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ABSTRACT

Preference-based reinforcement learning (RL) provides a framework to train
agents using human preferences between two behaviors. However, preference-
based RL has been challenging to scale since it requires a large amount of hu-
man feedback to learn a reward function aligned with human intent. In this pa-
per, we present Preference Transformer, a neural architecture that models hu-
man preferences using transformers. Unlike prior approaches assuming human
judgment is based on the Markovian rewards which contribute to the decision
equally, we introduce a new preference model based on the weighted sum of
non-Markovian rewards. We then design the proposed preference model using
a transformer architecture that stacks causal and bidirectional self-attention lay-
ers. We demonstrate that Preference Transformer can solve a variety of control
tasks using real human preferences, while prior approaches fail to work. We also
show that Preference Transformer can induce a well-specified reward and attend
to critical events in the trajectory by automatically capturing the temporal de-
pendencies in human decision-making. Code is available on the project website:
https://sites.google.com/view/preference-transformer.

1 INTRODUCTION

Reinforcement learning (RL) has been successful in solving sequential decision-making problems
in various domains where a suitable reward function is available (Mnih et al., 2015; Silver et al.,
2017; Berner et al., 2019; Vinyals et al., 2019). However, reward engineering poses a number
of challenges. It often requires extensive instrumentation (e.g., thermal cameras (Schenck & Fox,
2017), accelerometers (Yahya et al., 2017), or motion trackers (Peng et al., 2020)) to design a dense
and precise reward. Also, it is hard to evaluate the quality of outcomes in a single scalar since
many problems have multiple objectives. For example, we need to care about many objectives like
velocity, energy spent, and torso verticality to achieve stable locomotion (Tassa et al., 2012; Faust
etal., 2019). It requires substantial human effort and extensive task knowledge to aggregate multiple
objectives into a single scalar.

To avoid reward engineering, there are various ways to learn the reward function from human data,
such as real-valued feedback (Knox & Stone, 2009; Daniel et al., 2014), expert demonstrations (Ng
et al., 2000; Abbeel & Ng, 2004), preferences (Akrour et al., 2011; Wilson et al., 2012; Sadigh
et al., 2017) and language instructions (Fu et al., 2019; Nair et al., 2022). Especially, research
interest in preference-based RL (Akrour et al., 2012; Christiano et al., 2017; Lee et al., 2021b) has
increased recently since making relative judgments (e.g., pairwise comparison) is easy to provide
yet information-rich. By learning the reward function from human preferences between trajectories,
recent work has shown that the agent can learn novel behaviors (Christiano et al., 2017; Stiennon
et al., 2020) or avoid reward exploitation (Lee et al., 2021b).

However, existing approaches still require a large amount of human feedback, making it hard to
scale up preference-based RL to various applications. We hypothesize this difficulty originated
from common underlying assumptions in preference modeling used in most prior work. Specifically,
prior work commonly assumes that (a) the reward function is Markovian (i.e., depending only on
the current state and action), and (b) human evaluates the quality of a trajectory (agent’s behavior)
based on the sum of rewards with equal weights. These assumptions can be flawed due to the
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Figure 1: Illustration of our framework. Given a preference between two trajectory segments
(oY, o1), Preference Transformer generates non-Markovian rewards 7; and their importance weights
w; over each segment. We then model the preference predictor based on the weighted sum of non-
Markovian rewards (i.e., Zt wyTy), and align it with human preference.

following reasons. First, there are various tasks where rewards depend on the visited states (i.e., non-
Markovian) since it is hard to encode all task-relevant information into the state (Bacchus et al.,
1996; 1997). This can be especially true in preference-based learning since the trajectory segment
is provided to the human sequentially (e.g., a video clip (Christiano et al., 2017; Lee et al., 2021b)),
enabling earlier events to influence the ratings of later ones. In addition, since humans are highly
sensitive to remarkable moments (Kahneman, 2000), credit assignment within the trajectory is
required. For example, in the study of human attention on video games using eye trackers (Zhang
et al., 2020), the human player requires a longer reaction time and multiple eye movements on
important states that can lead to a large reward or penalty, in order to make a decision.

In this paper, we aim to propose an alternative preference model that can overcome the limitations
of common assumptions in prior work. To this end, we introduce the new preference model based
on the weighted sum of non-Markovian rewards, which can capture the temporal dependencies in
human decisions and infer critical events in the trajectory. Inspired by the recent success of trans-
formers (Vaswani et al., 2017) in modeling sequential data (Brown et al., 2020; Chen et al., 2021),
we present Preference Transformer, a transformer-based architecture for designing the proposed
preference model (see Figure 1). Preference Transformer takes a trajectory segment as input, which
allows extracting task-relevant historical information. By stacking bidirectional and causal self-
attention layers, Preference Transformer generates non-Markovian rewards and importance weights
as outputs. We then utilize them to define the preference model.

We highlight the main contributions of this paper below:

e We propose a more generalized framework for modeling human preferences based on a
weighted sum of non-Markovian rewards.

* We present Preference Transformer, a transformer-based architecture that consists of our novel
preference attention layer designed for the proposed framework.

* Preference Transformer enable RL agents to solve complex navigation, locomotion tasks from
DA4RL (Fu et al., 2020) benchmarks and robotic manipulation tasks from Robomimic (Man-
dlekar et al., 2021) benchmarks by learning a reward function from real human preferences.

* We analyze the learned reward function and importance weights, showing that Preference
Transformer can induce a well-specified reward and capture critical events within a trajectory.

