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Abstract

In computer vision and natural language processing, innovations in model architec-
ture that increase model capacity have reliably translated into gains in performance.
In stark contrast with this trend, state-of-the-art reinforcement learning (RL) algo-
rithms often use small MLPs, and gains in performance typically originate from
algorithmic innovations. It is natural to hypothesize that small datasets in RL
necessitate simple models to avoid overfitting; however, this hypothesis is untested.
In this paper we investigate how RL agents are affected by exchanging the small
MLPs with larger modern networks with skip connections and normalization, fo-
cusing specifically on actor-critic algorithms. We empirically verify that naively
adopting such architectures leads to instabilities and poor performance, likely
contributing to the popularity of simple models in practice. However, we show
that dataset size is not the limiting factor, and instead argue that instability from
taking gradients through the critic is the culprit. We demonstrate that spectral
normalization (SN) can mitigate this issue and enable stable training with large
modern architectures. After smoothing with SN, larger models yield significant
performance improvements — suggesting that more “easy” gains may be had by
focusing on model architectures in addition to algorithmic innovations.

1 Introduction

In computer vision and natural language processing (NLP), competitive models are growing increas-
ingly large, and researchers now train billion-parameter models [13, 36]. The earliest neural networks
were often shallow [40] with performance dropping for excessively deep models [29]. However,
ever since the introduction of batch normalization [31] and residual connections [29], performance
has improved more or less monotonically with model scale [64]. As a result, competitive models in
computer vision and NLP are growing ever larger [10, 56], and further architectural innovations are
continuously researched [14].

In stark contrast with this trend, state-of-the-art (SOTA) reinforcement learning (RL) agents often
rely on small feedforward networks [35, 37, 39] and performance gains typically originate from
algorithmic innovations such as novel loss functions [58, 62, 68] rather than increasing model capacity.
Indeed, a recent large-scale study has shown that large networks can harm performance in RL [2].
It is natural to suspect that high-capacity models might overfit in the low-sample regime common
in RL evaluation. Imagenet contains over a million unique images whereas RL is often evaluated
in contexts with fewer environment samples [37, 39]. However, to date, this overfitting hypothesis
remains largely untested.

To address this, we study the effects of using larger modern architectures in RL. By modern archi-
tectures we mean networks with high capacity, facilitated by normalization layers [6, 31] and skip
connections [29]. We thus depart from the trend in RL of treating networks as black-box function
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approximators. To limit the scope and compute requirements we focus on continuous control from
pixels [65] with two actor-critic agents based on the Soft Actor-Critic (SAC) [25, 35] and Deep
Deterministic Policy Gradients (DDPG) [43, 71] algorithms. Actor-critic methods form the basis of
many SOTA algorithms for continuous control [35, 38, 39]. As can be expected, we demonstrate that
naively adopting modern architectures leads to poor performance, supporting the idea that RL does
not benefit from larger models. However, we show that the issue is not necessarily overfitting, but
instead, that training becomes unstable with deeper modern networks. We hypothesize that taking the
gradient of the actor through the critic network creates exploding gradients [53] for deeper networks.
We connect this setup with generative adversarial networks (GANs) [22], and propose to use a simple
smoothing technique from the GAN literature to stabilize training: spectral normalization [47].

We demonstrate that this simple strategy allows the training of larger modern networks in RL without
instability. With these fixes, we can improve upon state-of-the-art RL agents on competitive continu-
ous control benchmarks, demonstrating that improvements in network architecture can dramatically
affect performance in RL. We also provide performance experiments showing that such scaling can
be relatively cheap in terms of memory and compute time in RL from pixels. Our work suggests that
model scaling is complementary to algorithmic innovations and that this simple strategy should not
be overlooked. We summarize our contributions as follows:

* We verify empirically that large modern networks fail for two competitive actor-critic agents.
We demonstrate dramatic instabilities during training, which casts doubt on overfitting being
responsible.

* We argue that taking the gradients through the critic is the cause of this instability. To combat
this problem we propose to adopt spectral normalization [47] from the GAN literature.

* We demonstrate that this simple smoothing method enables the use of large modern networks
and leads to significant improvements for SOTA methods on hard continuous control tasks.
We further provide evidence that this strategy is computationally cheap in RL from pixels.

