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Learnable Negative Proposals Using Dual-Signed Cross-Entropy
Loss for Weakly Supervised Video Moment Localization

Anonymous Authors

ABSTRACT
Most existing methods for weakly supervised video moment local-
ization use rule-based negative proposals. However, the rule-based
ones have a limitation in capturing various confusing locations
throughout the entire video. To alleviate the limitation, we pro-
pose learning-based negative proposals which are trained using
a dual-signed cross-entropy loss. The dual-signed cross-entropy
loss is controlled by a weight that changes gradually from a minus
value to a plus one. The minus value makes the negative proposals
be trained to capture query-irrelevant temporal boundaries (easy
negative) in the earlier training stages, whereas the plus one makes
them capture somewhat query-relevant temporal boundaries (hard
negative) in the later training stages. To evaluate the quality of
negative proposals, we introduce a new evaluation metric to mea-
sure how well a negative proposal captures a poorly-generated
positive proposal. We verify that our negative proposals can be
applied with negligible additional parameters and inference costs,
achieving state-of-the-art performance on three public datasets.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.

KEYWORDS
video moment localization, learning-based negative proposal, dual-
signed cross-entropy loss, evaluation metric

1 INTRODUCTION
Given a natural language sentence query and a video, video mo-
ment localization aims to locate a precise temporal boundary of a
video segment corresponding to the sentence query. As it enables
automatic extraction of relevant video segments according to given
sentences, video moment localization has attracted much atten-
tion in recent years and has a wide range of applications such as
video retrieval [12], visual question answering [1, 39], and video
summarization [30]. Fully supervised methods [13, 48, 49] have
shown impressive results but need manually annotated temporal
boundaries for every pair of a video and a sentence for training,
which is time-consuming and labor-intensive.

On the other hand, weakly supervised methods [36, 38, 51] only
need pairs of a video and a sentence for training. Therefore, it is
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Figure 1: Weakly supervised video moment localization. (a)
Existing methods generate rule-based negative proposals
depending on a positive proposal. (b) The proposed method
generates learning-based negative proposals trained by a
dual-signed cross-entropy loss to capture various confusing
locations.

much easier to collect a large amount of data for training, because
the video-sentence pairs can be obtained from metadata on the
Internet or through automatic speech recognition (ASR) [31]. Most
weakly supervised methods adopt a two-stage approach that gen-
erates a positive proposal representing a specific temporal location
and then employs this proposal to find a temporal boundary. To
effectively generate a positive proposal, Multiple Instance Learning
(MIL)-based methods make negative proposals and use contrastive
learning to distinguish the positive proposal from the negative pro-
posals. Some MIL-based methods [14, 45, 50, 57] make negative
proposals from other videos that do not match a given sentence
query (i.e., unmatched videos). However, these negative proposals
in unmatched videos are not hard enough because confusing loca-
tions usually exist in a video that matches the given sentence query
(i.e., a matched video).

Considering the tendency that negative proposals in the matched
video are more confusing than those in the unmatched video, previ-
ous methods [15, 51, 58, 59] rely on rule-based negative proposals
inside the matched video. Specifically, in [51, 58], a negative pro-
posal is defined as a temporal location that is not captured by a
positive proposal. In [15, 59], two negative proposals are set as
two Gaussians whose location is predefined outside both sides of
a positive proposal. These rule-based negative proposals are only
determined from a positive proposal with heuristic rules. There-
fore, these negative proposals have limitations in capturing various
confusing locations.

To alleviate the limitations, we propose learning-based nega-
tive proposals for weakly supervised video moment localization,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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which have been overlooked in the previous methods. To this end,
we leverage a novel dual-signed cross-entropy loss to learn nega-
tive proposals that are gradually changed from easy to hard ones.
Specifically, we generate multiple negative proposals whose center
and width are learnable and select negative proposals with dif-
ferent weights. Then, we predict new sentence queries from the
selected negative proposals and compare the predicted queries to
the original query via the cross-entropy losses. We then multiply
the losses by a weight value for the dual-signed cross-entropy loss
(named ‘cross-entropy weight’ for simplicity), which is scheduled
to increment from a minus value to a plus value as the training
epoch progresses. According to the scheduled cross-entropy weight,
our negative proposals are trained by two processes: 1) in a minus
cross-entropy weight, the deconstruction process works to max-
imize the cross-entropy losses to learn easy negative proposals
capturing a query-irrelevant temporal boundary; 2) in a plus cross-
entropy weight, the reconstruction process works to minimize the
cross-entropy losses to learn hard negative proposals capturing
a somewhat query-relevant temporal boundary. During both pro-
cesses, we leverage multiple contrastive losses to discriminate a
positive proposal from multiple negative proposals. To validate the
quality of negative proposals, we propose a new evaluation met-
ric, Intersection of Negative duration, which measures how well a
negative proposal captures a poorly-generated positive proposal.
Our experiments are conducted on Charades-STA [13], ActivityNet
Captions [23], and TV show Retrieval [25]. In summary, our contri-
butions are as follows.