2 RELATED WORK

Preference-based reinforcement learning. Recently, various methods have utilized human prefer-
ences to train RL agents without reward engineering (Akrour et al., 2012; Christiano et al., 2017,
Ibarz et al., 2018; Stiennon et al., 2020; Lee et al., 2021b;c; Nakano et al., 2021; Wu et al., 2021;
IIT & Sadigh, 2022; Knox et al., 2022; Ouyang et al., 2022; Park et al., 2022; Verma & Metcalf,
2022). Christiano et al. (2017) showed that preference-based RL can effectively solve complex con-
trol tasks using deep neural networks. To improve the feedback-efficiency, several methods, such
as pre-training (Ibarz et al., 2018; Lee et al., 2021b), data augmentation (Park et al., 2022), explo-
ration (Liang et al., 2022), and meta-learning (III & Sadigh, 2022), have been proposed. Preference-
based RL also has been successful in fine-tuning large-scale language models (such as GPT-3; Brown
et al. 2020) for hard tasks (Stiennon et al., 2020; Wu et al., 2021; Nakano et al., 2021; Ouyang et al.,
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2022). Transformer-based models (i.e., pre-trained language models) are used as a reward function
in these approaches due to partial observability of language inputs, but we utilize transformers with
a new preference modeling for control tasks.

Transformer for reinforcement learning and imitation learning. Transformers (Vaswani et al.,
2017) have been studied for various purposes in RL (Vinyals et al., 2019; Zambaldi et al., 2019;
Parisotto et al., 2020; Chen et al., 2021; Janner et al., 2021). It has been observed that sample-
efficiency and generalization ability can be improved by modeling RL agents using transformers in
complex environments, such as StarCraft (Vinyals et al., 2019; Zambaldi et al., 2019) and DMLab-
30 (Parisotto et al., 2020) benchmarks. For offline RL, Chen et al. (2021) and Janner et al. (2021) also
leveraged the transformers by formulating RL problems in the context of the sequential modeling
problem. Additionally, transformers have been applied successfully in imitation learning (Dasari
& Gupta, 2020; Mandi et al., 2022; Reed et al., 2022). Dasari & Gupta (2020) and Mandi et al.
(2022) demonstrated the generalization ability of transformers in one-shot imitation learning (Duan
et al., 2017), and Reed et al. (2022) utilized the transformers for multi-domain and multi-task imi-
tation learning. In this work, we demonstrate that transformers also can be useful in improving the
efficiency of preference-based learning.

Non-Markovian reward learning. Non-Markovian reward (Bacchus et al., 1996; 1997) has been
studied for dealing with the realistic reward setting in which reward depends on the visited states,
or reward is delayed or even given at the end of each episode. Several recent work focuses on
return decomposition where an additional model is trained under the objective of predicting trajec-
tory return with a given state-action sequence and used for reward redistribution. Arjona-Medina
et al. (2019) and Early et al. (2022) used LSTM (Hochreiter & Schmidhuber, 1997) for capturing
sequential information in reward learning. Gangwani et al. (2020) and Ren et al. (2022) proposed
simplified approaches without any prior task knowledge, under the assumption that episodic return is
distributed uniformly in the timestep. In this work, we adopt a transformer-based reward model for
learning non-Markovian rewards, which can capture the temporal dependencies in human decisions.

3 PRELIMINARIES

We consider the reinforcement learning (RL) framework where an agent interacts with an environ-
ment in discrete time (Sutton & Barto, 2018). Formally, at each timestep ¢, the agent receives the
current state s; from the environment and chooses an action a; based on its policy 7. The environ-
ment gives a reward r(s;, a;), and the agent transitions to the next state s; ;. The goal of RL is to
learn a policy that maximizes the expected return, R, = >, Y*r (¢4, ar4 1), which is defined
as a discounted cumulative sum of the reward with discount factor ~.

In many applications, it is difficult to design a suitable reward function capturing human intent.
Preference-based RL (Akrour et al., 2011; Pilarski et al., 2011; Wilson et al., 2012; Christiano et al.,
2017) addresses this issue by learning a reward function from human preferences. Similar to Wilson
et al. (2012) and Christiano et al. (2017), we consider preferences over two trajectory segments
of length H, o = {(s1,a1), ..., (S, am)}. Given a pair of segments (¢, o'), a (human) teacher
indicates which segment is preferred, i.e., y € {0,1,0.5}. The preference label y = 1 indicates
ol = 0% y = 0 indicates 0° = o', and y = 0.5 implies an equally preferable case, where o = o7
denotes the event that the segment ¢ is preferable to the segment j. Each feedback is stored in a
dataset of preferences D as a triple (¢°, 0!, 7).

To obtain a reward function 7 parameterized by 1, most prior work (Christiano et al., 2017; Ibarz
etal., 2018; Lee et al., 2021b;c; IIT & Sadigh, 2022; Park et al., 2022) defines a preference predictor
following the Bradley-Terry model (Bradley & Terry, 1952):

€xp (Zt (Stvat7¢)) (1)
eXp (Zt (st ) at ’ )) + eXp (Zt (St ) at ) w))

Then, given a dataset of preferences D, the reward function 7 is updated by minimizing the cross-
entropy loss between this preference predictor and the actual human labels:

L) = - (1-y)log Plo® - o] + ylog Plo* ~ 0%v]]. @)

One can update a policy 7 using any RL algorithm such that it maximizes the expected returns with
respect to the learned reward.
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Figure 2: Overview of Preference Transformer. We first construct hidden embeddings {x; } through
the causal transformer, where each represents the context information from the initial timestep to
timestep t. The preference attention layer with a bidirectional self-attention computes the non-

Markovian rewards {7} and their convex combinations {z;} from those hidden embeddings, then
we aggregate {z; } for modeling the weighted sum of non-Markovian rewards ), w;7.

