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Abstract

Advancements in Multimodal Large Language
Models (MLLMs) have improved human mo-
tion understanding. However, these models
remain constrained by their "instruct-only" na-
ture, lacking adaptability for diverse analyti-
cal perspectives. To address these challenges,
we introduce ChatMotion, a multimodal multi-
agent framework for human motion analysis.
ChatMotion dynamically interprets user intent,
decomposes complex tasks into meta-tasks, and
activates specialized function modules for mo-
tion comprehension. It integrates specialized
toolset, MotionCore, to analyze human motion
from various perspectives. Extensive experi-
ments demonstrate ChatMotion’s precision and
adaptability for human motion understanding.

1 Introduction

Human motion understanding (Li et al., 2024b;
Loper et al., 2015) has gained attention due to its
wide-ranging applications in fields such as health-
care, human-computer interaction, rehabilitation,
sports science, and virtual human modeling (Plap-
pert et al., 2016; Zhang et al., 2021; Hong et al.,
2022; Qu et al., 2024). A deep understanding of
human motion can drive advancements in areas like
physical therapy (Smeddinck, 2020), immersive vir-
tual experiences (Xiao et al., 2024), and assistive
technology interfaces (Khiabani, 2021). As human
motion data becomes more accessible, the demand
for systems capable of effectively processing and
analyzing this data has increased (Zhang, 2024).
However, existing motion understanding models
often struggle to handle the accurate analysis of
human motions and the dynamic nature of user re-
quirements (Meng et al., 2020; Smeddinck, 2020).
These MLLMs tend to exhibit limited adaptability
to complex, multi-faceted user queries and are of-
ten constrained by biases inherent in single-model
analyses (Frangoudes et al., 2022), failing to inte-
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Figure 1: ChatMotion compares with LLaMo (Li et al.,
2024b), a state-of-the-art MLLM for motion understand-
ing. By integrating insights from multiple MLLM re-
sults, ChatMotion delivers more accurate analysis.

grate diverse insights into a comprehensive, gener-
alizable, and accurate analysis (Xu et al., 2021).

With the large model application develop-
ment(Zheng et al., 2025; Yang et al., 2024),
recent advancements in human motion under-
standing have progressed, particularly with LL.M-
based methods targeting specialized tasks and
domain-specific applications. Models such as
MotionGPT (Jiang et al., 2023) and Motion-
LLM (Chen et al., 2024a) propose methods to en-
code motion into structured formats, translating
motion data (e.g., videos) into textual descriptions
for general motion understanding tasks. Building
on this foundation, LLaMo (Li et al., 2024b) in-
tegrates a motion encoder and cross-talker with-
out relying on motion quantification, demonstrat-
ing capabilities in general motion comprehension
and specialized analysis across professional do-
mains. These LLM-based motion models aim to
bridge raw motion data and interpretable insights,
enabling applications in diverse fields.

Despite these advancements, existing ap-
proaches still face limitations when applied to
broader motion analysis tasks. A key challenge is
their reliance on single-model architectures, which
often struggle to address complex user require-
ments (Wei et al., 2024). These models show lim-



ited adaptability to dynamic user goals and lack
mechanisms to integrate insights from multiple
MLLMs, constraining their ability to provide com-
prehensive results. Additionally, they lack effec-
tive frameworks for verifying outcomes or refining
analyses based on user feedback, which may affect
reliability (Lan et al., 2022). As a result, current
Motion LLMs encounter challenges in delivering
accurate and complete human motion analyses.

To address these challenges, We present Chat-
Motion, the first agent-based framework for motion
understanding that integrates a multi-agent architec-
ture, consisting of a Planner, Executor, and Verifier,
together with our modular MotionCore toolbox.
Given motion or video data with a user prompt
ChatMotion uses a Planner to decompose the task
into sub-tasks, each handled by the Executor using
tools within MotionCore. The MotionCore con-
sists of four modules: MotionAnalyzer, Aggrega-
tor, Generator, and Auxiliary Tools. The Executor
calls upon the MotionAnalyzer, utilizing multiple
motion LLMs to analyze data from various per-
spectives. The Aggregator, with two mechanisms,
synthesizes the most probable result from the Mo-
tionAnalyzer outputs. The Auxiliary Tools provide
complementary analysis from databases. The Gen-
erator reviews the user’s request and synthesizes
the answer by leveraging the outputs and contex-
tual information produced throughout the pipeline.
The Verifier ensures consistency and relevance of
intermediate results, enhancing the reliability of
the final output. Through coordinated agent efforts,
ChatMotion provides a flexible, precise, and reli-
able approach to motion analysis, overcoming the
limitations of traditional motion LLMs.

We validate ChatMotion across a wide range of
general human motion understanding datasets (e.g.,
Movid (Chen et al., 2024a), BABEL-QA (Endo
et al., 2023), MVbench (Li et al., 2024a), and Mo-
Repcount (Li et al., 2024b) ), demonstrating its ef-
fectiveness across both standard and complex tasks.
Experimental results highlight the improvements
in accuracy, adaptability, reaching new heights in
the field of human motion analysis. In summary,
the contributions of this work are as follows:

e ChatMotion, a multi-agent system with

a Planner-Executor-Verifier architecture for
comprehensive human motion analysis.

* A robust MotionCore for invoking functional
tools to enable comprehensive and reliable
motion understanding by fusing diverse per-
spectives from various MLLMs and support

result verification.

* Empirical validation across multiple datasets
demonstrates that ChatMotion achieves im-
proved performance in human motion analysis
compared to existing MLLMs.

2 Related works

2.1 Human Multimodal Representations

Multimodal representation learning is pivotal for
human-centric analyses, especially in tasks requir-
ing spatial-temporal reasoning to interpret com-
plex behaviors (Lin et al., 2023b; Ning et al., 2023;
Li et al., 2023). Recent advancements, such as
Video-LLaVA, integrate visual information from
images and videos into a unified linguistic fea-
ture space, enabling improved visual reasoning
for behavioral analysis (Lin et al., 2023b). How-
ever, many models remain limited to isolated video
frames and privacy concerns, constraining their ef-
fectiveness in the dynamic real world. (Ning et al.,
2023; Heilbron et al., 2015; Maaz et al., 2023). To
address these limitations, motion data has emerged
as a privacy-preserving alternative, allowing action
analysis without revealing identifiable visual de-
tails (Song et al., 2023b; Yang et al., 2023b). By
combining visual and motion data, emerging mul-
timodal frameworks offer privacy-aware solutions,
leveraging the strengths of both modalities for en-
hanced adaptability across diverse applications.