• In contrast to previous rule-based negative proposals, we
propose negative proposals that are 1) learnable, 2) softly
selected, and 3) gradually changed from easy to hard ones,
which are trained by a dual-signed cross-entropy loss, to
capture various confusing locations in a video.

• We introduce a new evaluation metric that measures how
well a negative proposal captures a poorly-generated positive
proposal and verify that our negative proposals have better
quality than the previous negative proposals.

• We demonstrate our negative proposals significantly boost
the performance of the existing methods with negligible
additional parameters and inference costs, achieving state-
of-the-art performance on three public datasets.

2 RELATEDWORK
Weakly supervised video moment localization. Most of the
weakly supervised video moment localization methods can be
grouped into two categories: reconstruction-based methods and
multiple instance learning-based methods. Reconstruction-based
methods focus on generating positive proposals that reconstruct
a sentence query. Lin et al. [28] introduce a sentence query recon-
struction approach and uses sliding windows as positive proposals.
Further, in [6, 15, 20, 22, 29, 51, 58, 59], Gaussian functions are uti-
lized to generate learnable proposals. To refine proposals, some
methods [3, 4, 6] distill other knowledge into proposals. However,
the previous methods only focus on generating positive proposals.
For better quality of positive proposals, negative proposals also play
an important role to be used for contrastive learning with positive
proposals. Therefore, we focus on generating negative proposals

and propose learning-based negative proposals using a dual-signed
cross-entropy loss.
Multiple Instance Learning (MIL). Multiple instance learning
(MIL) has been widely used in many weakly-supervised video-level
computer vision problems [2, 26, 37]. MIL-based weakly supervised
moment localization methods [8, 14, 15, 45, 50, 51, 56–59] make
negative proposals that do not correspond to the sentence query to
distinguish a positive proposal from the negative proposals. Some
methods [14, 45, 50, 57] make negative proposals from other videos
that do not match the query. Moreover, Chen et al. [8] create pseudo
labels from unmatched videos. However, these negative propos-
als in unmatched videos are not hard enough because confusing
video locations are usually inside the same video that matches the
query. To consider negative proposals in a matched video, which
are more confusing than negative proposals in unmatched videos,
some methods [15, 51, 58, 59] make rule-based negative proposals
inside the matched video. In [51, 58], a negative proposal is a tem-
poral location that is not captured by a positive proposal. In [15, 59],
two negative Gaussian proposals whose locations are predefined
outside both sides of a positive proposal are used. These rule-based
negative proposals are defined by a positive proposal and thus have
limitations in capturing various confusing locations. To alleviate
the limitations, we propose learning-based negative proposals that
are trained by a dual-signed cross-entropy loss.
Curriculum learning. Curriculum learning is a training strategy
that trains a model from easy data to hard data gradually. Conven-
tional curriculum learning [5, 17, 18] is a training strategy that uses
data with low training loss at early training. Curriculum learning
has been used in many computer vision problems such as object
detection [27] and video moment localization [24, 47, 59]. For fully
supervised video moment localization, Lan et al. [24] create a nega-
tive proposal through three video data augmentations and apply
each augmentation at the pre-defined time step. However, this neg-
ative proposal is based on simple rules and is not a truly-gradual
curriculum design. For weakly supervised moment localization, in
[59], the size and location of two negative proposals are defined by
a positive proposal and controlled slightly by the current training
epoch. However, in this method, the negative proposals are rule-
based and depend on the positive proposals, which can not capture
diverse confusing locations. Unlike previous curriculum designs,
we control cross-entropy losses of negative proposals by a weight
changing gradually from a minus value to a plus one during train-
ing. Through our novel loss, negative proposals can be trained to
be query-irrelevant at a minus value (easy negative) and then some-
what query-relevant at a plus value (hard negative). Therefore, our
learning-based negative proposals can capture diverse confusing
locations, which can be exploited for effective contrastive learning.

3 PROPOSED METHOD
Problem setting. In weakly-supervised video moment localiza-
tion, our goal is to locate a temporal boundary of a video segment
corresponding to a sentence query without any ground-truth tem-
poral boundary at training. Reconstruction-based methods [6, 15,
28, 36, 51, 58, 59] generate a positive proposal and train the positive
proposal to reconstruct the original sentence query from a masked
sentence query. These methods assume that a positive proposal
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Figure 2: Overall architecture of our method to generate negative proposals. One positive proposal and multiple negative
proposals are generated from the features of a video and a query. Through a selection network, we select useful negative
proposals for query prediction. Then, a new sentence query is predicted from a video, a randomly masked query, and each
negative proposal. For a dual-signed cross-entropy loss L𝑑𝑐𝑒 , we compute a cross-entropy loss between the predicted query and
the original query and then multiply the cross-entropy loss by a cross-entropy weight 𝑐 depending on the training epoch. As
the cross-entropy weight changes, the negative proposals are trained to be gradually changed from easy to hard ones. Finally,
we utilize multi-triplet loss L𝑚𝑡 for contrastive learning.

