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ABSTRACT

Program translation contributes to many real world scenarios, such as porting
codebases written in an obsolete or deprecated language to a modern one or re-
implementing existing projects in one’s preferred programming language. Exist-
ing data-driven approaches either require large amounts of training data or neglect
significant characteristics of programs. In this paper, we present IPTR for interac-
tive code translation retrieval from Big Code. IPTR uses a novel code representa-
tion technique that encodes structural characteristics of a program and a predictive
transformation technique to transform the representation into the target program-
ming language. The transformed representation is used for code retrieval from
Big Code. With our succinct representation, the user can easily update and correct
the returned results to improve the retrieval process. Our experiments show that
IPTR outperforms supervised baselines in terms of program accuracy.

1 INTRODUCTION

Numerous programs are being developed and released online. To port codebases written in obsolete
or deprecated languages to a modern one (Lachaux et al., 2020), or to further study, reproduce and
apply them on various platforms, these programs require corresponding versions in different lan-
guages. In cases when developers do not make the translation efforts themselves, third-party users
have to manually translate the software to their needed language, which is time consuming and error
prone because they have to be the expert in both languages. Also, hard-wired cross-language com-
pilers still require heavy human intervention for adaptation and are limited between some specified
types of programming. In this paper, we discuss the potentials of data-driven methods that exploit
existing big code resources to support code translation. The abundance of open source programs on
the internet provides opportunities for new applications, such as workflow generation (Derakhshan
et al., 2020), data preparation (Yan & He, 2020), and transformation retrieval (Yan & He, 2018).
Code translation is another application that is gaining attention (Lachaux et al., 2020).

Data-driven program translation. Inspired by natural language translation, one line of approaches
trains a translation model from large amounts of code data either in a supervised (Nguyen et al.,
2013; 2015; Chen et al., 2018) or weakly-supervised fashion (Lachaux et al., 2020). Supervised
approaches require a parallel dataset to train the translation model. In parallel datasets, programs
in different languages are considered to be “semantically aligned”. Obtaining the parallel datasets
in programming languages is hard because the translations have to be handwritten most of the time.
Besides massive human efforts, it is also a tricky problem to extract general textual features that
apply to every programming language. A recent weakly-supervised method (Lachaux et al., 2020)
pretrains the translation model on the task of denoising randomly corrupted programs and optimizes
the model through back-translation. However, this method still relies on high-quality training data.
Further, all these approaches directly reuse NLP approaches that neglect the special features of
programming languages. Another potential approach is to use a retrieval system to obtain translation
candidates directly from Big Code, which refers to well-maintained program repositories. However,
existing code retrieval systems, such as Sourcerer (Linstead et al., 2009), lack the proper capabilities
for code-to-code search and cross-language code retrieval. These methods ask users to give feedback
on several preset metrics and questions (Wang et al., 2014; Dietrich et al., 2013; Martie et al., 2015;
Sivaraman et al., 2019). None of these methods is tailored to cross-language retrieval.
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In this paper, we propose an interactive program translation retrieval system IPTR based on a novel
and generalizable code representation that retains important code properties. The representation not
only encodes textual features but structural features that can be generalized across all imperative
programming languages. We further propose a query transformation model based on autoencoders
to transform the input program representation to a representation that has properties of the target lan-
guage. Due to the succinct form of our code representation, IPTR can adapt the original query based
on user annotations. This methodology can compete with existing statistical translation models that
require a large amount of training data. In short, we make the following main contributions:

• We propose IPTR, an interactive cross-language code retrieval system with a program feature
representation that additionally encodes code structure properties.

• We further propose a novel query transformation model that learns a refined code representation
in the target language before using it for retrieval. This model can be trained in an unsupervised
way but also improved through active learning.

• Based on our succinct code representation, we propose a user feedback mechanism that enables
IPTR to successively improve its results.

2 SYSTEM OVERVIEW

We propose IPTR, an interactive cross language code retrieval system that supports program trans-
lation on multiple programming languages.

Problem Definition. Given a piece of source program Ps written in language Ls, a selected target
language Lt, and a large program repository Dp = {P1, P2, ..., Pn}, the goal is to find the best
possible translation Pt of Ps in Lt from Dp. The problem is to design an effective program feature
representation that generalizes to many languages and can be updated through user feedback.

Figure 1: IPTR overview

Our solution: IPTR The workflow of IPTR is shown in Figure 1.
IPTR first constructs a succinct but informative feature representation
for input programs (Section 3.1). Since the target is to identify a similar
program in the target language, IPTR then applies a query transforma-
tion model (QTM) to transform this representation into an estimated
feature representation of the translation (Section 3). The transforma-
tion model is trained in an unsupervised manner but can also be up-
dated dynamically through active learning (Section 3.2.2). Finally, this
new representation will be used as a query to retrieve the program that
has similar features from the database. In addition, as an interactive
system, IPTR allows the user to give feedback on the retrieved transla-
tion (Section 4). The user can either accept the result or make correc-
tions. Based on our structured and informative feature representation,
IPTR can easily and quickly adapt the query based on raw user cor-
rections. Then with the new query, it may identify a more appropriate
translation candidate in the second retrieval attempt.

3 PROGRAM REPRESENTATION

To retrieve a promising program translation from a large code database, IPTR needs an effective
and efficient query. Directly retrieving based on raw code is impractical. In contrast to existing
methods that generate queries based on either keywords (Linstead et al., 2009) or preset metrics and
questions (Martie et al., 2015), IPTR generates a feature representation that effectively combines
structural properties of the program and textual features. It further uses a query transformation
model (QTM) to generate features in the target language.

