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Abstract

Advancements in Multimodal Large Language001
Models (MLLMs) have improved human mo-002
tion understanding. However, these models003
remain constrained by their "instruct-only" na-004
ture, lacking adaptability for diverse analyti-005
cal perspectives. To address these challenges,006
we introduce ChatMotion, a multimodal multi-007
agent framework for human motion analysis.008
ChatMotion dynamically interprets user intent,009
decomposes complex tasks into meta-tasks, and010
activates specialized function modules for mo-011
tion comprehension. It integrates specialized012
toolset, MotionCore, to analyze human motion013
from various perspectives. Extensive experi-014
ments demonstrate ChatMotion’s precision and015
adaptability for human motion understanding.016

1 Introduction017

Human motion understanding (Li et al., 2024b;018

Loper et al., 2015) has gained attention due to its019

wide-ranging applications in fields such as health-020

care, human-computer interaction, rehabilitation,021

sports science, and virtual human modeling (Plap-022

pert et al., 2016; Zhang et al., 2021; Hong et al.,023

2022; Qu et al., 2024). A deep understanding of024

human motion can drive advancements in areas like025

physical therapy (Smeddinck, 2020), immersive vir-026

tual experiences (Xiao et al., 2024), and assistive027

technology interfaces (Khiabani, 2021). As human028

motion data becomes more accessible, the demand029

for systems capable of effectively processing and030

analyzing this data has increased (Zhang, 2024).031

However, existing motion understanding models032

often struggle to handle the accurate analysis of033

human motions and the dynamic nature of user re-034

quirements (Meng et al., 2020; Smeddinck, 2020).035

These MLLMs tend to exhibit limited adaptability036

to complex, multi-faceted user queries and are of-037

ten constrained by biases inherent in single-model038

analyses (Frangoudes et al., 2022), failing to inte-039

Figure 1: ChatMotion compares with LLaMo (Li et al.,
2024b), a state-of-the-art MLLM for motion understand-
ing. By integrating insights from multiple MLLM re-
sults, ChatMotion delivers more accurate analysis.

grate diverse insights into a comprehensive, gener- 040

alizable, and accurate analysis (Xu et al., 2021). 041

With the large model application develop- 042

ment(Zheng et al., 2025; Yang et al., 2024), 043

recent advancements in human motion under- 044

standing have progressed, particularly with LLM- 045

based methods targeting specialized tasks and 046

domain-specific applications. Models such as 047

MotionGPT (Jiang et al., 2023) and Motion- 048

LLM (Chen et al., 2024a) propose methods to en- 049

code motion into structured formats, translating 050

motion data (e.g., videos) into textual descriptions 051

for general motion understanding tasks. Building 052

on this foundation, LLaMo (Li et al., 2024b) in- 053

tegrates a motion encoder and cross-talker with- 054

out relying on motion quantification, demonstrat- 055

ing capabilities in general motion comprehension 056

and specialized analysis across professional do- 057

mains. These LLM-based motion models aim to 058

bridge raw motion data and interpretable insights, 059

enabling applications in diverse fields. 060

Despite these advancements, existing ap- 061

proaches still face limitations when applied to 062

broader motion analysis tasks. A key challenge is 063

their reliance on single-model architectures, which 064

often struggle to address complex user require- 065

ments (Wei et al., 2024). These models show lim- 066
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ited adaptability to dynamic user goals and lack067