4 PREFERENCE TRANSFORMER

In this section, we present Preference Transformer (PT), the transformer architecture for modeling
human preferences (see Figure 2 for the overview). First, we introduce a new preference predictor
P[o! = 0] based on a weighted sum of non-Markovian rewards in Section 4.1, which can reflect the
long-term context of the agent’s behaviors and capture the critical events in the trajectory segment.
We then describe a novel transformer-based architecture to model the proposed preference predictor
in Section 4.2.

4.1 PREFERENCE MODELING

As mentioned in Section 3, most prior work assumes that the reward is Markovian (i.e., depending
only on current state and action), and human evaluates the quality of trajectory segment based on the
sum of rewards with equal weight. Based on these assumptions, a preference predictor P[o! = o]
is defined as equation 1. However, this formulation has several limitations in modeling real human
preferences. First, in many cases, it is hard to specify the tasks using the Markovian reward (Bacchus
et al., 1996; 1997; Early et al., 2022). Furthermore, credit assignment within the trajectory can be
required since human is sensitive to remarkable moments (Kahneman, 2000).

To address the above issues, we introduce a new preference predictor that assumes the probability
of preferring a segment depends exponentially on the weighted sum of non-Markovian rewards:

exp (35, w ({(s},a}) z'}iﬁw)t'f({(szlvazl) i) .
ey e (Xow (sl a)MLiw) -7 ({(s] ad) b))

To capture the temporal dependencies, we consider a non-Markovian reward function 7, which re-
ceives the full preceding sub-trajectory {(s;,a;)}!_, as inputs. The importance weight w is also
introduced as a function of the entire trajectory segment {(s;,a;)}/Z,, which makes our preference
predictor able to perform the credit assignment within the segment. We remark that our formula-
tion is a generalized version of the conventional design; if the reward function only depends on the
current state-action pair and the importance weight is always 1, our preference predictor would be
equivalent to the standard model in equation 1.

Plo! = 0% 4] =

3)

4.2 ARCHITECTURE

In order to model the preference predictor as in equation 3, we propose a new transformer architec-
ture, called Preference Transformer, that consists of the following learned components:

Causal transformer. We use the transformer network (Vaswani et al., 2017) as the backbone in-
spired by its superiority in modeling sequential data (Brown et al., 2020; Ramesh et al., 2021;
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Janner et al., 2021; Chen et al., 2021). Specifically, we use the GPT architecture (Radford et al.,
2018), i.e., the transformer architecture with causally masked self-attention. Given trajectory seg-
ment 0 = {(s1,a1), -+ ,(sy,ay)} of length H, we generate 2H input embeddings (for state and
action), which are learned by a linear layer followed by layer normalization (Ba et al., 2016). A
shared positional embedding (i.e., state and action at the same timestep share the same positional
embedding) is learned and added to each input embedding. The input embeddings are then fed into
the causal transformer network, and it produces output embeddings {x;}/Z, such that ¢-th output
depends on input embeddings up to ¢.

Preference attention layer. To model the preference predictor using the weighted sum of the non-
Markovian rewards as defined in equation 3, we introduce a preference attention layer. As shown in
Figure 2, the preference attention layer receives the hidden embeddings from the causal transformer
{x;}!L, and generates rewards 7 and importance weights w;. Formally, ¢-th input x; is mapped via
linear transformations to a key k; € R%, query q; € R?, and value #; € R, where d is the embedding
dimension. We remark that ¢-th value in self-attention, i.e., 7, is considered as modeling a non-
Markovian reward 7 ({(s;,a;)}!_,) since hidden embedding x; only depends on previous inputs in
a trajectory segment. Specifically, at each timestep ¢, we use ¢ state-action pairs {(s;,a;)}!_; for
approximating the reward 7; during the training.

Following the self-attention (Vaswani et al., 2017), the ¢-th output z; is defined as a convex combi-
nation of the values with attention weights from the ¢-th query and keys:

H
zi = softmax({{qi ki) }_i)e e

t=1

Then, the weighted sum of rewards can be computed by the average of outputs {z; } 22, as follows:

1 H 1 H H H
2= 2> softmax({{ai ki) }io)e e =) wiiy 4)
=1 t=1

i=1 t=1

where w; = % ZZH:1 softmax({{qi, ki) }#_,):. Here, w; corresponds to modeling importance
weight w({(s;,a;)}/L,), in equation 3 because this preference attention is not causally masked and
thus depends on the full sequence (i.e., bidirectional self-attention). In summary, we model the
weighted sum of non-Markovian rewards by taking the average of outputs from transformer net-
works and assume that the probability of preferring the segment is proportional to it. The complete
architecture of Preference Transformer is shown in Figure 2.

4.3 TRAINING AND INFERENCE

Training. We train Preference Transformer by minimizing the cross-entropy loss in equation 2 given
a dataset of preferences D. By aligning a preference predictor modeled by Preference Transformer
with human labels, we find that Preference Transformer can induce a suitable reward function and
capture important events in the trajectory segments (see Figure 3 for supporting results).

Inference. For RL training, all state-action pairs are labeled with the learned reward func-
tion. Because we train the non-Markovian reward function, we provide H past transitions
(St—H+1,8t—pg+1, " ,St,at) to Preference Transformer and use ¢-th value 7; from the preference
attention layer as a reward at timestep ¢.

5 EXPERIMENTS

We design our experiments to investigate the following:

» Can Preference Transformer solve complex control tasks using real human preferences?
¢ Can Preference Transformer induce a well-aligned reward and attend to critical events?