2.2 Human Motion Understanding

Human motion analysis traditionally relies on
skeletal data, represented as joint keypoint se-
quences, to capture movement dynamics while
preserving user privacy (Shi et al., 2023; Plappert
et al., 2018; Yang et al., 2023a). Early methods,
such as 2s-AGCN (Shi et al., 2019), and recent
transformer-based models like MotionCLIP (Chen
et al., 2024b), have demonstrated success in tasks
such as activity recognition, caption generation,
and behavior analysis by translating motion data
into language tokens. While effective in modeling
structural movement patterns, these approaches of-
ten neglect environmental context, which is crucial
for interpreting motions that may convey different
meanings based on situational factors (Song et al.,
2023a; Maaz et al., 2023). To address this, recent
models integrate motion and visual data, enabling
improved generalization in dynamic and diverse
environments (Liu et al., 2024; He et al., 2023).
Frameworks like LLaMo(Li et al., 2024b) have uni-
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Figure 2: The ChatMotion pipeline operates through a three-stage framework designed to optimize task resolution.
The Planner interprets the user’s query and breaks it into meta-tasks. Then, the Executor selects and applies
appropriate MotionCore tools to execute these tasks. Finally, the Verifier ensures overall correctness, coherence,

and completeness.

fied motion, video and text understanding models.
However, this model is limited in its applicabil-
ity, due to the size of its training data. Using an
agent enables use of multiple models for flexible
and comprehensive analysis.

3 ChatMotion

As shown in Fig. 2, ChatMotion is a multi-agent
system that processes user queries involving mo-
tion and video data through the Planner, Execu-
tor, and Verifier agents, each powered by LLaMA-
70B (Touvron et al., 2023) and equipped with spe-
cialized decision-making and tool-use strategies.
The Planner decomposes the task into meta-tasks.
Then the Executor executes them via MotionCore
function calls. Finally the Verifier ensures accu-
racy by delivering context-aware, precise results
for complex motion analysis.

3.1 Planner

The Planner serves as the decision-maker, interpret-
ing user intent and subdividing complex tasks into
structured meta-tasks. First the input query is ana-
lyzed to identify core objectives and dependencies
within the task, and then breaks the task down into
smaller, manageable meta-tasks. It operates as the
initial step in the multi-agent framework, ensuring
that user requirements are transformed into a struc-
tured workflow that aligns with evolving goals.
Specifically, let us denote a user query by R.

As the simplified version is illustrated in Fig. 2,
the Planner will receive an instruction containing
user query and available tools functionality in Mo-
tionCore which is a function toolbox tailored for
human motion analysis (see Sec. 3.4). Then, the
Planner will follow the instructions and identify a
set of core objectives O = {01, 03, ...,0p,} sim-
ply based on R. These objectives are then decom-
posed into meta-tasks M guided by the specific
functionalities available in the MotionCore tools.
This decomposition allows the system to handle
a wide range of user inputs, from simple queries
to multi-step, dynamic tasks. The prompt for the
Planner and example outputs are provided in the
appendix (see Sec. A.1).

3.2 Executor

The Executor is responsible for transforming the
Planners meta-tasks into operations that can an-
swered by a suite of function tools. Once provided
with the set of meta-tasks M, the Executor pro-
cesses each task in turn, as illustrated in Fig. 2,
selecting the most appropriate function tool from
MotionCore (see Sec. 3.4) based on the alignment
between each tool’s functionality and the objective
of the meta-task.

Formally, for a given meta-task M; € M, the
Executor considers the set of available function
tools ® = {¢1,P2,...,ds} within MotionCore,
and selects the function ¢; that best matches the
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Figure 3: Components of MotionCore: the MotionCore
integrates the MotionAnalyzer and Selection modules
to concurrently process and aggregate multiple human
motion analyses in two specific ways. The Generation
Module synthesizes and contextualizes the results to
align with user queries. Additionally, an auxiliary tool-
box enables dynamic expansion with supplementary
tools to address evolving user requirements.

requirements of M;:

where ¢; is the specific tool to fulfill meta-task ;.

If a meta-task cannot be completed (e.g., due
to unavailable functionality), the Executor returns
detailed error information to the Planner, which
then revises its objectives and resubmits updated
meta-tasks. This process may iterate through mul-
tiple rounds until the overall objective is satisfied.
The prompt for the Executor and example outputs
are provided in the appendix (see Sec. A.3).

3.3 Verifier

The Verifier acts as a supervisory agent, ensuring
the accuracy and reliability of the multi-agent work-
flow. It has two main roles: first, it checks that the
Planner’s meta-tasks are logically structured and
aligned with the user’s prompt; second, it verifies
that the meta-tasks can be executed using available
tools and that the results meet expectations. If any
meta-task cannot be executed or produces incorrect
results, or if the Executor calls an inappropriate
function, the Verifier prompts the Planner to revise

the task list or the Executor to select a different tool.
This feedback loop ensures that tasks are executed
correctly using the right tools.

3.4 MotionCore

As shown in Fig 3, MotionCore is a comprehensive
toolkit that enables efficient human motion under-
standing by integrating various modules and auxil-
iary functions. It also includes auxiliary tools for
tasks like motion visualization and video retrieval,
meeting users’ diverse requirements. MotionCore
is driven by the Executor Agent, which selects the
appropriate tools from the toolkit to complete tasks
based on a given meta-task list.

34.1

The MotionAnalyzer in MotionCore enhances mo-
tion understanding and mitigates biases through a
dynamic, multi-model approach. It integrates hu-
man motion models, such as MotionLLM (Chen
et al., 2024a), MotionGPT (Jiang et al., 2023), and
LLaMo(Li et al., 2024b), alongside video caption-
ing models such as VideoChat?2 (Li et al., 2024a),
GPT-4v (OpenAl, 2023b), and video-LLaVA (Lin
et al., 2023a) to handle human motion input. Let
the set of motion understanding models be denoted
as {F1, F, ..., Fx}, where each model F; pro-
cesses the multimodal input data D (e.g., video
frames, motion capture data) to produce text analy-
sis r4, i.e., (r;) = F;(D), i=1,2,...,N.Each
model is assigned a predefined confidence score c;,
based on the previous evaluation performance, in-
dependent of the model’s predictions. These scores
are provided in the appendix (see Sec. C.2). Fur-
thermore, the confidence scores are allocated based
on the input modalities, which can be motion cap-
ture, video, or motion-video. The outputs and their
corresponding confidence scores are represented
as {(r1,c1), (r2,c2), ..., (rn,cn)}, where ¢; de-
notes the predefined confidence score for the out-
put r; of model F; in its respective task. This inte-
gration of predefined confidence scores ensures a
robust and flexible understanding of motion, lever-
aging the strengths of each model across diverse
modalities and tasks.

MotionAnalyzer

3.4.2 Aggregator

The Aggregator in MotionCore identifies the most
reliable result from a set of {(r;, ¢;) } pairs, employ-
ing two strategies: the Confidence Mechanism and
the Motion-Aware Mechanism, which improves
the motion understanding by selecting the most



accurate outcome from diverse perspectives.