mechanisms to integrate insights from multiple068

MLLMs, constraining their ability to provide com-069

prehensive results. Additionally, they lack effec-070

tive frameworks for verifying outcomes or refining071

analyses based on user feedback, which may affect072

reliability (Lan et al., 2022). As a result, current073

Motion LLMs encounter challenges in delivering074

accurate and complete human motion analyses.075

To address these challenges, We present Chat-076

Motion, the first agent-based framework for motion077

understanding that integrates a multi-agent architec-078

ture, consisting of a Planner, Executor, and Verifier,079

together with our modular MotionCore toolbox.080

Given motion or video data with a user prompt081

ChatMotion uses a Planner to decompose the task082

into sub-tasks, each handled by the Executor using083

tools within MotionCore. The MotionCore con-084

sists of four modules: MotionAnalyzer, Aggrega-085

tor, Generator, and Auxiliary Tools. The Executor086

calls upon the MotionAnalyzer, utilizing multiple087

motion LLMs to analyze data from various per-088

spectives. The Aggregator, with two mechanisms,089

synthesizes the most probable result from the Mo-090

tionAnalyzer outputs. The Auxiliary Tools provide091

complementary analysis from databases. The Gen-092

erator reviews the user’s request and synthesizes093

the answer by leveraging the outputs and contex-094

tual information produced throughout the pipeline.095

The Verifier ensures consistency and relevance of096

intermediate results, enhancing the reliability of097

the final output. Through coordinated agent efforts,098

ChatMotion provides a flexible, precise, and reli-099

able approach to motion analysis, overcoming the100

limitations of traditional motion LLMs.101

We validate ChatMotion across a wide range of102

general human motion understanding datasets (e.g.,103

Movid (Chen et al., 2024a), BABEL-QA (Endo104

et al., 2023), MVbench (Li et al., 2024a), and Mo-105

Repcount (Li et al., 2024b) ), demonstrating its ef-106

fectiveness across both standard and complex tasks.107

Experimental results highlight the improvements108

in accuracy, adaptability, reaching new heights in109

the field of human motion analysis. In summary,110

the contributions of this work are as follows:111

• ChatMotion, a multi-agent system with112

a Planner-Executor-Verifier architecture for113

comprehensive human motion analysis.114

• A robust MotionCore for invoking functional115

tools to enable comprehensive and reliable116

motion understanding by fusing diverse per-117

spectives from various MLLMs and support118

result verification. 119

• Empirical validation across multiple datasets 120

demonstrates that ChatMotion achieves im- 121

proved performance in human motion analysis 122

compared to existing MLLMs. 123

2 Related works 124

2.1 Human Multimodal Representations 125

Multimodal representation learning is pivotal for 126

human-centric analyses, especially in tasks requir- 127

ing spatial-temporal reasoning to interpret com- 128

plex behaviors (Lin et al., 2023b; Ning et al., 2023; 129

Li et al., 2023). Recent advancements, such as 130

Video-LLaVA, integrate visual information from 131

images and videos into a unified linguistic fea- 132

ture space, enabling improved visual reasoning 133

for behavioral analysis (Lin et al., 2023b). How- 134

ever, many models remain limited to isolated video 135

frames and privacy concerns, constraining their ef- 136

fectiveness in the dynamic real world. (Ning et al., 137

2023; Heilbron et al., 2015; Maaz et al., 2023). To 138

address these limitations, motion data has emerged 139

as a privacy-preserving alternative, allowing action 140

analysis without revealing identifiable visual de- 141

tails (Song et al., 2023b; Yang et al., 2023b). By 142

combining visual and motion data, emerging mul- 143

timodal frameworks offer privacy-aware solutions, 144

leveraging the strengths of both modalities for en- 145

hanced adaptability across diverse applications. 146

2.2 Human Motion Understanding 147

Human motion analysis traditionally relies on 148

skeletal data, represented as joint keypoint se- 149

quences, to capture movement dynamics while 150

preserving user privacy (Shi et al., 2023; Plappert 151

et al., 2018; Yang et al., 2023a). Early methods, 152

such as 2s-AGCN (Shi et al., 2019), and recent 153

transformer-based models like MotionCLIP (Chen 154

et al., 2024b), have demonstrated success in tasks 155

such as activity recognition, caption generation, 156

and behavior analysis by translating motion data 157

into language tokens. While effective in modeling 158

structural movement patterns, these approaches of- 159

ten neglect environmental context, which is crucial 160

for interpreting motions that may convey different 161

meanings based on situational factors (Song et al., 162

2023a; Maaz et al., 2023). To address this, recent 163

models integrate motion and visual data, enabling 164

improved generalization in dynamic and diverse 165

environments (Liu et al., 2024; He et al., 2023). 166

Frameworks like LLaMo(Li et al., 2024b) have uni- 167
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Figure 2: The ChatMotion pipeline operates through a three-stage framework designed to optimize task resolution.
The Planner interprets the user’s query and breaks it into meta-tasks. Then, the Executor selects and applies
appropriate MotionCore tools to execute these tasks. Finally, the Verifier ensures overall correctness, coherence,
and completeness.

fied motion, video and text understanding models.168

However, this model is limited in its applicabil-169

ity, due to the size of its training data. Using an170

agent enables use of multiple models for flexible171

and comprehensive analysis.172

3 ChatMotion173

As shown in Fig. 2, ChatMotion is a multi-agent174

system that processes user queries involving mo-175

tion and video data through the Planner, Execu-176

tor, and Verifier agents, each powered by LLaMA-177

70B (Touvron et al., 2023) and equipped with spe-178

cialized decision-making and tool-use strategies.179

The Planner decomposes the task into meta-tasks.180

Then the Executor executes them via MotionCore181

function calls. Finally the Verifier ensures accu-182

racy by delivering context-aware, precise results183

for complex motion analysis.184

3.1 Planner185

The Planner serves as the decision-maker, interpret-186

ing user intent and subdividing complex tasks into187

structured meta-tasks. First the input query is ana-188

lyzed to identify core objectives and dependencies189

within the task, and then breaks the task down into190

smaller, manageable meta-tasks. It operates as the191

initial step in the multi-agent framework, ensuring192

that user requirements are transformed into a struc-193

tured workflow that aligns with evolving goals.194

Specifically, let us denote a user query by R.195

As the simplified version is illustrated in Fig. 2, 196

the Planner will receive an instruction containing 197

user query and available tools functionality in Mo- 198

tionCore which is a function toolbox tailored for 199

human motion analysis (see Sec. 3.4). Then, the 200

Planner will follow the instructions and identify a 201

set of core objectives O = {O1, O2, . . . , Om} sim- 202

ply based on R. These objectives are then decom- 203

posed into meta-tasks M guided by the specific 204

functionalities available in the MotionCore tools. 205

This decomposition allows the system to handle 206

a wide range of user inputs, from simple queries 207

to multi-step, dynamic tasks. The prompt for the 208

Planner and example outputs are provided in the 209

appendix (see Sec. A.1). 210

3.2 Executor 211

The Executor is responsible for transforming the 212

Planners meta-tasks into operations that can an- 213

swered by a suite of function tools. Once provided 214

with the set of meta-tasks M, the Executor pro- 215

cesses each task in turn, as illustrated in Fig. 2, 216

selecting the most appropriate function tool from 217

MotionCore (see Sec. 3.4) based on the alignment 218

between each tool’s functionality and the objective 219

of the meta-task. 220

Formally, for a given meta-task Mi ∈ M, the 221

Executor considers the set of available function 222

tools Φ = {ϕ1, ϕ2, . . . , ϕs} within MotionCore, 223

and selects the function ϕi that best matches the 224
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Figure 3: Components of MotionCore: the MotionCore
integrates the MotionAnalyzer and Selection modules
to concurrently process and aggregate multiple human
motion analyses in two specific ways. The Generation
Module synthesizes and contextualizes the results to
align with user queries. Additionally, an auxiliary tool-
box enables dynamic expansion with supplementary
tools to address evolving user requirements.

