR and power with standard error versus proportion of alternative hypotheses π1 for e-SAFFRON and pS-RAI, with
ρ = 0.5 and µc = 3. The λ1, λ2, . . . , λ5 methods correspond to λ = 0.1, 0.2, . . . , 0.5, respectively. The parameter λ = 0.1 yielded the
most favorable performance.
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Figure 9. Empirical FDR and power with standard error versus proportion of alternative hypotheses π1 for e-LORD, e-SAFFRON,
e-LOND, pL-RAI, pS-RAI, LORD++, SAFFRON and SupLORD, with varying ρ and fixed µc = 3. Our pL-RAI and pS-RAI consistently
outperform LORD++ and SupLORD, whereas SAFFRON fails to control FDR when ρ is large and π1 is small.

with e-LOND, LORD++, SAFFRON and SupLORD.

Figure 9 show the results of various methods with varying ρ when µc = 3. The performance of each method is similar to
that in the main body. For e-value-based methods, irrespective of the correlation parameter ρ, e-LORD, e-SAFFRON, and
e-LOND successfully achieve FDR control. Moreover, e-LORD and e-SAFFRON exhibit substantially higher statistical
power than e-LOND across all settings by dynamically updating the testing levels, leading to more effective discoveries.
For p-value-based methods, as shown in Figure 9, SAFFRON exhibits FDR inflation under such conditions. Besides, our
pL-RAI and pS-RAI always gain higher power than LORD++ and SupLORD. In the independence case (ρ = 0), each
method successfully maintains FDR control empirically, as guaranteed by their theoretical results.

C.2. Simulation: mem-FDR control

We consider a new experimental setup where the samples follow a time-varying auto-regressive AR(1) model. For each time
t, Xt = ρtXt−1 + µt + εt with εt

i.i.d.∼ N (0, 1), where the auto-regressive coefficient ρt = 2

1+exp
(
−η(t−t0)

) − 1 ∈ (−1, 1).

We set η = 0.01 and t0 = T/2. We aim to test whether there is a positive drift and the null hypothesis takes Ht : µt = 0 for
each time t ∈ [T ]. The true labels θt is generated from Bernoulli(π1) and the positive drift µt = µc > 0 if θt = 1. Note
that the correlation coefficient ρt between adjacent samples varies over time, resulting in a complex correlation structure.

We compare the performance of mem-e-LORD, mem-e-SAFFRON, mem-pL-RAI and mem-pS-RAI with mem-LORD++
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Figure 10. Empirical mem-FDR and mem-Power with standard error versus proportion of alternative hypotheses π1 for mem-e-LORD,
mem-e-SAFFRON, mem-LORD++, mem-pL-RAI and mem-pS-RAI with µc = 3, 4, at T = 10000, 20000. All procedures maintain
FDR control. Our e-GAI and RAI methods exhibit superior mem-power than mem-LORD++ when µc or π1 is small.

at T ∈ {10000, 20000} with different proportions of alternative hypotheses π1 and strengths of signals µc. We utilize the
AR(1) model and the normal distribution of noise to calculate e-values and p-values that satisfy (2) and (1), respectively.

As shown in Figure 10, all methods successfully control the mem-FDR. Our procedures perform well over long-term testing
periods, especially with sparse alternatives. In such cases, these algorithms achieve higher mem-Power than mem-LORD++.
The mem-Power refers to the decaying memory power in (Ramdas et al., 2017), defined as

mem-Power(t) := E

[∑
j /∈H0(t)

dt−jδj∑
j /∈H0(t)

dt−j

]
.

C.3. More results for Real Data: NYC Taxi Anomaly Detection

We adjust α = 0.2 and apply pL-RAI, pS-RAI, SAFFRON, LORD++, and SupLORD here to analyze this dataset. We
construct two-sided Gaussian p-values by estimating the mean and variance from the residuals.

We compare their performance in terms of the proportion of discoveries out of marked anomalous regions, denoted here as
F̂DP and the number of discovered anomalous regions in Table 5. We observe that the F̂DP of LORD++ and SAFFRON far
exceeds the testing level α = 0.2 and SupLORD slightly exceeds α. Meanwhile, pL-RAI and pS-RAI effectively maintain
F̂DP below the target level. As illustrated in Figure 11, pL-RAI and pS-RAI identify many points within the anomalous
regions.

Table 5. Proportion of points rejected out of anomalous regions.

Method pL-RAI pS-RAI LORD++ SAFFRON SupLORD

F̂DP 0.197 0.195 0.261 0.361 0.217
Num Discovery 201 259 257 595 406
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Figure 11. Anomaly points detected by pL-RAI, pS-RAI, LORD++, and SupLORD. Rejection points of all procedures are marked by
dark blue points. Red regions refer to known anomalies. The testing level is chosen as 0.2.
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