3.1 BASIC ENCODING OF PROGRAM STRUCTURE AND TEXT

Due to the special and non-trival structure of programming languages compared to natural lan-
guages, we take both structural and textual features into consideration. The structural features of
a program can be represented by its syntax tree where each tree node denotes a code construct.
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Figure 2: Program representation

One can also use control flow graph (CFG) that captures the dependence between code basic blocks
and procedures to represent the code behavior. However, our goal is to support program transla-
tion for any granularity of program, code behavior is hard to measure when the code fragment is
not a complete code block. Further CFG is much more difficult to construct than syntax trees. As
syntactical similarity also plays a significant role, we pick syntax trees as the basis of our represen-
tation to also capture the low-level syntactic structure within code blocks. One can also combine
CFG and syntax trees to reserve more information. However this would trade-off the simplicity of
the retrieval query. We show that with analysis of the static AST features we already achieve high
program accuracy. The syntax tree can be either a concrete syntax tree (CST) or an abstract syntax
tree (AST) (Alon et al., 2018; 2019; Chen et al., 2018). A CST depicts nodes with complete struc-
tural information, such as all the tokens in the code while the AST is more abstract and only displays
structural or content-related details. For more details on CSTs and ASTs, we provide examples in
the Appendix A.2.

As the CST is quite verbose and the AST does not generalize to multiple languages, we fall back
on the low-level CST as a basis, and take the philosophy of AST as an inspiration to construct a
unified abstract representation. Specifically, IPTR first simplifies the CST by removing semantically
repetitive nodes such as equalityExpression and == and intermediate nodes and generates a
more simplified but still informative syntax tree. As shown in Figure 2, a piece of Javascript code is
first converted into a simplified syntax tree (details of simplifying CST are shown in Appendix A.2).
Inspired by prior work (Alon et al., 2018), IPTR further simplifies it by extracting a set of one-
dimensional paths that connect the program elements of the two-dimensional tree. Our method
abstracts these paths by only keeping the three nodes that enclose the most critical information on
a path: for each pair of leaf-nodes in the CST, IPTR keeps the nodes with their values and the root
node of the statement. It drops all other intermediate nodes on this path. The extracted abstract
paths of the JavaScript Program example are also shown in Figure 2. By simply matching nodes
with similar names from different languages, IPTR can classify these paths into different types and
generalize them to multiple programming languages. Thus, the structural feature of a program can
be succinctly represented by the different types of paths p1, p2, ..., pj it contains.

To additionally incorporate textual features, IPTR treats extracted paths as plain text and keeps
all the text tokens t1, t2, ..., tk appearing in each extracted path to generate text features. Fi-
nally, we can use these tokens (textual features) together with different types of paths (struc-
tural features) illustrated above as feature elements of programs. For each input program, we
generate a feature vector consisting of the feature element frequencies in that program. Let f
be the occurrence frequency of feature elements, then the final feature representation will be
[fe1 , fe2 , ..., fen ] = [fp1 , fp2 , ..., fpnp

, ft1 , ft2 , ..., ftnt
]. In our experiment, the number of different

path types is about 5,000 on average for each language pair. The number of tokens can be restricted
by a hyper-parameter max vocab to trade off effectiveness and efficiency. Our default setting is
10,000. These elements can also be used as index keys to filter the database, and by calculating the
similarity of feature vectors IPTR can retrieve the most similar program in target language, which
is the translation candidate. Noted that we simplify the feature representation presented here due to
space limitation. In actual IPTR, we also consider the dependencies between structural and textual
features. In contrast to existing work (Cheng et al., 2016; 2017) that suggests to extract all the text
from a program and treat it in isolation, IPTR considers textual features in strong dependency with
the structural features to leverage more context from the structure. For the sake of simplification
and to avoid computation overhead, IPTR only processes text that appears in the extracted paths. In
this way, IPTR can run an efficient hierarchical retrieval mechanism: first calculating the structural
similarity, then comparing the textual similarity in each common path type. We show the details of
our comprehensive feature representation in Appendix A.3.
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3.2 QUERY TRANSFORMATION MODEL

We can directly use the feature vector described in Section 3.1 as a query to retrieve translation can-
didate. However, the feature vector will still fail to accommodate some cross languages hurdles. For
example, C# supports goto statement while its Java translation has to use break or continue
with label instead of goto. In this case, IPTR cannot directly use the features of C# program to
retrieve its Java translation. The result can be improved if the retrieval can be conducted based on the
features of the translation. While translation of a complete program is our original problem and hard
to solve, we propose a query transformation model (QTM) that solves a smaller problem. QTM
transforms the original query (feature vector of the input program) into an optimized query (esti-
mated feature vector of the translation). While the estimated feature vector is not a full program it
is a better estimate for finding the correct program in the database.

3.2.1 MODEL DESCRIPTION

Figure 3: Query transformation model (QTM)

As shown on the left of Figure 3, in the on-
line phase, to translate from language Ls to lan-
guage Lt, IPTR extracts the features as Fs of
a program from source language Ls and feeds
it into the QTM. In the QTM, a one layer en-
coder (red in Figure 3) maps the original feature
vector to a low dimensional latent space and pro-
duces a shorter hidden vector H . Then H is re-
constructed to the estimated translation feature
vector Ft by a one layer decoder (yellow in Fig-
ure 3). Ft will be used as query to retrieve po-
tential translation in target language Lt.