requirements of Mi:225

Φ(Mi) → ϕi,226

where ϕi is the specific tool to fulfill meta-task Mi.227

If a meta-task cannot be completed (e.g., due228

to unavailable functionality), the Executor returns229

detailed error information to the Planner, which230

then revises its objectives and resubmits updated231

meta-tasks. This process may iterate through mul-232

tiple rounds until the overall objective is satisfied.233

The prompt for the Executor and example outputs234

are provided in the appendix (see Sec. A.3).235

3.3 Verifier236

The Verifier acts as a supervisory agent, ensuring237

the accuracy and reliability of the multi-agent work-238

flow. It has two main roles: first, it checks that the239

Planner’s meta-tasks are logically structured and240

aligned with the user’s prompt; second, it verifies241

that the meta-tasks can be executed using available242

tools and that the results meet expectations. If any243

meta-task cannot be executed or produces incorrect244

results, or if the Executor calls an inappropriate245

function, the Verifier prompts the Planner to revise246

the task list or the Executor to select a different tool. 247

This feedback loop ensures that tasks are executed 248

correctly using the right tools. 249

3.4 MotionCore 250

As shown in Fig 3, MotionCore is a comprehensive 251

toolkit that enables efficient human motion under- 252

standing by integrating various modules and auxil- 253

iary functions. It also includes auxiliary tools for 254

tasks like motion visualization and video retrieval, 255

meeting users’ diverse requirements. MotionCore 256

is driven by the Executor Agent, which selects the 257

appropriate tools from the toolkit to complete tasks 258

based on a given meta-task list. 259

3.4.1 MotionAnalyzer 260

The MotionAnalyzer in MotionCore enhances mo- 261

tion understanding and mitigates biases through a 262

dynamic, multi-model approach. It integrates hu- 263

man motion models, such as MotionLLM (Chen 264

et al., 2024a), MotionGPT (Jiang et al., 2023), and 265

LLaMo(Li et al., 2024b), alongside video caption- 266

ing models such as VideoChat2 (Li et al., 2024a), 267

GPT-4v (OpenAI, 2023b), and video-LLaVA (Lin 268

et al., 2023a) to handle human motion input. Let 269

the set of motion understanding models be denoted 270

as {F1, F2, . . . , FN}, where each model Fi pro- 271

cesses the multimodal input data D (e.g., video 272

frames, motion capture data) to produce text analy- 273

sis ri, i.e., (ri) = Fi(D), i = 1, 2, . . . , N . Each 274

model is assigned a predefined confidence score ci, 275

based on the previous evaluation performance, in- 276

dependent of the model’s predictions. These scores 277

are provided in the appendix (see Sec. C.2). Fur- 278

thermore, the confidence scores are allocated based 279

on the input modalities, which can be motion cap- 280

ture, video, or motion-video. The outputs and their 281

corresponding confidence scores are represented 282

as {(r1, c1), (r2, c2), . . . , (rN , cN )}, where ci de- 283

notes the predefined confidence score for the out- 284

put ri of model Fi in its respective task. This inte- 285

gration of predefined confidence scores ensures a 286

robust and flexible understanding of motion, lever- 287

aging the strengths of each model across diverse 288

modalities and tasks. 289

3.4.2 Aggregator 290

The Aggregator in MotionCore identifies the most 291

reliable result from a set of {(ri, ci)} pairs, employ- 292

ing two strategies: the Confidence Mechanism and 293

the Motion-Aware Mechanism, which improves 294

the motion understanding by selecting the most 295
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accurate outcome from diverse perspectives.296

Confidence Mechanism Rooted in game theory,297

this method considers the set298

{(ri, ci) | i = 1, 2, . . . , N},299

where ri is a model’s output and ci is its associated300

confidence score. The mechanism assigns higher301

weight to more confident outputs, with a "majority302

wins" principle when models converge on similar303

results. Rather than using a fixed function, the304

analysis-confidence pairs {(ri, ci)} are passed to305

LLaMA, which adaptively integrates the outputs by306

balancing consensus with individual model exper-307

tise. The mechanism asks LLaMA to emphasize308

model outputs to be fused that have a shared con-309

clusion while considering outlier predictions with310

high confidence before rewriting these to a single311

new analysis r∗.312

Though foundational, this approach is simple,313

relying primarily on confidence scores and model314

consensus. The next step incorporates a Motion-315

Aware mechanism to refine the process.316

Motion-Aware Mechanism With LLaMo’s (Li317

et al., 2024b) specialized motion-understanding318

capabilities, this mechanism evaluates {(ri, ci)}319

pairs alongside the original motion or video data320

M, generating an initial estimate:321

r′ = LLaMo(r1, . . . , rN ; c1, . . . , cN ; M).322

To produce this intermediary result LLaMo ob-323

serves the motion or video sequence and is asked324

to provide a refined analysis based on this and the325

prior candidate answers whose context should be326

weighted by their confidence score. LLaMA (Tou-327

vron et al., 2023) then re-examines the preliminary328

result r′ and the original pairs {(ri, ci)} to mitigate329

model bias and refine the outcome, while produc-330

ing the final analysis in a similar manner as the331

confidence mechanism. This dual-layer evalua-332

tion leverages LLaMo’s domain-specific motion333

expertise and LLaMA’s context-aware reasoning,334

improving both reliability and precision.335

The Aggregator is a powerful tool within Motion-336

Core that fosters a more comprehensive understand-337

ing of human motion, by enabling ChatMotion to338

identify the most accurate analyses from diverse339

model outputs.340

3.4.3 Generator341

In MotionCore, the Generator synthesizes contex-342

tual information from previously invoked tool out-343

puts, such as those from the Aggregator and re- 344

trieval modules, together with the user’s original re- 345

quest to produce a final answer, as shown in Fig. 3. 346

Here, t∗ denotes the intermediate results from prior 347

module executions. The Generator integrates t∗ 348

and user query R: 349

Answer = Γ(t∗, R), 350

where Γ(·) denotes LLaMA. The final output can 351

take various forms, such as textual analysis, motion 352

feedback, and so on, depending on the user’s re- 353

quest. This process ensures that the answer is both 354

comprehensive and tailored to the user’s needs. 355

3.4.4 Auxiliary Tools 356

The Auxiliary Tools in MotionCore, which can be 357

accessed by the Executor, extend ChatMotion’s 358

capabilities by orchestrating external, domain- 359

specific functionalities that go beyond the scope 360

of the multimodal model alone. For instance, the 361

system can retrieve professional analysis by query- 362

ing specialized knowledge bases, which provide 363

context-specific insights based on user inputs. Ad- 364

ditionally, it enables motion retrieval by identify- 365

ing relevant motion data based on the user’s re- 366

quest, leveraging a stored database of labeled mo- 367

tion data and utilizing vector-based search to match 368

the query to the most relevant motion. As a result, 369

it equips ChatMotion with two retrieval tools to 370

retrieve text or motion sequences which provides 371

diverse motion analysis capabilities that simple 372

MLLMs do not possess. ChatMotion provides a 373

unified, modular interface for auxiliary functions, 374

enabling seamless integration of new capabilities 375

without burdening the core model. 376

4 Experimental Setup 377

Datasets We evaluate ChatMotion on general 378

human motion understanding benchmarks includ- 379

ing Movid-bench (Chen et al., 2024a), BABEL- 380

QA (Endo et al., 2023) and MVbench (Li et al., 381

2024a), as well as Mo-Repcount (Li et al., 382

2024b) for fine-grained motion capture capabilities. 383

MoVid-Bench specifically assesses the model’s 384

ability to understand human behavior in both mo- 385

tion and video contexts. It consists of 1,350 data 386

pairs, with 700 motion and 650 video samples, 387

covering diverse daily scenarios in real-world. In 388

addition, ChatMotion is tested on BABEL-QA 389

and MVbench to evaluate motion-based and video- 390

based question answering respectively. 391
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MoVid-Bench-Motion Body. Seq. Dir. Rea. Hall. All
Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