2 Background

2.1 Reinforcement Learning

Reinforcement learning tasks are often formulated as Markov decision processes (MDPs), which
can be defined by a tuple (S, A, P,r) [63]. For continuous control tasks the action space A and the
state space S are continuous and can also be bounded. Each dimension of the action space might for
example correspond to one joint of a humanoid walker. At time step ¢, the agent is in a state s, €S
and takes an action a € A to arrive at a new state s;; € S. The transition between states given an
action is random with transition probability P : S x § x A — [0, c0). The agent receives a reward
ry from the reward distribution r at each timestep ¢. The goal is typically to find a policy 7 : S — A
that maximizes expected discounted reward E[_, '], where 0 <+ <1 is a pre-determined constant.
In practice, it is common to measure performance by the cumulative rewards » _, 7.

2.2 Actor-Critic Agents

Actor-critic methods have roots in Q-learning [69] and form the backbone of many recent state-
of-the-art algorithms [35, 38, 39]. We focus on two popular and performant actor critic methods:
SAC [25] and DDPG [43]. Given some features ¢(s) that can be obtained from any state s € S,
the actor-network maps each state-feature ¢(s) to a distribution my(s) over actions. The action
distribution is known as the policy. For each dimension, the actor-network outputs an independent
normal distribution, where the mean ¢, (s) and possibly the standard deviation o4(s) come from the
actor-network. The action distribution is then obtained as

mo(s) = tanh(py(s) + € © op(s)), € ~N(0,1). (1)

The tanh non-linearity is applied elementwise, which bounds the action space to [—1,1]™ for
n = dim(A). Sampling € allows us to sample actions ay from the policy 7y(s). DDPG typically
adds the exploration noise € outside the tanh non-linearity. To promote exploration, SAC instead
adds the entropy of the policy distribution H (7g(s;)) times a parameter « to the rewards. The
critic network outputs a Q-value @)y (a, s) for each state s and action a. In practice, one can simply



concatenate the feature ¢(s) with the action a and feed the result to the critic. The critic network is
trained to minimize the soft Bellman residual:
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Here, 7 is the obtained reward and E[Q(a;s+1,S¢+1)] is the Q-value estimated by the rarget critic
— a network whose weights are the exponentially averaged weights of the critic. One can also use
multi-step targets for the rewards [62]. The loss (2) is computed by sampling transitions from a replay
buffer [48]. Since the Q-values that the critic outputs measure expected discounted rewards, the actor
should simply take actions that maximize the output of the critic network. Thus, to obtain a gradient
step for the actor, both SAC and DDPG sample an action ay from 7y (s;) and then take derivatives of
Q. (ag, s) with respect to . That is

_ 0Qy(29,s)
00
As the critic is a differentiable neural network, the derivatives are taken through the Q-values

Q. (ag, s). In practice, the features ¢(s) can be obtained from a convolutional network trained by
backpropagating from (2). For further details, see Haarnoja et al. [25], Lillicrap et al. [43].
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3 Motivating Experiments

3.1 Experimental Setup

For experimental evaluation, we focus on continuous control from pixels, a popular setting relevant to
real-world applications [33, 34]. Specifically we evaluate on the DeepMind control suite [65], which
has been used in [26, 27, 35, 39]. We use the 15 tasks considered in Kostrikov et al. [35] and evaluate
after 500,000 samples, which has become a common benchmark [35, 39, 41]. If learning crashes
before 500,000 steps (this occasionally happens for modern networks), we report the performance
before the crash. We will primarily focus on the image augmentation based SAC agent of Kostrikov
et al. [35], known as DRQ, and adopt their hyperparameters (listed in Appendix B). This agent
reaches state-of-the-art performance without any nonstandard bells-and-whistles, and has an excellent
open-source codebase. Unless specifically mentioned, all figures and tables refer to this agent. Its
network consists of a common convolutional encoder that processes the image into a fixed-length
feature vector. Such feature vectors are then processed by the critic and actor-network, which are just
feedforward networks. We will refer to these feedforward networks as the heads. The convolutional
encoder consists of four convolutional layers followed by a linear layer and layer normalization [6]
and the heads consist of MLPs with two hidden layers that concatenate the actions and image features;
see Appendix C for details. In Table 1 we also consider the augmentation-based DDPG agent of
Yarats et al. [71], using the default hyperparameters proposed therein. Both agents use the same
network design. In all experiments, we only vary the head architecture. We evaluation over ten seeds.
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Figure 1: Performance when using a modern network architecture with skip connections [29] and
normalization [6], averaged across ten seeds. Using modern architectures does not enable deeper
networks; instead, performance often decreases — sometimes catastrophically — while increasing
for a handful of tasks. This is in stark contrast with supervised learning where performance typically
improves monotonically with model capacity.