reconstructing the query well can be a temporal boundary corre-
sponding to the sentence query. We follow this assumption and use
the existing reconstruction-based network to generate a positive
proposal. However, unlike the previous methods, we focus on gener-
ating learning-based negative proposals. We use negative proposals
to predict multiple queries from a masked query and then exploit
the predicted queries to calculate our dual-signed cross-entropy
loss.
Overview. The overall architecture of our method to generate
negative proposals is depicted in Fig. 2. For a positive proposal, we
use an existing network [20, 58, 59] as a positive generator. For
negative proposals, we utilize features extracted from a video and
a sentence query as input to a transformer [41] to estimate centers
and widths of multiple proposals. Then, we select useful negative
proposals for query prediction through a selection network. For
query prediction, we utilize a video feature, a randomly masked
sentence query feature, and selected negative proposals to predict
new sentence queries. The predicted query from each negative
proposal is compared to the original query through a cross-entropy
loss. Hence, multiple cross-entropy losses for multiple negative
proposals are calculated.

To create negative proposals that are gradually changed from
easy to hard ones, we leverage a novel dual-signed cross-entropy
loss. First, we multiply the cross-entropy losses by a weight value
𝑐 scheduled to increment from a minus value to a plus value as
the training epoch progresses. According to 𝑐 , our negative propos-
als are trained through two processes: the deconstruction process
(𝑐 < 0) and the reconstruction process (𝑐 > 0). (1) The deconstruc-
tion process maximizes the cross-entropy losses, which learn easy
negative proposals to capture a query-irrelevant temporal bound-
ary. (2) The reconstruction process minimizes the cross-entropy

losses, which learns hard negative proposals to capture a some-
what query-relevant temporal boundary. During both processes,
we utilize multiple contrastive losses to discriminate the positive
proposal from multiple negative proposals.

3.1 Feature Extraction
We extract a video feature V ∈ R𝑇×𝐶 from a video via the pre-
trained 3D Convolutional Neural Networks [7, 40], where 𝑇 is the
number of sampled segments and 𝐶 is the feature dimension. We
extract a query feature Q ∈ R𝐿×𝐶 from a sentence query via the
pre-trained GloVe [33], where 𝐿 is the sentence length.

3.2 Negative Proposal Generation
Learnable proposal generation. Inspired by Gaussian-shaped
positive proposals [6, 15, 51, 58, 59], we adopt a Gaussian shape for
learning-based negative proposals, where our novel dual-signed
cross-entropy loss is applied. First, we use transformer [41] to ob-
tain multi-modal features from a video featureV and a query feature
Q. We append a learnable token to V, which is a [CLASS] token in
[10]. Given Q and V, transformer outputs {o𝑡 }𝑇+1𝑡=1 can be obtained
by {o𝑡 }𝑇+1𝑡=1 = 𝐷 (V, 𝐸 (Q)), where 𝐸 (·) and 𝐷 (·) are transformer en-
coder and decoder, respectively. Using the last output o𝑇+1 from the
transformer decoder, we estimate𝑀 Gaussian centers and widths
by a fully connected layer followed by a Sigmoid function. Then,
using the𝑚-th center 𝜇𝑚 and the𝑚-th width 𝜎𝑚 , we obtain the
𝑚-th negative proposal p(𝑚)

𝑛𝑒𝑔 = [𝑓𝑚 (0), 𝑓𝑚 (1), . . . , 𝑓𝑚 (𝑇 − 1)] ∈ R𝑇
using a Gaussian function 𝑓𝑚 (·):

𝑓𝑚 (𝑡) = exp
(
− (𝑡/(𝑇 − 1) − 𝜇𝑚)2

𝜎2𝑚

)
. (1)
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Figure 3: (a) A cross-entropy weight. As the training epoch in-
creases, a training strategy for negative proposals is changed
from the deconstruction process to the reconstruction one.
(b) Intersection of Negative duration (IoN). This evaluation
metric measures how well the negative proposal captures the
positive proposal outside of the ground-truth boundary.

Finally, we can generate𝑀 negative proposals {p(𝑚)
𝑛𝑒𝑔 }𝑀𝑚=1.

Selection network. To select useful proposals for query predic-
tion among multiple negative proposals, we propose the selection
network that determines selection weights for negative propos-
als. First, we use Mask-Conditioned Transformer (MCT) [28, 58]
to obtain proposal-conditioned multi-modal features from a video
feature V, a masked query feature Q̂, and proposals {p(𝑚)

𝑛𝑒𝑔 }𝑀𝑚=1. We
append a learnable token to Q̂, which is a [CLASS] token in [10].
Given V, Q̂, and p(𝑚)

𝑛𝑒𝑔 , MCT outputs {r(𝑚)
𝑙

}𝐿+1
𝑙=1 can be obtained

by {r(𝑚)
𝑙

}𝐿+1
𝑙=1 = 𝐷′ (Q̂, 𝐸′ (V, p(𝑚)

𝑛𝑒𝑔 ), p
(𝑚)
𝑛𝑒𝑔 ), where 𝐸′ (·) and 𝐷′ (·)

are MCT encoder and decoder, respectively. To focus on video seg-
ments within the area of the negative proposal, MCT uses p(𝑚)