GT 100.00 5.00 100.00 5.00 100.00 5.00 100.00 5.00 100.00 5.00 100.00 5.00
GPT-3.5 (OpenAI, 2023a) 24.51 2.04 30.41 2.25 27.14 2.19 39.19 2.64 58.33 3.22 31.33 2.31
MotionGPT (Jiang et al., 2023) 31.22 3.98 42.69 3.16 44.29 3.50 35.81 3.06 16.66 2.25 36.86 3.11
MotionLLM (Chen et al., 2024a) 50.49 3.55 36.84 3.14 58.57 3.76 52.70 3.58 55.56 3.39 49.50 3.49
LLaMo (Li et al., 2024b) 59.30 4.01 44.01 3.12 60.91 3.99 58.21 3.64 61.17 3.53 55.32 3.67

ChatMotion(CB) 60.89 4.03 46.21 3.30 62.11 4.03 59.53 3.77 68.95 3.78 56.90 3.72
ChatMotion 60.43 4.08 46.56 3.28 64.21 4.11 60.58 3.87 70.39 3.82 58.79 3.80
MoVid-Bench-Video Body. Seq. Dir. Rea. Hull. All

Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

GT 100.00 5.00 100.00 5.00 100.00 5.00 100.00 5.00 100.00 5.00 100.00 5.00
GPT-3.5 (OpenAI, 2023a) 2.40 1.23 1.39 1.00 4.65 1.09 5.41 1.65 0.00 0.94 3.03 1.26
Video-LLAVA (Lin et al., 2023a) 33.53 2.76 25.46 2.72 41.86 2.84 52.97 3.28 58.83 1.89 42.53 2.70
MotionLLM (Chen et al., 2024a) 34.13 2.93 32.87 2.92 44.18 3.14 63.20 3.55 70.59 2.30 49.00 2.97
LLaMo (Li et al., 2024b) 33.83 2.85 36.01 3.11 45.50 3.32 67.59 3.73 72.81 2.25 52.33 3.10

ChatMotion(CB) 38.31 3.40 36.80 3.17 47.22 3.59 70.89 3.85 73.22 2.35 53.51 3.19
ChatMotion 38.06 3.34 37.39 3.18 47.92 3.65 72.16 3.99 74.01 2.30 54.96 3.25

Table 1: Comparison between ChatMotion and existing Motion LLMs on the MoVid-Bench. The top part of the
table presents motion-related results, and the bottom part presents video-related results. Higher accuracy and score
values indicate better performance. "GT"=Ground truth.

Model Pred. type Overall ↑ Action ↑ Direction ↑ Body Part ↑ Before ↑ After ↑ Other ↑

MotionCLIP-M (Tevet et al., 2022) cls. 0.430 0.485 0.361 0.272 0.372 0.321 0.404
MotionCLIP-R (Tevet et al., 2022) cls. 0.420 0.489 0.310 0.250 0.398 0.314 0.387
MotionLLM (Chen et al., 2024a) gen. 0.436 0.517 0.354 0.154 0.427 0.368 0.529
LLaMo (Li et al., 2024b) gen. 0.458 0.525 0.398 0.224 0.443 0.392 0.518

ChatMotion(CB) gen. 0.467 0.534 0.410 0.272 0.445 0.396 0.536
ChatMotion gen. 0.473 0.537 0.412 0.265 0.451 0.406 0.537

Table 2: Comparison on the BABEL-QA dataset. Higher scores indicate better performance. The results for
ChatMotion’s two methods are also included.

Tasks and Metrics ChatMotion is evaluated on392

tasks including action recognition, motion reason-393

ing, and question answering. For MoVid-Bench,394

we follow established LLM evaluation metrics, as-395

sessing body-part recognition, sequential analysis,396

directionality, reasoning, and hallucination control397

in both motion and video contexts. BABEL-QA398

uses similar metrics with a focus on motion-related399

question answering, while Mo-Repcount employs400

specialized metrics like OBO, MAE, OBZ, and401

RMSE for fine-grained motion tracking accuracy.402

In the MVBench video understanding evaluation,403

we respond to multiple-choice questions by select-404

ing the most suitable option as outlined in.405

Baselines For our baselines, we select SoTA406

Motion LLMs for human-centric motion under-407

standing, e.g., LLaMo (Li et al., 2024b), Motion-408

LLM (Chen et al., 2024a) and MotionGPT (Jiang409

et al., 2023). These models are widely recognized410

for their ability to process and understand human411

motion in both video and action contexts. For412

ChatMotion, ChatMotion(CB) and ChatMotion413

denote the versions using Confidence-Based and414

Motion-Aware aggregation, respectively. Through415

extensive comparison, our results highlight Chat-416

Motion’s exceptional ability to handle complex hu-417

man motion understanding tasks, outperforming 418

the baselines across a range of evaluation metrics. 419

5 Results 420

5.1 Quantitative Analysis 421

Evaluation on Motion Understanding in MoVid- 422

Bench. Table 1 compares the performance of 423

motion-based LLMs on MoVid-Bench-Motion. 424

Both ChatMotion(CB) and ChatMotion outperform 425

existing baselines across all metrics. ChatMotion 426

achieves an accuracy of 58.79% and a score of 3.80, 427

surpassing LLaMo by 3.47% in accuracy and 0.13 428

in score. It also demonstrates strong hallucination 429

control, achieving 70.39% accuracy compared to 430

LLaMo’s 61.17%, underscoring the effectiveness 431

of ChatMotion’s multi-model integration via its 432

robust selection strategy. 433

Previous models, such as MotionLLM and Mo- 434

tionGPT, lose fine-grained motion details due to 435

motion discretization, leading to lower perfor- 436

mance. Although LLaMo improves motion encod- 437

ing, its single LLM-based structure introduces bi- 438

ases that limit its motion understanding capabilities. 439

In contrast, ChatMotion leverages multi-agent col- 440

laboration and multi-model aggregation to enhance 441

motion understanding. This approach reduces bi- 442
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Figure 4: Examples of ChatMotion’s responses in various human activities and sports, demonstrating its reasoning
skills and specialized knowledge in active, movement-heavy scenarios.