Since there is no available training data for
QTM, we leverage an unsupervised method - au-
toencoder (AE) to train the encoder and the de-
coder. An AE is an encoder-decoder that aims to reproduce its input. That is, it encodes the input to a
hidden vector, then reconstructs the input from this hidden vector. In IPTR, we exploit this property
to learn the weights of the encoders and decoders separately. As shown on the right of Figure 3, in
the offline phase, for each programming language Li in the database IPTR trains a separate AEi on
all programs that are written in this language. Thus it obtains a pair of Encoderi and Decoderi for
each programming language. For the actual translation task, we combine the appropriate encoder
and decoders depending on the source and target language of a translation task. We can see in the
QTM in Figure 3, it selects the encoder Encoders of the source language Ls from AEs, which is
trained in offline phase, to transform Fs into the hidden layer representation. And it picks the trained
decoder Decodert of the target language Lt from AEt to estimate the Ft. This way, we can build
a pretrained model with an encoder that learns significant information from the feature vector of the
input program and an decoder that can generate features of its translation.

3.2.2 SAMPLING STRATEGIES FOR ACTIVE LEARNING

To make the QTM more suitable for specific real-world code data, we also design an active learning
mechanism to enable the user to fine-tune the mixed encoder model. As shown in Figure 1, during
each translation retrieval, the most useful programs are selected with a sampling strategy for user la-
beling. IPTR will ask the user to give the correct translation as its label. We propose an aggregation
of four sampling strategies to approximately measure the informativeness of the given program as
following (We take program A that contains a set of feature elements {e1, e2, ...} as an example):

1. Coverage sampling. It picks the programs that cover more different feature elements, which
may reveal more information. We consider over half of the average feature elements amount as
high coverage. In a database, if the average amount of feature elements contained in a program
is λ and program A contains more than λ/2 different feature elements, it is a qualified sample.

2. Rarity sampling. Rarity sampling considers programs with rare feature elements, i.e. programs
that contain features that appear in at most ε% of the database programs. For example, if feature
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element e1 from program A appears in x% (x < ε) of the database programs, A is a qualified
sample.

3. Uncertainty sampling. Uncertainty sampling picks retrieved programs with low certainty, i.e.,
lower similarity score than 75%. For example, if program B is the top retrieved translation of
program A, but their similarity score is 50%, which is lower than 75%, program A is a qualified
sample.

4. Random sampling. It randomly selects a program for labeling (Zhu et al., 2007).

After running the above four sampling strategies for an input program, IPTR employs query-by-
committee method to aggregate the results. With this approach, we make sure to have incorporated
a diverse set of characteristics that might be relevant for sampling. The final decision is made by
selecting program data where the largest disagreement occurs among those sampling strategies.The
level of disagreement of a program x can be measured by vote entropy V E (Dagan & Engelson,
1995):

V E(x) = −V (x)

Ns
log

V (x)

Ns
− Ns − V (x)

Ns
log

Ns − V (x)

Ns
(1)

V (x) is the number of sampling strategies that select/vote x as valuable sample. Ns is the number
of sampling strategies, which equals 5 in our case. Programs with higher vote entropy are returned
as samples. After a task was successfully completed a new label can be stored for the QTM at hand.

4 QUERY ADAPTION BASED ON USER FEEDBACK

IPTR can also adapt a query based on user’s feedback on returned results to improve the query. Ex-
isting interactive code retrieval methods ask the user to give feedback on the preset metrics and ques-
tions (Nie et al., 2016; Sivaraman et al., 2019). On contrary, IPTR directly leverages user’s correc-
tions to the retrieved results as feedback circumventing the efforts needed to pose the right questions.
The simplest form of using the user corrections is to just use the feature vector of the corrected pro-
gram. However, we also can make use of the fact that user corrections lead to manually curated fea-
tures. To reflect this in our feature representation, we extend it with a weighting scheme. As shown
in Figure 4, we obtain a new feature representation R, where each element consists of a feature ele-
ment fei and its weight wi. The initial weights are uniform. After the user makes corrections to the
result, IPTR featurizes the correction the same way and compares it with the original code to gener-
ate the weights. We classify corrections into three categories and the weights are tuned accordingly:

Figure 4: User feedback mechanism

• Emphasize. If the correction increases feature element fei
that already exists in R, the weight of fei will be increased.

• Add. If the correction adds feature element fei that does not
exist in R, fei and its initial weight wi will be added into R.

• Delete. If the correction decreases feature element fei in R,
its weight wi will also be decreased.

Then the feature representation is updated and used for a new
round of retrieval. When calculating the similarity between
query and instance in database, we consider an instance is bet-
ter if it has higher similarity in features with high weights. We
show an example of user feedback in Appendix A.4.

5 EXPERIMENTS

In this section, we first compare different variations of IPTR with existing work from data-driven
program translation and code search. We further evaluate IPTR’s performance for different lan-
guages and discuss the user feedback. In addition, we also conduct an experiment on a large real-
world dataset without ground truth to show the practicality of IPTR. This experiment is shown in
Appendix A.5. All our experiments are conducted on a PC with an Intel Xeon E5-2650 v2 2.60GHz
CPU and an NVIDIA Tesla K40m GPU.
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Dataset. Datasets with ground truth are generally scarce. We run our experiments on the parallel
dataset used in previous work with ground truth on Java to C# translations (Nguyen et al., 2013;
2015; Chen et al., 2018) and the dataset GeekforGeeks provided by Lachaux et al. (2020). The
former was built based on several authoritative open source projects, such as Lucene, ANTLR,
and JGit, which have both official Java and C# versions that have been correctly aligned to 39.797
matched methods. The latter gathered and aligned 698 coding problems and their solutions in several
programming languages. We train the AEs of QTM on a database generated from the Public Git
Archive (PGA) - a database with more than 260,000 top bookmarked Git repositories (web, c). We
cleaned the dataset beforehand by gradually removing duplicates at file level, and files that cannot
be successfully parsed due to format, errors, version compatibility or other issues. Finally, we obtain
a dataset with the size of 260GB. We split all the files into methods or functions.

