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ABSTRACT

Define an optimizer as having memory k if it stores k& dynamically changing vectors
in the parameter space. Classical SGD has memory 0, momentum SGD optimizer
has 1 and Adam optimizer has 2. We address the following questions: How can
optimizers make use of more memory units? What information should be stored in
them? How to use them for the learning steps? As an approach to the last question,
we introduce a general method called “Retrospective Learning Law Correction” or
shortly RLLC. This method is designed to calculate a dynamically varying linear
combination (called learning law) of memory units, which themselves may evolve
arbitrarily. We demonstrate RLLC on optimizers whose memory units have linear
update rules and small memory (< 4 memory units). Our experiments show that in
a variety of standard problems, these optimizers outperform the above mentioned
three classical optimizers. We conclude that RLLC is a promising framework for
boosting the performance of known optimizers by adding more memory units and
by making them more adaptive.

1 INTRODUCTION

In this paper, we investigate optimizers that store k& vectors in the parameter space R"™ of a neural
network or more generally in the parameter space related to any optimization problem. We call such
vectors memory units and we measure the memory usage of an optimizer by the number them.

The simplest example for an optimizer with memory is the momentum SGD optimizer which stores a
single vector m (momentum vector) in the parameter space R™. In each step, m is updated according
to the rule m <— Bm + /o f(6) where f is the objective function, § € R™ is the parameter vector
and 0 < 8 < 1 is a fixed real number. The vector 6 is updated according to the rule § <— 6 — cm
where ¢ > 0 is the learning rate.

The Adam optimizer operates with two memory units. One of them is the momentum vector and the
other one is the momentum of the squares of the gradient vectors. In contrast with the momentum
optimizer, the Adam optimizer is not linear in the gradient vectors. Neither the update rule of the
memory units, nor the way the memory units are used for the parameter update is linear.

The present paper has two independent contributions. The first contribution is a novel and simple
method that we call RLLC=Retrospective Learning Law Correction. It is an update rule for a vector
L (called learning law) that describes a natural way of using a set of dynamically changing memory
units for the update of the parameter vector f. More precisely, L € R¥ contains the coefficients
of a linear combination of the £ memory units which is multiplied by a fixed learning rate ¢; and
substracted from 6 as usual. In each step, before updating 6 and the memory units, we update L by
the formula L +— L + co Mg where M is the n x k matrix formed by the memory units, M is
the Moore-Penrose inverse of M, g is the newly received gradient and ¢, is the meta learning rate.

Note that in practice we use the formula M = B+ M7 for calculating M T, where B = MT M
is the so-called Gram matrix of the memory units. Since B is a k x k matrix, where k is a small
number (at most 4 in our examples), the calculation of B¥ is a negligible part of the computational
load. This means that the computational cost of the RLLC step comes mostly from calculating the
matrix products M T M and B¥ M7, which involves only a few elementary operations per parameter
if k is small. Our experiments (see Appendix show that RLLC optimizers with small memory
have a runtime similar to that of more classical optimizers, such as Adam.
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The main idea behind the RLLC update rule for L is that the new gradient g contains retrospective
information on how the algorithm could have performed better in the previous step. Thus it can be
used to compute a corrected version of L which “thinks more ahead”. Note that our update rule of the
learning law can also be regarded as a general framework for associating a k-dimensional adaptive
learning rate with an arbitrary set of k£ evolving memory units.

As the second main contribution, we examine optimizers in which memory units are updated by fixed
linear rules. More precisely, in each step each memory unit is updated to a linear combination of the
memory units and the new arriving gradient. The parameter vector is updated by a (possibly changing)
liner combination (given by the learning law L) of the memory units. Such optimizers are interesting
even if the learning law is fixed. They include SGD, momentum SGD and Nesterov Accelerated
Gradient (NAG) Nesterov|(2012). Thus, the linear framework provides a useful generalization of
these famous optimizers and enables a dynamically changing continuous interpolation between them.
The RLLC method turns out to be ideal for this. Our experiments show that linear memory combined
with RLLC leads to powerful optimizers. The case of memory 1 is already interesting. A memory 1
linear optimizer stores a momentum vector. Applying RLLC in this trivial setting yields a variant of
the momentum SGD optimizer enhanced with a new type of adaptive learning rate. As the number of
memory units increases, the mathematics becomes more complex, presenting a field of study that
is interesting in its own right. We present some of the fundamental properties of linearly updated
memory units. In particular, we prove a version of basis independence for RLLC combined with
linear memory which allows us to apply basis transformations to the update rules without changing
the optimization process. This together with a variant of the Jordan normal form over the field R
helps to convert these optimizers into a canonical form in which each memory unit is associated with
a so-called Jordan block. A Jordan block of size 1 corresponds to a single memory unit (denoted by
M ()) storing a momentum vector of the gradients with parameter 5. A Jordan block of size 2 either
corresponds to a pair of memory units (denoted by CM (), 5 € C) namely the real and imaginary
parts of a momentum vector with complex parameter or to a pair of memory units mi, mo (denoted
by M (3)) where m; is a momentum vector of the gradient and ms is a momentum vector of m1,
both with parameter 5. In general, there are two infinite families of Jordan blocks giving rise to
k-tuples or 2k-tuples of memory units denoted by My (3) and C My(v). These are the fundamental
building blocks of linearly updated memory. We denote the natural operation by ¢ which combines
these building blocks into larger memory by the union of the corresponding memory units. By slightly
abusing the notation we often identify memory update rules with optimizers where learning is given
by the RLLC method. For example, M (/3) also denotes the memory 1 optimizer with memory unit
M (3) (a momentum vector) and with RLLC. Notice that the M () optimizer is a close relative of
momentum SGD but it is not equivalent with it.