3.2 Testing Modern networks

Two crucial architectural innovations which have enabled deep supervised models are residual
connections [29] and normalization [31]. We test if adopting such modern techniques allows us to
successfully scale networks. Specifically, we use the feedforward network (and not the attention
module) found in a Transformer block [67] and will refer to this architecture as modern. Each block
consists of two linear transformations w; , wo with a ReLu between and layer normalization [6] that
is added to a residual branch. L.e. the output of a layer is  + waRelu (w1 norm(x)). Compared to the
original architecture, normalization is applied before the feedforward blocks instead of after, which is
now favored in practice [50, 70]. We use four transformer blocks for the critic and two for the actor.
Results from these experiments are shown in Figure 1, with one standard error given. We see that
these modifications often decrease performance. Thus, actor-critic agents have seemingly not reached
the level where model capacity improves performance monotonically, and tricks used in supervised
learning do not seem to suffice. This is perhaps not very surprising as state-of-the-art RL agents
typically use simple feedforward networks.

3.3 Testing Deeper Networks

Whereas naively adopting modern networks failed, we now investigate if simply making the MLP
networks deeper is a competitive strategy. To do this, we increase the number of MLP layers in the
actor and critic — from two to four hidden layers — while keeping the width constant. Results for the
two configurations are shown in Figure 2, with one standard error given. We see that for some tasks,
the performance improves, but for many others, it decreases. Simply scaling the network does not
monotonically improve performance, as typically is the case in supervised learning. For practitioners,
the extra computational burden might not make it worthwhile to increase network scale for such
dubious gains.
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Figure 2: The performance when making the networks deeper. Performance is averaged across ten
seeds and plotted for 15 tasks from the DeepMind control suite [65]. Making the network deeper does
not monotonically improve performance as is typically the case in supervised learning. Instead, some
tasks benefit, and some tasks suffer. As we shall see later, it is possible to improve the performance
by stabilizing training, suggesting that deeper networks cause some instability.

3.4 Isit overfitting?

Both making the networks deeper and adopting modern methods such as normalization and residual
connections do not monotonically improve performance, and can occasionally lead to catastrophic
drops in performance. It is natural to think that the small number of environment transitions available
leads to overfitting for large models, which is known to be harmful in RL [76]. Indeed, since training
and collecting samples are interleaved in RL, RL agents need to generate useful behavior when only
10 % of the training has elapsed, at which point only 10 % of the sample budget is available. Such
an overfitting hypothesis is relatively easy to probe. As per eq. (2), the critic is trained to minimize
the soft Bellman residual. If overfitting truly was the issue, we would expect the loss to decrease
when increasing the network capacity. We investigate this by comparing a modern network against a
smaller MLP in an environment where the former performs poorly — cartpole-swing-up. First, we
study the critic loss as measured over the replay buffer — which plays the role of training loss in
supervised learning. Results averaged over five runs are shown in Figure 3. The losses initially start
on the same scale, but the modern network later has losses that increase dramatically — suggesting



that overfitting is not the issue. Instead, training stability could be the culprit, as stable training
should enable the network to reach lower training loss. To probe this, we simply plot the norm of the
gradients for the critic and actor networks and see that they indeed are larger for the large modern
networks. Furthermore, the gradient magnitude increases during training and shows large spikes,
especially for the actor. This suggests that training stability, rather than overfitting, is the issue.
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Figure 3: Training dynamics when using a small MLP or a deeper network with normalization and
residual connections. Top left. The loss, as per eq. (2), of the critic during training. The loss does not
decrease when making the network larger, suggesting that overfitting is not the issue. Top right. The
rewards obtained. The deeper network fails to learn and improve its performance. Bottom left &
right. The gradient of the actor and critic during training. For the deeper network, training becomes
unstable with occasional spikes and large and growing gradients. Notice the logarithmic scale.