Metric. To measure effectiveness, we use program accuracy as proposed by prior work (Nguyen
et al., 2015; Chen et al., 2018). Each time, we pick one program from the dataset and try to retrieve
its translation from the database. Program accuracy is the percentage of the retrieved translations
that are exactly the same as the ground truth in the dataset. Note that, it is an underestimation of
the true accuracy based on semantic equivalence. That is, program and its translation should have
the same functionality, but minor differences, such as variable names and writing habits, can be
tolerated. Since we use a parallel dataset for evaluation, we can directly use the ground truth.

5.1 COMPARISON WITH BASELINES

We compare IPTR with four program translation baselines (1pSMT (Nguyen et al., 2013),
mppSMT (Nguyen et al., 2015), Tree2tree (Chen et al., 2018), TransCoder (Lachaux et al., 2020)),
which use a translation model to generate the results. The supervised baselines use 90% matched
method pairs as training data to predict the translations for the rest of programs. We used the openly
available implementation of Tree2tree. For TransCoder, we follow their method to pre-train the
cross-language model on the Public Git Archive dataset (30GB of Java and C# data). For the pro-
gram translation baselines 1pSMT, mmpSMT and Tree2tree, we report the results from their work
on the same dataset as their code and configurations are not available. Finally, we report the results
of two code search baselines Sourcerer (Linstead et al., 2009) and CodeHow (Lv et al., 2015)).

We generate different versions of IPTR with variations in interaction and feature representation:

• Interative versions: We discuss three different interactive versions of IPTR. All of which use
the same feature representation and the QTM module. IPTRAL+FB is the full fledges interactive
system with active learning for QTM and user feedback as described in Table 1. IPTRAL and
IPTRFB only use the active learning component or the user feedback component, respectively.

• Representions: PTR refers to the basic program translation retrieval module with the feature
vector of input program as query (Section 3.1). PTR+QTM uses the QTM module without
active learning on top of PTR. We further analyze PTRWORD2VEC and PTRCODE2VEC as two feature
representations variations of PTR based on Code2vec (Alon et al., 2019) and Word2vec (Mikolov
et al., 2013a), respectively.

Table 1 shows the results and the degree of supervision. We observe that holistic IPTR with at most
one user correction per task and optimized QTM outperforms all the baselines. The improvement in
program accuracy is ranges from 19.5% to 65.5%. As expected, the code search baselines perform
poorly because they are designed for retrieval with more accurate and detailed input than raw pro-
gram code. The results of partial components of IPTR are also encouraging. PTR and PTR+QTM,
which do not leverage any supervision, outperform the Tree2tree, which shows the effectiveness
of our program feature representation and translation retrieval methodology. Leveraging the QTM
successfully improves the result by 7.5% showing that generating features in the target language is
more promising than using features of the source language. If the QTM is trained by active learning,
the accuracy can increase by 8.5% (IPTRAL). The table also shows that the Word2vec and Code2vec
variants of PTR cannot outperform PTR with our proposed feature representation based on structural
features. Word2vec is designed for natural languages so that it can not capture the special features
of programming languages. Although Code2vec is designed specifically to represent code, their
model can only be trained within a same programming language, which makes it less suitable for
cross-language similarity comparisons.
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Table 1: Comparison of different methods on program accuracy (PA) and supervision extent

Genre Method Description PA Supervision Extent

Data-driven
program

translation

1pSMT Phrase-based SMT 24.1%
fully supervised

mmpSMT multi-phase
phrase-based SMT 41.7%

Tree2tree tree-to-tree
neural networks 70.1%

TransCoder weakly-supervised
neural translation 49.9% weakly supervised

Code search
system

Sourcerer Lucene-based code
search, free-text queries 13.5% -

CodeHow free-text queries 13.5%

Variations
of IPTR

PTR 71.1% no labels (directly
retrieve translation

with input)
PTRWORD2VEC word2vec as queries 67.7%
PTRCODE2VEC code2vec as queries 63.4%
PTR+QTM 78.6%

IPTRAL 87.1% 80 labels for QTM
IPTRFB 79.3% At most 1 correction per task

IPTRAL+FB the full system 89.6% combination of IPTRAL and IPTRFB

Table 2: Comparing program accuracy with Transcoder on GeeksforGeeks dataset

C++-Java C++-Python Java-C++ Java-Python Python-C++ Python-Java
Transcoder 3.1% 6.7% 24.7% 3.7% 4.9% 0.8%

