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Abstract

A fundamental barrier to the adoption of Al systems
in clinical practice is the insufficient transparency
of AI decision-making. The field of Explainable
Artificial Intelligence (XAI) seeks to provide human-
interpretable explanations for a given AI model.
The recently proposed Neural Explanation Mask
(NEM) framework is the first XAI method to ex-
plain learned representations with high accuracy at
real-time speed. NEM transforms a given differen-
tiable model into a self-explaining system by aug-
menting it with a neural network-based explanation
module. This module is trained in an unsupervised
manner to output occlusion-based explanations for
the original model. However, the current framework
does not consider labels associated with the inputs.
This makes it unsuitable for many important tasks
in the medical domain that require explanations
specific to particular output dimensions, such as
pathology discovery, disease severity regression, and
multi-label data classification. In this work, we ad-
dress this issue by introducing a loss function for
training explanation modules incorporating labels.
It steers explanations toward target labels alongside
an integrated smoothing operator, which reduces
artifacts in the explanation masks. We validate the
resulting Neural Explanation Masks with target la-
bels (NEMt) framework on public databases of lung
radiographs and skin images. The obtained results
are superior to the state-of-the-art XAI methods
in terms of explanation relevancy mass, complexity,
and sparseness. Moreover, the explanation gener-
ation is several hundred times faster, allowing for
real-time clinical applications. The code is publicly
available at //github.com/baerminator/NEM_T.

1 Introduction

Explainable Artificial Intelligence (XAI) in the med-
ical area is motivated by the need for trust and
transparency in Al-driven medical diagnosis, prog-
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nosis, treatment planning, and report generation [1,
2]. This need is steadily increasing due to the flour-
ishing development of deep learning (DL) models in
these areas [3]. In contrast, existing XAI methods
suffer from limitations that impair their usefulness
in clinical medical image analysis. Many methods
focus too much on individual input features (e.g.,
pixels) and fail to detect complex patterns, while
mask-based techniques optimized for finding regions
in the input image are very slow [4, 5]. The re-
cently proposed Neural Explanation Masks (NEM)
framework [5] has been shown to produce accurate
mask-based explanations when applied to the rep-
resentations of models trained in an unsupervised
manner with a latency allowing for real-time infer-
ence. Currently, it does not take image labels into
account. Therefore, it cannot explain a particular
output component, for instance, answer the ques-
tion of which parts of the input affect the score for
a particular class (e.g., a pathology). This limits its
application in the medical domain. In this study we

e introduce Neural Explanation Masks with
target labels (NEMt), a new NEM loss function
for learning explanations of classifiers in the
supervised setting;

e propose stochastic weighted neighborhood aver-
aging, a convolutional layer in which parts are
randomly masked out, to remove artifacts in
DL-based occlusion mask prediction;

e evaluate NEMt and compare it to state-of-the-
art XAI methods in the context of explaining
classifiers for dermatoscopic skin and X-ray lung
data, demonstrating that NEMt efficiently gen-
erates accurate, compact explanations;

e adapt the NEM framework [5] for unsupervised
medical data analysis, and evaluate it for ex-
plaining representations learned by MedCLIP

[6].
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2 Related work.

Feature attribution and set-wise explanation are two
distinct directions in XAI that interpret the explana-
tion task differently. Feature attributions estimate
the individual contribution of each input feature
to the model prediction for a particular sample [7—
12]. Examples are gradient-based sensitivity anal-
yses such as Grad-CAM (Gradient-weighted Class
Activation Mapping [10]), methods based on SHAP
(Shapley Additive exPlaination [9]), and LIME (Lo-
cal Interpretable Model-agnostic Explanations [8]).
However, explanations relying on feature-based attri-
bution may be misleading when features have strong
correlations or complicated interactions that are dif-
ficult for individual features to capture. In contrast,
set-wise approaches aim at identifying subsets of
informative features that have a collective impact
on the model’s prediction [13, 14]. This is especially
helpful for comprehending intricate decision-making
processes where the combination of features, rather
than individual attributes, drives the prediction.
However, these methods often suffer from long pro-
cessing times and potentially produce poor-quality
explanations [15].