Confidence Mechanism Rooted in game theory,
this method considers the set

{(rivci)‘i:Lz?-'-uN}v

where r; is a model’s output and ¢; is its associated
confidence score. The mechanism assigns higher
weight to more confident outputs, with a "majority
wins" principle when models converge on similar
results. Rather than using a fixed function, the
analysis-confidence pairs {(r;, ¢;)} are passed to
LLaMA, which adaptively integrates the outputs by
balancing consensus with individual model exper-
tise. The mechanism asks LLaMA to emphasize
model outputs to be fused that have a shared con-
clusion while considering outlier predictions with
high confidence before rewriting these to a single
new analysis 7*.

Though foundational, this approach is simple,
relying primarily on confidence scores and model
consensus. The next step incorporates a Motion-
Aware mechanism to refine the process.

Motion-Aware Mechanism With LLaMo’s (Li
et al., 2024b) specialized motion-understanding
capabilities, this mechanism evaluates {(7;,¢;)}
pairs alongside the original motion or video data
M, generating an initial estimate:

r" = LLaMo(r1, .. s en; M).

-»TN; C1,y -

To produce this intermediary result LLaMo ob-
serves the motion or video sequence and is asked
to provide a refined analysis based on this and the
prior candidate answers whose context should be
weighted by their confidence score. LLaMA (Tou-
vron et al., 2023) then re-examines the preliminary
result 7’ and the original pairs {(r;, ¢;) } to mitigate
model bias and refine the outcome, while produc-
ing the final analysis in a similar manner as the
confidence mechanism. This dual-layer evalua-
tion leverages LLaMo’s domain-specific motion
expertise and LLaMA’s context-aware reasoning,
improving both reliability and precision.

The Aggregator is a powerful tool within Motion-
Core that fosters a more comprehensive understand-
ing of human motion, by enabling ChatMotion to
identify the most accurate analyses from diverse
model outputs.

3.4.3 Generator

In MotionCore, the Generator synthesizes contex-
tual information from previously invoked tool out-

puts, such as those from the Aggregator and re-
trieval modules, together with the user’s original re-
quest to produce a final answer, as shown in Fig. 3.
Here, t* denotes the intermediate results from prior
module executions. The Generator integrates t*
and user query R:

Answer = I'(t*, R),

where I'(+) denotes LLaMA. The final output can
take various forms, such as textual analysis, motion
feedback, and so on, depending on the user’s re-
quest. This process ensures that the answer is both
comprehensive and tailored to the user’s needs.

3.4.4 Aucxiliary Tools

The Auxiliary Tools in MotionCore, which can be
accessed by the Executor, extend ChatMotion’s
capabilities by orchestrating external, domain-
specific functionalities that go beyond the scope
of the multimodal model alone. For instance, the
system can retrieve professional analysis by query-
ing specialized knowledge bases, which provide
context-specific insights based on user inputs. Ad-
ditionally, it enables motion retrieval by identify-
ing relevant motion data based on the user’s re-
quest, leveraging a stored database of labeled mo-
tion data and utilizing vector-based search to match
the query to the most relevant motion. As a result,
it equips ChatMotion with two retrieval tools to
retrieve text or motion sequences which provides
diverse motion analysis capabilities that simple
MLLMs do not possess. ChatMotion provides a
unified, modular interface for auxiliary functions,
enabling seamless integration of new capabilities
without burdening the core model.

4 Experimental Setup

Datasets We evaluate ChatMotion on general
human motion understanding benchmarks includ-
ing Movid-bench (Chen et al., 2024a), BABEL-
QA (Endo et al., 2023) and MVbench (Li et al.,
2024a), as well as Mo-Repcount (Li et al.,
2024b) for fine-grained motion capture capabilities.
MoVid-Bench specifically assesses the model’s
ability to understand human behavior in both mo-
tion and video contexts. It consists of 1,350 data
pairs, with 700 motion and 650 video samples,
covering diverse daily scenarios in real-world. In
addition, ChatMotion is tested on BABEL-QA
and MVbench to evaluate motion-based and video-
based question answering respectively.



MoVid-Bench-Motion Body. Seq. Dir. Rea. Hall. All

Acc.  Score | Acc. Score | Acc. Score | Acc. Score | Acc. Score | Acc Score |
GT 100.00 5.00 100.00 5.00 | 100.00 5.00 | 100.00 5.00 | 100.00 5.00 | 100.00 5.00
GPT-3.5 (OpenAl, 2023a) 24.51 2.04 30.41 2.25 27.14 2.19 39.19 2.64 58.33 3.22 31.33 2.31
MotionGPT (Jiang et al., 2023) 31.22 3.98 42.69 3.16 44.29 3.50 35.81 3.06 16.66 2.25 36.86 3.11
MotionLLM (Chen et al., 2024a) | 50.49 3.55 36.84 3.14 58.57 3.76 52.70 3.58 55.56 3.39 49.50 3.49
LLaMo (Li et al., 2024b) 59.30 4.01 44.01 3.12 60.91 3.99 58.21 3.64 61.17 3.53 55.32 3.67
ChatMotion(CB) 60.89 4.03 46.21 3.30 62.11 4.03 59.53 3.77 68.95 3.78 56.90 3.72
ChatMotion 60.43 4.08 46.56 3.28 64.21 4.11 60.58 3.87 70.39 3.82 58.79 3.80
MoVid-Bench-Video Body. Seq. Dir. Rea. Hull. All

Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score |
GT 100.00 5.00 100.00 5.00 | 100.00 5.00 | 100.00 5.00 | 100.00 5.00 | 100.00 5.00
GPT-3.5 (OpenAl, 2023a) 2.40 1.23 1.39 1.00 4.65 1.09 5.41 1.65 0.00 0.94 3.03 1.26
Video-LLAVA (Lin et al., 2023a) | 33.53 2.76 25.46 2.72 41.86 2.84 52.97 3.28 58.83 1.89 42.53 2.70
MotionLLM (Chen et al., 2024a) | 34.13 2.93 32.87 2.92 44.18 3.14 63.20 3.55 70.59 2.30 49.00 2.97
LLaMo (Li et al., 2024b) 33.83 2.85 36.01 3.11 45.50 3.32 67.59 3.73 72.81 2.25 52.33 3.10
ChatMotion(CB) 38.31 3.40 36.80 3.17 47.22 3.59 70.89 3.85 73.22 2.35 53.51 3.19
ChatMotion 38.06 3.34 37.39 3.18 47.92 3.65 72.16 3.99 74.01 2.30 54.96 3.25

Table 1: Comparison between ChatMotion and existing Motion LLMs on the MoVid-Bench. The top part of the
table presents motion-related results, and the bottom part presents video-related results. Higher accuracy and score
values indicate better performance. "GT"=Ground truth.

