
Scaling Proprioceptive-Visual Learning with
Heterogeneous Pre-trained Transformers

Lirui Wang1 Xinlei Chen2 Jialiang Zhao1 Kaiming He1
1MIT CSAIL 2Meta, FAIR

https://liruiw.github.io/hpt

Abstract

One of the roadblocks for training generalist robotic models today is heterogene-
ity. Previous robot learning methods often collect data to train with one specific
embodiment for one task, which is expensive and prone to overfitting. This work
studies the problem of learning policy representations through heterogeneous pre-
training on robot data across different embodiments and tasks at scale. We propose
Heterogeneous Pre-trained Transformers (HPT), which pre-train a large, shareable
trunk of a policy neural network to learn a task and embodiment agnostic shared
representation. This general architecture aligns the specific proprioception and
vision inputs from distinct embodiments to a short sequence of tokens and then
processes such tokens to map to control robots for different tasks. Leveraging
the recent large-scale multi-embodiment real-world robotic datasets as well as
simulation, deployed robots, and human video datasets, we investigate pre-training
policies across heterogeneity. We conduct experiments to investigate the scaling
behaviors of training objectives, to the extent of 52 datasets. HPTs outperform
several baselines and enhance the fine-tuned policy performance by over 20% on
unseen tasks in multiple simulator benchmarks and real-world settings.

1 Introduction

Building robotic policies today is hard: it often requires collecting specific data for each robot,
task, and environment, and the learned policies do not generalize beyond these specific settings.
A historical lesson that has revolutionized machine learning is that pre-training [34, 27, 29] on
large-scale, high-quality, and diverse data can bring general models that usually outperform specific
models. Recent progress in open-source large-scale data collection [14, 76] has made this path
possible, but the heterogeneity (such as varying robot hardware and different environments) present
in large-scale robotic data has posed a significant challenge. A central question for the field now is
how to leverage the heterogeneous robot data to pre-train robotic foundation models [3].

Foundation models from natural language processing [60, 58] and computer vision [37] have shown a
paradigm to achieve general-purpose task-agnostic models through pre-training on massive amounts
and diversity of data. In addition to the benefits from more data, training with diverse tasks also
enforces the representation to be more generalized. These foundation models can achieve high task
success rates for various tasks, are more robust to outliers, and are flexible for adapting to new
tasks. These approaches map input signals from distinct domains and tasks into a high-dimensional
representation space, and exhibit consistent scaling behaviors [34, 29]. After that, minimal fine-tuning
is required to transfer the representation for downstream tasks to achieve good performance.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://liruiw.github.io/hpt

visionproprio.

embodiment I

visionproprio.

embodiment II

visionproprio.

embodiment III

stem I stem II

stem III

Figure 1: The Heterogeneous Pre-training concept.
It maps different embodiments, each with its own
proprioception and vision sensors, onto a shared la-
tent space by embodiment-specific tokenizers (“stems").
This aligns the heterogeneous data from different em-
bodiments into a joint representation space. This allows
us to train a shared Transformer trunk on the union of
all heterogeneous datasets. The pre-trained Transformer
can be transferred to a new embodiment, with a small,
new tokenizer learned at transferring time.

The heterogeneity in robotics presents a distinct challenge: different robots are physically different
embodiments1 of hardware acting in different environments. Each embodiment can have a dis-
tinct proprioception, including different degrees of freedom, end-effectors, motion controllers, and
workspace configurations built for a specific application. Another common heterogeneity in robotics
is vision heterogeneity. Robots are often equipped with different camera sensors mounted at different
places (e.g. wrist and/or third-person) and the visual appearance of each robot varies dramatically
due to environments and tasks. Both proprioception and vision information are crucial for complex,
contact-rich, long-horizon behaviors in robotics. Poor learning of such information can lead to
overfitting behaviors such as repeating motions for a particular scene and task or even trajectory.