Model LLM Frames AL AP AS EN FA FP UA Avg.

Otter-V Llama-7B 16 23.5 23.0 23.0 23.5 27.0 22.0 29.5 24.5
mPLUG-Owl-V Llama-7B 16 23.0 28.0 22.0 26.0 29.0 24.0 29.0 25.8
VideoChatGPT Vicuna-7B 100 20.0 26.0 23.5 29.5 22.5 22.5 29.0 25.2
VideoLLaMA Vicuna-7B 16 22.5 25.5 27.5 30.0 29.0 32.5 39.0 29.4
VideoChat Vicuna-7B 16 27.0 26.5 33.5 23.5 33.5 26.5 40.5 30.1
Video-LLAVA Vicuna-7B 8 22.5 25.5 29.5 29.0 24.5 28.5 24.5 26.3
VideoChat2 Vicuna-7B 16 23.0 66.0 47.5 35.0 49.5 49.0 60.0 47.1
MotionLLM Vicuna-7B 8 33.0 29.5 32.5 29.0 31.5 28.5 37.5 31.6
GPT-4v GPT-4 16 40.5 63.5 55.5 31.0 46.5 47.5 73.5 51.1

ChatMotion(CB) Agent \ 42.0 65.5 56.0 33.0 48.0 50.5 72.0 52.4
ChatMotion Agent \ 43.0 65.5 58.0 34.0 49.0 51.0 74.0 53.2

Table 3: Comparison between ChatMotion and various models on MVBench.

Model OBO MAE OBZ RMSE

EScounts 0.397 0.291 0.198 5.58
PoseRAC 0.382 0.312 0.204 5.95
TransRAC 0.276 0.444 0.105 8.56
RepNet 0.009 \ \ \
MotionLLM 0.011 \ \ \
LLaMo 0.389 0.324 0.222 6.15

ChatMotion(CB) 0.412 0.279 0.229 5.33
ChatMotion 0.410 0.271 0.240 5.21

Table 4: Motion and video details capture evaluation on
Mo-RepCount.

ases inherent in single LLM-based motion mod-443

els and improves performance in motion sequence444

analysis. By integrating multiple agents, ChatMo-445

tion achieves greater robustness, demonstrating its446

superior capabilities to capture diverse motion dy-447

namics and delivers more accurate, reliable results448

in complex motion understanding tasks.449

Evaluation on Video Understanding in MoVid- 450

Bench. ChatMotion(CB) demonstrates improve- 451

ments across multiple metrics on MoVid-Bench- 452

Video as shown in Table 1, achieving an overall 453

accuracy of 53.51% and a score of 3.19, surpassing 454

baseline models in all evaluated tasks. This per- 455

formance gain is due to its effective aggregation 456

of diverse video analysis perspectives, combined 457

with confidence scores to ensure more reliable and 458

stable reasoning. Furthermore, ChatMotion, with 459

its Motion-Aware mechanism, further refines the 460

analysis by better handling motion-related tasks, 461

surpassing ChatMotion(CB) with an accuracy im- 462

provement of 1.45% and a score increase of 0.06. 463

This enhancement allows it to more effectively ag- 464

gregate and analyze motion data, pushing perfor- 465

mance beyond that of standard models. These inno- 466
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vations in model design, coupled with the synergis-467