Model | Pred.type | OverallT  ActionT  Direction{  BodyPart{ | Before{  After?T  Other 1
MotionCLIP-M (Tevet et al., 2022) cls. 0.430 0.485 0.361 0.272 0.372 0.321 0.404
MotionCLIP-R (Tevet et al., 2022) cls. 0.420 0.489 0.310 0.250 0.398 0.314 0.387
MotionLLM (Chen et al., 2024a) gen. 0.436 0.517 0.354 0.154 0.427 0.368 0.529
LLaMo (Li et al., 2024b) gen. 0.458 0.525 0.398 0.224 0.443 0.392 0.518
ChatMotion(CB) gen. 0.467 0.534 0.410 0.272 0.445 0.396 0.536
ChatMotion gen. 0.473 0.537 0.412 0.265 0.451 0.406 0.537

Table 2: Comparison on the BABEL-QA dataset. Higher scores indicate better performance. The results for

ChatMotion’s two methods are also included.

Tasks and Metrics ChatMotion is evaluated on
tasks including action recognition, motion reason-
ing, and question answering. For MoVid-Bench,
we follow established LLM evaluation metrics, as-
sessing body-part recognition, sequential analysis,
directionality, reasoning, and hallucination control
in both motion and video contexts. BABEL-QA
uses similar metrics with a focus on motion-related
question answering, while Mo-Repcount employs
specialized metrics like OBO, MAE, OBZ, and
RMSE for fine-grained motion tracking accuracy.
In the MVBench video understanding evaluation,
we respond to multiple-choice questions by select-
ing the most suitable option as outlined in.

Baselines For our baselines, we select SOTA
Motion LLMs for human-centric motion under-
standing, e.g., LLaMo (Li et al., 2024b), Motion-
LLM (Chen et al., 2024a) and MotionGPT (Jiang
et al., 2023). These models are widely recognized
for their ability to process and understand human
motion in both video and action contexts. For
ChatMotion, ChatMotion(CB) and ChatMotion
denote the versions using Confidence-Based and
Motion-Aware aggregation, respectively. Through
extensive comparison, our results highlight Chat-
Motion’s exceptional ability to handle complex hu-

man motion understanding tasks, outperforming
the baselines across a range of evaluation metrics.

5 Results

5.1 Quantitative Analysis

Evaluation on Motion Understanding in MoVid-
Bench. Table 1 compares the performance of
motion-based LLMs on MoVid-Bench-Motion.
Both ChatMotion(CB) and ChatMotion outperform
existing baselines across all metrics. ChatMotion
achieves an accuracy of 58.79% and a score of 3.80,
surpassing LLaMo by 3.47% in accuracy and 0.13
in score. It also demonstrates strong hallucination
control, achieving 70.39% accuracy compared to
LLaMo’s 61.17%, underscoring the effectiveness
of ChatMotion’s multi-model integration via its
robust selection strategy.

Previous models, such as MotionLLM and Mo-
tionGPT, lose fine-grained motion details due to
motion discretization, leading to lower perfor-
mance. Although LLaMo improves motion encod-
ing, its single LLM-based structure introduces bi-
ases that limit its motion understanding capabilities.
In contrast, ChatMotion leverages multi-agent col-
laboration and multi-model aggregation to enhance
motion understanding. This approach reduces bi-



Please analyze what these two people are
doing?

The first person is playing the erhu, and
the second person is playing the violin.

How do you distinguish them?

| make the distinction based on the
movement characteristics of the characters.
When playing the erhu, the bow is vertical,
the movements are compact, and closer to
the body; while when playing the violin, the
bow is horizontal, the movements appear
broader, and the arms are stretched wider.

Are the two people above dancing the same
dance? If not, how do you tell them apart?

They are not the same dance. The first
person is dancing modern dance, while the
second person is dancing K-pop. The first
person frequently leans forward and
backward, which is a feature of modern
dance and is asymmetrical. The second
person is more symmetrical and has cross-
steps, which is more like the characteristics
of K-pop.

b

Based on the motion, the person does not show any explicit
signs of discomfortor distress.

What's this person doing? Any emotions?

He was covering his face in thought as he walked along, a
thought that was giving him a headache.

He covered his face with his hands as he walked away, looking
rather pained.

! - '14‘\ - o * professional analysis?
How many push-ups does the person in the
video do?

This person should be performing some
fighting moves, rhythmically displaying jabs,
hooks, and footwork in sequence while
maintaining a fighting stance.

He did three push-ups.

Is his push-up form standard? Can you provide me with a kick and punch

Yes, his movements are standard, you can that'scooler than grappling?

see that his body is in a straight line from
head to heel, his hands are shoulder-width or
slightly wider apart, and his elbows are
properly bent at the sides of his body and not
excessively outwardly or inwardly clenched

Figure 4: Examples of ChatMotion’s responses in various human activities and sports, demonstrating its reasoning
skills and specialized knowledge in active, movement-heavy scenarios.

Model | LLM | Frames | AL | AP | AS | EN | FA | FP | UA | Avg
Otter-V Llama-7B 16 23.5 23.0 23.0 23.5 27.0 22.0 29.5 24.5
mPLUG-Owl-V Llama-7B 16 23.0 28.0 22.0 26.0 29.0 24.0 29.0 25.8
VideoChatGPT Vicuna-7B 100 20.0 26.0 23.5 29.5 22.5 22.5 29.0 25.2
VideoLLaMA Vicuna-7B 16 22.5 25.5 27.5 30.0 29.0 32.5 39.0 29.4
VideoChat Vicuna-7B 16 27.0 26.5 33.5 23.5 335 26.5 40.5 30.1
Video-LLAVA Vicuna-7B 8 22.5 25.5 29.5 29.0 24.5 28.5 24.5 26.3
VideoChat2 Vicuna-7B 16 23.0 66.0 47.5 35.0 49.5 49.0 60.0 47.1
MotionLLM Vicuna-7B 8 33.0 29.5 32.5 29.0 31.5 28.5 37.5 31.6
GPT-4v GPT-4 16 40.5 63.5 55.5 31.0 46.5 47.5 73.5 51.1
ChatMotion(CB) Agent \ 42.0 65.5 56.0 33.0 48.0 50.5 72.0 52.4
ChatMotion Agent \ 43.0 65.5 58.0 340 | 49.0 | 51.0 | 74.0 53.2
Table 3: Comparison between ChatMotion and various models on MVBench.