In our experiments, we identified a number of interesting simple settings involving few (at most 4)
memory units. These include the types of optimizers M (3), M () @ M (0), M (p1) ® M(B2) ®
M(B3), M2(B), M3(8) and M (B8)dM (—B)EC M (Bi). We observed that these optimizers often
surpassed the performance of three commonly used optimizers across a variety of tasks even without
carefully optimizing the parameters (3;. Notice that M () & M (0) is an adaptively changing linear
combination of SGD, momentum SGD and NAG. Thus, it adaptively interpolates between three
well known optimizers (for details see appendix). Remarkably, it demonstrated competitive or even
superior performance compared to the Adam optimizer in many tasks, which also uses two memory
units.

This paper primarily aims not to challenge all existing optimizers in the field, but rather to introduce
a novel mathematical concept that could spark further research. The experimental results presented
here should be interpreted as an illustration of the potential of our approach. We posit that the impli-
cations of the RLLC method extend beyond mere enhancements to current optimization techniques,
suggesting broader applications and insights in the realm of optimization and machine learning.

2 RELATED WORK

Similar to our RLLC method and our framework of linear optimizers, various other optimizers
(including classical ones such as NAG |Nesterov| (2012) and Adam Kingma & Ba|(2014)) are based
on storing vectors in the parameter space to enhance performance. A more recent work in this area is
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McRae et al.|(2022), titled "Memory Augmented Optimizers for Deep Learning.” The main novelty
of this paper is its method for selecting, storing, and using a list of ’critical gradients.’

Our method has a close connection to adaptive learning rate methods Wang et al.| (2022); Keskar
& Socher| (2017b)), as highlighted by the fact that the RLLC method used for a single memory unit
is equivalent to a new type of adaptive learning rate. Other notable papers in this area include the
following: AdaBound|Luo et al.|(2019), which combines the benefits of adaptive methods and SGD
by dynamically bounding the learning rates during training, aiming for fast convergence and improved
generalization; AdaBelief Zhuang et al.| (2020), which adapts step sizes based on the "belief” in
observed gradients by comparing them to an exponential moving average of past gradients, enhancing
both convergence speed and generalization; and DiffGrad |Dubey et al.|(2020), which adjusts learning
rates based on the differences between the current and immediate past gradients, emphasizing updates
where the gradient changes rapidly.

Our work is also related to the broader field of metaoptimization, where the optimization methods
themselves are optimized, often through learned strategies. In this context, the main approach is
training an auxiliary model, often a neural network, to optimize the primary model tasked with
solving the original problem. Some of these methods leverage traditional gradient-based optimizers
(Andrychowicz et al., 2016} |[Metz et al.| 2022b; Bengio et al.,|1991; Wichrowska et al., [2017), while
others explore alternative methods such as evolutionary algorithms (Bengio et al.l 1991} Metz et al.|
2020) or reinforcement learning strategies (Li & Malikl 2017} |Bello et al., |2017). The goal of
these methods is to design optimizers through learned processes, which can outperform standard,
hand-designed optimizers across a wide variety of tasks.

Finally we mention a recent and independent paper |Pagliardini et al.| (2024)), which introduces an
update to the Adam optimizer by replacing its momentum vector with a (typically fixed) linear
combination of two momentum vectors with different decay parameters. The idea of combining
multiple momentum vectors with different decay parameters is also an important idea in our paper.
However, the main novelty of our work lies in the new methodology, called the RLLC method, which
adaptively adjusts the linear combination (learning law) of the momentum vectors (or any other useful
vectors). Our RLLC method is essentially a gradient descent algorithm (with a dynamically changing
objective function) in the space of potential learning laws, utilizing knowledge from the previous
training step. This meta-learning style adaptive nature is one of the key differences between our work
and the previously mentioned papers.

3 RETROSPECTIVE LEARNING LAW CORRECTION

Functional approach to optimizers: The RLLC method is presented through an abstract mathemat-
ical framework for optimizers. This framework is somewhat specialized, yet it maintains sufficient
generality to encompass a range of interesting optimizers. We think of optimizers as entities with an
evolving internal state that updates at each step based on newly received gradients. Additionally, the
optimizer calculates a parameter update vector relevant to the optimization process. A functional
description of such an optimizer is given in the following definition.

Definition 3.1. An optimizer for n parameters is a pair of functions of the form F : S x R* — S
and G : § x R™ — R™ where S is the set of possible internal states, F' is the state update function
and G is the parameter update function.

To translate optimizers into an actual optimization process we choose an initial internal state Sy € S
and an initial parameter vector §; € R™. Then we iterate

St = F(St—lagt)a et = et—l + G(Stvgt)

where g, is a gradient vector received by the optimizer in the ¢-th step. To illustrate this formalism,
assume that the optimizer is given by S = R", F(v, w) = v + w, G(v,w) = —cv. In this case, we
obtain the momentum SGD with learning rate ¢ and decay parameter 3.

Optimizers with memory and RLLC: We will think of memory % optimizers in a way that the
internal state space is of the form R™** x H where the columns of matrices in R"** represent k
vectors in the parameter space R™ and H will be called the space of hidden states. We typically assume
that n is a large number and that the hidden states are described by much fewer than n parameters. A
memory update rule for k memory units is a function of the form U : (R™**¥ x H) x R™ — R"*k x H
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where the external R™ component represents new arriving gradients. Such a function does not yet
determine an optimizer. The RLLC method is designed to turn memory update rules into optimizers
by extending their state space with a vector called learning law and introducing a natural parameter
update function. We give two different descriptions of RLLC. The first one is a functional description
which is more convenient for proofs.

We will need the so-called Moore-Penrose inverse which is defined for an arbitrary matrix A € R"**
and is denoted by A™. Note that if A has rank k (which means that A is non-degenerate if n > k)
then AT = (ATA)~1AT.

Definition 3.2 (RLLC functional form). Let U be a memory update rule as above. Then the
corresponding RLLC optimizer with learning rates ¢y, co is given as follows. The state space is
S 1= R™* x % x R¥ where the extra component R¥ is called the learning law. The functions F, G
are given in the following way. Assume that M € R"** H € H,L € R* g € R™. Then

F(M,H,L,g) = (Ul(MaH),U2(M7H)aL+02M+g)
GM,H,L,g) :=—ciML.