In this work, we propose to address this issue by aligning the proprioception and vision information
from different embodiments to a shared “language” of policies through heterogenous pre-training
(Figure 1). With such a shared representation, a new embodiment only requires minimal data and
training to “translate” its specific setup to the shared “languages”. In other words, we want to pre-train
task-agnostic and embodiment-agnostic foundational models that can map raw sensor signals from
individual embodiments into a shared latent space. Previous works have made significant progress in
pre-training only the vision part of the policy on human videos [49, 54, 35, 62] and pre-training the
full policy [6, 14, 56] with a unified model and dataset format (e.g. using languages [5]). Additionally,
they assume no proprioception in pre-training and add it post hoc in transfer learning.

We introduce Heterogeneous Pre-trained Transformers (HPT), a family of architecture designed to
scalably learn from data across heterogeneous embodiments. HPT modularizes a general policy
network architecture (Figure 2) and pre-trains the policy representation of a latent transformer with
supervised learning. Inspired by learning from multimodal data [1, 74, 20, 31], we use embodiment-
specific tokenizers, dubbed “stem”, to align various sensor inputs such as camera views and pro-
prioception inputs. The “trunk” is shared and pre-trained across datasets and is transferred when
adapting to new embodiments and tasks that are unknown during the pre-training times. Moreover,
we use task-specific action decoders, dubbed “head”, to produce the action outputs. Crucially, after
“tokenizing each embodiment”, HPT operates on a shared space of a short sequence of latent tokens.
This hierarchy is motivated by how humans handle feedback loops between specific motor responses
and perceived stimuli at the level of the spinal cord’s neural circuitry [69].

We extensively investigated the scaling behaviors and various designs of policy pre-training to the
extent of more than 50 individual data sources (2 times more than [56]) and model size of over 1
billion parameters. Analogous to the scaling laws [27, 29], we found that to some extent, HPT scales
with the dataset quantity and diversity as well as the model and training compute.

In addition, heterogeneity can occur in different embodiment domains, such as real robot hardware,
simulation domains, and human videos. We incorporate many available embodied datasets in different
embodiments such as real robots [14, 76, 39], simulation [82, 90, 50, 21, 86, 81] and internet human
videos [15] in the pre-training process and demonstrate the generality of our framework including
embodiments beyond expensive real-world on-robot teleoperations.

Through transfer learning experiments across multiple simulation benchmarks [90, 50, 82] and
real-world dexterous tasks, we compare with several baselines and the from-scratch counterparts.
Overall, based on the pre-training objectives, HPT can scale with the model, data, compute, and the
heterogeneity of the robotic datasets across real robots, simulations, and human videos. These pre-

1Embodiment can be defined differently according to the context of robotics and AI. In this work, we consider
robots equipped with a distinct set of sensors and actuators with the associated observation and action space to
be a unique embodiment.

2

Transformer

stem I stem II stem III

head IIIhead IIhead I

visionproprio.

embodiment I embodiment II embodiment III

Figure 2: HPT architecture. HPT is modularized
into stems, trunk, and heads. The stem, consist-
ing of a proprioception tokenizer and a vision
tokenizer, maps the vision and proprioception ob-
servations of different embodiments to a fixed
number (e.g. 16) of tokens. The shared trunk,
which is a Transformer, maps the concatenated
tokens into shared representations. The head then
maps the processed tokens to actions in different
downstream tasks. For a specific embodiment,
one stem/head pair is activated (denoted by the
switch). The trunk is shared and pre-trained on
action-labeled data with supervised learning and
then transferred to new embodiments. This proce-
dure scales up to 52 datasets and 1B parameters.

training procedures and models can simplify building reliable robotic policies for new embodiments
and new tasks in terms of data requirements and generalized performance. As an attempt to scale
heterogeneous pre-training, our code and weights are open-sourced, and we hope that HPT can shed
some light on learning robot representations from heterogeneous embodiments and tasks.

2 Related Works

Pre-training and Transfer Learning. Pre-training [2], through direct supervision [38] and/or
self-supervision [57, 25, 12, 22, 10], has been shown to learn representation useful for unseen
downstream tasks in computer vision [7, 37] and natural language [58], and their intersections [60].
The representation learned from ImagetNet [16] or web-scale data [38, 60, 18] shows robustness to
distribution shifts and can be transferred to new tasks.

The recent surge of foundation models [3] scales these representation learning methods [27, 29] by
applying task-agnostic objectives to multitask data. Moreover, recent works [46, 42, 45] show that
small projection layers can be used to align the pre-trained feature spaces of the foundation models.
Different from other fields, robotics has less data quantity and diversity but much more heterogeneity.