Model | OBO MAE OBZ RMSE Evaluation on Video Understanding in MoVid-
EScounts 0397 0291 0198 5.58 Bench. ChatMotion(CB) demonstrates improve-
PoseRAC 0382 0312 0204 595 ments across multiple metrics on MoVid-Bench-
TransRAC 0.276  0.444 0.105  8.56 . . P

RepNet 0009 \ \ \ Video as shown in Table 1, achieving an over.all
MotionLLM 0.011 \ \ \ accuracy of 53.51% and a score of 3.19, surpassing
LLaMo 0.389  0.324  0.222  6.15 baseline models in all evaluated tasks. This per-
ChatMotion(CB) | 0412 0279 0229 533 formance gain is due to its effective aggregation
ChatMotion 0410 0271  0.240 521 of diverse video analysis perspectives, combined

Table 4: Motion and video details capture evaluation on

Mo-RepCount.

ases inherent in single LLM-based motion mod-
els and improves performance in motion sequence
analysis. By integrating multiple agents, ChatMo-
tion achieves greater robustness, demonstrating its
superior capabilities to capture diverse motion dy-
namics and delivers more accurate, reliable results
in complex motion understanding tasks.

with confidence scores to ensure more reliable and
stable reasoning. Furthermore, ChatMotion, with
its Motion-Aware mechanism, further refines the
analysis by better handling motion-related tasks,
surpassing ChatMotion(CB) with an accuracy im-
provement of 1.45% and a score increase of 0.06.
This enhancement allows it to more effectively ag-
gregate and analyze motion data, pushing perfor-
mance beyond that of standard models. These inno-



vations in model design, coupled with the synergis-
tic effects of specialized modules, allow ChatMo-
tion(CB) and ChatMotion to set new benchmarks in
multimodal human motion analysis, outperforming
existing LL.M-based motion models across multi-
ple tasks and metrics.

Evaluation on BABEL-QA. We evaluated Chat-
Motion on the BABEL-QA dataset to assess its
performance in responding to complex motion-
based queries. As shown in Table 2, both Chat-
Motion(CB) and ChatMotion outperform other
LLM-based motion models across several met-
rics. ChatMotion(CB) achieves an overall score
of 0.467, while ChatMotion further improves this
to 0.473, demonstrating its enhanced capability.
This improvement is due to ChatMotion’s Motion-
Aware mechanism, which takes both motion inputs
and candidate results into account. By leveraging
LLaMo’s advanced multimodal capabilities, Chat-
Motion esures more robust and stable results. De-
spite some limitations on specific metrics, ChatMo-
tion compensates for these and delivers superior
overall results. These advancements position Chat-
Motion as a new benchmark in motion-based ques-
tion answering, highlighting the effectiveness of
multimodal aggregation and Motion-Aware mecha-
nisms for improved accuracy and reliability.

Evaluation on MVBench. We evaluated Chat-
Motion on the MVBench dataset to assess its per-
formance in video question answering across seven
motion understanding sub-tasks. As shown in
Table 3, ChatMotion(CB) outperforms Motion-
LLM (Chen et al., 2024a), the LLM-based motion
understanding model, achieves an average score
of 52.4, while ChatMotion increases this to 53.2.
These results highlight the efficacy of ChatMo-
tion’s multi-agent framework, which reduces biases
inherent to LLM-based motion models by incorpo-
rating dynamic function calls. Performance gains
are particularly evident in most metrics, demon-
strating the advantages of multi-agent integration
for robust motion understanding. While slight per-
formance gaps persist in specific tasks compared
with expert models (e.g., EN of VideChat2), the
overall improvement over the LLLM-based motion
model, MotionLLM, remains statistically better.

Evaluation on Mo-Repcount To evaluate Chat-
Motion’s performance on fine-grained motion
tasks, we benchmarked it on Mo-Repcount against
SoTA Motion LLMs. The results in Table 4 show

that ChatMotion outperforms LLaMo by 4%-8%
across all metrics, demonstrating ChatMotion’s ad-
vanced capability to aggregate the strengths of spe-
cialized models and achieve superior performance
in fine-grained motion tasks.

5.2 Ablation Study

Our ablation study examines the contribution of
each module in ChatMotion, including the planner,
verifier, and aggregation components. The results
show that each additional module leads to consis-
tent improvements. Detailed results and further
analysis are provided in Appendix C.

5.3 Qualitative Analysis

Qualitative results, as illustrated in Fig. 4, show that
ChatMotion produces accurate and clear interpre-
tations by integrating multiple analytical tools and
cross-verifying outputs. For emotion recognition
with both video and motion inputs, other models
either fail or give ambiguous results, whereas Chat-
Motion delivers the correct answer. More impor-
tantly, only ChatMotion supports advanced tasks
such as comprehensive cross-modal retrieval-based
analysis and detailed motion-video comparisons,
which are not available in previous models. This
marks a significant advance in the scope and com-
plexity of tasks that can be addressed in multimodal
motion understanding.

6 Conclusion

In this paper, we introduced ChatMotion, a so-
phisticated multi-agent framework that integrates
large language models with specialized motion-
analysis modules to address the limitations inherent
in single-model systems. By dynamically breaking
down complex tasks, aggregating diverse model
outputs, and carefully selecting the most reliable
results, ChatMotion effectively mitigates biases in
motion understanding and delivers robust, context-
aware analyses. Through experiments conducted
on human motion benchmarks such as MoVid-
Bench and BABEL-QA, we demonstrated great
improvements in both accuracy and adaptability
across various motion tasks. We hope this work in-
spires ongoing research in the field of multimodal
agent architectures for human motion understand-
ing.



7 Limitations

Computational Overhead Several models are
part of MotionCore and the due to the sequential
nature of the agentic setup the computational over-
head scales linearly with the number of models
as compared with a single model system. On the
Movid-Motion dataset ChatMotion can process mo-
tion sequences at 95 FPS whereas LLaMo can pro-
cess the same sequences at 200 FPS on an H100.
This is primarily due to two factors; the Executor
and Planner. Increasing the number of models in
MotionCore will potentially increase the number
of tasks created by the planner. Similarly for the
Executor which selects APIs from MotionCore, the
number of model calls can increase simply by in-
cluding more models as MotionAnalyzer invokes
several motion understanding models when called.

Dataset Limitations The current setup of Chat-
Motion is reliant on domain specific models that
can understand human motion. As these models
are trained on human motion datasets which tends
to be limited to certain topics, and relatively small
in scale as compared to the image or language do-
main, so will the capabilities of the models. This
limits the generalization to novel motion scenes or
even fine grained understanding of known domains
such as martial arts as found in MoVid, due to be-
ing limited in scope. As such further validation is
needed to determine how adaptable the framework
is to new unseen tasks, and how much new data is
required in order to be proficient in a new domain.

Agentic limitations Finally, the agentic nature
of ChatMotion comes with limitations observed in
other agent systems. Planning itself is hard as it
requires reasoning over new tasks where no data
trajectories may exist to train or validate the ef-
ficacy of the Planner. Our Planner is dependent
on the quality of base MLLM models, as well the
prompted used by the model. Some of these issues
can partially be mitigated with our Verifier, despite
having similar limitations as the Planning model.
As such the Verifier might give incorrect statements
about the execution trajectory for out of domain
motion sequences. The Executor model can be a
source of error if selects a wrong or less efficient
model from a toolbox. One should conduct some
analysis to determine the applicability for new do-
mains. Lastly for our weighting of the Candidate
answers in the MotionAnalyzer will likely have to
be adapted dynamically to new tasks and datasets.
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A Prompt of ChatMotion
A.1 Planner Template

To enable structured task decomposition, we de-
sign a multi-step prompt template for the Planner.
This template guides the agent through four logical
stages, helping it understand the user’s intent, se-
lect relevant tools, and output a series of actionable
meta-tasks. The process is summarized as follows:

* Step 1: Objective Extraction. The Planner
first identifies the core objectives in the user
query, which serves as the foundation for fur-
ther reasoning.