Remark 3.3. Vectors in R™ are considered to be column vectors. This means that they are treated as
m X 1 matrices in calculations.

The second, less abstract approach to RLLC describes the optimization process directly in a more
conventional way.

Require:
* 0 initial parameter vector
f(6): stochastic objective function with parameters § € R"
* Two learning rates c1,co > 0
* Stability parameter ¢ for relaxed Penrose inverse
» My € R™**: initial memory units

LO € R*: initial learning law
Hy: initial hidden state

t := 0: initialize time step
while: 6, not converged do:

t+—t+1

[ gt = Vo ft(0:—1)

[ Ly = Li1 + eaM,Z 19y m

[ (My, Hy) := U(My—1, Hi—1, 1)
[ 0p =011 — c1 My Ly

Explanation of RLLC and remarks:

The idea behind the learning rule update is that with the arrival of the new gradient g; the optimizer
gains new (retrospective) information on how it could have done better in the previous learning step.
Notice that the vector M T g; is the coefficient vector of the orthogonal projection of g; to the space
spanned by the memory units when written as a linear combination of the memory units. This means
that, if performed with the new law, the outcome of the parameter update in step ¢ — 1 would have
been 0; — cycop; instead of 6; where p; is the orthogonal projection of g; to the space spanned by the
memory units in the ¢ — 1-th step. Notice that (p;, g;) = (pt, p:) > 0 and thus the change —c; cap;
points in a direction which improves the objective function.

The above heuristics does not take it into account that the objective function f; is also changing. This
fact indicates that our update rule is more justified if the second learning rate co is small and thus
random effects have time to average out leaving only useful directions in the update. Also notice that
the algorithm does not ”’go back in time” to perform the improved learning step. Instead it applies the
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updated learning law with the updated memory units. This shows that the efficiency of the RLLC
method depends on a type of consistency property. Roughly speaking it assumes that the notion
of a ”good learning law” does not change too much in time and so improvements of the past give
improvements of the future. For this reason the choice of the memory update rule is a crucial issue
which is one of the main topics of the second part of this paper.

Remark 3.4. The performance of the RLLC optimizer is dependent on the initialization of the learning
law at the beginning. In practice it is not initialized to be 0.

Remark 3.5. To avoid numerical instability, in practice we use a relaxed version of Penrose inverse
which has a parameter € set to a small number.

Linear invariance of RLLC: We close this chapter with a useful linear invariance property of the
RLLC method. We will need the next two definitions.

Definition 3.6. Let U be a memory update rule as above and let ) € R**¥ be an invertible matrix.
We define the new memory update rule U< in the following way: Let M € R"**, H € H and
UMQ~' H,g) = (M, Hy). Then

UR(M, H,g) := (MyQ, Hy).

Definition 3.7. Two optimizers given by (F, G) and (F”, G") with state spaces S and S’ are called
equivalent if there is a bijection ¢ : S — &’ (called an isomorphism) such that ¢(F(S,v)) =
F'(¢(S),v) and G(S,v) = G'(¢(S), v). A partial isomorphism is a bijection between a subset of S
and a subset of S’ having the same property. If there is such a function we say that the two optimizers
are partially equivalent on these two subsets. In particular, if two optimizers with memory k states are
partially equivalent on states with rank & memory matrices then we call them essentially equivalent.

It is easy to see that if two optimizers are equivalent then they define the same optimization process
if their initialization of internal states is isomorphic. If two optimizers are partially equivalent with
partial isomorphism ¢ then the optimization processes are identical as long as they operate on states
in the domain (and image) of ¢.

Lemma 3.8 (Linear invariance of RLLC). Let U be a memory update rule as above and () € R¥**

be an arbitrary matrix. Then the RLLC optimizer corresponding to U is essentially equivalent to the
RLLC optimizer corresponding to U®.

Proof. We claim that the function ¢(M, H,L) := (MQ, H,Q L) is a partial isomorphism on
states with rank £ memory matrices. This follows trivially from formulas in definition [3.2and the
fact that (M Q)+ = Q=M™ holds if rank(M) = k.

4 LINEAR MEMORY UPDATES

Throughout this chapter we investigate linear memory update rules with no hidden states. Such an
update rule is given by

U(M,g) := MB + gaT (1)

where M € R™** is the memory matrix, g € R" is a new gradient and a € R*, B € RF** are
fixed parameters of the update rule. In an optimization process this means that the memory unit m;
represented by the i-th column of M is updated to a;g + 2?21 B; ;m; when the new gradient g is
received.

Linear memory optimizers with fixed learning law: Linearly updated memory units are interesting
independently of the RLLC method. We can directly obtain powerful optimizers by using a fixed
hand designed learning law L € R¥. This type of optimizer, denoted by £(B, a, L) works by the
equations:

M;=M;_1B+ gia” , 0, = 0,1 — M L.

If £ = 1 then B, a, L are single real numbers. The corresponding optimizer is a momentum SGD
optimizer with decay parameter B and learning rate a L. Another, important setting is described in
the following lemma (for proof see Appendix [A.T)).

Lemma 4.1. Let
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o= (3 0) o= (3). = (7)

Then the corresponding optimizer L(B, a, L) is Nestorv Accelerated Gradient with decay parameter
B and learning rate c.

Abstract rule of a memory unit: There is a useful observation which sheds more light on what
information linear memory stores if this memory update is iterated in an optimization process started
with initial value 0"** for M. By induction we have

t
U("'U(U(O7L><kvgl)7g2)7 "'agt) = thaTBt_i'
i=1

We obtain that at time ¢ (after ¢ iteration of the update rule) the value of the ¢-th memory unit is given
by

t—1
m; =Y _ gi-i(a”BY); @)
=0

where (a” B?); denotes the j-th coordinate of the row vector a” BY. If we regard gradients with index
0 or negative index as 0 then the sum can be taken from O to infinity. Informally speaking, this means
that m; is a fixed (time independent) linear combination of previous gradients going backwards in
time. This linear combination is represented by the infinite sequence {(a” B*);}¢2, for the j-th
memory unit. We say that this infinite sequence is the abstract rule of the memory unit. To guarantee
that older gradients are taken with decaying weight in (Z)) we need to assume that the spectral norm
of B is smaller than 1.