4 Stabilizing with Spectral Normalization

To improve the stability of actor-critic algorithms, let us consider a simple model. We will assume
that the action space has one degree of freedom, i.e. A = R. We also assume that we have some
fixed features ¢ which maps states to n-dimensional vectors, i.e. ¢(S) = R™. The critic and actor
are both modeled as MLPs with IV layers and a nonlinearity f (e.g. ReLu) applied elementwise after
each layer. The weights are given as matrices w;' or w; for layer ¢ in the actor and critic respectively.
We then have y; = f(w;z;) for layer i. If we let the functions representing the actor and critic be
denoted by A and @, and let || denote vector concatenation, we have:

A(s) = (Hf owi)og(s)  Qs) =Q(A(s), ¢(s)) = (Hf owy) o (A(s)é(s)) )

Recall that the Lipschitz constant of a function f is the smallest constant C' such that || f(z) — f(y)|| <
C||x — y|| for all x, y. It is straightforward to bound the Lipshitz constant of the critic, as it is made
up of transformations with bounded constants themselves. The Lipschitz constant of the linear layer
wy is the operator norm ||w;||, equal to the largest singular value oy,,x of w;. We have:

IR < (1A + llé(s)]]) H I gl (5)

Here || f|| is the Lipschitz constant of the function f, which for Relu is 1. Equation (5) bounds
the smoothness of the critic in the forward pass. A function that is L-Lipschitz smooth also has a
gradient bounded by L. Thus, if we could ensure that the critic is L-smooth, that would also imply



that gradients d(‘}a; being propagated into the actor, as per (3), are bounded. Equation (5) suggest
that the critic could be made smooth if the spectral norms of all layers are bounded. Fortunately,
there is a method from the GAN literature which achieves this: spectral normalization [47]. Spectral
normalization divides the weight W for each layer by its largest singular value o,,x Which ensures
that all layers have operator norm 1. The singular value can be expensive to compute in general, and
to this end, spectral normalization uses two vectors v and v — approximately equal to the right and left
vectors of the largest singular value, and approximate o, ~ u’ Wuv. The forward pass becomes:

Wz — Wz
Omax(W) “uTWo
For this to work properly, the vectors u and v should be close to the vectors corresponding to the
largest singular value. This is achieved via the power method [46, 47] by taking:

U WTu/||WTuH v <+ Wuo/||Wo||

By repeating this procedure for all layers, we ensure that the spectral norms of all layers are no larger
than one. If that is the case, eq. (5) suggests that the critic should be stable in the forward pass. This
would then bound the gradients being propagated into the actor as per eq. (3). Figure 3 has shown
that exploding gradients are associated with poor performance, and we thus hypothesize that applying
spectral normalization should stabilize learning and enable deeper networks.

y:

S Experiments

5.1 Smoothness Enables Larger Networks

We first investigate whether smoothing with spectral normalization allows us to use deeper modern
networks. To do this, we simply compare using the modern network defined in Section 3.2 without
and with spectral normalization. Specifically, for both the actor and the critic, we apply spectral
normalization to each linear layer except the first and last. Otherwise, the setup follows Section 3.1.
As before, when learning crashes, we simply use the performance recorded before crashes for future
time steps. Learning curves for individual environments are given in Figure 4, again over 10 seeds.
We see that after smoothing with spectral normalization, performance is relatively stable across
tasks, even when using a deep network with normalization and skip connections. On the other hand,
without smoothing, learning is slow and sometimes fails. Note that the improvements differ by tasks,
but performance essentially improves monotonically when making the network deeper — just as in
supervised learning. The only exception is walker walk, where the smoothed strategy is narrowly beat,
however, this might be a statistical outlier. In Appendix A, we also show that smoothing with spectral
normalization improves performance when using the 4 hidden layer MLPs. Thus, we conclude that
enforcing smoothness allows us to utilize deeper networks.