Most XAI methods are designed for the supervised
setting in the sense that they generate explanations
for model outputs such as classifications, where the
explanation is provided for an input-output pair
similar to those used for supervised training of the
model. However, recent advances in unsupervised
deep learning [16, 17] have increased the need for
XAT methods working for the unsupervised setting
leading to many new contributions in this field [12,
18, 19]. These methods seek to explain what part of
an input predominantly determines its (latent) rep-
resentation learned by a (DL) model. Here the most
prominent approach is RELAX and its variants [12],
which provides feature-attribution explanations and
has successfully been applied to medical imaging
[20]. Recently, the Neural Explanation Mask (NEM)
framework [5] was proposed for explaining unsuper-
vised XAI and it was shown to compare favourably
to previous unsupervised XAI methods, such as RE-
LAX, in terms of the generated explanation masks
while being significantly faster. The NEM frame-
work aims to distinguish between significant and
insignificant input regions. This approach is simi-
lar to methods from the field of Weakly Supervised
Semantic Segmentation (WSSS), which extract seg-
mentation labels from learned model representations,
as exemplified by the works of Kweon et al. [21] and
Araslanov and Roth [22].

3 Methodology

In this section, we start by presenting the back-
ground on the NEM framework, and then introduce

our proposed NEMt. Finally, we outline our new ap-
proach for artefact removal through local stochastic
smoothing.

3.1 NEM

The NEM framework [5] transforms a given differen-
tiable ML model ®, referred to as the frozen network,
into a self-explaining system by augmenting it with
a neural network-based explanation module ¥. The
module is trained to generate occlusion-based expla-
nations for ®. More specifically, for a given input =z,
an explanation mask m = ¥(z) is generated concur-
rently with the model output y = ®(x). The mask
m serves to pinpoint the parts of x that influence
y most. V¥ is trained on (unlabeled) training im-
ages X to directly predict m instead of performing
some post-training optimization over m, which was
the path in the existing occlusion-based explanation
methods [13, 14, 23]. Figure 1 illustrates the overall
framework and training process.

. Occlusion
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Figure 1. Overview of NEMt. The paths highlighted in
black are used during the training and inference phase,
and red paths indicate the flow that occurs exclusively
during the training phase. The blue section shows the
NEM framework.

The choice of the neural architecture of ¥ and how
it is attached to the frozen model ® leads to differ-
ent instantiations of the NEM framework. One spe-
cific instantiation is NEM-U. By considering mask-
based explanation as segmenting images into areas
of importance and non-importance, NEM-U draws
on U-Net [24], which is commonly used to handle
segmentation tasks. More specifically, the NEM-U
treats the frozen model ® and the masking model
¥ as the encoder and the decoder of U-Net, respec-
tively, and leverages on skip connections to extract
intermediate representations from .

To train a NEM model, we need a loss function
that defines what should be highlighted in a given
input. In the case of unsupervised representation
learning, a natural goal is to segment an image x
into sections that either do or do not strongly affect



the learned latent representation ®(z). This can
be recast as finding the sparsest mask, such that
the model representation of the masked image is

still close to the model representation of the original.

This leads to a loss of the form

Lx) =% d(@(x), ®(U(z) © x))

zeX
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where the d is some distance function, B(z, ®, V)
is some regularization term enforcing binary masks,
Il-]]1 is the {; norm, ® is the hadamard product, and
A1, A2 are hyper-parameters. We optimize over a
range of inputs X to allow ¥ to generalize to unseen
data. We adopt the heuristic described in [5] and
set

B(z,®, W) = —d((I)(\P(:c)@:v),<I>((1—\I!(x))®x)>
+ d(@(x),qn(\p(x) @x)).

3.2 NEMt

The NEM framework outlined in Section 3.1 was

proposed for explanations in unsupervised scenarios.

Here, we extend it to the supervised setting. We
assume classification into C' classes {0,C — 1}. Let
¢ be the class label predicted for an image x. We
assume that the frozen model outputs logits ®(z) €
R® and predicts the label ¢ = arg max; ®(z);, where
®(x); is the i’th component of ®(x) corresponding to
the logit for class 7. In the unsupervised setting, we
determine which parts of x strongly affect the whole
learned representation ®(z), while in the supervised

setting we are only interested in what explains ®(z)..

3.2.1 Loss function for explaining specific
output properties.

In the classification setting, we only consider the
effects on the scalar ®(z). measured by the squared
l5 norm. The loss function will be therefore

LX) ==Y (2(2)e— P (20U(2)) )+ M [T (@)]1.

zeX
c=arg max; ®(z);

(2)
The loss is independent of the output dimensionality
as it only considers the target logit. Compared to
(1), the loss function is a negative sum, aiming to

identify the smallest area that determines the label.