Alignment. Recent works such as Flamingo [1], Perceiver [31], and ImageBind [20] proposed ways
to combine representations from multimodal data such as image, language, and audio by aligning
these different modalities to the same latent space in the pursuit of representation learning. Our
architecture design is also motivated by methods such as LLaVA[45] in the multimodal learning
community. Very recently, GPT-4o [58], Gemini [77], MM1 [52], X-VILA [89], and Chameleon
[75] demonstrated the capabilities of heterogeneous pre-training a universal transformer from and for
multiple modalities. The idea of alignment, across modalities and/or embodiments, is important as
we scale to use heterogeneous embodiments and reuse data from distinct embodiments.

Representation Learning in Robotics. Representation learning has been explored in the robotic
community. Previous works such as R3M [54], VC-1[49], Voltron[35], and SpatialVLM [11]
investigate visual representations by training the policy with human videos and robotic data [70].
Recent works [61, 17, 4, 88, 71, 40] also align representations from multiple modalities and data
distributions for robotic tasks. After pre-training, transfer learning with the frozen representation
and/or finetuning is conducted in the target domains.

Generalist Policies. Large-scale policy learning in robotics has leveraged diverse data from real
robots [6, 73], human videos [54, 49], and simulation domain [33, 63, 83, 80] separately. There
are also works in multi-task learning [65, 66, 85, 23], meta-learning [79, 55, 19], few-shot learning
[84], and fleet learning [82]. Recently, RT-X, Octo, OpenVLA [6, 14, 56, 36] train generalist
vision-language-action robotic policies on datasets from diverse robotic embodiments.

Compared with these works, HPT handles broader heterogeneity including proprioception and vision,
explores scaling behaviors on more heterogeneous domains including real robots, human videos, and
simulation data, and is evaluated at a larger scale in simulation benchmarks.

3

cross-attention

queries

k, v

proprioception

cross-attention

queries

k, v

vision

vision
encoder ...

Figure 3: Stem Architecture in HPT. In the HPT stem, the proprioceptive tokenizer uses an MLP to map
proprioceptive information to a feature which is then attended by 16 learnable tokens. The vision tokenizer uses
pre-trained encoders and similarly uses an attention mechanism to map vision features into 16 fixed tokens. The
architecture flexibly handles sequences of inputs without increasing the size of tokens.

Mixture of Experts. Our architecture design is related to works in conditional computation and
MoE [51, 44, 72], where we create one expert for each embodiment, and the router (for the whole
network) is determined by the embodiment. This technique has been used to scale language models
to a substantial size [32].

3 Heterogenoues Pre-trained Transformers (HPT)

In heterogeneous robot learning with cross embodiments, the data are generated from different
domains such as simulation and real robots, across sensory modalities such as RGB images, language
instructions, depth maps, 3D point clouds, and tactile images. Each robot is a unique hardware
embodiment with varying degrees of freedom, end-effectors, sensor configurations, controller and
action spaces, and application-specific physical setups.

In the following sections, we discuss the HPT network architecture and the training procedure
to address the heterogeneity above. We modularize the network architecture (Figure 2) into the
embodiment-specific stem, the shared trunk, and the task-specific heads. Intuitively, the stems, shown
in Figure 3, are earlier layers of the neural network that align sensory inputs from heterogeneous
embodiment and modalities into the shared representation space. The shared middle part of the
network is called the trunk, which processes the sensory representation into a latent representation
that can be used for multiple tasks. Finally, the last part of the network is the head, which maps
that latent representation to the action space in individual tasks of interest. The training procedure,
dubbed heterogeneous pre-training, assigns and aligns specific stem/head pairs based on the sampled
embodiment and task data, and still enjoys the benefits of joint training in the shared trunk. This can
be thought of as tokenizing each embodiment using neural networks and alleviating the need to unify
embodiments into a homogeneous data form in standard training procedures.