tic effects of specialized modules, allow ChatMo-468

tion(CB) and ChatMotion to set new benchmarks in469

multimodal human motion analysis, outperforming470

existing LLM-based motion models across multi-471

ple tasks and metrics.472

Evaluation on BABEL-QA. We evaluated Chat-473

Motion on the BABEL-QA dataset to assess its474

performance in responding to complex motion-475

based queries. As shown in Table 2, both Chat-476

Motion(CB) and ChatMotion outperform other477

LLM-based motion models across several met-478

rics. ChatMotion(CB) achieves an overall score479

of 0.467, while ChatMotion further improves this480

to 0.473, demonstrating its enhanced capability.481

This improvement is due to ChatMotion’s Motion-482

Aware mechanism, which takes both motion inputs483

and candidate results into account. By leveraging484

LLaMo’s advanced multimodal capabilities, Chat-485

Motion esures more robust and stable results. De-486

spite some limitations on specific metrics, ChatMo-487

tion compensates for these and delivers superior488

overall results. These advancements position Chat-489

Motion as a new benchmark in motion-based ques-490

tion answering, highlighting the effectiveness of491

multimodal aggregation and Motion-Aware mecha-492

nisms for improved accuracy and reliability.493

Evaluation on MVBench. We evaluated Chat-494

Motion on the MVBench dataset to assess its per-495

formance in video question answering across seven496

motion understanding sub-tasks. As shown in497

Table 3, ChatMotion(CB) outperforms Motion-498

LLM (Chen et al., 2024a), the LLM-based motion499

understanding model, achieves an average score500

of 52.4, while ChatMotion increases this to 53.2.501

These results highlight the efficacy of ChatMo-502

tion’s multi-agent framework, which reduces biases503

inherent to LLM-based motion models by incorpo-504

rating dynamic function calls. Performance gains505

are particularly evident in most metrics, demon-506

strating the advantages of multi-agent integration507

for robust motion understanding. While slight per-508

formance gaps persist in specific tasks compared509

with expert models (e.g., EN of VideChat2), the510

overall improvement over the LLM-based motion511

model, MotionLLM, remains statistically better.512

Evaluation on Mo-Repcount To evaluate Chat-513

Motion’s performance on fine-grained motion514

tasks, we benchmarked it on Mo-Repcount against515

SoTA Motion LLMs. The results in Table 4 show516

that ChatMotion outperforms LLaMo by 4%-8% 517

across all metrics, demonstrating ChatMotion’s ad- 518

vanced capability to aggregate the strengths of spe- 519

cialized models and achieve superior performance 520

in fine-grained motion tasks. 521

5.2 Ablation Study 522

Our ablation study examines the contribution of 523

each module in ChatMotion, including the planner, 524

verifier, and aggregation components. The results 525

show that each additional module leads to consis- 526

tent improvements. Detailed results and further 527

analysis are provided in Appendix C. 528

5.3 Qualitative Analysis 529

Qualitative results, as illustrated in Fig. 4, show that 530

ChatMotion produces accurate and clear interpre- 531

tations by integrating multiple analytical tools and 532

cross-verifying outputs. For emotion recognition 533

with both video and motion inputs, other models 534

either fail or give ambiguous results, whereas Chat- 535

Motion delivers the correct answer. More impor- 536

tantly, only ChatMotion supports advanced tasks 537

such as comprehensive cross-modal retrieval-based 538

analysis and detailed motion-video comparisons, 539

which are not available in previous models. This 540

marks a significant advance in the scope and com- 541

plexity of tasks that can be addressed in multimodal 542

motion understanding. 543

6 Conclusion 544

In this paper, we introduced ChatMotion, a so- 545

phisticated multi-agent framework that integrates 546

large language models with specialized motion- 547

analysis modules to address the limitations inherent 548

in single-model systems. By dynamically breaking 549

down complex tasks, aggregating diverse model 550

outputs, and carefully selecting the most reliable 551

results, ChatMotion effectively mitigates biases in 552

motion understanding and delivers robust, context- 553

aware analyses. Through experiments conducted 554

on human motion benchmarks such as MoVid- 555

Bench and BABEL-QA, we demonstrated great 556

improvements in both accuracy and adaptability 557

across various motion tasks. We hope this work in- 558

spires ongoing research in the field of multimodal 559

agent architectures for human motion understand- 560

ing. 561
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7 Limitations562

Computational Overhead Several models are563

part of MotionCore and the due to the sequential564

nature of the agentic setup the computational over-565

head scales linearly with the number of models566

as compared with a single model system. On the567

Movid-Motion dataset ChatMotion can process mo-568

tion sequences at 95 FPS whereas LLaMo can pro-569

cess the same sequences at 200 FPS on an H100.570

This is primarily due to two factors; the Executor571

and Planner. Increasing the number of models in572

MotionCore will potentially increase the number573

of tasks created by the planner. Similarly for the574

Executor which selects APIs from MotionCore, the575

number of model calls can increase simply by in-576

cluding more models as MotionAnalyzer invokes577

several motion understanding models when called.578

Dataset Limitations The current setup of Chat-579

Motion is reliant on domain specific models that580

can understand human motion. As these models581

are trained on human motion datasets which tends582

to be limited to certain topics, and relatively small583

in scale as compared to the image or language do-584

main, so will the capabilities of the models. This585

limits the generalization to novel motion scenes or586

even fine grained understanding of known domains587

such as martial arts as found in MoVid, due to be-588

ing limited in scope. As such further validation is589

needed to determine how adaptable the framework590

is to new unseen tasks, and how much new data is591

required in order to be proficient in a new domain.592

Agentic limitations Finally, the agentic nature593

of ChatMotion comes with limitations observed in594

other agent systems. Planning itself is hard as it595

requires reasoning over new tasks where no data596

trajectories may exist to train or validate the ef-597

ficacy of the Planner. Our Planner is dependent598

on the quality of base MLLM models, as well the599

prompted used by the model. Some of these issues600

can partially be mitigated with our Verifier, despite601

having similar limitations as the Planning model.602

As such the Verifier might give incorrect statements603

about the execution trajectory for out of domain604

motion sequences. The Executor model can be a605

source of error if selects a wrong or less efficient606

model from a toolbox. One should conduct some607

analysis to determine the applicability for new do-608

mains. Lastly for our weighting of the Candidate609

answers in the MotionAnalyzer will likely have to610

be adapted dynamically to new tasks and datasets.611
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A Prompt of ChatMotion796