5.2 Comparing to Other Agents

After demonstrating that smoothing with spectral normalization allows actor-critic agents to use
larger modern networks which improve performance, we now see if these gains allow us to improve
upon other agents. We compare against two state-of-the-art methods for continuous control: Dreamer
[26] and the SAC-based agent of Kostrikov et al. [35] (DRQ), from which we start, using its default
MLP architecture. To ensure fair and identical evaluation across different algorithms, we run DRQ
and Dreamer with the author-provided implementations across 10 seeds. We show scores at step
500,000, averaged across 10 seeds in Table 2. For most tasks, the agent using deep modern networks
with smoothing outperforms the other agents, although for a handful of tasks it is narrowly beaten.
Note that the improvements that are obtained from scaling the network differ significantly between
tasks, likely as some tasks are more complex and thus more amenable to high-capacity models. It is
also interesting to note that performance on some sparse tasks improves, where artificial curiosity is
often employed [54, 61], suggesting that such tasks might not always require specialized solutions.
We note that these gains are comparable to those of algorithmic innovations, e.g. the improvement
for changing architecture is larger than the difference between Dreamer and DRQ showed here, see
Appendix D for details. Appendix D also compare against learning curves reported in [26, 35] which
does not necessarily use more than 5 seeds. Here, deeper modern networks with smoothing again
outperform the two alternatives. We conclude that by enforcing smoothness and simply scaling the
network, it is possible to improve upon state-of-the-art methods without any algorithmic innovations.
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Figure 4: Learning curves when using deep modern networks, with and without smoothing by spectral
normalization. Smoothing enables the deep network to learn effectively across tasks, whereas naively
using such a deep network often leads to slow learning and sometimes no learning at all.

5.3 Experiments with DDPG

Our motivation for using spectral normalization is not specific to the SAC-based agent of Kostrikov
et al. [35] and extends to actor-critic methods in general. To ensure that our methods generalize, we
now consider the DDPG algorithm [43]. We evaluate how larger networks and spectral normalization
affect the performance of the DDPG-based agent of Yarats et al. [71], dubbed DRQv2, and adopt
hyperparameters therein. We use the same modern and base networks as for the SAC-based agent.
For computational reasons we only focus on a smaller set of tasks, these include tasks with both dense
and sparse rewards, and both locomotion and classical control tasks. Results over 10 seeds and after
500,000 frames are reported in Table 1. We see a similar result as earlier — using a larger network
is detrimental to performance, but if spectral normalization is applied it can often be beneficial.
These results suggest that our intuition for using spectral normalization benefits beyond the SAC
setup. Results after 1 million frames are similar and are given in Appendix A. We conclude that
spectral normalization can enable larger networks in DDPG too and that this agent also benefits from
high-capacity networks.

5.4 Performance Cost

Scaling networks can improve performance, but larger networks can also increase memory footprint
and compute time. Thus, we here measure the memory consumption and compute time for SAC-based
agent of Kostrikov et al. [35] across four architectures; MLPs and modern networks (specified in
Section 3.2) with two or four hidden layers. Recall that we only modify the head networks, which
share features processed by a common convolutional network that is not modified. We consider
training with batch size 512 and interacting with the environment, the latter set up models deployment
after training. We use Tesla V100 GPUs and measure time with CUDA events and measure memory
with PyTorch native tools. For a single run, we average time across 500 iterations with warm-start.



Table 1: Results for the DDPG agent of Yarats et al. [71] using different networks. Using a larger
modern network results in poor performance compared to a traditional MLP, but once SN is used
larger networks are beneficial. Metrics are given after 0.5 million frames and averaged over 10 seeds.

task MLP modern modern + SN
cup catch 966.67 £ 2.32 107.46 2143 97532+ 1.3
walker walk 477.40 £ 117.96  6.10 &+ 9.08 739.94 + 20.88
cartpole sparse  1000.00 £+ 0.00 11.27 £ 0.16 1000.00 £ 0.00
hopper stand 403.82 +123.85 2.95+0.99 796.60 + 85.04
reacher easy 756.15 £7048 7722 £1995  801.83 & 66.31