PTR 69.2% 65.3% 70.9% 59.3% 55.4% 54.2%
PTR+QTM 76.6% 74.2% 78.1% 68.1% 59.2% 59.6%

IPTRAL 87.2% 79.5% 84.8% 72.5% 66.2% 68.8%
IPTRFB 75.9% 71.3% 76.5% 64.2% 59.5% 63.3%

IPTRAL+FB 84.8% 83.0% 90.5% 77.5% 67.8% 68.1%

We further explored the supervision impact on IPTR. In this experiment, we let the user give at most
one correction to each retrieved task. Without optimizing the QTM, IPTRFB slightly improves on
PTR+QTM. The same improvement rate can be observed when comparing IPTRAL+FB to IPTRAL,
suggesting that AL and FB have independent influence on the results. Compared to the fully super-
vised methods 1pSMT, mmpSMT and Tree2tree, IPTR leverages very limited human supervision
to achieve better results. In the first retrieval round, the user does not make correction to any wrong
results, IPTR achieves 87.1% accuracy with only 80 labels for QTM. Also the reproduced weakly
supervised approach TransCoder does not achieve better results than IPTR. Although some of the
performance loss can be contributed to the fact that our training data is not as large as they report
in their paper, we also observed that their model often generates invalid translations with regard to
grammar. For example, it often mistakes the input type of a function for different languages. This
phenomenon is also acknowledged in their own paper and can be attributed to the fact that only
textual features have been used. IPTR avoids this problem by reusing existing code.

5.2 COMPARISON ON MULTIPLE PROGRAMMING LANGUAGES

We further compare IPTR and the state-of-the-art method Transcoder on the GeeksforGeeks bench-
mark provided by Lachaux et al. (2020). It contains groundtruth for Java, Python, and C++. Ta-
ble 2 shows that the program accuracy of IPTR is significantly higher than Transcoder on their
own datasets as also reported in their own paper. This is because of two reasons: (1) Our targets
are different - Transcoder outputs machine-generated translations while IPTR directly retrieves ex-
isting programs as translation candidates, which makes IPTR always output syntactically correct
programs. (2) Transcoder generally treats programming languages as plain text and aims to generate
semantically similar programs. It does not encode the non-trival syntactical features of program-
ming languages in their model. Thus, it has difficulties in generating results exactly the same as the
ground truth. This experiment shows that IPTR is generalizable for multiple languages including
dynamic languages, such as Python. Further it shows that it is easier to find translation candidates
for grammatically similar programming languages, such as C++ and Java compared to Python as a
high-level dynamic language.
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5.3 INFLUENCE OF USER CORRECTIONS

Figure 5: Required amount of user feedback

In Table 1, we showed the influence of a single
user correction on the result. We further investigate
the number of user corrections required in order to
retrieve the correct translations. We simulate users
with the ground truth in our parallel dataset and for
each returned result we fix the first different line
between true result and returned result.

Figure 5 shows the number of required user correc-
tions to obtain the correct result for all 5.134 trans-
lation tasks that failed in the first retrieval round
and the improvement in the overall accuracy. We
observe that in most cases, IPTR only requires a
single user correction to successfully complete the
translation task. About 98% of the failed retrieval tasks can succeed after 10 user corrections. Con-
sidering the average length of an input programs is 168 lines, we can conclude that with small
amounts of user feedback the accuracy of IPTR can be significantly improved. Note that, we might
even achieve better results if we do not restrict the users to fix the first difference each time. A real
user might fix more significant errors that improve the success rate of the retrieval task. The average
response time of IPTR to each user feedback is 9.4ms using an efficient index structure.

6 RELATED WORK

Data-Driven program translation. Existing research mainly focus on building a translation model.
Nguyen et al. (2013) directly applied the phrase-based statistical machine translation (SMT) model
on the lexemes of source code to translate Java code to C#. In their follow-up work, they develop
a multi-phase, phrase-based SMT method that infers and applies both structure and API mapping
rules (Nguyen et al., 2015). But they are limited to languages that are similar on either structural or
textual level, such as Java/C#. Chen et al. (2018) binarize the code tree using left-Child right-sibling
and translate code by an LSTM-based encoder-decoder model. However, all these approaches re-
quire a large parallel dataset for training. In contrast to them, a recent work also proposes a weakly-
supervised system TransCoder (Lachaux et al., 2020). They first train a cross language model for
programming languages through predicting randomly masked words task, then acquire a pre-trained
translation model from denoising randomly corrupted program task. Finally they improve this model
through back translation. Although they do not need parallel translation data, this transfer learning
method highly relies on the similarity of the data for pre-trained. And this approach is originally
designed for natural language processing, which makes it produce results neglecting the features of
programming languages. Our code retrieval system can support program translation without paral-
lel dataset and violating the strict grammar rules of programming languages, which is a non-trivial
problem in all the above methods.