A.1 Planner Template797

To enable structured task decomposition, we de-798

sign a multi-step prompt template for the Planner.799

This template guides the agent through four logical800

stages, helping it understand the user’s intent, se-801

lect relevant tools, and output a series of actionable802

meta-tasks. The process is summarized as follows:803

• Step 1: Objective Extraction. The Planner804

first identifies the core objectives in the user805

query, which serves as the foundation for fur-806

ther reasoning.807

• Step 2: Tool Functionality Review. It then808

examines the capabilities of the available tools809

in MotionCore, such as the MotionAnalyzer,810

Aggregator, and Generator, to inform how the811

objectives can be effectively tackled.812

• Step 3: Meta-Task Decomposition. Based813

on the objectives and tool functions, the Plan-814

ner decomposes the overall task into logically815

ordered sub-tasks.816

• Step 4: Output Meta-Task List. Finally, it817

produces a structured list of meta-tasks that818

can be executed by the Executor using the819

appropriate tools.820

This prompt ensures that the Planner’s decisions821

are both goal-driven and tool-aware. The full in-822

struction template is visualized in Figure 5.823

A.2 Planner Example and Intermediate824

Reasoning825

To illustrate the Planner’s behavior in practice,826

we present a visualized example in Figure 6,827

which demonstrates the intermediate reasoning828

steps taken by the agent. This process adheres to829

the four-stage framework described in Section A.1,830

including the extraction of objectives, analysis of831

tool functionalities, decomposition into meta-tasks,832

and the generation of a structured task list.833

In this example, the user query involves three834

goals: identifying the combat move, analyzing its835

key technical components, and generating instruc-836

tional content for executing a flying kick. The837

Planner first parses these high-level intents and838

then determines the most appropriate tools from839

the MotionCore suite to address them. Specifi-840

cally, it selects the MotionAnalyzer to analyze the841

movements, the KnowledgeRetriever to explain the842

techniques involved, and the Generator to provide 843

the answer tailored for the query. 844

Guided by this mapping, the Planner proceeds to 845

decompose the problem into five sequential meta- 846

tasks, each aligned with a specific sub-goal and 847

tool. These tasks are clearly enumerated in the fi- 848

nal output, forming a coherent plan that facilitates 849

step-by-step execution by downstream modules. 850

This example demonstrates the Planner’s capac- 851

ity to transform complex multimodal queries into 852

interpretable and executable workflows. 853

A.3 Executor Template 854

To enable structured execution of the meta-task 855

list generated by the Planner, we design a prompt 856

template for the Executor that supports tool-aware 857

reasoning in four stages, as illustrated in Figure 7. 858

• Step 1: Task Understanding. The Executor 859

begins by parsing the meta-task list produced 860

by the Planner. Each task corresponds to a 861

well-defined objective that must be resolved 862

using a specific tool from the MotionCore tool- 863

box. 864

• Step 2: Tool Selection. For each meta-task, 865

the Executor determines the most suitable tool 866

by considering the tools functional descrip- 867

tions and tool capabilities. This ensures that 868

each operation is delegated to the most rele- 869

vant module. 870

• Step 3: Task Execution. The selected tool is 871

invoked to complete the meta-task. If the tool 872

execution fails (e.g., due to incompatibility 873

or missing input), the Executor logs the fail- 874

ure and returns feedback to the Planner and 875

Verifier. 876

• Step 4: Final Output. Upon completion of 877

all meta-tasks, the Executor synthesizes a fi- 878

nal response or generates an error report high- 879

lighting any failed operations, ensuring trans- 880

parency in execution. 881

This template ensures that the Executor performs 882

each meta-task in a modular, interpretable, and 883

robust manner. The full prompt design is shown in 884

Figure 7. 885

A.4 Executor Example and Intermediate 886

Execution 887

To illustrate how the Executor operates on the Plan- 888

ner’s output, we present a concrete example in Fig- 889

ure 8, which visualizes the execution trace for the 890
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Executor Planner Verifier CB MA Body Seq. Dir. Rea. Hall. All
Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

✓ ✗ ✗ ✗ ✗ 45.23 3.18 35.67 3.05 55.42 3.37 49.89 3.29 53.34 3.12 43.56 3.22
✓ ✓ ✗ ✗ ✗ 46.76 3.22 38.45 3.08 56.21 3.49 51.34 3.41 54.78 3.19 45.89 3.43
✓ ✓ ✓ ✗ ✗ 48.12 3.31 40.78 3.21 58.56 3.58 54.67 3.52 65.43 3.68 48.34 3.41
✓ ✓ ✓ ✓ ✗ 60.89 4.03 46.21 3.30 62.11 4.03 59.53 3.77 68.95 3.78 56.90 3.72
✓ ✓ ✓ ✓ ✓ 60.43 4.08 46.56 3.28 64.21 4.11 60.58 3.87 70.39 3.82 58.79 3.80

Table 5: Ablation of ChatMotion on the MoVid-Bench for the Planner, Executor, Verifier, and Aggregator modules.

Movid-Bench-Motion Body Seq. Dir. Rea. Hall. All
Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

Equal (no CB) 45.23 3.18 35.67 3.05 55.42 3.37 49.89 3.29 53.34 3.12 43.56 3.22
CB (Base) 59.80 4.01 45.35 3.27 61.23 4.01 58.87 3.73 67.56 3.75 56.43 3.70
CB (LLaMo=11) 60.30 4.02 45.82 3.28 61.62 4.02 59.14 3.75 68.25 3.76 56.65 3.71
CB (LLaMo=12) 60.89 4.03 46.21 3.27 62.11 4.02 59.53 3.77 68.95 3.78 56.90 3.72
CB (LLaMo=13) 60.20 4.00 45.70 3.26 61.45 4.00 59.00 3.72 68.03 3.74 56.50 3.69
CB (LLaMo=14) 59.60 3.98 45.21 3.24 60.80 3.98 58.66 3.69 67.45 3.71 56.14 3.67

Table 6: Ablation study on confidence score assignment in ChatMotion. “Equal” denotes uniform weighting without
confidence modeling. CB (LLaMo=X) indicates increasing LLaMo’s confidence from 10 to 14.

meta-task list shown in Figure 6. Given a query in-891

volving motion recognition and instructional guid-892

ance, the Executor receives five meta-tasks, de-893

noted as M1 through M5, each aligned with a894

specific subgoal.895

For each meta-task, the Executor identifies and896

invokes the most appropriate tool from the Motion-897

Core suite. The first meta-task, M1, focuses on898

recognizing the combat move and is addressed us-899

ing the MotionAnalyzer module. The output of this900

analysis is subsequently processed by the Aggrega-901

tor in M2, which refines the candidate predictions902

by integrating outputs from multiple models with903

confidence-aware weighting. To fulfill the objec-904

tive in M3, which requires an explanation of the905

technical components involved in the motion, the906

Executor employs the Professional Knowledge Re-907

trieval module to access relevant domain-specific908

resources. The instructional guidance requested in909

M4 is provided through the Motion Retrieval mod-910

ule, which retrieves example motion clips aligned911

with the user’s intent. Finally, the Generator mod-912

ule completes M5 by synthesizing a coherent re-913

sponse that incorporates the outputs of all previous914

stages.915

The outputs corresponding to each step are ex-916

plicitly listed, preserving traceability and trans-917

parency. This example demonstrates the Execu-918

tor’s ability to resolve diverse sub-tasks through919

tool-aware orchestration, enabling structured rea-920

soning across heterogeneous model capabilities.921

A.5 Verifier Template922

To enhance the robustness and reliability of the923

overall reasoning pipeline, we design a prompt924

template for the Verifier that checks whether the 925

planned meta-tasks and their corresponding exe- 926

cution results are consistent with the original user 927

query. As illustrated in Figure 9, this template 928

guides the Verifier through three key stages: 929

• Consistency Review. The Verifier receives 930

the user query, the meta-task plan generated 931

by the Planner, and the execution trace from 932

the Executor. It inspects whether each meta- 933

task logically follows from the user query and 934

whether the execution results faithfully reflect 935

the intended planning trajectory. 936

• Error Attribution. If any inconsistency, 937

omission, or semantic drift is detected, the 938

Verifier identifies the responsible agent and 939

provides a concise description of the issue. 940

• Final Answer Generation. Based on the con- 941

text, the Verifier either approves the final re- 942

sult from the Executor or produces an error 943

report detailing the source and nature of the 944

inconsistency. This enables for downstream 945

correction or replanning, if necessary. 946

This verification step strengthens ChatMotion’s 947

robustness by providing an explicit mechanism for 948

quality control and error identification, helping en- 949

sure that the final output is both logically sound 950

and traceable. 951

B Execution Results for Different Stages 952

Figure 10 illustrates a full execution example in 953

ChatMotion, showcasing how ChatMotion resolves 954
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LLaMo MotionGPT TM2T MotionLLM Body Seq. Dir. Rea. Hall. All
Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score Acc. Score