𝑛𝑒𝑔

as a mask for masking attention weights in every attention mod-
ule of 𝐸′ (·) and 𝐷′ (·). More details of MCT are in [28, 58]. Using
the𝑀 last outputs {r(𝑚)

𝐿+1 }
𝑀
𝑚=1 from𝑀 negative proposals, we can

estimate 𝑀 selection weights by two fully connected layers fol-
lowed by a Softmax function. The selection weights can be written
as [𝑠1, 𝑠2, . . . , 𝑠𝑀 ], where 𝑠𝑚 ∈ [0, 1] for all𝑚. Then, we multiply
the𝑚-th negative proposal p(𝑚)

𝑛𝑒𝑔 by the𝑚-th selection weight 𝑠𝑚 ,
where weighted negative proposals are given by {𝑠𝑚p(𝑚)

𝑛𝑒𝑔 }𝑀𝑚=1.

3.3 Dual-signed Cross-entropy Loss
Query prediction. Following reconstruction-based methods [28,
36], we predict a new sentence query and calculate a cross-entropy
loss between the predicted query and the original query. First, using
the same process of the Mask-Conditioned Transformer (MCT) in
the selection network, we can obtain the MCT outputs. The differ-
ence is that we use the weighted negative proposals 𝑠𝑚p(𝑚)

𝑛𝑒𝑔 as input
instead of p(𝑚)

𝑛𝑒𝑔 . We feed the MCT outputs to a fully connected layer
followed by a Softmax function and attain the probability scores
for words in a predicted query. Then, for the𝑚-th weighted nega-
tive proposal, we can calculate the cross-entropy loss L𝑐𝑒 (𝑠𝑚p(𝑚)

𝑛𝑒𝑔 )
between the original query and the predicted query from the𝑚-th
weighted negative proposal.
Deconstruction and reconstruction. To train the negative pro-
posals to be gradually changed from easy to hard ones, we propose

a dual-signed cross-entropy loss, which is controlled by a cross-
entropy weight 𝑐 . First, we multiply the cross-entropy losses by 𝑐
which is scheduled to increment from a minus value to a plus one as
the training epoch progresses. According to 𝑐 , our negative propos-
als are trained through two processes: the deconstruction process
(𝑐 < 0) and the reconstruction process (𝑐 > 0). The deconstruction
process maximizes the cross-entropy losses, which causes the neg-
ative proposals to yield predicted queries that are not relevant to
an original query. As a result, the negative proposals during the de-
construction process capture a query-irrelevant temporal boundary
and become easy negative proposals. In contrast, the reconstruc-
tion process minimizes the cross-entropy losses, which causes the
negative proposals to yield predicted queries that are similar to an
original query. As a result, the negative proposals during the re-
construction process capture a somewhat query-relevant temporal
boundary and become hard negative proposals. The cross-entropy
weight 𝑐 is scheduled by

𝑐 =

(
𝑒

𝑒𝑚𝑎𝑥

)𝛼
− 𝛽 , (2)

where 𝑒 is the current epoch value, 𝑒𝑚𝑎𝑥 is the max epoch value, and
𝛼 and 𝛽 are a speed factor and a threshold factor, respectively, which
are hyperparameters for the cross-entropy weight. As shown in
Fig. 3 (a), the speed factor 𝛼 controls the speed of changing from the
deconstruction process to the reconstruction process. We can make
various designs (i.e., constant, logarithmic, linear, and exponential)
of the cross-entropy weight by varying the speed factor 𝛼 . The
threshold factor 𝛽 acts as a threshold between the deconstruction
process and the reconstruction process. Finally, we calculate the
dual-signed cross-entropy loss as

L𝑑𝑐𝑒 = 𝑐

𝑀∑︁
𝑚=1

L𝑐𝑒 (𝑠𝑚p(𝑚)
𝑛𝑒𝑔 ). (3)

3.4 Training and Inference
Training. The overall network is trained with three losses: 1)
the cross-entropy loss for a positive proposal, 2) the dual-signed
cross-entropy loss L𝑑𝑐𝑒 for negative proposals, and 3) the multi-
triplet loss L𝑚𝑡 . The total loss can be written as L = L𝑐𝑒 (p𝑝𝑜𝑠 ) +
𝜆1L𝑑𝑐𝑒 + 𝜆2L𝑚𝑡 , where 𝜆1 and 𝜆2 are hyperparameters to control
the balance of losses. We minimize the cross-entropy loss of the
positive proposal to make the positive proposal reconstruct the
sentence query. To discriminate the positive proposal from multiple
negative proposals, we use the triplet loss [43] and define a multi-
triplet loss L𝑚𝑡 that is composed of multiple triplet losses, which
can be written as

L𝑚𝑡 =

𝑀∑︁
𝑚=1

max
(
L𝑐𝑒 (p𝑝𝑜𝑠 ) − L𝑐𝑒 (𝑠𝑚p(𝑚)

𝑛𝑒𝑔 ) + 𝛾, 0
)
, (4)

where 𝛾 is a hyperparameter for a margin. The purpose of the
multi-triplet loss L𝑚𝑡 is to train only the positive proposal to be
discriminated from multiple negative proposals, and thus we freeze
the network for negative proposal generation while minimizing
the multi-triplet loss.
Inference. During the inference, since only a positive proposal
is required to predict a query-relevant temporal boundary for the
video moment localization task, our negative proposals are not used.
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We follow the inference strategies of either CNM [58], CPL [59], or
PPS [20] depending on the used existing network for positive pro-
posal generation. To produce a temporal boundary from a Gaussian
proposal with the center 𝜇 and width 𝜎 , starting time and ending
time of the boundary are set to 𝜇 − 𝜎/2 and 𝜇 + 𝜎/2, respectively.