Interactive program retrieval. In addition to the Sourcerer (Linstead et al., 2009) and StackOver-
flow search engines that were discussed in the introduction, there are some other work incorporating
user interaction. Wang et al. (2014) refine query based on user’s feedback on each result and re-
order the rest ranking list. Nie et al. (2016) extract relevant feedback from StackOverflow for the
initial query and reformulate it using Rocchio expansion. Dietrich et al. (2013) utilize a novel form
of association rule mining to learn a set of query transformation rules from user feedback and use
them to improve the efficacy of future queries. Martie et al. (2015) propose CodeExchange that
uses the previous results to formulate the query so that user can find new results based on the previ-
ous characteristics. Sivaraman et al. (2019) propose an active learning system ALICE to iteratively
refine a query based on positive or negative labels. All these approaches are designed for the mono-
language setting and their queries are in natural language. IPTR performs cross language retrieval
and directly uses raw code as input. Moreover, their method asks the user to feedback on the preset
metrics and questions so that the result improvement largely depends on the subjective design from
the developer. Due to the different understandings of different users, the feedback cannot be evalu-
ated fairly and uniformly. IPTR directly uses user’s corrections to the retrieved results as feedback
and integrates an active learning based query transformation model to refine the query.
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Program representation. By constructing program representations, one can enable the application
of data processing to a wide range of programming-language tasks including program translation and
code search. Kamiya et al. (2002) and Allamanis et al. (2016) treat a program as natural language and
use the sequence of tokens as representation to detect code clones and summarize code. Allamanis
et al. (2018) present a Gated Graph Neural Network in which program elements are represented
by graph nodes and their semantic relations are edges in the graph to predict variable name and
select correct variable. These methods rely on semantic knowledge, which requires more expert
analysis and is not generalizable as the semantic analyses need to be implemented differently for
every language. A recent approach uses paths in program’s abstract syntax trees (AST) as code
representation to predict program properties such as names or expression types (Alon et al., 2018).
And they further leverage a tree-based neural network to encode these paths and generate more
abstract representations (Alon et al., 2019). Yin et al. employ neural networks to express source
code edits (Yin et al., 2019). However, these methods are not designed for translation retrieval. Some
of them are too simple to effectively represent program’s features (Kamiya et al., 2002; Allamanis
et al., 2016). Others are too abstract for users to understand intuitively, which makes it impossible
to easily interact with users (Allamanis et al., 2018; Alon et al., 2018; 2019; Yin et al., 2019). The
program representation we use as query is more structured. It is not only informative for translation
retrieval but also succinct for user interaction.

7 CONCLUSION

We presented IPTR, a novel interactive translation retrieval system that can support program trans-
lation. Different from traditional data-driven methods that train a translation model, IPTR directly
searches for the most suitable translation candidate in existing code database. We propose a pro-
gram representation based on a query transformation model that can learn a succinct but informative
feature vector to retrieve the translation of an input raw program. IPTR can easily adapt the rep-
resentation to user corrections for interactive retrieval improvements. Our experiments show that
IPTR outperforms existing solutions in terms of effectiveness and requires no training data.

Future work. One important direction is to design a convenient user interface that allows user to
make relevant corrections to translation suggestions and enable the system to converge faster to the
desired result. Another possible direction to explore is other forms of user interaction that do not
require the user to provide corrections in the target language.
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Lee Martie, Thomas D. LaToza, and André van der Hoek. Codeexchange: Supporting reformulation
of internet-scale code queries in context (T). In 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pp. 24–
35. IEEE Computer Society, 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. In 1st International Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural Informa-
tion Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States,
pp. 3111–3119, 2013b.

10



Under review as a conference paper at ICLR 2021

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Lexical statistical machine translation
for language migration. In Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, pp. 651–654. ACM, 2013.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Divide-and-conquer approach for
multi-phase statistical migration for source code (T). In 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pp.
585–596. IEEE Computer Society, 2015.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. Query expansion based on crowd
knowledge for code search. IEEE Trans. Serv. Comput., 9(5):771–783, 2016.

Aishwarya Sivaraman, Tianyi Zhang, Guy Van den Broeck, and Miryung Kim. Active inductive
logic programming for code search. In Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pp. 292–303. IEEE
/ ACM, 2019.

Shaowei Wang, David Lo, and Lingxiao Jiang. Active code search: incorporating user feedback to
improve code search relevance. In ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pp. 677–682. ACM, 2014.

Cong Yan and Yeye He. Synthesizing type-detection logic for rich semantic data types using open-
source code. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pp. 35–50. ACM, 2018.

Cong Yan and Yeye He. Auto-suggest: Learning-to-recommend data preparation steps using data
science notebooks. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pp. 1539–
1554. ACM, 2020.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt.
Learning to represent edits. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. Active learning from data streams. In
Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), October
28-31, 2007, Omaha, Nebraska, USA, pp. 757–762, 2007.

A APPENDIX

A.1 CST AND AST

Figure 6: CST and AST of a simple JavaScript program

The structure of a program can be described by a syntax tree where each tree node denotes a con-
struct occurring in the code, e.g., if stmt in Python denotes an if construct. The tree can be
either a comprehensive CST or a more abstract AST. CST is a tree representation of the gram-
mar (rules of how the program should be written). It represents the source program exactly in parsed
form. In other words, it defines the way programs look like to the programmer. There is an example
in Figure 6. The CST of the simple JavaScript program is verbose with all the detail information
about parsing the code. It keeps all the tokens in the program and their types, such as literal

11
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Figure 7: Generating simplified syntax tree

and identifier. And it reveals all the grammar rules, such as equalityExpression:
singleExpression == singleExpression. On contrary, AST is a tree representation
of the abstract syntactic structure of source code. Each node of the tree denotes a construct occur-
ring in the source code. The syntax is ”abstract” in the sense that it does not represent every detail
appearing in the real syntax, but rather just the structural or content-related details. It defines the way
the programs look like to the evaluator/compiler. As shown in Figure 6, the AST directly shows the
equal structure without any detail information. It discards the intermediate structural information
that would not contribute to semantics.

A.2 GENERATING SIMPLIFIED SYNTAX TREE.