In other words, we wish to find the smallest input
perturbation yielding the largest output change. We
have removed the regularization term B(zx), since
we found a more robust method of deleting artifacts
in the supervised case as described in the following
section. This loss formulation allows for explaining
a specific output channel ¢ by setting ¢ = ¢ instead
of ¢ = argmax; ®(x);.

GradCAM

Original

NEMTt (No Smoothing) ~ NEMt (Smoothing)

Figure 2. Removing artifacts via a stochastic weighted
neighborhood averaging operator. The second image
displays the result of the NEMt model without the
smoothing filter. The third image shows the result when
the smoothing filter is integrated into the explanation
module ®. The fourth image shows a GradCam [25]
explanation for comparison.

3.2.2 Explanation artifact removal via
stochastic weighted neighborhood av-
eraging.

Initial experiments with (2) showed that the method
is more prone to generate artifacts in its explana-
tion mask compared to what we observed in the
unsupervised setting. See Figure 2 for an exam-
ple. This is likely due to the fact that the term
d(®(z),®(z ® ¥(z))) in the unsupervised loss func-
tion, which enforces closeness in representation
space, also has a regularizing effect. In contrast,
the supervised loss function rewards larger changes,
potentially also in latent intermediate representa-
tions. It is not straightforward to employ a similar
regularization term in the supervised setting, and
our initial attempts to do so did not lead to satis-
factory results. Thus, we opted to regularize in a
different manner.

Our idea to address this issue was to bias the
model to find explanations where the neighborhood
of included pixels is also included in the explanation,
that is, isolated pixels and other artifacts in the mask
should be removed. To this end, we add a stochastic
smoothing operator to the output of the explanation
module ¥. For each pixel in the network explana-
tion mask, the filter performs a weighted average
of the pixel and the elements of its local neighbor-
hood via a convolution operation. To ensure faithful
explanations, we train the network with the smooth-
ing filter applied during training, rather than as a
post-processing step. To increase the chance for all
members of the neighborhood of a given important
pixel to be included, in each forward pass random
parts of the filter are "smoothly” masked out. This
is done by randomly picking weights for each filter
component so they are positive and sum to 1. A
visualization of the effect of the filter can be seen in
Figure 2.

4 Experimental Setup

This section outline the evaluation of our proposed
methodology. First, we introduce the datasets, then



key implementation details and finally metrics used
for comparisons to other methodologies.

4.1 Datasets

We used the 2018 RSNA Pneumonia Detection Chal-
lenge dataset that consists of 30,000 frontal chest
radiographs from 6012 subjects with normal lungs,
pneumonia-infected lungs, and other non-pneumonia
abnormalities [26]. Each pneumonia pocket was an-
notated with a manually-drawn bounding box. We
also used the HAM10000 dataset, comprising 10,015
dermatoscopic images divided into seven diagnostic
categories and provides binary masks [27]. For eval-
uation, we extracted 1000 images from each dataset.
For training the NEMt explanation modules, we
extracted 21347 images from the RSNA dataset and
8012 images from the HAM10000 dataset, ensuring
no overlap between patients in the training and test
sets.

4.2 Implementation Details

To explore the feasibility of NEM-U for medical
image analysis, we leveraged a pre-trained variant
of the MedCLIP model [6] using a RESNET50 [28]
architecture. We applied the MedCLIP model to
the RSNA pneumonia dataset and explained the
generated latent representations. We compared our
method to RELAX [12] and its variant, U-RELAX,
where RELAX explanations were thresholded based
on uncertainty estimates.

To judge the performance in the supervised set-
ting, we explained two classifiers based on the
RESNETS50 Architecture. The models are trained
on the RSNA dataset and the HAM10000 dataset, re-
spectively, using the same training splits as used for
training the NEMt models. Given our goal is to iden-
tify areas of illness, we explain the channel belonging
to the true target label using the targeted variant
of (2). The RESNET50 architecture is extracted
from the Pytorch Image Models library [29]. We
compare our methodology against Integrated Gra-
dients [30], Gradient SHAP [9], GradCAM++ [25],
RISE++ [31], and Smooth Pixel Mask [23] with a
area constraint of 5%.

We implemented all NEMt and NEM-U explana-
tion architectures using U-Net decoders with 9 mil-
lion trainable parameters. We applied the stochastic
smoothing filter described in Section 3.2 with a
neighborhood size of (21,21) when running NEMt
in the supervised case. For the loss function for
explaining representations, we chose the distance
function d to be negative cosine similarity (see [5]).
In (1) we set Ay = § and Ao = } as is done in prior
work [5]. In (2), we set Ay = 1 based on visual
inspection of the masks generated on the validation
split of the training data. All models were trained
with the Prodigy optimizer [32]. We provide an

ablation study of various implementation choices in
appendix A.3.