Real momentum: Memory updates in the case £ = 1 are determined by two numbers: § = B, ; and
« = a1. The update rule of the single memory unit m in the ¢-th step is m <— «ag; + Bm. (This
is essentially the update rule of a momentum vector.) It follow from our formula that the abstract
rule in this case is given by the geometric sequence 3'«. In particular, in the ¢-th step we have that

m=3i_oaB' g

Complex momentum: The case

o -
5-(5 ) )

has a distinguished role because such matrices represent complex numbers v = « + [i. In this
special case the two memory units can be interpreted as the real and the complex parts of a single
complex valued memory unit which describes a momentum vector with complex parameter . More
precisely m1 and my are the real and the complex parts of a memory unit m € C™ which is updated
according to m <— gy + ym.

Jordan block of size 2: Another interesting example for k£ = 2 is given by

o= )

which is the so called Jordan block of size 2 with eigenvalue . The first one of the two memory
units is the momentum vector of the gradients with parameter ov. However the second memory unit
stores something new. It is the momentum vector of the first memory unit with parameter a. One
can show that the abstract rule corresponding to this memory unit is given by the infinite sequence
0,1,2a,3a?,4a3,. ...

Propagators and their unions: In general, we call £ memory units my, ma, ..., my connected by a
joint linear update rule a propagator of dimension k. Recall that such an object is described by a
matrix B € R¥*¥ and a vector a € R¥. In the previous two examples each real number £ is associated
with a propagator denoted by M () of dimension 1 while complex numbers -y are associated with a
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propagator denoted by C'M () of dimension 2. We call such propagators momentum propagators.
It will be important for us that there is a simple operation on propagators that we call union and
denote by &. This is simply just taking the union of the corresponding memory units together and
updating them independently. From a linear algebraic point of view, the matrix B corresponding
to the union of propagators is a block diagonal matrix whose blocks contain the matrices of the
individual propagators. The vector a corresponding to the union is the concatenation of the vectors of
the propagators. Unions of momentum propagators will be called multi momentum propagators.

5 OPTIMIZERS WITH LINEAR MEMORY AND RLLC

In this chapter we discuss the basic properties of optimizers which combine linear memory and the
RLLC method. We use the term LM-RLLC optimizers for them. Based on definition [3.2|and formula
(1) one can produce the LM-RLLC optimizer F (B, a, ¢1, c2) with hyperparameters B, a, ¢1, c2. The
corresponding update functions are given by

F(M,L,g) = (MB +ga", L + c;M*g)
G(M,L,g) = —c1ML

For the sake of completeness we describe the recursive optimization process.

Definition 5.1. (LM-RLLC optimization process) Let us fix the hyperparameters B € R¥** ¢ ¢
R*, (c1,c2) € R2 Then the LM-RLLC optimizer with these hyperparameters is given by the
equations

Ly=Liy+c2M;" g

My = M;_1B + gia”
Gt = 9,571 — ClMtL

where M, is the 0 matrix in R"** and L, € RF is a suitable (typically non 0) vector.

Deeper mathematical analysis reveals that LM-RLLC optimizers can be transformed into a simpler,
canonical form if we look at them up to equivalence. The key observation is a “’basis independence”
property of LM-RLLC optimizer functions.

Theorem 5.2 (Basis independence of LM-RLLC optimizers). Let k € N,a € RF B ¢
R¥*k (c1,c0) € R? and let Q € R¥*k be an invertible matrix. Then F(B,a,cy,co) is essen-
tially equivalent to F(Q™'BQ, Qa, c1, cz).

Proof. The optimizer F(B, a, ¢, c2) is obtained from the linear memory update rule U (M, g) =
MB + ga™ with RLLC. Notice that U< (in the sense of deﬁnition is given by U% (M, g) =
M(Q'BQ) + g(Qa)™. Then lemmal3.8|finishes the proof. O

Real Jordan normal form: Theorem together with a variant of the Jordan decomposition
theorem implies that we can transform LM-RLLC optimizers into a very special form without
changing the optimization process. The original form of the Jordan decomposition theorem says that
if B € CF** is an arbitrary complex matrix then there is an invertible matrix Q € C*** such that
Q' BQ has a block diagonal form with each block being a so-called Jordan block. A Jordan block
Jm(A) is a matrix of size m x m with A € C in the diagonal, 1 above the diagonal and 0 everywhere

else. For example
A1 0
J3(N\) = <0 A 1)

0 0 A

There is a similar, although somewhat more complicated statement (called real Jordan normal form)
if B and @ are required to be real matrices. In this case there are two types of blocks J,,,(\) with
A € Rand CJ,,(a + Bi) with o, 8 € R. The second type of block has size 2m x 2m and it
“imitates” complex Jordan blocks with real matrices. This matrix is very similar to J,,, (\) with the
main difference being that each entry is replaced by a 2 x 2 matrix. The 0’s and 1’s are replaced
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by 0 matrices and identity matrices. The A entries are replaced by the matrix in equation (3]) which
represents « + (3¢ by a real matrix. For example

a —p 1 0
Chla+pi= |0 o 0 _15
0 0 8 «a

Propagators of Jordan type: Racall that an LM-RLLC optimizer is given by B € R¥** ¢ ¢ R¥
and two learning rates. By transforming the matrix B to its real Jordan normal form with a basis
transformation given by @ € R¥**, we can divide the memory units into groups belonging to single
blocks of type J,, (A) or CJ,, (o + (i). The block diagonal form of Q! BQ guarantees that these
groups do not interact with each other in memory updates and thus we can treat them as separate
propagators. Recall that in this basis transformation considered in theorem[5.2]the vector a transforms
into Qa. By applying a statement which is slightly stronger then the Jordan decomposition theorem
we can also guarantee that the part of a in each block contains at most one coordinate with 1 and the
rest is 0. We can also assume that this coordinate is the first one otherwise there are trivial memory
units which store 0 in each step. By summarizing all of this we obtain propagators of very special
type. Let e,, € R™ denote the vector with 1 in the first coordinate and 0 in the rest. We denote
the propagator corresponding to the pair (J;,, (), ey,) by M, () and the propagator corresponding
to (CJp(a + Bi), ea) by C M, (e + Bi). We call such propagators Jordan block propagators.
If m = 1 then we omit the index and simply write M () and CM (« + Bi). We obtain the next
theorem.