* How well does Preference Transformer perform with synthetic preferences (i.e., scripted
teacher settings)?
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Table 1: Averaged normalized scores of IQL on AntMaze, Gym-Mujoco locomotion tasks, and suc-
cess rate on Robosuite manipulation tasks with different reward functions. Using the same dataset
of preferences from real human teachers, we train Preference Transformer (PT), MLP-based Marko-
vian reward (MR; Christiano et al. 2017; Lee et al. 2021b), and LSTM-based non-Markovian reward
(NMR; Early et al. 2022). The result shows the average and standard deviation averaged over 8 runs.

IQL with IQL with preference learning
Dataset
task reward MR NMR PT (ours)

antmaze-medium-play-v2 73.88 +449 | 31.13 1696  62.88 +59 70.13 +376
antmaze-medium-diverse-v2 | 68.13 +10.15 19.38 +924  20.13 +17.12  65.25 +359
antmaze-large-play-v2 48.75 +435 | 2425 £1403  14.13 £360  42.38 +998
antmaze-large-diverse-v2 4438 +447 5.88 +6.94 0.00 +o0.00 19.63 +3.70
antmaze-v?2 total 58.79 20.16 24.29 49.35

hopper-medium-replay-v2 83.06 +1580 | 11.56 +3027  57.88 +4063  84.54 +4.07
hopper-medium-expert-v2 73.55 +4147 | 5775 £2370  38.63 +£3558  68.96 +33.86
walker2d-medium-replay-v2 | 73.11 +8.07 72.07 +1.96 77.00 +3.03 71.27 +1030
walker2d-medium-expert-v2 | 107.75 202 | 108.32 +387 110.39 +£093 110.13 +o0.21

locomotion-v2 total 84.37 62.43 70.98 83.72

lift-ph 96.75 +1.83 84.75 +6.23 91.50 +542 91.75 £590

lift-mh 86.75 +2.82 91.00 +4.00 90.75 +575 86.75 +5.95

can-ph 74.50 +6.82 68.00 £9.13  62.00 £1090  69.67 +£5.89

can-mh 56.25 +8.78 47.50 +351 30.50 +8.73 50.50 +6.48

robosuite total 78.56 72.81 68.69 74.66
5.1 SETUPS

Similar to Shin & Brown (2021), we evaluate Preference Transformer (PT) on several complex con-
trol tasks in the offline setting using D4RL (Fu et al., 2020) benchmarks and Robomimic (Man-
dlekar et al., 2021) benchmarks.' Specifically, we consider three different domains (AntMaze,
Gym-Mujoco locomotion (Todorov et al., 2012; Brockman et al., 2016) from D4RL benchmarks
and Robosuite robotic manipulation (Zhu et al., 2020) from Robomimic benchmarks) with differ-
ent data collection schemes. For reward learning, we select queries (pairs of trajectory segments)
uniformly at random from offline datasets and collect preferences from real human trainers (the au-
thors).> Then, using the collected datasets of human preferences, we learn a reward function and
train RL agents using Implicit Q-Learning (IQL; Kostrikov et al. 2022), a recent offline RL algo-
rithm which achieves strong performances on D4RL benchmarks. We consider Markovian policy
and value functions by following the original implementation (e.g., architecture, hyperparameters)
of IQL. We additionally provide the result of offline RL experiments with the non-MDP models in
Appendix G.

For evaluation, we measure expert-normalized scores respecting underlying task reward from the
original benchmark (D4RL) * and success rate (Robomimic). As baselines, we consider the standard
preference modeling based on Markovian reward (MR) or non-Markovian reward (NMR). For the
exp(3, 7(s} al i)
Z]‘ eXp(Zt f’(s{,a{;wm))
using reward function modeled with MLP similar to Christiano et al. (2017); Lee et al. (2021b). For
the NMR-based model, we use the LSTM-based architecture (Early et al., 2022) as a reward function

MR-based model, we define the preference predictor as Plo! = o¥;¢yg] =

!'To focus on evaluating the performance of reward learning, we consider the offline setting. Note that similar
setting assuming expert demonstrations are available is also considered in prior work (Ibarz et al., 2018).

2We collected 100 (medium) / 1000 (large) queries in AntMaze, 500 (medium-replay) / 100 (medium-
expert) queries in Gym-Mujoco locomotion, and 100 (PH) / 500 (MH) queries in Robosuite robotic manip-
ulations. A maximum of 10 minutes of human time was required for feedback collection in all cases except
Gym-Mujoco locomotion-medium-expert and antmaze-large, which required between 1 and 2 hours of human
time.

3Since preferences are collected by experts who are familiar with robotics and RL domains, we measure the
performance with respect to task reward similar to Christiano et al. (2017).
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Figure 3: Time series of learned reward function (red curve) and importance weight
(blue curve) on (a) successful trajectory segment and (b) failure trajectory segment from
antmaze-large-play-v2. For both cases, spikes in the importance weight correspond to crit-
ical events: turning right to reach the goal (point 2), or flipping (point 4). The learned reward is
also well-aligned with human intent: reward increases as the agent gets close to the goal, while it
decreases when agent is flipped.

exp(X, #({(sf,aD)iiiwm)) 4
5, e (5, F(L D) o)) O
that both baselines use the same preference modeling based on the sum of rewards with equal weight,
while our method is based on the weighted sum of non-Markovian rewards modeled by transformers.
We also report the performance of IQL trained with task reward from benchmarks as a reference.
For all experiments, we report the mean and standard deviation across 8 runs. More experimental
details (e.g., task descriptions, feedback collection, and reward learning) are in Appendix B and C.