Step 2: Tool Functionality Review. It then
examines the capabilities of the available tools
in MotionCore, such as the MotionAnalyzer,
Aggregator, and Generator, to inform how the
objectives can be effectively tackled.

Step 3: Meta-Task Decomposition. Based
on the objectives and tool functions, the Plan-
ner decomposes the overall task into logically
ordered sub-tasks.

Step 4: Output Meta-Task List. Finally, it
produces a structured list of meta-tasks that
can be executed by the Executor using the
appropriate tools.

This prompt ensures that the Planner’s decisions
are both goal-driven and tool-aware. The full in-
struction template is visualized in Figure 5.

A.2 Planner Example and Intermediate
Reasoning

To illustrate the Planner’s behavior in practice,
we present a visualized example in Figure 6,
which demonstrates the intermediate reasoning
steps taken by the agent. This process adheres to
the four-stage framework described in Section A.1,
including the extraction of objectives, analysis of
tool functionalities, decomposition into meta-tasks,
and the generation of a structured task list.

In this example, the user query involves three
goals: identifying the combat move, analyzing its
key technical components, and generating instruc-
tional content for executing a flying kick. The
Planner first parses these high-level intents and
then determines the most appropriate tools from
the MotionCore suite to address them. Specifi-
cally, it selects the MotionAnalyzer to analyze the
movements, the KnowledgeRetriever to explain the
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techniques involved, and the Generator to provide
the answer tailored for the query.

Guided by this mapping, the Planner proceeds to
decompose the problem into five sequential meta-
tasks, each aligned with a specific sub-goal and
tool. These tasks are clearly enumerated in the fi-
nal output, forming a coherent plan that facilitates
step-by-step execution by downstream modules.
This example demonstrates the Planner’s capac-
ity to transform complex multimodal queries into
interpretable and executable workflows.

A.3 Executor Template

To enable structured execution of the meta-task
list generated by the Planner, we design a prompt
template for the Executor that supports tool-aware
reasoning in four stages, as illustrated in Figure 7.

* Step 1: Task Understanding. The Executor
begins by parsing the meta-task list produced
by the Planner. Each task corresponds to a
well-defined objective that must be resolved
using a specific tool from the MotionCore tool-
box.

* Step 2: Tool Selection. For each meta-task,
the Executor determines the most suitable tool
by considering the tools functional descrip-
tions and tool capabilities. This ensures that
each operation is delegated to the most rele-
vant module.

* Step 3: Task Execution. The selected tool is
invoked to complete the meta-task. If the tool
execution fails (e.g., due to incompatibility
or missing input), the Executor logs the fail-
ure and returns feedback to the Planner and
Verifier.

* Step 4: Final Output. Upon completion of
all meta-tasks, the Executor synthesizes a fi-
nal response or generates an error report high-
lighting any failed operations, ensuring trans-
parency in execution.

This template ensures that the Executor performs
each meta-task in a modular, interpretable, and
robust manner. The full prompt design is shown in
Figure 7.

A.4 Executor Example and Intermediate
Execution

To illustrate how the Executor operates on the Plan-
ner’s output, we present a concrete example in Fig-
ure 8, which visualizes the execution trace for the



Executor Planner Verifier CB MA Body Seq. Dir. Rea. Hall. All
Acc.  Score ‘ Acc.  Score | Acc. Score | Acc. Score | Acc. Score | Acc. Score
v X X X X | 4523 3.18 | 3567 3.05 | 5542 337 | 49.89 329 | 5334 312 | 4356 322
4 v X X X | 4676 322 | 3845 3.08 | 5621 349 | 5134 341 | 5478 319 | 4589 343
4 4 v X X | 4812 331 | 4078 321 | 5856 358 | 54.67 3.52 | 6543  3.68 | 4834 341
4 4 v v X 60.89 403 | 4621 330 | 62.11 4.03 | 5953 377 | 6895 378 | 56.90 3.72
v v 4 v v | 6043 4.08 4656 328 | 6421 4.11 | 60.58 3.87 | 70.39 3.82 | 58.79 3.80

Table 5: Ablation of ChatMotion on the MoVid-Bench for the Planner, Executor, Verifier, and Aggregator modules.

Movid-Bench-Motion Body Seq. Dir. Rea. Hall. All

Acc.  Score ‘ Acc.  Score ‘ Acc. Score | Acc. Score | Acc. Score | Acc. Score
Equal (no CB) 4523 318 | 3567 3.05 | 5542 337 | 4989 329 | 5334 3.12 | 4356 3.22
CB (Base) 59.80 4.01 | 4535 327 | 61.23 4.01 58.87 373 | 67.56 3.75 | 5643  3.70
CB (LLaMo=11) 60.30 4.02 | 4582 328 | 61.62 4.02 | 59.14 375 | 68.25 376 | 56.65 3.71
CB (LLaMo=12) 60.89 4.03 | 46.21 327 | 62.11 4.02 | 5953 3.77 | 6895 3.78 | 56.90 3.72
CB (LLaMo=13) 60.20 4.00 | 4570 326 | 6145 4.00 | 59.00 3.72 | 68.03 3.74 | 56.50 3.69
CB (LLaMo=14) 59.60 398 | 4521 324 | 60.80 398 | 58.66 3.69 | 67.45 3.71 56.14  3.67

Table 6: Ablation study on confidence score assignment in ChatMotion. “Equal” denotes uniform weighting without
confidence modeling. CB (LLaMo=X) indicates increasing LL.aMo’s confidence from 10 to 14.

meta-task list shown in Figure 6. Given a query in-
volving motion recognition and instructional guid-
ance, the Executor receives five meta-tasks, de-
noted as M1 through M5, each aligned with a
specific subgoal.

For each meta-task, the Executor identifies and
invokes the most appropriate tool from the Motion-
Core suite. The first meta-task, M1, focuses on
recognizing the combat move and is addressed us-
ing the MotionAnalyzer module. The output of this
analysis is subsequently processed by the Aggrega-
tor in M2, which refines the candidate predictions
by integrating outputs from multiple models with
confidence-aware weighting. To fulfill the objec-
tive in M3, which requires an explanation of the
technical components involved in the motion, the
Executor employs the Professional Knowledge Re-
trieval module to access relevant domain-specific
resources. The instructional guidance requested in
M4 is provided through the Motion Retrieval mod-
ule, which retrieves example motion clips aligned
with the user’s intent. Finally, the Generator mod-
ule completes M5 by synthesizing a coherent re-
sponse that incorporates the outputs of all previous
stages.

The outputs corresponding to each step are ex-
plicitly listed, preserving traceability and trans-
parency. This example demonstrates the Execu-
tor’s ability to resolve diverse sub-tasks through
tool-aware orchestration, enabling structured rea-
soning across heterogeneous model capabilities.