Theorem 5.3 (Normal forms of LM-RLLC optimizers). Every LM-RLLC optimizer is essentially
equivalent with another LM-RLLC optimizer where the memory update is of the form PG Po®- - -® P,
where each P; is a Jordan block propagator.

By slightly abusing the notation we will also use the formula P, @ P> @ - - - & P, for the optimizer
itself. For example M (0.9) @& M>(0.6) & CM3(0.3 4 0.2¢) stands for a memory 7 optimizer where
the memory units are grouped and updated according to the propagators M (0.9),M2(0.6) and
CM5(0.3 + 0.2i).

6 EXPERIMENTS

For our experiments, we used the Learned Optimization framework Metz et al.|(2022a) as a starting
point. The framework offers pre-trained and hyper parameter optimized optimizers. We compare
our results with the most widely used optimizers as baseline: Adam, SGD, and SGD with momentum.
We compare test loss and classification accuracy on MNISTDeng| (2012), Fashin-MNIST Xiao et al.
(2017b), and CIFAR-10Krizhevsky|(2009) datasets. We experimented with dense, convolutional and
residual neural networks. The source code of our work is available publiclyﬂ See implementation

details in Appendix

80
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7
—— Momentum SGD
—— M(0.9) @ M(0.0)
40 M(0.9)
M(0.9 @& M(0.8) ® M.7
1k 2k 3k 4k 5k 6k 7k 8k 9k

Figure 1: Test accuracy graphs of RLLC and benchmark optimizers, measured on the CIFAR-
10 dataset, with the ResNet-20 network. RLLC optimizers show faster convergence and better
generalization. See related plots and error bars in Appendix

'"https://anonymous.4open.science/r/rllc-EB26/README.md


https://anonymous.4open.science/r/rllc-EB26/README.md

Under review as a conference paper at ICLR 2025

MNIST Fashion-MNIST CIFAR-10

MLP Conv MLP Conv MLP Conv  ResNet-20
Gop 00882 00331 03426 03673 14084 08339 06010  Loss
98.16 9856 8865 8697 5218 7137 8093  Acc
MomentumsGp 0086 00324 03476 02732 14108 07850 05757  Loss
omentum 98.22  98.97 88.67  90.78 51.99  73.17 81.36 Acc
Adan 00758 00304 03407 02704 13858 07920 05857  Loss
am 9783 9399  $878  90.76 5243 7370 8148  Acc
M(09) 00844 00310 03408 02661 14021 08030 0530 Loss
9) 9821 99.03 88.64  90.96 5213 7395 8308  Acc
00888 00323 03475 02678 13973 07977 05353  Loss
M(0.9)®M(0.0) ‘9855 9805 83.80  90.98 5171 7411 8338  Acc
00829 00343 03350 02563 14142 07734 05268  Loss
M(0.9)&M(08)BM(0.7)  gg53" 98795 88.67 0111 5155 7542 8319  Acc
Mo(0.6) O0SOI 00800 03220 04488 13444 10404 OSSII  Loss
2(06) ‘9817 9760 8875 8431 5342 6359 8135  Acc
00861 00319 03536 02636 14155 07602 05354  Loss
M(0.9)®M2(0.6) ggoy 9399 8003 90.95 5208 7587 8284 Acc
0.0877 00287 03498 02596 14028 07216 05393  Loss
M(0.9)eM(0.0)®M2(0-6) ‘9353 g9 .03 89.14  91.29 5183 7576 8273  Acc
My(0) 00797 00539 0382 03735 13795 00433 0545 Loss
3(0.6) “9g2p 9831 8925  §7.08 337 6668 8243 Acc
00873 00334 03671 02624 14029 07647 05337  Loss
M(0.9)eM(-0.9)SCM(0.99) ga9 9897 88.57  91.06 5210 7544 8307  Acc

Table 1: Loss and accuracy are reported across three different datasets, using three distinct network
architectures. The first three rows are dedicated to benchmark optimizers, whereas the subsequent
rows showcase our results. The best benchmark result for each task (dataset and architecture pair)
are highlighted in blue. Instances where our optimizer exceeds the best baseline result are marked
in green. Additionally, the absolute best value for each task is emphasized in bold font. The results
represent the average of three runs with different random seeds. Standard deviation values are
provided in Appendix @I, demonstrating consistent performance across all runs.

RLLC based adaptive learning rate: One of the simplest case of the RLLC method is already
interesting. If there is a single memory unit containing the momentum of previous gradients then
RLLC yields an adaptive version of the momentum SGD optimizer. In this case the learning law
contains a single coefficient, that defines an adaptively changing learning rate for the momentum SGD.
Our experiments show that this upgrade outperforms the plain momentum SGD method, showcasing
the power of RLLC. See M (0.9) results in Table|l{and on Figure|l| Note that RLLC can be applied
to an arbitrary optimizer by introducing a single memory unit storing the last learning step. In a
similar way we obtain a version of the optimizer with an adaptive learning rate. However it may
depend on the optimizer whether it leads to a performance boost or not.