✓ ✗ ✗ ✗ 59.30 4.01 44.01 3.12 60.91 3.99 58.21 3.64 61.17 3.53 55.32 3.67
✓ ✓ ✓ ✗ 59.60 3.98 44.85 3.22 61.15 4.00 57.97 3.60 62.45 3.62 55.72 3.69
✓ ✓ ✓ ✓ 60.89 4.03 46.21 3.30 62.11 4.03 59.53 3.77 68.95 3.78 56.90 3.72

Table 7: Ablation study on the composition of MLLMs in ChatMotion, evaluated on MoVid-Bench-Motion. Each
row shows the inclusion (✓) or exclusion (✗) of different motion-language models.

a complex multimodal query involving motion un-955

derstanding, technique analysis, and instructional956

generation.957

The Planner first decomposes the query into five958

meta-tasks, covering understanding, aggregation,959

explanation, retrieval, and synthesis. The Execu-960

tor sequentially selects tools from the MotionCore961

suite to address each task. MotionAnalyzer trig-962

gers internal function calls to multiple motion un-963

derstanding models, generating diverse interpreta-964

tions of the input motion. Then, the Aggregator965

integrates these results using a confidence-based966

strategy. KnowledgeRetriever extracts technical967

insights, and MotionRetriever surfaces examples968

for instructional reference. Finally, Generator com-969

poses a coherent response by consolidating all in-970

termediate outputs.971

This example demonstrates ChatMotion’s mod-972

ular reasoning process, which combines analysis,973

retrieval, and generation in a tool-aware manner974

to solve complex multimodal queries and produce975

accurate, interpretable results.976

C Ablation Study977

C.1 Ablations on Components978

In ablation studies, we began by utilizing only the979

executor component in conjunction with a basic ma-980

jority voting mechanism. Initially, the system’s per-981

formance was suboptimal, trailing behind advanced982

methods such as MotionLLM and LLaMo. This983

performance gap can be attributed to the lack of984

task organization, insufficient supervision, and the985

intrinsic limitations of the majority voting mecha-986

nism, which exacerbates error propagation by ag-987

gregating mistakes from different models, thereby988

distorting the correct output.989

Then, the planner resulted in a modest improve-990

ment in performance, particularly for the single-991

objective analysis task, although the enhancement992

was not substantial. We got some qualitative results,993

however, revealing that the planner played a critical994

role in more complex tasks. Notably, without the995

planner, the ChatLLaMo model frequently encoun-996

tered execution failures. The addition of the verifier997

further enhanced performance, notably improving 998

hallucination metrics. Lastly, the incorporation 999

of a confidence-based selection mechanism for 1000

model output, particularly in selecting responses 1001

from LLaMA, led to a significant boost in all per- 1002

formance metrics. This suggests that dynamically 1003

selecting the confident model output plays a pivotal 1004

role in enhancing the system’s overall robustness 1005

and accuracy, especially in complex tasks. 1006

C.2 Settings for Confidence Score 1007

Table 6 reports the results for different confidence- 1008

based aggregation settings. The first row “Equal” 1009

represents a naive voting strategy where all models 1010

contribute equally. This leads to degraded overall 1011

performance, as weaker models (e.g., TM2T and 1012

MotionGPT) introduce noisy or inconsistent out- 1013

puts that dilute the predictions of stronger models 1014

like LLaMo. 1015

To improve this, we adopt a confidence-based 1016

(CB) strategy, where each model is assigned a 1017

score proportional to its standalone performance 1018

on MoVid-Bench. Specifically, we use the accu- 1019

racy values on Movid-Bench-Motion reported in 1020

Table 1 to compute normalized weights and map 1021

them to a scaled score range. For TM2T, which is 1022

not included in that table, we evaluated its perfor- 1023

mance separately and got 33.15 on overall accuracy. 1024

Based on this, we assign confidence scores of 4, 1025

5, 8, and 10 to TM2T, MotionGPT, MotionLLM, 1026

and LLaMo, respectively. This setting shown in 1027

Table 6 leads to a notable improvement over the 1028

Equal setting. The overall accuracy improves from 1029

43.56 to 56.43 and all sub-metrics show consistent 1030

gains. This demonstrates that weighting models ac- 1031

cording to their standalone performance effectively 1032

mitigates aggregation errors introduced by weaker 1033

models. 1034

Based on this setting, we further explore the ef- 1035

fect of adjusting LLaMo’s score, since it is the 1036

strongest model and dominates the aggregation. 1037

We fix the relative ratios of the other models and 1038

increase LLaMo’s confidence from 10 to 14. Re- 1039

sults show that assigning a confidence score of 1040

14



12 to LLaMo yields the best performance across1041

most metrics. Further increasing the score leads1042

to performance degradation due to over-reliance1043

on LLaMo, which suppresses the complementary1044

contributions of other models. Conversely, reduc-1045

ing LLaMo’s weight underutilizes its predictive1046

advantage, also causing a decline.1047

The overall performance remains stable when1048

LLaMo’s confidence score is set between 11 and1049

13, indicating that the aggregation is robust to small1050

variations. Overall, this ablation confirms the ne-1051

cessity and effectiveness of the confidence-based1052

strategy, which enables reliable integration of mod-1053

els with different capabilities.1054

C.3 Ablations on MLLMs1055

Table 7 presents the ablation study on the composi-1056

tion of MLLMs in ChatMotion. Using only LLaMo1057

yields strong baseline results, with 55.32 accuracy1058

and 3.67 score. Adding weaker models, such as1059

MotionGPT and TM2T, leads to a marginal im-1060

provement of 0.40 in overall accuracy, suggesting1061

their limited but non-disruptive contribution.1062

In contrast, incorporating the stronger Motion-1063

LLM model brings consistent improvements across1064

all metrics, raising the overall accuracy to 56.90.1065

This validates the design of our model aggrega-1066

tion mechanism, which effectively amplifies the1067

strengths of high-performing models while remain-1068

ing robust to less accurate ones.1069
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Figure 5: Template for the Planer to decompose task into sub-tasks.
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Figure 6: The intermediate output of the Planner.
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Figure 7: Template for the Executor to choose tools in MotionCore to achieve the task.
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Figure 8: The intermediate execution details of the Executor.
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Figure 9: Template for the Verifier to supervise the whole trajectory.

Figure 10: The detail execution results in ChatMotion.
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