A.5 Verifier Template

To enhance the robustness and reliability of the
overall reasoning pipeline, we design a prompt
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template for the Verifier that checks whether the
planned meta-tasks and their corresponding exe-
cution results are consistent with the original user
query. As illustrated in Figure 9, this template
guides the Verifier through three key stages:

* Consistency Review. The Verifier receives
the user query, the meta-task plan generated
by the Planner, and the execution trace from
the Executor. It inspects whether each meta-
task logically follows from the user query and
whether the execution results faithfully reflect
the intended planning trajectory.

* Error Attribution. If any inconsistency,
omission, or semantic drift is detected, the
Verifier identifies the responsible agent and
provides a concise description of the issue.

* Final Answer Generation. Based on the con-
text, the Verifier either approves the final re-
sult from the Executor or produces an error
report detailing the source and nature of the
inconsistency. This enables for downstream
correction or replanning, if necessary.

This verification step strengthens ChatMotion’s
robustness by providing an explicit mechanism for
quality control and error identification, helping en-
sure that the final output is both logically sound
and traceable.

B Execution Results for Different Stages

Figure 10 illustrates a full execution example in
ChatMotion, showcasing how ChatMotion resolves



LLaMo MotionGPT TM2T MotionLLM Body Seq. Dir. Rea. Hall. All
Acc.  Score | Acc. Score | Acc. Score | Acc. Score | Acc. Score | Acc.  Score
v X X X 59.30 4.01 | 4401 3.12 | 6091 399 | 5821 3.64 | 61.17 3.53 | 5532  3.67
v v v X 59.60 398 | 4485 322 | 61.15 400 | 5797 3.60 | 6245 3.62 | 5572  3.69
v v v v 60.89 4.03 | 4621 330 | 62.11 4.03 | 59.53 3.77 | 6895 3.78 | 56.90 3.72

Table 7: Ablation study on the composition of MLLMs in ChatMotion, evaluated on MoVid-Bench-Motion. Each
row shows the inclusion (v') or exclusion (X) of different motion-language models.

a complex multimodal query involving motion un-
derstanding, technique analysis, and instructional
generation.

The Planner first decomposes the query into five
meta-tasks, covering understanding, aggregation,
explanation, retrieval, and synthesis. The Execu-
tor sequentially selects tools from the MotionCore
suite to address each task. MotionAnalyzer trig-
gers internal function calls to multiple motion un-
derstanding models, generating diverse interpreta-
tions of the input motion. Then, the Aggregator
integrates these results using a confidence-based
strategy. KnowledgeRetriever extracts technical
insights, and MotionRetriever surfaces examples
for instructional reference. Finally, Generator com-
poses a coherent response by consolidating all in-
termediate outputs.

This example demonstrates ChatMotion’s mod-
ular reasoning process, which combines analysis,
retrieval, and generation in a tool-aware manner
to solve complex multimodal queries and produce
accurate, interpretable results.

C Ablation Study

C.1 Ablations on Components

In ablation studies, we began by utilizing only the
executor component in conjunction with a basic ma-
jority voting mechanism. Initially, the system’s per-
formance was suboptimal, trailing behind advanced
methods such as MotionLLM and LLaMo. This
performance gap can be attributed to the lack of
task organization, insufficient supervision, and the
intrinsic limitations of the majority voting mecha-
nism, which exacerbates error propagation by ag-
gregating mistakes from different models, thereby
distorting the correct output.

Then, the planner resulted in a modest improve-
ment in performance, particularly for the single-
objective analysis task, although the enhancement
was not substantial. We got some qualitative results,
however, revealing that the planner played a critical
role in more complex tasks. Notably, without the
planner, the ChatLL.aMo model frequently encoun-
tered execution failures. The addition of the verifier
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further enhanced performance, notably improving
hallucination metrics. Lastly, the incorporation
of a confidence-based selection mechanism for
model output, particularly in selecting responses
from LLaMA, led to a significant boost in all per-
formance metrics. This suggests that dynamically
selecting the confident model output plays a pivotal
role in enhancing the system’s overall robustness
and accuracy, especially in complex tasks.

C.2  Settings for Confidence Score

Table 6 reports the results for different confidence-
based aggregation settings. The first row “Equal”
represents a naive voting strategy where all models
contribute equally. This leads to degraded overall
performance, as weaker models (e.g., TM2T and
MotionGPT) introduce noisy or inconsistent out-
puts that dilute the predictions of stronger models
like LLaMo.

To improve this, we adopt a confidence-based
(CB) strategy, where each model is assigned a
score proportional to its standalone performance
on MoVid-Bench. Specifically, we use the accu-
racy values on Movid-Bench-Motion reported in
Table 1 to compute normalized weights and map
them to a scaled score range. For TM2T, which is
not included in that table, we evaluated its perfor-
mance separately and got 33.15 on overall accuracy.
Based on this, we assign confidence scores of 4,
5, 8, and 10 to TM2T, MotionGPT, MotionLLM,
and LLaMo, respectively. This setting shown in
Table 6 leads to a notable improvement over the
Equal setting. The overall accuracy improves from
43.56 to 56.43 and all sub-metrics show consistent
gains. This demonstrates that weighting models ac-
cording to their standalone performance effectively
mitigates aggregation errors introduced by weaker
models.

Based on this setting, we further explore the ef-
fect of adjusting LL.aMo’s score, since it is the
strongest model and dominates the aggregation.
We fix the relative ratios of the other models and
increase LLaMo’s confidence from 10 to 14. Re-
sults show that assigning a confidence score of



12 to LLaMo yields the best performance across
most metrics. Further increasing the score leads
to performance degradation due to over-reliance
on LLaMo, which suppresses the complementary
contributions of other models. Conversely, reduc-
ing LLaMo’s weight underutilizes its predictive
advantage, also causing a decline.

The overall performance remains stable when
LLaMo’s confidence score is set between 11 and
13, indicating that the aggregation is robust to small
variations. Overall, this ablation confirms the ne-
cessity and effectiveness of the confidence-based
strategy, which enables reliable integration of mod-
els with different capabilities.

C.3 Ablations on MLLMs

Table 7 presents the ablation study on the composi-
tion of MLLMs in ChatMotion. Using only LLaMo
yields strong baseline results, with 55.32 accuracy
and 3.67 score. Adding weaker models, such as
MotionGPT and TM2T, leads to a marginal im-
provement of 0.40 in overall accuracy, suggesting
their limited but non-disruptive contribution.

In contrast, incorporating the stronger Motion-
LLM model brings consistent improvements across
all metrics, raising the overall accuracy to 56.90.
This validates the design of our model aggrega-
tion mechanism, which effectively amplifies the
strengths of high-performing models while remain-
ing robust to less accurate ones.
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Figure 5: Template for the Planer to decompose task into sub-tasks.
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*x|nput Query**: "What combat move is this, what are the key techniques, and can you
teach me how to do a flying kick?"