L4 sep M7
—_ M(0.9) —_ M(0.8)
L2 15 " M(og)

1
0.8
0.6
0.4
0.2

0

0 2k 4k ok 8k 10k 0 2k ax 6k 8k 10k
(a) The figure shows the M (0.9) @ M (0.0) optimizer’s (b) The figure shows an interesting negative coupling

transition between momentum SGD and SGD, briefly between M (0.8) and M (0.7). See further details in
aligning with the NAG optimizer around the 2k step. Appendix@

Figure 2: Analysis of the memory unit coefficients over time for different optimizers: M (0.9) ®
M (0.0) (left) and M (0.9) @ M (0.8) & M (0.7) (right).
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Mixing SGD and momentum SGD: We observe an intriguing phenomenon when we enhance
the memory unit of the previous method with the current gradient and monitor the learning law
throughout the training process. As shown in Figure [2a] during the initial phase of training, the
coefficient of the M (0.9) memory unit is predominant. However, as training advances, the coefficient
of the M (0) unit increases, leading to a reversal in the significance of the two memory units. Our
experiment supports [Keskar & Socher| (20174) findings. Table [I] and Figure [T] show results for
M(0.9) @ M (0). An interesting additional detail is that in between the two extremal phases there
exists a phase which emulates the Nesterov Accelerated Gradient (NAG) method. This occurs when
the coefficient of the Momentum SGD memory unit, divided by the coefficient of the SGD unit,
equals the decay parameter of the momentum SGD. (For more details, see Appendix [A.2).

Multi-momentum propagators: In our experiment we investigated optimizers of the form M (31 )®
M(B2) @ -+ ® M(fk). We have not optimized the hyperparameters (3; but we found very promising
settings with a few trials. Our results are therefore illustrative and the fine tuning (depending on
the type of network) is subject to further research. In Table|l| we describe our experiments with
M(0.9) ® M(0), M(0.9) ® M(0.6), M(0.9) ® M(0.8) ® M(0.7) and M (0.9) & M(0.6) ® M(0)
optimizers. Quite surprisingly the simplest one M (0.9) & M (0) (which is mentioned earlier) is the
most reliable. However on certain tasks it is outperformed by the memory 3 settings. Figure
illustrates an interesting coupling between the coefficient of M (0.8) and M (0.7) memory units. See
further details in Appendix[A.3]

M, (\) propagator for m > 2: Jordan block propagators of the form M, () and CM,,(5) with
m > 2 are easy to implement in our code. In our experiments we focused on type M,,, () propagators
with m = 2, 3. It is also interesting to combine them with other propagators. Table [I]shows results
for M>(0.6), M5(0.6) and M (0.9) & M>(0.6). These configurations surpass the baseline optimizers
in many tasks and also surpass pure multi-momentum propagators in some specific tasks.

Complex-moment propagators: Another interesting possibility in our framework is the usage of
complex-momentum propagators. One particular example that we experimented with is the case of
M(B)oM (—B)®CM (Bi). This choice in not random. It comes from the Jordan normal form of the
permutation matrix corresponding to the cyclic shift on 4 elements multiplied with 3. This particular
propagator is closely related to Fourier analysis.

7 LIMITATIONS

Using memory units comes at a cost. Each memory unit is a vector in the parameter space R”.
In our experiments, we opted for relatively small or medium-sized architectures. However, for
architectures with a vast parameter space, our approach with many memory units could prove to be
too memory-intensive.

It’s also worth noting that our experiments were conducted on relatively small datasets, and future
work should explore experiments on larger datasets.

8 CONCLUSION

Our experiments demonstrate that the RLLC method is capable of boosting the performance of
classical optimizers (such as SGD and momentum SGD) by combining them and making them more
adaptive. Furthermore the case of linearly updated memory units provides a mathematically elegant
framework with many new types of promising optimizers such as the ones corresponding to larger
Jordan blocks, complex numbers and their combinations. We regard this paper as a starting point for
future research in the frame of which the full potential of our approach is explored. One possible
research direction is to introduce adaptively changing memory update rules. In particular, in the
linear setting the pair B € RF*¥ a € R (see Sectionl4) is fixed for the whole optimization process
in the current version. It would be interesting to study a version were B and a are also adaptively
changing throughout learning.

10
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A APPENDIX

A.1 NESTEROV ACCELERATED GRADIENT (NAG) AS A MEMORY 2 OPTIMIZER

We claim that a basic version of the NAG optimizer with decay parameter S and learning rate c is
equivalent with the linear memory optimizer with two memory units M (3), M (0) and fixed learning
law (¢f3, ¢). This is a special LM-RLLC optimizer where the learning rate is 1 and the meta learning
rate is 0 and thus the learning law does not change. To verify this claim, recall that the NAG optimizer
is given by the iteration of the following steps:

b1 =0y — cV f(0r)
Or1 = dri1 + B(drg1 — ).

where ¢1 = 6 is the initial parameter vector and f is the objective function to be minimized. Let us
introduce

Vi1 1= P — Prq1.
With this notation we have the update rules:

Vi1 = Pog + eV f(0y),

9t+1 = 6‘t — (CVf(et) + th+1).
Observe that if we introduce the update rule

Myt = By + V f(0r)
then vy = rm; holds at any given time ¢. Furthermore m; corresponds to the propagator M (3). With
this notation we have that
0t+1 = Ht — (ch(F)t) + Cﬂmt+1).
This verifies our claim since V f(6;) is the propagator M (0).

A possible source of confusion is that NAG is known in two slightly different but interrelated versions,
depending on which of the two sequences, 6; and ¢, is considered the actual learning step (while the
other is regarded as an auxiliary step).

In one version, the points 6; are considered "look-ahead points” for computing the gradients, while
¢; are viewed as the learning steps. Notice that in this version, the gradients are NOT computed at
the learning steps; they are calculated at the look-ahead points.

The sequence 6; of the look-ahead points is closely coupled with the learning steps, and their
difference is a single SGD step, which diminishes over time. This means that they converge to the
same point in the parameter space. For this reason, one can view NAG in a different way, where
the learning steps are the look-ahead points 6;, and this is often done in the literature. This second
version of NAG is more natural for our framework because the gradients are computed at the actual
learning steps.