and define the preference predictor as Plo! = 0% yg] =

5.2 BENCHMARK TASKS WITH REAL HUMAN TEACHERS

Table 1 shows the performances of IQL with dif- PT vs MR
ferent reward functions. Preference Transformer

consistently outperforms all baselines in almost all
tasks. Especially, only our method almost matches

the performance of IQL with the task reward, while PT vs NMR
baselines fail to work in hard tasks. This implies
that PT can induce a suitable reward function from
real human preferences and teach meaningful behav-
iors. In particular, there is a big gap between PT
and baselines in complex tasks (i.e., AntMaze) since Figure 4: Averaged human evaluation results
capturing the long-term context of the agent’s behav- on 4 AntMaze tasks. Numbers denote the
iors (e.g., direction of the agent) and critical events statistics of the evaluators’ responses over 40
(e.g., goal location) is important in this task. These trials. PT received higher ratings compared
results show that our transformer-based preference to both MR and NMR.

model is very effective in reward learning.

mmmm Prefer PT Equally Good mmsm Prefer baseline

Human evaluation. To check whether learned rewards are indeed aligned with human preferences,
we also conduct a human evaluation. We generate a query (i.e., two trajectories) from agents trained
with two different rewards and a human evaluator (authors) decides which trajectory is better.”> Fig-
ure 4 shows the results comparing Preference Transformer and baselines averaged over 40 sets of

4Original work (Early et al., 2022) only considered the return prediction but we utilize the proposed LSTM-
architecture in preference-based learning.

STrajectories are anonymized for fair comparisons. Also, the evaluators skip the query if both agents equally
fail to solve the task for meaningful comparisons.
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Figure 5: Averaged normalized scores of IQL with various reward functions trained from human
and synthetic preferences on AntMaze, Gym-Mujoco locomotion (Hopper and Walker2d), and Ro-
bosuite robotic manipulation tasks. The result shows the mean and standard deviation averaged over
8 runs. Our method (PT) achieves strong performances on both scripted and human teachers, while
the performances of baselines (MR and NMR) are significantly reduced on human teachers.

queries.® We observe that human evaluators prefer agents from PT compared to agents from MR or
NMR, showing PT is more aligned with human preferences.

5.3 REWARD AND WEIGHT ANALYSIS

We evaluate whether Preference Transformer can induce a well-specified reward and capture
the critical events from human preferences. Figure 3 shows the learned reward function (red
curve) and importance weight (blue curve) on successful and failure trajectory segments from
antmaze—large-play-v2. First, we find that the reward function is well-aligned with hu-
man intent. In the successful trajectory (Figure 3a), reward value increases as the agent gets close
to the goal, while the failure trajectory shows low rewards since the agent struggles to escape the
corner, then it flips as shown in Figure 3b. This shows that Preference Transformer can capture the
context of the agent’s behaviors in the reward function. We also find that importance weight shows
a different trend compared to reward function. Interestingly, for both successful and failure trajec-
tories, spikes in importance weights correspond to critical events such as turning right to reach the
goal or flipping. More video examples are available in the supplementary material.

5.4 BENCHMARK TASKS WITH SCRIPTED TEACHERS

Similar to prior work (Christiano et al., 2017; Lee et al., 2021b;c), we also evaluate Prefer-
ence Transformer using synthetic preferences from scripted teachers. We consider a determinis-
tic teacher, which generates preferences based on task reward r from the benchmark as follows:
y = i, where ¢ = arg max; Zf: (s}, al). We remark that this scripted teacher is a special case of
the preference model introduced in equation 1.

Figure 5 shows the performances of IQL with different reward functions from both human and
scripted teachers (see Appendix D for full results). Preference Transformer achieves strong per-
formances on scripted teachers even though synthetic preferences are based on Markovian rewards
which contribute to the decision equally. We expect this is because Preference Transformer can in-
duce a better-shaped reward by utilizing historical information. Also, non-Markovian formulation
(in equation 3) can be interpreted as a generalized version of Markovian formulation (in equation 1)
since it can learn Markovian rewards by ignoring the history in the inputs. We also remark that
baselines achieve better performances with scripted teachers compared to real human teachers on
some easy tasks (e.g., locomotion tasks). This implies that scripted teacher does not model real
human behavior exactly, and evaluation on scripted teachers can generate misleading information.
To investigate this in detail, we measure the agreement rates between human and scripted teach-
ers. Figure 6b shows that disagreement rates are quite high since the scripted teacher can not catch

SEach set consists of 5 rollouts from 8 models trained with different random seeds.
"If we introduce a rationality constant (or temperature) 3 to the exponential term in equation 1 and set it as
B — o0, the preference model becomes deterministic.
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Figure 6: Difference between the human and scripted teacher. (a) Examples of trajectories shown to
the human and scripted teacher on AntMaze task. The human teacher provides the correct label by
catching the context of behavior (i.e. direction) while the scripted teacher does not. (b) Agreement
between human teachers and scripted teachers. We find that disagreement rates are quite high across
all tasks, implying that evaluation on scripted teacher can generate misleading information.

the context of the agent’s behavior correctly (see Figure 6a). Note that the disagreement between
human and scripted teachers also has been observed in simple grid world domains (Knox et al.,
2022). These results imply that existing preference-based RL benchmarks (Lee et al., 2021c) based
on synthetic preferences may not be enough, calling for a new benchmark specially designed for
preference-based RL.