4 EXPERIMENT
4.1 Datasets
Charades-STA dataset [13] has 16,128 pairs of a video and a
sentence query, which split into 12,408 training data and 3,720
testing data.
ActivityNet Captions dataset [23] has 71,953 pairs of a video
and a sentence query, which split into 37,417 training data, 17,505
validating data (𝑣𝑎𝑙1), and 17,031 validating data (𝑣𝑎𝑙2). Following
previous methods [55], we use 𝑣𝑎𝑙2 as a testing set.
TV show Retrieval dataset [25] has 109K pairs of a video and a
sentence query, which split into 87.2K training data, 10.9K validat-
ing data, and 10.9K testing data. Following previous methods [51],
we use the validating data for evaluation.

4.2 Evaluation Metrics
We use two conventional evaluation metrics introduced in [13],
which are R@𝑛,IoU=𝑚 and R@𝑛,mIoU. The R@𝑛,IoU=𝑚 measures
the percentage of having at least one of the top-𝑛 predicted temporal
boundaries with temporal Intersection over Union (tIoU) larger than
the threshold𝑚. The R@𝑛,mIoU measures the mean value of the
highest tIoU in the 𝑛 predicted temporal boundaries.

These two metrics only evaluate the quality of the positive pro-
posal. To evaluate the quality of the negative proposal, we propose a
new evaluation metric, Intersection of Negative duration (IoN).
Since there is no ground truth for good negative proposals, our IoN
measures howwell a negative proposal captures a poorly-generated
positive proposal that fails to find a ground truth temporal bound-
ary. If the poorly-generated positive proposals are well captured
(overlapped) by negative proposals, we can learn better positive
proposals through contrastive learning between positive proposals
and negative proposals. Therefore, to evaluate the quality of the
negative proposal, our IoN quantifies the extent to which a negative
proposal captures a poorly-generated positive proposal. Given sets
of the ground truth boundary G, positive proposal boundary P,
negative proposal boundary N , we define the IoN as

IoN =
|G𝑐 ∩ P ∩N |

|N | , (5)

where G𝑐 is the complement of G and | · | denotes the cardinality
of a set. An example of IoN is depicted in Fig. 3 (b). For evaluation
on datasets, we calculate recall rates of mean IoNs (R@𝒏,mIoN)
that is the mean value of the highest IoN in 𝑛 predicted boundaries.

4.3 Implementation Details
For video segment features, we use C3D [40] in ActivityNet Cap-
tions dataset and I3D [7] in Charades-STA and TV show Retrieval
datasets. The maximum number of sampled video segments is 200.
We employ transformers with three layers having four heads. The
maximum length of sentence queries and the feature dimension 𝐶
are set to 20 and 256, respectively. In the randomly masked sentence
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Figure 4: Performance comparisons of the existing networks
and the existing networks trained with our method on Ac-
tivityNet Captions. Our negative proposals can greatly boost
the performance of the existing networks. We also measure
inference time and the number of parameters. Our method
only requires a negligible amount of parameters and no ad-
ditional inference time.

query, a third of the words are masked. During training, we utilize
the Adam optimizer [21] with a learning rate of 0.0004. A mini-
batch size is 32. Training epochs are 30 for ActivityNet Captions
and 50 for Charades-STA and TV show Retrieval. We set hyperpa-
rameters as𝑀 = 3, 𝛼 = 0.5, 𝛽 = 0.8, 𝛾 = 0.15, 𝜆1 = 0.03, and 𝜆2 = 1.
More implementation details are provided in the supplementary
material.

4.4 Comparison with State-of-the-Arts
To validate the effectiveness of our proposed method, we con-
duct performance comparisons between our method and previous
weakly supervised moment localization methods. We use CNM [58],
CPL [59], or PPS [20] for a positive generator. The performance
of CNM at R@5 is not provided because CNM only generates one
positive proposal while CPL and PPS generate multiple positive
proposals. Fig. 4 shows that our method can boost the performance
of existing methods. Especially, our negative proposals greatly im-
prove CPL with a 16.93% gain at R@5,mIoU. This implies that
our negative proposals can contribute to the generation of high-
quality positive proposals through contrastive learning. Moreover,
our method increases the number of parameters by a negligible
amount, as shown in Fig. 4. This is because we share the parame-
ters of transformers for positive and negative proposals. Additional
parameters are only the parameters of fully connected layers for
the negative proposal generation and selection network. During
the inference, only a positive proposal is exploited and thus our
negative proposal is not used. Therefore, we verify that our method
requires no additional inference costs, as shown in Fig. 4.