To illustrate this we compute the first few NAG steps. To start with the iteration we introduce initial
values by ¢1 = 6. We will use the short hand notation g; = V(6;). With this notation, the recursion

takes the form

b1 =0t — cgr , Or11 = dr1 + B(drr1 — d1).
Now we have the following:

¢2 =01 —cq
0o =01 —c(14 B)g1
¢3 =01 —c(14 B)g1 — cg2
03 =01 —c(14+ B+ 8% g1 —c(1+ B)gs
¢ =01 —c(1+ B+ B> g1 — c(1+ B)g> — cgs
02 =01 —c(1+ B+ 8>+ Bg1 —c(1+ B+ 5%)gs — c(1+ B)gs

Observe that the sequence ¢; is the sequence given by a more classical version of NAG while 6;
is given by the memory two M (0), M () optimizer as described above. This explains the exact

relationship between the two sequences. Notice that ¢,11 — 0; = —cg; where —cg; is a single
gradient step which converges to 0 as the optimization gets closer to the optimum.
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A.2 RLLC INTERPOLATIONS BETWEEN SGD, MOMENTUM SGD AND NESTEROV
ACCELERATED GRADIENT (NAG)

As we have already explained, momentum SGD method in our interpretation is represented as the
propagator M () where 0 < 8 < 1 is the decay parameter. In particular M (0) corresponds to a
memory unit which stores the last gradient seen by the optimizer. In this sense, a memory 1 optimizer
with memory unit M (0) is basically an SGD optimizer. The learning law in this case is a single real
number which manifests as a learning rate.

If an optimizer has two memory units M (3) and M (0) then by changing the learning law (described
by a pair of real numbers) we can continuously interpolate between momentum SGD, pure SGD and
NAG. In the next list we summarize the meanings of special learning laws for M (3), M (0).

1. (0,¢): SGD
2. (¢,0) : momentum SGD with decay parameter 3
3. (¢B,¢) : NAG with decay parameter 3

where the learning rate is ¢ * lr. Notice that since J is a prescribed fix number, the above three
cases don’t cover all possible learning laws for the pair M (/3), M (0). This enables the LM-RLLC
optimizer with memory M (), M (0) to find interesting interpolations between these three classical
optimizers.

A.3 ADDITIONAL MATHEMATICAL OBSERVATIONS

On the memory units of M ()\) propagators: The M; ()\) propagator can naturally be interpreted
as an iterated momentum propagator. Let mq, maq, . .., my denote the the memory units. The update
rule of Mj()\) is given by

mp < mifB+g
m; < m;8 +m;_q fori > 2.

Thus m; is the momentum vector of the gradient and m; (for ¢ > 2) is the momentum vector of
m;_1. One can compute that the abstract rule of m; is given by the sequence {7~"+1(,7,) 20
It follows that the subspace generated by the abstract rules of the memory units is the space of all
sequences of the form {p(j)5” }32, where p is a polynomial of degree at most k& — 1. This means that
we can associate such a polynomial with each learning law. The RLLC method for M}, () basically
adaptively navigates in this polynomial space.

Relation between Multi-momentum and M, (\) propagators: The progression of the learning
law of M (0.9) & M (0.8) @ M(0.7) presents an interesting phenomenon. As Figure [2b| shows,
the coefficients of M (0.8) and M (0.7) memory units are noticeably coupled with opposite sign.
One might assume that the algorithm is just trying to cancel their effects, but the performance
improvement compared to M (0.9) suggests that something more interesting is happening here. A
deeper explanation relates this optimizer to another one of the form M (0.9) ® M>(0.75). More
precisely if we consider O(e) = M (0.9) & M (0.75 + €) & M (0.75 — €) we find that as € goes to 0
the subspace spanned by the abstract rules of the memory units converges to the subspace spanned
by the memory units of M (0.9) @& M>(0.75). In theory this convergence means that the optimizers
themselves converge. Note that in practice we can not model M (0.9) & M5(0.75) by O(e) because
numerical instability arises if € is very small.

A.4 ADDITIONAL EXPERIMENTS
A.4.1 RESULTS CONSISTENCY

To address concerns about the variability of our results, we computed and included the standard
deviation values for each experiment in Table 2] The standard deviation values indicate that the
observed improvements are consistent across different seeds, with the standard deviation being
substantially smaller than the performance gains over baseline methods.
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A.4.2 OPTIMIZER TRAINING COST

We compared our RLLC optimizers’ performance with the benchmark optimizers (implemented in
the Optax library). In this experiment we skipped all evaluation and logging features of the training
process, and we only measured, how much time it takes the optimizer to reach the appointed iteration
step. RLLC optimizers’ compute time is approximatively the same as the benchmark optimizers (both
lock time and in FLOPs). With careful code optimization, performance of the benchmark optimizers
(with the same number of memory units) is achievable.

B scp
50 T L .
B Momentum SGD
Adam
W (0.9)
40 B M{0.9) & M(D.0)
B AM(0.9) 3 M(0.8) & M(0.7)
_ My {0.6)
30
W
=
=
20
- = I
m II II-II
0
ResMet-20 Conv NMLP
Tasks

Figure 3: Performance comparison of RLLC and benchmark optimizers, measured on the CIFAR-10
dataset, with an MLP, convolutional, and ResNet-20 network.

A.5 IMPLEMENTATION DETAILS

A.5.1 NETWORK ARCHITECTURES AND TRAINING DETAILS

Dense network Our dense network comprises three hidden layers, each with a width of 128 and
followed by a ReLU activation function. We did not include any normalization layers.

Convolutional network Our convolutional network features a depth of three, with channel widths
of 32, 64, and 64, each followed by a ReLU activation function. We did not incorporate any
normalization layers. Following the convolutional layers, we apply max pooling and then a final
dense layer.