5.5 LEARNING COMPLEX NOVEL BEHAVIORS

Figure 7: Six frames from a double backflip of Hopper. The agent is trained to perform a sequence
of backflips using 300 queries of human feedback.

We present the effectiveness of Preference Transformer for enabling agents to learn complex and
novel behaviors where a suitable reward function is difficult to design. Specifically, we demon-
strate Hopper in Gym-Mujoco locomotion performing multiple backflips at each jump. This task
is more challenging compared to a single backflip considered in previous preference-based RL
approaches (Christiano et al., 2017; Lee et al., 2021b), as the reward function must capture non-
Markovian contexts including the number of rotations. We observe that the Hopper agent learns to
perform double backflip as shown in Figure 7, while the agent with Markovian reward function fails
to learn it. The implementation details of Hopper backflip are provided in Appendix B, and videos
of all behaviors (including triple backflip) are available on the project website.

6 DISCUSSION

In this paper, we present a new framework for modeling human preferences based on the weighted
sum of non-Markovian rewards, and design the proposed framework using a transformer-based ar-
chitecture. We propose a novel preference attention layer for learning the weighted sum of the
non-Markovian reward function, which enables inferring the importance weight of each reward via
the self-attention mechanism. Our experiments demonstrate that Preference Transformer signif-
icantly outperforms the current preference modeling methods on complex navigation, locomotion,
and robotic manipulation tasks from offline RL benchmarks. In addition, we observe that the learned
preference attention layer can indeed capture the events critical to the human decision. We believe
that Preference Transformer is essential to scale preference-based RL (and other human-in-the-loop
learning) to various applications.
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FUTURE DIRECTIONS

There are several future directions in Preference Transformer. One is to utilize the importance
weights in reinforcement learning or preference-based reward learning. For example, importance
weights can be utilized for sampling more informative queries, which can improve the feedback-
efficiency of preference-based reward learning (Sadigh et al., 2017; Lee et al., 2021c). It is also
an interesting direction to use the importance weights for stabilizing Q-learning via weighted up-
dates (Kumar et al., 2020; Lee et al., 2021a). Combination with other preference models is another
important direction for future research. For example, Knox et al. (2022) proposed a new preference
model based on each segment’s regret in simple grid world environments. Even though their pro-
posed method is based on several assumptions (e.g., generating successor features (Dayan, 1993;
Barreto et al., 2017)), a combination with the regret-based model would be interesting.

ETHICS STATEMENT

Unlike other domains (e. g., language), control tasks require more high-quality human feedback from
domain experts. Even though the quality of the dataset can be improved by training labelers, such
training requires substantial effort. In addition, feedback from crowd-sourcing platforms, such as
Amazon Mechanical Turk, can be noisy. We addressed these concerns by collecting human feedback
from domain experts (authors) who are very familiar with robotics, RL, and target tasks. We expect
that our datasets are labeled with high-quality and clean labels, and our collection strategy is closer
to practice. However, at the same time, we think that evaluations using public crowd-sourcing
platforms would be interesting and leave it to future work.
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A TASKS AND DATASETS

In this section, we describe the details of control tasks from D4RL benchmarks (Fu et al., 2020).

AntMaze. AntMaze is a navigation task requiring a Mujoco Ant robot to reach a goal location. The
datasets are generated by a pre-trained policy designed to reach a goal on different maze layouts. We
consider two maze layouts: medium and large. Datasets are generated by two strategies: diverse and
play. The diverse datasets are generated from the pre-trained policy with randomized start and goal
locations. The play datasets are generated from the pre-trained policy with specific hand-picked goal
locations. Task reward is constructed in a sparse setting that gives rewards only when the distance
to the goal location is less than a fixed threshold, or all of them give zero.

Gym-Mujoco locomotion. The goal of Gym-Mujoco locomotion tasks is to control the simu-
lated robots (Walker2d, Hopper) such that they can move forward while minimizing the energy
cost (action norm) for safe behaviors. We consider two data generation strategies: medium-expert
and medium-replay. The medium-expert datasets are generated by mixing equal amounts of expert
demonstrations, suboptimal (partially-trained) demonstrations, and medium-replay datasets corre-
spond to the replay buffer collected by a partially-trained policy. The task reward is defined as the
forward velocity of the torso, control penalty, and survival bonus.

Robosuite robotic manipulation. Robosuite robotic manipulation (Zhu et al., 2020) includes dif-
ferent types of tasks with various 7-DoF simulated Hand robots. We use simulated environments
with Panda by Franka Emika for the robot in our experiments. We choose the task of lifting a cube
object (liff) and placing a coke can from table to the target bin (can). Datasets are collected by either
one proficient teleoperators (ph) or 6 teleoperators with varying proficiency (:mh). Task reward is
defined as a sparse reward, and we defer this detail to the original paper.

B EXPERIMENTAL DETAILS

Training details. Our implementation of Preference Transformer is available at:
https://github.com/csmile-1006/PreferenceTransformer

Our model is implemented based on a publicly available re-implementation of GPT in JAX (Frostig
etal., 2018)%. We use the hyperparameters in Table 2 for all experiments. We use segments of length
100 in all experiments. To improve the stability in training IQL with learned reward function, we
normalize the learned reward as follows:

learned reward — (max returns)

predicted reward — max timestep X ,

(max returns) — (min returns)
where max timestep is the maximum episode length, and max timestep and min timestep de-
note returns of best and worst trajectories in the dataset, respectively. Training time varies depending
on the environment, but it takes less than 10 minutes for reward learning in AntMaze environment
with 1000 human feedback and takes about an hour to train IQL with learned PT. For training and
evaluating our model, we use a single NVIDIA GeForce RTX 2080 Ti GPU and 8 CPU cores (Intel
Xeon CPU E5-2630 v4 @ 2.20GHz). We train both reward function and IQL over 8 random seeds.