For comparisons with state-of-the-art methods, we use PPS for
a positive generator. In Tabs. 1 and 2, our method surpasses most
of the state-of-the-art methods on three datasets (i.e., Charades-
STA, ActivityNet Captions, and TV show Retrieval). For video and
text encoders, while other methods use 3D ConvNet and Glove
features, IRON uses an OATrans [42] and DistilBERT [34]. For a
fair comparison, following IRON, we have implemented Ours† by
replacing our encoders in Sec. 3.1 with OATrans and DistilBERT.
As shown in Tab. 1, Ours† makes state-of-the-art performance on
both Charades and ActivityNet.
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Table 1: Performance comparisons on Charades-STA and Activity Captions. Bold and underlined numbers denote the best
results and the second-best results, respectively.

Method
Charades-STA ActivityNet Captions

R@1 R@5 R@1 R@5
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

Random 20.12 8.61 3.39 68.42 37.57 14.98 38.23 18.64 7.63 75.74 52.78 29.49
CTF [9] 39.80 27.30 12.90 - - - 74.20 44.30 23.60 - - -
SCN [28] 42.96 23.58 9.97 95.56 71.80 38.87 71.48 47.23 29.22 90.88 71.56 55.69
WSTAN [44] 43.39 29.35 12.28 93.04 76.13 41.53 79.78 52.45 30.01 93.15 79.38 63.42
BAR [46] 44.97 27.04 12.23 - - - - 49.03 30.73 - - -
MARN [36] 48.55 31.94 14.81 90.70 70.00 37.40 - 47.01 29.95 - 72.02 57.49
CCL [57] - 33.21 15.68 - 73.50 41.87 - 50.12 31.07 - 77.36 61.29
RTBPN [56] 60.04 32.36 13.24 97.48 71.85 41.18 73.73 49.77 29.63 93.89 79.89 60.56
LoGAN [38] 51.67 34.68 14.54 92.74 74.30 39.11 - - - - - -
CRM [14] 53.66 34.76 16.37 - - - 81.61 55.26 32.19 - - -
VCA [45] 58.58 38.13 19.57 98.08 78.75 37.75 67.96 50.45 31.00 92.14 71.79 53.83
LCNet [50] 59.60 39.19 18.87 94.78 80.56 45.24 78.58 48.49 26.33 93.95 82.51 62.66
CWSTG [8] 43.31 31.02 16.53 95.54 77.53 41.91 71.86 46.62 29.52 93.75 80.92 66.61
CNM [58] 60.39 35.43 15.45 - - - 78.13 55.68 33.33 - - -
CPL [59] 66.40 49.24 22.39 96.99 84.71 52.37 82.55 55.73 31.37 87.24 63.05 43.13
CPI [22] 67.64 50.47 24.38 97.18 85.66 52.98 - - - - - -
CCR [29] 68.59 50.79 23.75 96.85 84.48 52.44 80.32 53.21 30.39 91.44 71.97 56.50
UGS [15] 69.16 52.18 23.94 - - - 82.10 58.07 36.91 - - -
SCANet [51] 68.04 50.85 24.07 98.24 86.32 53.28 83.62 56.07 31.52 94.36 82.34 64.09
OmniD [3] 68.30 52.31 24.35 - - - 83.24 57.34 31.60 - - -
MMDist [4] 68.90 53.29 25.27 - - - 83.11 58.69 32.52 - - -
PPS [20] 69.06 51.49 26.16 99.18 86.23 53.01 81.84 59.29 31.25 95.28 85.54 71.32
Ours 70.74 53.04 26.69 99.24 90.03 53.86 83.56 59.71 33.48 95.50 86.02 71.63

IRON† [6] 70.71 51.84 25.01 98.96 86.80 54.99 84.42 58.95 36.27 96.74 85.60 68.52
Ours† 71.44 53.07 26.35 99.18 90.28 55.26 84.29 60.14 37.18 96.93 87.09 72.45

Unlike other methods, a method with † uses OATrans [42] and DistilBERT [34] for pre-trained encoders.

Table 2: Performance comparisons on TV show Retrieval.
Bold and underlined numbers denote the best results and the
second-best results, respectively.

Method R@1 R@5
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5

TGA [32] 17.61 2.38 0.97 48.63 11.54 5.32
CPL [59] 33.16 7.28 2.11 64.41 17.93 8.56
PPS [20] 36.89 10.81 4.05 65.20 18.35 9.44
SCANet [51] 37.51 10.76 4.24 67.47 20.32 10.21

Ours 38.32 12.39 5.87 67.51 22.08 12.45

4.5 Ablation Study
We conduct ablation studies to analyze the impact of various com-
ponents in our method. For the ablation studies, we use CPL [59]
as a positive generator for computational efficiency.
Impact of dual-signed cross-entropy loss. As shown in Tab. 3,
we conduct an experiment with different cross-entropy weight
designs (i.e., ‘Constant’, ‘Logarithmic’, ‘Linear’, and ‘Exponential’)
by varying the speed factor 𝛼 in Eq. (2). Here, we fix the threshold
factor to 0.8. Tab. 3 verifies the effectiveness of our curriculum
design. Using ‘Logarithmic’ (𝛼 = 0.5) improves performance by
a large margin compared to not using a curriculum design (i.e.,
‘Constant’). The margins are 11.53% and 14.36% at R@1,mIoU and

Table 3: Comparisons of different cross-entropy weight de-
signs for training negative proposals on the ActivityNet Cap-
tions.