IPTR first employs a left-to-right parser, such as ANTLR web (b), to parse the source code and
generate the original CST. Figure 7 shows the CST of a raw JavaScript program. However, as shown
in Figure 7, the original JavaScript code is simple while its CST is comparably intricate with all the
details preserved. The large amount of nodes and branches will raise the computation complexity
while having little contribution to the representation. For example, the node type ifStatement
already specifically indicates the existence of an IF expression. Therefore its parent node type
statement is not necessary as it does not reveal more information. On a syntax tree, all the nodes
are already enclosed by their parent node. Thus, nodes of parentheses are not needed to reveal en-
closure relationships. Further, node == is not necessary when node type equalityExpression
already explains the content. Thus, IPTR follows two rules to prune the CST: (1) Node types that
only have one child node are discarded, unless this child node represents specific content in the
source code (Italics in Figure 7). For example, statement and singleExpression are dis-
carded, while identifier and literal are retained. (2) If the parent node of a terminal node
has more than one child node, this terminal node is removed. This is the case for symbols, such as
( and ==. The pruned tree in Figure 7 is much simpler than the original CST and retains all major
structural features.
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Table 3: The representation of the program from Figure 7
Path type Freq. Text statistics

P1 1 {”data”:1,”type”:1,”example”:2}
P2 2 {”data”:1,”type”:1,”example”:2,

”0.1”:1,”real”:1,”number”:1}
P3 1 {”0.1”:1,”real”:1,”number”:1}
P4 1 {”data”:1,”example”:1,”0.1”:1}
P5 1 {”type”:1,”example”:1,”real”:1,”number”:1}

A.3 COMPREHENSIVE PROGRAM REPRESENTATION

In our comprehensive program representation, we not only consider the structural and textual fea-
tures but also their dependencies.

Initially, IPTR regards the text appearing in each extracted path in structural features as natural
language text. The words in the text are tokenized and stemmed accordingly. Our tokenization
process also considers camel case, spaces, and underlines to accommodate code-specific language.
Further, IPTR does not remove and tokenize numeric values, such as hard-coded floating points and
integers, as they might be integral to the program representation. IPTR vectorizes these generated
tokens based on the Bag-of-words model (BoW). One could also resort to more sophisticated em-
beddings, such as word2vec (W2V) (Mikolov et al., 2013b). However, in programming languages
the structural features are more important than the textual ones and word order can be ignored to
accommodate different programming styles. Besides, we only compare text for each single path
type, which means the amount of words is very few for each similarity calculation. Same reasons
hold for more complex language model like BERT (Devlin et al., 2019). BoW is sufficient for this
process. In our experiment, W2V does not show worthwhile improvements, but rather introduces
extra training time for building the language model.

To avoid repeated computation for every new input and improve the efficiency, IPTR splits the
process of building BoW models. The basic part of this process is generating word statistics. IPTR
counts the words of each candidate program and stores the results during the offline phase. In the
online phase, IPTR only needs to run word statistics on the input program and build the BoW model.

Table 3 shows the final comprehensive representation of the program example from Figure 2. It con-
sists of three components. First is the list of path types that appear in this program. There is a look-up
table in IPTR to maintain all types of paths so that each path from a program is described by its path
type ID Pi, as shown in Table 3. It should be noted that path {ifStatement, {identifier,
literal}} and path {ifStatement, {literal, identifier}} in Figure 2 are regarded
as the same path type P2 because the order of end nodes is not relevant. The second component of
the feature representation is the frequency of different path types in a program. The third compo-
nent contains the structure-dependent textual features. IPTR integrates the information of relative
position of text and structure into the feature representation. As shown in Table 3, the text statistics
with respect to each path type are stored in the final representation.

A.4 EXAMPLE OF USER FEEDBACK

Figure 8 is an example of user feedback module. The input code is an Ackermann function in
C++. However, IPTR retrieved a greatest common divisor function as its Python translation. The
ground truth is shown in Figure 8 in blue. The possible reasons are the variable names are different
in the ground truth and the weight of each feature element is not assigned properly. As soon as
user corrects the first wrong line (change return n to return n+1), IPTR construts feature
representation for the correted code. Then IPTR compares it with the feature representation of
the input code and summarizes user’s corrections. Based on this, IPTR update the query. In the
example in Figure 8, user’s correction emphasizes the path type {assignmentExpression,
{identifier, literal}} and token 1 so that the weight of these two feature elements will
be increased accordingly. Finally, with the updated query, IPTR will run a new round of retrieval.
With higher weights on structural feature and token 1 and lower weights on variable names, the
ground truth will be more likely to be retrieved, and in this example it does so.
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Figure 8: An example of user feedback
Table 4: Statistics of the real-world dataset

Size Files Lines Methods/Functions
3.8GB 280,128 75,567,192 2,023,546

A.5 EXPERIMENT ON A LARGE REAL-WORLD DATASET

Dataset. We choose the four programming languages with the most pushes on github - JavaScript,
Python, Java, and C++. They are also representative of programming languages with different char-
acteristics. Based on the number of stargazers, we pick 1% files in these four languages from
PGA to be our raw dataset. Theoretically, IPTR works for programs of any length, but considering
the practical value and the intuitiveness of the validation process, we aim to translate programs at
method level in our experiment. Longer programs whose complete translations are not existing in
the database can be translated by merging translations of each part. We split all the files into meth-
ods or functions as the input/output of IPTR. One limitation of PGA is that there are duplicate files
across different repositories. To ensure the quality of the dataset and increase the efficiency of our
program translation task, we gradually remove duplicates at file level by taking hashes of these pro-
grams and comparing their hashes. In addition, we also remove the data that cannot be successfully
parsed due to format, errors, version compatibility or other issues. Since our approach does not
require additional explanation except the program itself, we remove annotations and descriptions.
Finally, we obtain a dataset with the size of 3.8GB as shown in Table 4.