Table 2: Comparison of algorithms across tasks from the DeepMind control suite. We compare
a modern architecture and spectral normalization (SN) [47] added to the SAC-based agent DRQ
[35] against two state-of-the-art agents: DRQ with its default MLP architecture, and Dreamer [26].
By using spectral normalization the modern network outperforms the other methods. This demon-
strates that simply stabilizing larger network can achieve gains comparable to those of algorithmic
innovations.

ball in cup catch  swingup cheetah run walker run
MLP + DRQ 884.6 +262.0 805.7 +£ 64.9 502.8 £+ 315.5 419.2 £+ 170.5
Modern+SN+DRQ  968.9 + 13.3 862.3 £ 152 708.9 + 46.2 501.0 £ 57.0
Dreamer 767.1 £63.3 592.4 +£31.3 630.7 £23.3 466.2 +21.1
finger spin reacher hard pendulum swingup  hopper hop
MLP + DRQ 851.7 + 156.8 674.7 £332.0 297.8 £352.6 196.1 £72.0
Modern+SN+DRQ  882.5 + 149.0 875.1 £ 75.5 586.4 + 381.3 254.2 + 67.7
Dreamer 466.8 £ 42.1 65.7 £ 16.5 4943 £+ 98.9 136.0 £ 28.5
hopper stand walker walk balance balance sparse
MLP + DRQ 743.1 £ 280.5 754.3 £356.7 981.5 £39.6 910.5 £+ 268.6
Modern+SN+DRQ  854.7 + 63.5 902.2 + 67.4 984.8 + 29.4 968.1 +72.3
Dreamer 663.7 = 70.3 863. £27.2 938.2 £ 13.0 9352 £22.5
swingup sparse reacher easy walker stand
MLP + DRQ 148.7 £ 299.3 753.9 £205.0 696.9 + 3294
Modern+SN+DRQ  620.8 + 311.0 814.0 + 85.8 953.0 £ 19.8
Dreamer 267.8 £25.4 8304 + 314 955.3 £ 8.7

The results averaged across 5 runs are given in Table 3. The memory consumption during training
changes relatively little, increasing roughly 17%. The reason for this is of course that memory
footprint comes both from the convolutional layers, which we do not modify, and the head networks,
which we increase in size. As the convolutional activations are spread across spatial dimensions, these
dominate the memory consumption, and increasing the scale of the head networks becomes relatively
cheap. The memory consumption during acting, which is dominated by storing the model weights,
changes dramatically in relative terms but is less than 200 MB in absolute terms. For compute time,
we see similar trends. Increasing the scale of the head network is relatively cheap as processing the
images dominates computation time. During acting, however, the increase in time is smaller, likely
as the time is dominated by Python computation overhead on the CPU rather than GPU computation.
This demonstrates that simply scaling the head networks can be relatively cheap for RL from pixels
while significantly improving performance.

6 Related Work

Early work on deep RL primarily used simple feedforward networks, possibly processing images
with a convolutional network [48, 49]. This is still a common strategy [35, 37, 39], and the setting
we have focused on. For environments with sequential information, it can be fruitful to incorporate
memory into the network architecture via RNNs [32] or Transformers [51, 52]. There is also work



Table 3: We compare memory and compute requirements on Tesla V100 GPUs for the SAC-based
agent of Kostrikov et al. [35], using four different architectures for the heads. For training, increasing
the capacity of the head incurs a relatively small cost in both memory and compute since convolutional
processing is the bottleneck. Thus, the improvements of Table 2 are relatively cheap. During acting,
memory cost increases a lot in relative terms, but less in absolute terms. Compute cost during acting
changes little, likely as it is dominated by CPU rather than GPU computations.