Cross-entropy Speed factor R@1 R@5
weight design 𝛼 IoU=0.3 mIoU IoU=0.3 mIoU

Constant 0 39.57 26.96 73.55 47.36

Logarithmic 0.2 53.25 34.70 81.53 59.39
0.5 59.12 38.49 85.81 61.72

Linear 1 56.92 36.21 83.46 58.96

Exponential 2 54.31 33.36 85.35 57.14
5 50.38 31.49 83.68 56.05

R@5,mIoU, respectively. Also, ‘Logarithmic’ makes the best result,
meaning that training negative proposals with a cross-entropy
weight that changes rapidly at early training stages is most effective.

As an extension of this experiment, we conduct an experiment
with different combinations of the speed factor 𝛼 and threshold
factor 𝛽 in Fig. 5. We observe the following results. First, the cross-
entropy weight with (𝛼 = 0.5, 𝛽 = 0.8) makes the best result, which
leads to the most appropriate transitions between our deconstruc-
tion and reconstruction process. Second, 𝛽 should be set higher than
0 because low 𝛽 causes the hard negative proposal to reconstruct
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Figure 5: Results of varying the hyper-parameters for cross-
entropy weights on ActivityNet Captions.

Table 4: Comparisons of different types of negative proposals
on the ActivityNet Captions.

Negative proposal R@1 R@5
IoU=0.3 mIoU IoU=0.3 mIoU

None 38.41 24.81 68.82 46.27

Random 34.46 23.09 61.56 40.35
Rule-based square 39.23 27.25 72.96 46.10
Rule-based G. 49.09 34.87 69.14 48.48
Rule-based reversed G. [51, 58] 50.65 34.54 69.85 50.19
Rule-based variable-sized G. [15, 59] 55.73 36.07 63.05 44.79

Ours (Learning-based) 59.12 38.49 85.81 61.72
G.: Gaussian

the query very well, which overlaps with the role of the positive
proposal. The hard negative proposal should capture a somewhat
query-relevant temporal boundary, not a very query-relevant tem-
poral boundary. Third, to change the negative proposals from easy
to hard ones, conducting two processes (0 < 𝛽 < 1) is more effec-
tive in most cases than conducting only the reconstruction process
(𝛽 = 0) or only the deconstruction process (𝛽 = 1). Fourth, using
a fixed cross-entropy weight (i.e., 𝛼 = 0) is not as good as the
varying cross-entropy weight (i.e., 𝛼 ≠ 0). This result verifies the
effectiveness of our dual-signed cross-entropy loss.
Comparisons with other negative proposals. The negative pro-
posals used for comparisons are as follows: ‘Random’: a proposal
having a value of zero at the location of a randomly chosen area and
a value of one otherwise, ‘Rule-based square’: a proposal having
a value of zero at the location of a positive proposal and a value
of one otherwise, ‘Rule-based Gaussian’: two proposals of Gaus-
sians whose location is predefined outside both sides of a positive
Gaussian proposal, ‘Rule-based reversed Gaussian’: a proposal of
Gaussian that is reversed upside down by subtracting a positive
Gaussian proposal from a value of one, which is proposed in [58],
and ‘Rule-based variable-sized Gaussian’: ‘Rule-based Gaussian’
whose size and location are controlled slightly by the current train-
ing epoch, which is proposed in CPL [59]. More details of these
rule-based negative proposals are explained in the supplementary
material. Tab. 4 shows that our learning-based negative proposals
performmuch better than the rule-based ones. We observe that rule-
based ones only improve the performance marginally at R@5 from
using no negative proposal (‘None’). Unlike the rule-based ones,
our negative proposals can significantly increase the performance
at R@5 as well as R@1.

Figure 6: Performance comparisons of different negative pro-
posals on the proposed R@𝒏,mIoN on ActivityNet Captions.

To validate the quality of negative proposals, we use our newly
proposed evaluation metric, R@𝑛,mIoN, which measures how well
a negative proposal captures a poorly-generated positive proposal,
which is defined in Sec. 4.2. As shown in Fig. 6, we measure the
performance at R@𝑛,mIoN of our learning-based negative pro-
posals and rule-based ones over the training epochs. The result
shows that our learning-based negative proposals can capture a
poorly-generated positive proposal while the rule-based negative
proposals capture none. This is because the rule-based ones includ-
ing [15, 51, 58, 59] are always defined to exist outside of positive
proposals. Therefore, these rule-based ones have limitations in
capturing various confusing locations because confusing locations
also exist inside poorly-generated positive proposals. By capturing
various confusing locations, our learning-based negative propos-
als have higher quality than the rule-based ones, which leads to
significant performance improvement, as shown in Tab. 4.