*xExpected Breakdown#x:

- Objective 1: Identify the type of combat move described in the query.
- Objective 2: Explain the key techniques involved in the combat move.
- Objective 3: Provide guidance on performing a flying kick.

**Meta-Task Breakdown#x:

1. »xM1**: Analyze the provided combat move (motion capture or video) to identify its
type and key features.

2. »xM2**: Aggregate the analysis results to confirm the most accurate identification of
the combat move type.

3. »*M3**: Retrieve insights to explain the key techniques involved in the combat move.
4. »xM4~**: Retrieve detailed instructions or guidance on performing a flying kick.

5. #*M5**: Synthesize the findings and generate a comprehensive response, addressing
both the identification of the combat move and instructions on the flying kick.

### Output:

The Planner will output the following list of meta-tasks:

1. »xM1**: Analyze the provided combat move to identify its type and key features.

2. »xM2**. Aggregate the analysis results to ensure the correct identification of the move.
3. *xM3+**: Retrieve insights explaining the techniques and key points of the combat
move.

4. »xM4~**; Retrieve instructions on how to perform a flying kick.

5. *#*M5+*: Generate a final response summarizing the combat move identification,
techniques involved, and how to perform the flying kick.

Figure 6: The intermediate output of the Planner.
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##i# Step 1: Understanding the Meta-Task List

You are the Executor responsible for choosing the function tools to finish each task. You
have received the following meta-task list from the Planner: "{Meta-Task List}"

Each meta-task requires a specific function to be executed using the available tools in the
MotionCore toolbox. The available MotionCore tools include:

- Tool 1: MotionAnalyzer — Analyzes human motion using multiple models, including
motion and video captioning models. Input: multimodal data output: text motion analysis
- Tool 2: Aggregator — Aggregates multiple model outputs, selecting the most reliable
result using confidence scores and a motion-aware mechanism. Input: multimodal data
along with candidate results and corresponding confidence. output: Refined analysis.

- Tool 3: Professional Knowledge Retrieval — Queries external knowledge bases to retrieve
professional or domain-specific insights based on the user’s request. Input: user query.
Output: Relevant knowledge text.

- Tool 4: Motion Retrieval — Searches a stored database of labeled motion data to find the
most relevant motion based on the user’s query. Input: user query. Output: Relevant
motion data

- Tool 5: Generator — Synthesizes contextual information and the user’s query to generate
a final, coherent response. Input: previous context and user query. Output: coherent,
contextually accurate answer.

### Step 2: Tool Selection

For each meta-task, you will:

1. Review the meta-task's objective and determine which tool best aligns with the task’s
requirements based on its functionality, input, and output.

2. Choose the most appropriate tool from the MotionCore.

3. You will ensure that the tool’s functionality, input, and output match the requirements
of the meta-task before proceeding.

### Step 3: Task Execution
Once the appropriate tool is selected, the Executor will process the meta-task and
perform the necessary operation using the chosen tool.

#### If the task is successfully executed:
- Return the output generated by the tool and proceed to the next meta-task.

##i## If the task cannot be executed due to the unavailability or incompatibility of tools:
- The Executor will send an error report back to the Planner and Verifier, including the
reason why the task cannot be completed.

### Step 4: Final Output

After processing all meta-tasks, the Executor will output the final response or a report with
all completed tasks. If any meta-task was not successfully completed, the error report will
also be included. y

Figure 7: Template for the Executor to choose tools in MotionCore to achieve the task.
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**Meta-Task List**:

- *»*M1**: Analyze the provided combat move and identify its type and key features.
- *»*M2+**: Aggregate the results of the motion analysis to confirm the move type.

- #xM3**: Retrieve professional insights about the techniques involved in the move.
- #xM4**: Retrieve instructions on how to perform a flying kick.

- #xM5**: Generate the final response combining all the results.

### Meta-Task Execution:

#i## **M1: Analyze the combat move**
- **Tool Selected**: *xMotionAnalyzer*x

#it## +xM2: Aggregate the results of the motion analysis**
- »*Tool Selected**: *xAggregator*x

#i### +*M3: Retrieve professional insights about the techniques*+*
- »*Tool Selected**: *xProfessional Knowledge Retrieval**

#### »xM4: Retrieve instructions on performing a flying kick#*
- »*xTool Selected**: **Motion Retrieval*x

#i### +*M5: Generate the final responsexx*
- #xTool Selected**: **Generator**

### Final Output:

After processing all meta-tasks, the Executor will output the following:

1. »xM1**: Combat move analysis candidate results.

2. »xM2**: Refined motion analysis based on aggregation.

3. *xM3+*+*: Professional insights about the techniques involved in the move.
4.

5

*xM4**: Motion instructions on how to perform a flying kick.
**M5**: The final synthesized response.

Figure 8: The intermediate execution details of the Executor.
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Please examine whether the following user input, planning trajectory, and execution trajectory
are consistent, and identify any errors or inconsistencies. If any issues are found, clearly indicate
whether the problem resides with the Planning Agent or the Execution Agent, and provide the
corresponding error information. If the trajectories are consistent, please directly output the
final result of the execution trajectory.

User Input:

{Insert the user_prompt here}

Planning Trajectory:

{Insert the plan from Planner here}

Execution Trajectory:

{Insert the Execution result from Executor here}

The response should include:

- Consistency Validation Result

- If there are errors, please include:

- The agent responsible for the issue (Planning Agent or Execution Agent)
- A specific description of the error or inconsistency

- If there are no errors, please include:

- The final result of the execution trajectory

Figure 9: Template for the Verifier to supervise the whole trajectory.

"~ " Prompt: What kind of \\_>

! grappling is this move above, |

Iwhu'r are his essentials, and can!
\ you teach me the flying kick? K

Generator

l

The person is executing
a rhythmic jab while
maintaining a proper
fighting stance. This
technique is used to
control distance and set
up follow-up strikes.

1. **M1**: Analyze the provided combat move (motion capture or
video) to identify its type and key features.

2. **M2**: Aggregate the analysis results to confirm the most
accurate identification of the combat move type.

3. **M3**: Retrieve insights to explain the key techniques
involved in the combat move.

4. **M4**: Retfrieve detailed instructions or guidance on
performing a flying kick.

5. **M5**: Synthesize the findings and generate a comprehensive

Planner

response, addressing both the identification of the combat move Executor
and instructions on the flying kick.
The person is performing a
rear naked choke technique. : 5%
This man is jumping, boxing % (:@ <+—— MotionAnalyzer
and is hitting the target.
He is boxing in a rhythmic ) £
Sequence 5 @ ‘\\\\\
The person is boxing regularly
in maintaining a fighting stance Aggregator //
The person is performing a rhythmic boxing /
routine while maintaining a fighting stance Knowledge MohonCore
and hitting a target. / retrieval
A jab is a straight punch thrown with the lead
hand, typically used to set up other strikes or Motion
— control distance. / retrieval

Figure 10: The detail execution results in ChatMotion.
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