Implementation details of PT. In all experiments, we use causal transformers with one layer and
four self-attention heads followed by a bidirectional self-attention layer with a single self-attention
head. PT is trained using AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 1 x
10~* including linear warmup steps of 5% of total gradient steps, cosine learning rate decay, weight
decay of 1 x 10~%, and batch size of 256. For RL training, we use publicly released implementations
of IQL® and follow the original hyper-parameter settings. For all experiments, we use the same
hyperparameters used by the original IQL.

Evaluation details. We follow the original settings of IQL in evaluation. We evaluate IQL over 100
rollouts in AntMaze, 10 rollouts in Gym-Mujoco locomotion, and 50 rollouts in Robosuite robotic
manipulation. For evaluation metrics, we measure expert-normalized scores introduced in D4RL

$https://github.com/matthias-wright/flaxmodels
*https://github.com/ikostrikov/implicit_g_learning
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score—random score

benchmark: normalized score = 100 X for AntMaze and Gym-Mujoco
expert score—random score
locomotion tasks and success rate for Robosuite robotic manipulation tasks.

Hyperparameters. Hyperparameters for PT are shown in Table 2. We remark that PT with more
attention layers and more gradient updates can boost the model’s performance, but we use the current
version with small layers for faster training and evaluation.

Table 2: Hyperparameters of Preference Transformer.

Hyperparameter Value

Number of layers 1

Number of attention heads 4

Embedding dimension 256

(Casual transformer, Preference attention layer)

Batch size 256

Dropout rate (embedding, attention, residual connection) 0.1

Learning rate 0.0001

Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum B1 =0.9, B2 =0.99
Weight decay 0.0001

Warmup steps 500

Total gradient steps 10K

Baselines. Implementation details of our baselines are as follows:

* Markovian reward model (MR). We use two-layer MLPs with 256 hidden dimensions each.
We use ReLUs for the activation function between layers, and we do not use the activation
function for the output. Each model is trained by optimizing the cross-entropy loss defined in
equation 2 with the learning rate of 0.0003.

¢ Non-Markovian reward model (NMR). For the non-Markovian reward model, we re-
implement CSC Instance Space LSTM (Early et al., 2022) following the architecture specified
in the original paper using JAX. We double the hidden dimensions to match the NMR and PT.

Implementation details of Hopper backflip. For enabling Hopper backflip, we train the agent in
online setup following Lee et al. (2021b). We pre-train the policy 7 using an intrinsic reward for the
first 10,000 timesteps, to explore and collect diverse experiences. Then, we train PT using collected
behaviors and relabel past experiences in the replay buffer using the learned reward model. This
reward learning and relabeling stage is repeated every 10,000 timesteps, and we give 100 queries
of human feedback at each stage. We observe that 3 reward learning stages (i.e., 300 queries) are
enough to perform double backflips. We use 3 layers and 8 attention heads for PT, and the model is
trained for 100 epochs at each stage. The other details are the same as in Table 2.

C HUMAN PREFERENCES

Preference collection. We collect feedback from actual human subjects (the authors) familiar with
robotic tasks. In detail, the human teacher who is given instruction on each task watches a video
rendering each segment and chooses which of the two is more helpful in achieving the objective of
the agent. Each trajectory segment is 3 seconds long (100 timesteps). If the human teacher cannot
decide about the preference over segments, it is allowed to select a neutral option that gives the same
preference to each of the two segments.

Instruction given to human teacher.

* AntMaze: The first priority is for the ant robot to reach the goal location as soon as possible
without wandering or falling. If the ant robot is either left falling, hovering, or moving in the
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D

opposite direction to the goal location, lower your priority to the segment even if the distance
to the goal direction is closer than that of the other segment. If the two robots are almost tied
on this metric, choose the segment by the distance that the robot has moved.

Hopper: The hopper robot aims to move to the right as far as possible while minimizing
energy costs. If the hopper robot lands unsteadily, lower your priority even if the distance
traveled moved during a segment is longer than the other. If the two robots are almost tied on
this metric, choose the segment by the distance that the robot has moved.

Walker2d: The goal of the walker robot is to move to the right as far as possible while min-
imizing energy costs. If the walker is about to fall or walks abnormally (e.g., walking using
only one leg, slipping, etc.), lower your priority to the segment even if the distance traveled
moved during a segment is longer than the other. If the two robots are almost tied on this
metric, choose the segment by the distance the robot has moved.

Robosuite: Panda robot arm first grasps the object and carries out actions for a specific purpose
(lift a cube or move a coke can to the target bin). Prioritize catching the object between the
two. If the two robots are almost tied on this metric, choose by the extent to which the target
object has moved.

FULL EXPERIMENTAL RESULTS WITH SCRIPTED TEACHER

Table 3: Averaged normalized scores of IQL on AntMaze, Gym-Mujoco locomotion tasks, and
success rate on Robosuite manipulation tasks with different reward functions. We train Preference
Transformer (PT) and standard preference modeling with Markovian reward (MR) modeled by MLP
or non-Markovian reward (NMR) modeled by LSTM using the same dataset of preferences from
scripted teachers and real human teachers. The result shows the average and standard deviation
averaged over 8 runs.