Especially in the early training stage when the network is less
trained, many poorly-generated positive proposals are generated
thus it is important for negative proposals to capture the poorly-
generated positive proposals. Fig. 6 shows high mIoN of our method
at the early training stage which means our learning-based negative
proposals can capture many poorly-generated positive proposals at
the early training stage. Also, our learning-based negative proposals
using a varying cross-entropy weight (𝛼 = 0.5) make a better
performance at both R@1,mIoN and R@5,mIoN than using a fixed
cross-entropy weight (𝛼 = 0). This result verifies our dual-signed
cross-entropy loss with curriculum design can generate a higher
quality of negative proposals. Using a fixed cross-entropy weight
(𝛼 = 0) performs better than randomly generated negative proposals
(‘Random’), showing that our learning-based negative proposals
without the dual-signed cross-entropy loss still capture the poorly-
generated positive proposals effectively.
Freezing negative proposal for contrastive learning. We ana-
lyze the effect of freezing negative proposals for contrastive learning
in Eq. (4). As shown in Tab. 5a, it is more effective to freeze the
negative proposals and only train the positive proposal through
contrastive learning. Freezing the negative proposals can effectively
discriminate the positive proposal from multiple negative proposals
because the network can focus on training the positive proposal
while the negative proposals are fixed.
Ablations on selection strategies. In the selection network, we
use different selection strategies to select useful proposals for query
prediction among multiple negative proposals. Our selection strate-
gies are as follows: ‘None’: select none (no negative proposal is
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Table 5: Ablation studies on ActivityNet Captions. (a) The effect of freezing negative proposals for contrastive learning. (b)
Comparisons of different selection strategies. (c) Comparisons of different numbers of negative proposals.

Contrastive Learning R@1,mIoU R@5,mIoUStrategy

Not freezing. 37.32 60.25negative proposal
Freezing 38.49 61.72negative proposal

(a)

Selection R@1, R@5,
Strategy mIoU mIoU

None 25.45 43.71

Random 32.62 55.54
Uniform 35.73 60.28
Hard 34.81 55.63
Soft 38.49 61.72

(b)

#negative R@1,mIoU R@5,mIoU

0 (None) 25.45 43.71

1 33.84 56.53
2 35.29 58.71
3 38.49 61.72
4 38.17 61.63
5 37.88 61.45

(c)

Query: The steamer is shown again steaming the wood floor and then the woman again, and she shows different aspects of the steamer being demonstrated.

Video:

GT:

The intro is a blue background.

1 Epoch:

15 Epoch:

30 Epoch:

She stand in front of a counter and cabinet.

NegativeGT Positive

We see the logo again at the end.

How to check if the floor is sealed.

Figure 7: Qualitative results of our negative proposals changing from easy to hard ones. We visualize the ground truth temporal
boundary (Green), positive proposals (Red), and negative proposals (Blue) as the training epoch progresses. The blue texts
describe the events that are not relative to the given sentence query, which can be regarded as events for the negative proposals.

used), ‘Random’: randomly select one, ‘Uniform’: select all with
the same selection weights, ‘Hard’: select one with the highest
learnable selection weight, and ‘Soft’: select all with different learn-
able selection weights. Tab. 5b shows the following results. First,
considering every proposal with different selection weights (‘Soft’)
is useful for query prediction, making a higher performance than
other strategies. Second, our negative proposal chosen at random
(‘Random’) is still more effective than using no negative proposal
(‘None’). Third, considering all proposals (‘Uniform’) rather than
just one (‘Hard’) is useful for query prediction.
Number of negative proposals. Tab. 5c shows that three negative
proposals are enough to capture various confusing locations. We
observe that too many negative proposals can overlap each other
and become redundant.

4.6 Qualitative Results
Wevisualize our negative proposals as the training epoch progresses
in Fig. 7. Here, we visualize the ground truth temporal boundary, the
predicted temporal boundary from positive proposals and negative
proposals as the training epoch progresses. At the early training
stage, our negative proposals can capture events for easy negative,
such as “The intro is a blue background” and “We see the logo again
at the end”. As the training epoch progresses, our negative proposals
can capture events for harder negative, such as “She stands in front

of a counter and cabinet” and “How to check if the floor is sealed”.
By capturing confusing locations described by the various events,
our negative proposals can achieve higher performance than the
previous negative proposals in Tab. 4. More qualitative results are
provided in the supplementary material.

5 CONCLUSION
In this paper, we propose learning-based negative proposals which
are trained using a novel dual-signed cross-entropy loss to capture
various confusing locations for weakly supervised video moment
localization. Unlike the previous rule-based negative proposals,
our negative proposals are 1) learnable, 2) softly selected, and 3)
gradually changed from easy to hard ones through our dual-signed
cross-entropy loss. Leveraging multiple contrastive losses, a pos-
itive proposal is discriminated from multiple negative proposals.
In addition, we measure how well a negative proposal captures a
poorly-generated positive proposal with the newly proposed evalu-
ation metric, called Intersection of Negative duration, which proves
the better quality of our learning-based negative proposals than
the previous rule-based negative proposals. We also demonstrate
that our negative proposals can be applied with negligible addi-
tional parameters and no inference costs, achieving state-of-the-art
performance.
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