4.3 Metrics

For evaluation, we computed the complexity [33]
and sparseness [34] metrics. These metrics favor
explanations that highlight the minimum number
of important pixels. Furthermore, we calculated
relevance rank and relevance mass [35]. Relevance
mass is determined by calculating the ratio of pos-
itive attributions located inside the ground truth
bounding box to the total positive attributions. A
high relevance mass score shows that the explana-
tion significantly focuses on areas highlighted by
human annotations while minimizing the focus on
irrelevant areas. Relevancy rank is measured as the
Intersection over Union (IoU) of the k highest rated
pixels according to attribution and the ground truth
bounding box, where k is equal to the size of the
bounding box. Thus, the relevancy rank measures
the overall ranking ability of a given explanation
method. The metrics implementation was taken
from the Quantus library [36]. We also considered
the faithfulness [37] metric, which is only designed
for labeled data. The idea of faithfulness is to assess
whether pixels that are considered important are
indeed important. This is achieved by iteratively
removing input features and examining the model
prediction and correlating the attributions’ absolute
values with the uncertainty in probability estimates.
Finally, we evaluated the computation time per im-
age by generating 1000 explanations and measuring
the mean generation time. All attribution maps was
min-max normalized before calculating experimental
results to ensure consistency across methods.

5 Results

Table 1 and Table 2 summarize the results for
explaining representations and classifications, re-
spectively, showing locality metrics (relevance rate
and relevance mass) and complexity metrics (com-
plexity and sparseness) along with runtime perfor-
mance. Additionally, in the supervised setting, the
explanations are assessed by the faithfulness metric.
When explaining representations, our method out-
performed the other two approaches in all metrics
except relevance rank: NEM¢t achieved the best per-
formance in terms of relevance mass and runtime in
both tasks and in terms of relevance rank in RSNA.
It also achieved the second best results in terms
of relevance rank in HAM10000 and for all tasks
in terms of complexity and sparseness. Looking at
faithfulness, NEMt performs best for pneumonia
and third for skin cancer. Examples of explanations
generated by the different approaches are given in
Figure 3 and Figure 4.



Table 1. Comparison of XAI methods in the unsupervised setting using the RSNA dataset and a pre-trained
Med-CLIP model.

Method Relevance Rank 1 Relevancy Mass T Complexity | Sparseness T Time (s) |
RELAX [12] 0.290 0.115 10.657 0.307 1.516
U_RELAX [12] 0.171 0.123 9.918 0.592 1.516
NEMt 0.204 0.212 8.295 0.937 0.003

Table 2. Comparison of XAI methods in the supervised setting. Results for the RSNA dataset in the upper
table whereas the results for the HAM10000 is seen in the lower table. All experiments using a RESNET50 model
trained on the dataset.

Method Relevance Rank +  Relevancy Mass T Complexity | Sparseness T Faithfulness + Time (s) |
Smooth Pixel Mask [23] 0.098 0.095 8.977 0.868 0.024 3.663
GradCAM |[25] 0.202 0.141 10.257 0.561 0.377 0.055
Grad Shape [9] 0.073 0.070 10.156 0.592 0.026 0.006
Integrated Gradients [30] 0.080 0.075 10.165 0.590 0.016 0.049
RISE [31] 0.124 0.077 10.686 0.274 0.240 7.368
NEMt 0.215 0.192 9.343 0.744 0.419 0.003
Method Relevance Rank T Relevancy Mass T Complexity |  Sparseness T Faithfulness T Time (s) |
Smooth Pixel Mask [23] 0.495 0.582 8.690 0.907 0.399 3.663
GradCAM |[25] 0.757 0.615 10.024 0.649 0.443 0.055
Grad Shape [9] 0.438 0.381 10.310 0.529 -0.011 0.006
Integrated Gradients [30] 0.461 0.395 10.298 0.533 0.013 0.049
RISE [31] 0.271 0.279 10.675 0.290 -0.009 7.368
NEMt 0.723 0.838 8.855 0.828 0.298 0.003

Origin;l NEMI (ours) GradCAM Smooth Mask ~ GradSHAP IntegratedGradients

Figure 3. Different XAI methodologies explaining a
RESNETS50 classifier trained on the RSNA (two rows
above) and HAM10000 (two rows below) datasets.