mlp2 mlp4 modern 2 modern4

train mem (GB) 4.05 + 0.0 419+ 0.0 4.27+0.0 473 £0.0
actmem (MB)  50.16 0.0  93.26 £ 0.0 112.66 £ 0.0  247.04 £0.0

train time (ms)  98.14 £ 0.15 104.1 £0.14 105.76 £0.23 125.21 £0.1
act time (ms) 1.19 £+ 0.09 1.26 £+ 0.02 14 £0.1 1.35+£0.02

on how to utilize, but not necessarily scale, neural networks in RL, e.g. dueling heads [68] or
double Q-learning [66]. The proposition that too-large networks perform poorly has been verified
for policy gradient methods in the systematic study of Andrychowicz et al. [2]. There is also ample
systematic work on generalization in RL [11, 18, 74] and many other relevant large-scale studies
include [15, 30, 76]. Spectral normalization has been used to regularize model-based reinforcement
learning by Yu et al. [72], however, the effects of SN seem to not be studied through ablations or
controlled experiments here. Concurrently with our work, Gogianu et al. [21] has investigated the use
of spectral normalization for DQN. In contrast with Gogianu et al. [21], we show how SN can be used
to enable larger networks, and use it in RL algorithms where the actor takes gradients through the
critic. This setting is fundamentally different from the discrete DQN setting, and one much closer to
the GAN setup where SN has been developed. Sinha et al. [60] consider using dense connections to
enable larger networks in RL. In contrast, we consider even larger models and also provide a solution
that is agnostic to the underlying network architecture.

There are many proposed ideas for enforcing smoothness in neural networks, especially for GANs
[5, 9, 22, 24, 57]. The idea of directly constraining the singular value has been investigated by
multiple authors [19, 23, 47]. For GANSs, one updates the weight of a generator network by taking
the gradient through the discriminator network, similar to how the actor is updated in SAC by taking
gradients through the output of the critic network. Due to this similarity, perhaps more techniques
from the GAN literature apply to actor-critic methods in RL.

7 Discussion

The Importance of Architecture. Within RL, it is common to abstract the neural network as function
approximators and instead focus on algorithmic questions such as loss functions. As we have shown,
scaling up the network can have a dramatic effect on performance, which can be larger than the effects
of algorithmic innovations. Our results highlight how low-level network architecture decisions should
not be overlooked. There is likely further progress to be made by optimizing the architectures. Within
supervised learning, there is ample systematic work on the effects of architectures [50, 64], and
similar studies could be fruitful in RL. Whereas larger architecture requires more compute resources,
this can potentially be offset by asynchronous training or other methods designed to accelerate RL
[8, 16, 17, 45, 55].

Evaluation in RL. Supervised learning has already reached the state where performance seems to
monotonically improve with network capacity [64]. As a consequence, it is common the compare
methods with similar compute resources. We have demonstrated how architectural modifications can
enable much larger networks to be used successfully in RL. If such benefits can be extended across
agents, fair comparisons in RL might require listing the amount of compute resources used for novel
methods. This is especially important for compute-intensive unsupervised methods [1, 39, 44, 59, 73,
75] or model-based learning [4, 12, 20, 28, 42].

Limitations. For compute reasons we have only studied the effects of networks on SAC and DDPG-
based agents — these are state-of-the-art algorithms for continuous control underlying many popular
algorithms — nonetheless, there are plenty of other algorithms. While our study gives some hints,
an outstanding question is why large architectures are not popular in RL in general, beyond the



algorithms we consider. The idea of obtaining gradients through subnetworks is common and
algorithms such as Dreamer [26] might also benefit from smoothing. Spectral normalization [47] is
a relatively straightforward smoothing strategy and many alternatives which might perform better
are known. We emphasize that the goal of our paper is to demonstrate that enabling large networks
is an important and feasible problem, to not provide a solution for every conceivable RL algorithm.
Finally, there are also further environments to try out. We have focused on continuous control from
pixels as it is a setting relevant for real-world applications, but other common benchmarks such as
Atari games [7] and board games [3] are also important.

Conclusion. We have investigated the effects of using modern networks with normalization and
residual connections on SAC [25, 35]- and DDPG [43, 71]-based agents. Naively implementing such
changes does not necessarily improve performance, and can lead to unstable training. To resolve this
issue, we have proposed to enforce smoothing via spectral normalization [47]. We show that this
fix enables stable training of modern networks, which can outperform state-of-the-art methods on a
large set of continuous control tasks. This demonstrates that changing network architecture can be
competitive with algorithmic innovations in RL.
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