Experiment. In this experiment, we only evaluate the basic program translation retrieval module
PTR without user interaction to show the feasibility of the translation retrieval idea. Since there is no
labeled data, we can not evaluate the translation accuracy automatically. As an alternative, we carry
out sampling inspection and manually judge the correctness of the results based on the program
accuracy stated above. Specifically, we take a random number x ∈ [20, 30] and randomly sample
x programs from the dataset as a small input set. PTR translates each program in this set for one
round of experiment. Then we conduct 10 rounds of experiments to obtain the average result. In the
results, PTR returns the top 10 candidates with highest overall similarity for each input program.

To show the advantage of our representation method, we compare its results to other methods:

1. PTRSTRUCTURAL: Only the structural part of PTR.
2. PTRTEXTUAL: It extracts all the text from the program and uses BoW model to only construct

representation for textual features. This is the common method used in cross language code
clone detection (Cheng et al., 2016; 2017). We follow the approach of Cheng et al. (2017). They
implement a sliding window with a length of 20 tokens and compare the similarity of these token
sequences.

3. PTRS+T: This representation is the combination of (1) and (2) without the feature dependency
described in Appendix A.3.

4. PTRWORD2VEC: Same as PTR except changing the textual feature from Bag-of-words (BoW) to
Word2vec (W2V). We train cross language word vector on PGA database.
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Table 5: Comparison of different representations

(a) JS as source language

Representation
Program accuracy Mean reciprocal rank

C++ Python Java C++ Python Java
PTRSTRUCTURAL 53.1% 39.8% 46.7% 0.74 0.68 0.73
PTRTEXTUAL 48.0% 23.4% 31.7% 0.36 0.42 0.57
PTRS+T 56.2% 43.7% 49.9% 0.80 0.71 0.83
PTRCODE2VEC 51.0% 32.0% 40.2% 0.53 0.62 0.61
PTRWORD2VEC 61.4% 53.9% 60.2% 0.81 0.83 0.89
PTR 61.4% 52.3% 59.8% 0.88 0.84 0.89

(b) Python as source language

Representation
Program accuracy Mean reciprocal rank

JS C++ Java JS C++ Java
PTRSTRUCTURAL 41.8% 45.5% 43.3% 0.73 0.73 0.75
PTRTEXTUAL 39.5% 31.2% 40.9% 0.63 0.58 0.64
PTRS+T 44.3% 46.7% 43.8% 0.71 0.73 0.76
PTRCODE2VEC 41.9% 43.4% 43.1% 0.66 0.53 0.71
PTRWORD2VEC 47.9% 54.7% 48.3% 0.80 0.87 0.79
PTR 48.4% 54.2% 47.9% 0.79 0.85 0.77

(c) Java as source language

Representation
Program accuracy Mean reciprocal rank

JS Python C++ JS Python C++
PTRSTRUCTURAL 53.3% 47.9% 62.2% 0.84 0.76 0.85
PTRTEXTUAL 45.1% 33.9% 50.7% 0.71 0.61 0.55
PTRS+T 54.7% 51.6% 67.1% 0.88 0.78 0.86
PTRCODE2VEC 50.0% 38.6% 63.4% 0.82 0.77 0.83
PTRWORD2VEC 59.1% 57.1% 67.7% 0.87 0.84 0.88
PTR 60.6% 57.5% 69.1% 0.91 0.82 0.92

(d) C++ as source language

Representation
Program accuracy Mean reciprocal rank

JS Python Java JS Python Java
PTRSTRUCTURAL 59.6% 55.8% 63.9% 0.78 0.76 0.82
PTRTEXTUAL 54.4% 43.1% 49.4% 0.65 0.41 0.59
PTRS+T 59.7% 57.4% 64.8% 0.83 0.79 0.86
PTRCODE2VEC 58.9% 47.5% 64.4% 0.71 0.53 0.88
PTRWORD2VEC 64.0% 63.6% 66.9% 0.89 0.87 0.91
PTR 64.0% 63.5% 67.0% 0.90 0.87 0.93

5. PTRCODE2VEC: Code2vec is the state-of-the-art code representation which transforms code syn-
tax tree to a vector trained by neural network. For Java, we directly use the provided trained
model to generate code vectors (web, a). For other languages, we train code vectors on PGA
database. Then we determine the candidates by calculating the cosine similarity.

In this experiment, we evaluate the top pick and the top 10 most likely candidates, for which we
calculate the mean reciprocal rank (MRR).

Results. In Tables 5a-5d, we observe that our approach can successfully translate 58.8% programs
between four popular languages. Note that this is the amount of successfully translated programs.
Considering PTR is positioned as a translation support system, the accuracy is considerable. Trans-
lation tasks that cannot be fully automated can still be assisted by the results returned by PTR.
Moreover, When the translations do not appear at top 1 in the retrieved results, they are very likely
to appear at a higher rank in the candidates list. The mean reciprocal rank is around 0.8 and 0.9.

In general, compared to the other program representations, our novel representation performs sig-
nificantly better. Unique structural features of program languages play a more important role than
textual features in programs. And the dependency of structural features and textual features can
effectively enrich the representation. W2V does not contribute much to the results and introduces
extra model training time compared to simple BoW model. But we also observed W2V can help in
some cases where the text of the original code is quite different from its translation. In IPTR we re-
tain BoW for trade-off. Code2vec also considers the structure of programming languages. However,
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their model can only be trained within same language, which makes it perform less satisfactory on
cross-language similarity comparison.

We can also infer from the results that it is generally easier to find translation candidates for gram-
matically similar programming languages, such as C++ and Java. Finding translations for C++ as
a low-level basic programming language can lead to higher accuracy than finding translations for
Python as a high-level dynamic programming language.
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