6 Discussion

The relevance mass results show that NEMt gener-
ated more precise masks than alternative methods
(i.e., most of the predicted mask is located inside
the ground truth bounding box). The superior per-
formance in terms of complexity and sparseness
indicates simple, easily understandable explanations.
The 2-1000 times faster performance of NEMt makes
it applicable in real-time clinical settings. In accor-
dance with [5], RELAX is slightly better than NEM-
U when looking at the relevance ranks. This can be

Relax U-Relax

Figure 4. Different XAI methodologies explaining a
pre-trained MedCLIP model run on the RSNA dataset.

explained by NEM’s focus on a set of features and
not on grading individual pixels. Considering this,
it is surprising that NEMt achieved the best and
second-best relevance rank results in the supervised
setting. This may also explain why NEMt performed
only the third best in terms of faithfulness in the
skin cancer experiments, as the faithfulness score
also depends on removing pixels in the right order.
The strong results in both the supervised and unsu-
pervised settings indicate that the NEM framework
is a powerful general tool for XAl in the medical
domain. The proposed stochastic weighted neighbor-
hood averaging for artifact reduction in explanation
masks made additional regularization obsolete in
the supervised setting. Future work should study
if it also holds in the unsupervised case. Our pro-



posed NEMt loss allows us to focus on a specific
target label in contrast to the standard NEM loss
(1), which would only be able to explain the cur-
rent overall output vector of the model. This brings
unique benefits, for example, it allows us to train
masking units that look for a specific pathology in
an input image regardless of whether the model de-
tects it in the original input. A limitation of the
current NEM¢t framework is the need to train a new
masking network if there is a desire to explore a
specific target. Future work should explore if the
framework can be updated to include an input that
bias the model toward a specific target during infer-
ence removing the need for retraining. A limitation
of the presented study is the relatively small number
of model architectures included in our experiments.
Future work should study whether the results would
transfer to other architectures. Furthermore, since
this study has focused on medical data, it would be
interesting to explore whether the NEMt framework
will show the same advantages on more standard
image datasets such as ImageNet [38], VOC [39], or
COCO [40].

7 Conclusion

In this work, we have proposed Neural Explanation
Masks with target labels (NEMt). Our experiments
indicate that it and the original NEM framework are
useful for XATI in medical settings, when applied to
classifiers and feature extractors, respectively. The
introduction of stochastic weighted neighborhood av-
eraging effectively eliminates the need for additional
regularization in the supervised setting, suggesting a
promising avenue for future exploration in unsuper-
vised contexts as well. Additionally, the proposed
NEMt loss provides an advantage over the original
NEM loss by allowing targeting of specific labels.
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A Robustness studies

A.1 Robustness of hyperparameter
in NEMt loss function

To determine whether (2) is robust w.r.t. different
choices of A1, we measured faithfulness [37] of NEMt
models on the RSNA dataset with different choices
of A1. The results are shown in Table A.1. Our
experiments indicate that NEMtwas robust w.r.t.
different hyperparameter choices.

Table A.1. Influence of the parameter A\; in the loss
function (2) studied on the RSNA dataset.

A1 Faithfullness 1

1 0.219
0.66 0.414
0.5 0.420
0.4 0.426
0.33 0.010

A.2 Robustness of neighbourhood

size in stochastic weighted neigh-
borhood averaging

To determine how robust the NEMt framework is to
different choices for the neighbourhood size of the
stochastic weighted neighborhood averaging filter,
we measured faithfulness of NEMt models trained
with different neighbourhood sizes on the RSNA
dataset. The experimental results are displayed in
table A.2. The results indicate robustness w.r.t. this
hyperparameter.
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Table A.2. Influence of the neighbourhood size in the
stochastic weighted neighborhood averaging.

neighbourhood size Faithfulness 1

14 x 14 0.445
17 x 17 0.448
21 x 21 0.420
24 x 24 0.429
28 x 28 0.194

A.3 Effect of using the stochastic
neighbourhood averaging filter

To determine the effect of using the stochastic neigh-
bourhood averaging filter, we have trained NEMt
models on the HAM10000 data with and without
using the filter and measured the faithfulness. The
results are seen in table A.3. The results indicate
a big improvement in faithfulness when leveraging
the filter.

Table A.3. The effect of using the stochastic weighted
neighborhood averaging filter on the HAM10000 dataset.

Faithfullness 1

Using filter 0.298
Not using filter -0.001
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