Dataset

IQL with preference learning
Scripted Teacher Human Teacher
MR NMR PT (ours) MR NMR PT (ours)

IQL with
task reward

antmaze-medium-play-v2 73.88 +449 | 64.75 £523 66.13 +336 66.13 +336 | 31.13 1696 62.88 +599  70.13 +3.76
antmaze-medium-diverse-v2 | 68.13 +10.15 4.25 +627 67.00 +590  68.13 +4388 19.38 +924  20.13 +1712 65.25 +£359

antmaze-large-play-v2 48.75 +435 | 21.00 +1423  10.75 +198  23.13 1310 | 24.25 £1403  14.13 +360  42.38 +9.98
antmaze-large-diverse-v2 44.38 +447 | 1575 +632  12.00 +359  44.50 =590 5.88 +6.94 0.00 +0.00 19.63 +3.70
antmaze-v2 average 58.79 26.31 38.97 50.00 20.16 24.29 49.35

hopper-medium-replay-v2 83.06 +1580 | 62.77 +936  72.33 +oo01 94.19 +608 | 11.56 +3027 57.88 +4063 84.54 +4.07
hopper-medium-expert-v2 73.55 +4147 | 80.00 +33.06 85.97 £3791  39.14 £2033 | 57.75 £2370 38.63 +3s558 68.96 +33.86
walker2d-medium-replay-v2 | 73.11 +807 | 65.69 +817  73.63 +735  77.08 984 | 72.07 +196  77.00 +303  71.27 £1030
walker2d-medium-expert-v2 | 107.75 202 | 109.95 +os4 11041 tos2  109.99 o063 | 108.32 £387 110.39 093 110.13 +o21

locomotion-v2 average 84.37 79.60 85.56 80.10 62.43 70.98 83.72
lift-ph 96.75 +183 | 9575 +271 80.00 £19a8  92.50 +424 | 8475 623  91.50 542  91.75 +59
lift-mh 86.75 +282 | 92.25 +483  91.50 +542  93.00 +355 | 91.00 =400  90.75 +£5.75 86.75 +5.95
can-ph 74.50 682 | 6225 +1202  67.75 x680  69.75 +9.04 | 68.00 £9.13  62.00 £1090  69.75 +589
can-mh 56.25 +878 | 59.00 +110 5425 +557 5525 +665 | 47.50 +351 30.50 +873  50.50 +6.48
robosuite average 78.56 77.31 73.37 77.63 72.81 68.69 74.68
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E ADDITIONAL EXAMPLES OF QUERIES

In Figure 8, we provide additional examples of queries to highlight the difference between human
and scripted teachers. In the case of the example in Figure 8a, the scripted teacher prefers trajectory
1 since ant is closer to the goal. However, the human teacher prefers trajectory O since ant is flipped
in trajectory 1. In the case of the example in Figure 8b, the scripted teacher shows a very myopic
decision because a hand-designed reward does not capture the context of behavior (e.g., falling
down). These examples show the lack of ability to consider multiple objectives, while humans can
provide more reasonable feedback by balancing the multiple objectives.

ﬂ \_) u.'
_

09 : trajectory 0 o1 : trajectory 1 o9 : trajectory 0 oy @ trajectory 1
Py ¥ Py ¥
Ll 0o = 01 & o1 - oo L0l 0o = 01 @ o1 - oo
Human Scripted Human Scripted
(a) AntMaze (b) Walker2d

Figure 8: [Illustrations of trajectories from (a) antmaze-large-play-v2 and (b)
walker2d-medium-replay-v2. Since hand-designed task reward does not contain all task-
relevant information, scripted teacher ignores important events such as flipping and falling down.

F DESCRIPTION OF THE VIDEO EXAMPLES

We provide video examples with visualization of the learned importance weight in the supplemen-
tary material. For a better visibility, we represent the weight as a color map on the rim of the video,
i.e., we highlight frames with higher weights using more bright colors. We observe that the learned
importance weights are well-aligned with human intent, as in Figure 3.
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G EXPERIMENTAL RESULTS USING NON-MARKOVIAN MODELS

We investigate whether our non-Markovian reward function shows better performance with non-
Markovian policy and value functions. For each timestep ¢, we augment state s; by concatenating
historical information'® , and use it as inputs to train policy and value functions. Table 4 shows the
results comparing Preference Transformer and NMR. We observe that PT outperforms NMR, which
again shows the superiority of our method. However, compared to the results with Markovian policy
and value functions in Table 1, the overall performances of all methods are degraded. We expect
that this is because the original offline RL algorithm (IQL) assumed Markovian setup and tuned all
hyper-parameters under this assumption.

Table 4: Averaged normalized scores of non-MDP IQL with different reward functions on AntMaze
and Gym-Mujoco locomotion tasks. Using the same dataset of preferences from real human teach-
ers, we train Preference Transformer (PT) and LSTM-based non-Markovian reward (NMR; Early
et al. 2022). The result shows the average and standard deviation averaged over 8 runs.

IQL with preference learning

Dataset

NMR PT (ours)
antmaze-medium-play-v2 54.50 +4.59 64.38 +3.16
antmaze-medium-diverse-v2 | 10.50 1360  53.00 +21.56
antmaze-large-play-v2 14.83 £578 25.63 +478
antmaze-large-diverse-v2 0.00 +o0.00 8.13 +327
antmaze-v?2 total 19.96 37.79

hopper-medium-replay-v2 15.80 +26.11  55.77 +31.09
hopper-medium-expert-v2 55.80 +3434  79.84 +2932
walker2d-medium-replay-v2 | 41.91 +3258  67.06 +1339
walker2d-medium-expert-v2 | 94.20 +2941  104.97 +10.63
locomotion-v2 total 51.92 76.91

19Specifically, we provide a predicted reward of the previous timestep #;_1 as an additional input.
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