ResNet-20 Our ResNet-20 variant adheres to established conventions for CIFAR-10, employing a
three-level architecture with three residual blocks at each level. Each residual block is composed
of the following sequence of layers: Convolution-Batch Normalization-ReLU-Convolution-Batch
Normalization. A ReLU operation is applied after the addition operation in each residual block. The
convolution kernels are 3x3 in size.
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MNIST Fashion-MNIST CIFAR-10
MLP Conv MLP Conv MLP Conv  ResNet-20

Gap 981573 983628  88.6537 869660 521822 713706 809269 Acc

003 0.09 005 038 045  1.08 027 S

Momentumsap 982232 989748 886735 90.7799 519877 731672 813555  Acc

omentum 0.05 0.10 0.15 0.33 0.16 0.58 0.55 Std

Adap, 978343 08.9880  88.7757 907602 524295 737045 814808  Ac

am- G570 0.04 001 0.16 058 029 105 s

M(0g) 982133 990341 886430 009579 521328 739517 £3.0795 Ace

9 607 005 016 024 030 120 066 S

982595 98.0452  88.8219 909843 517075 74.1067 83.3762 Acc

M(0.9)®M(0.0) 55" g4 018 017 063 034 078 St

082331 98.0484  88.6702 91.1096 515526 754153 83.1916  Acc

M(0.9)BM(08)BM(0.7) “gog g0 016  0.11 016 041 076  Sud

Mp(06) %1738 975969 887460 843091 534184 635878 813480 Ace

2(06) “605 014 041  0.07 0.19 020 077 S

982133 98.9880  89.0295 90.9481  52.0800 75.8736 828422  Acc

M(0.9)®M2(06) "o~ 004 013 0.07 034 0.13 024 sd

082298 99.0342  89.1350 91.2942  51.8295 757648 827334  Acc

M(0.9)®M(0.0)0&M2(0.6) “(iog 12 024 023 044 028 081  Sd

My(0.6) 982199 983089 800537 §7.0847 53365 66.6766 §24301  Ace

3(06) “gos o6 018 016 075 049 027  sd

. 98.0947 98.9748 885713 91.0568 520965 754417 830663 Acc

M(0.9)8M(=0.9)BCM(0.9) "5 "5 013 0.17 069 024 089 S

Table 2: Accuracy and standard deviation values are reported across three different datasets, using
three distinct network architectures. The first three rows are dedicated to benchmark optimizers,
whereas the subsequent rows showcase our results. The best benchmark result for each task (dataset
and architecture pair) are highlighted in blue. Instances where our optimizer exceeds the best baseline
result are marked in green. Additionally, the absolute best value for each task is emphasized in bold
font. The results are the average of 3 runs with different random seeds.

A.5.2 TRAINING DETAILS, HYPERPARAMETERS

In all reported experiments, we employed a batch size of 128 and trained the models for 10,000
iterations. We did not use a learning rate scheduler, to avoid any potential variance in its effect across
different optimizers. We run every experiment with 3 different seed, and reported the average of the
results.

During our hyperparameter optimization process, we tested the following potential values:

* Benchmark optimizers

learning rate: le-7, 3e-7, le-6, 3e-6, le-5, 3e-5, le-4, 3e-4, le-3, 3e-3, le-2, 3e-2, le-1,
3e-1, 1

* Qur optimizers

learning rate: 0.001, 0.003, 0.01, 0.03, 0.1, 0.3
learning law - learning rate: 0.003, 0.01, 0.03

A.5.3 TRAININD DATASETS

CIFAR-10 The CIFAR-10 dataset [Krizhevsky et al.| consists of 60000 32232 colour images in
10 classes, with 6000 images per class. There are 50000 training images, and 10000 test images.
We used the canonical train—validation-test split, with 45000 train, 5000 validation, and 10000 test
images. As a preprocessing, we normalized the images with the means (0.4914,0.4822,0.4465)
and standard deviations (0.2023, 0.1994, 0.2010) for the three RGB channels, respectively. On the
ResNet task we used random resized crop (with zoom scale 0.8-1.2), horizontal flip, and random
rotation.
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Fashion-MNIST The Fashion-MNIST dataset Xiao et al.| (2017a) consists of 70000 28x28
monochrom images in 10 classes, with 7000 images per class. There are 60000 training images,
and 10000 test images. We used the canonical train—validation-test split, with 54000 train, 6000
validation, and 10000 test images. As a preprocessing, we normalized the images with the mean 0.3
and stadard deviation 0.3.

MNIST The MNIST dataset [LeCun et al.| (2010) consists of 60000 28228 monocrom images in
10 classes, with 7000 images per class. There are 60000 training images, and 10000 test images.
We used the canonical train—validation-test split, with 54000 train, 6000 validation, and 10000 test
images. As a preprocessing, we normalized the images with the mean 0.1307 and standard deviation
0.3081.

A.6 COMPUTATIONAL RESOURCES

For our experiments we used a server with 8§ A10040GB GPUs. We reported outcomes from a
total of 16 optimizers, each optimized for hyperparameters across seven distinct tasks (architecture
- dataset pair). One round of hyperparameter optimization with three different random seeds took
approximately 4 hours on our server, and we were able to run 16 paralelly.

Therefore, all of our results can be replicated in about 28 hours using the same setup, or in 224 hours
on a single A100 40GB GPU.
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A.7 SUPPLEMENTARY PLOTS

Figure [d] shows additional accuracy plots for MLP and Convolutional tasks. Figure 5| demonstrates,
that the test accuracy is consistent on different random seeds for the demonstrated experiments.
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Figure 4: Test accuracy graph of some RLLC optimizer, comparing with benchmark optimizers. On
most of the tasks RLLC optimizers perform better, than the benchmark optimizers.

MLP Conv
985
98 ®
975 b g
97 o7
96.5 ol
k 2k 3 4 sk ek 7k 8 9 * x ¢ « s« o ™ L "

ISupuoNSe|

ot

— k;(ﬂ 9)® M(0.8) ® M(0.7
—— M(0.9) ® M(0.0)

Figure 5: Test accuracy graph of some RLLC optimizer, with min-max interval, trained from 3
random seed initialization. The accuracy does not vary a lot, suggesting, that RLLC is robust.
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