3.1 Network Architecture

Stem. The stem θstem (Figure 3) in HPT is composed of a proprioceptive tokenizer and a vision
tokenizer. These tokenizers map heterogeneous inputs from different embodiments to a fixed number
of tokens with fixed dimensions, which enables the trunk to treat them in the same manner despite
large heterogeneity, as well as enjoy the scaling and inference benefits on fixed context length. The
key idea is to leverage attention [78, 31, 9] to attend a fixed number of learnable tokens to features of
the observations. Although we mainly focus on proprioception and vision, handling other kinds of
sensor heterogeneity in tactile, 3D, and action inputs can be flexibly extended in stems.

• Proprioception Tokenizers. In Figure 3 (left), for embodiment k, the proprioceptive
tokenizer maps any sequence of robot proprioceptive information with dimension dkp (e.g. 7
for end-effector pose) into Np (e.g. Np = 16) tokens with dimension d with values ranging
from 128 to 1024. To achieve this, we first use an MLP to map the proprioceptive input
into a feature space with dimension d. We then apply sinusoidal position encoding and
use attention across the state feature and the learnable tokens, to map into 16 tokens with
dimension d. Proprioceptive information is critical in robot policy learning, but its usage is
often as simple as feature concatenation with a vision encoder [41].

4

Simulation

Human VideoWild

Teleop

Figure 4: Dataset Heterogeneity in Robotics. We
show illustrations of dataset mixtures (each color
is a distinct embodiment) from different domains
including real robot teleop [14], deployed robots [39],
simulations, and human videos [15]. See Appendix
Section A for dataset mixture details.

Depth # Width # Attn. Heads # Param.
HPT-Small 16 128 8 3.1M
HPT-Base 16 256 8 12.6M
HPT-Large 16 512 8 50.5M
HPT-XLarge 32 768 16 226.8M
HPT-Huge 80 1024 16 1.1B

Table 1: Network Details of HPT. The width denotes
the latent dimension size of the trunk transformer and
the depth denotes the number of blocks. The default
setup is the HPT-Small model.

Dataset # Traj. # Samples # Batch Size
Default 27 16k 5M 256
Scaled 52 270k 155M 2048

Table 2: Dataset Details of Pre-train Settings. The
default setup is trained with 27 datasets from RT-X with
16k trajectories (maximum 1000 trajectories each) and
scaled setup involves more data and compute.

• Vision Tokenizers. In Figure 3 (right), the vision tokenizer can map any sequence of camera
images (videos of multiple views) with dimension H ×W × 3 into Nv (we use Nv = 16
by default) tokens with dimension d. To achieve this, we first use pre-trained frozen feature
networks (e.g. 7 by 7 features from ResNet) and then flatten the features. After that, we
again use attention across these features and learnable tokens, to map the vision input into
16 tokens with dimension d.

After processing each modality individually in the time sequence order, we concatenate all modality
tokens and add additional modality embeddings and sinusoidal positional embeddings. This is used
as the input sequence to the trunk that we introduce below. To avoid overfitting, the stem only has a
small number of parameters (one MLP and one attention layer).

Related works such as Octo [56] and others [54, 49, 6] mostly focus on pre-training the vision
backbone of the policy through masking or self-supervision. They often stack sequences of single-
view images along channels [6] for a particular robot or use a large number of tokens (256 in [56]).
In contrast, HPT uses stems with pre-trained vision encoders to map arbitrary image sequences to a
short sequence of tokens (16). Moreover, rather than add in proprioception during transfer in related
works, HPT jointly pre-trains the vision and proprioception parts, from heterogeneous datasets.

Trunk. As the central component for pre-training, the trunk architecture follows a transformer,
parametrized by θtrunk in the latent space with dimension d. The output token sequence length L
is the same as the input token sequence length. The output token sequence is simply pooled as the
final combined feature for the observation. The trunk is shared across different embodiments and
tasks to capture the complex input-output relationships (i.e. the number of trunk parameters is fixed
independent of the number of embodiments and tasks).

Head. The policy head θhead takes the output of the trunk transformer and maps it to the action space
A in each dataset. For each embodiment and task, the policy head can be an arbitrary architecture (e.g.
MLP) that takes as input the pooled feature of the trunk and outputs a normalized action trajectory.
The policy head is reinitialized for transferring to a new embodiment.

3.2 Training Objective

Given a total of K datasets with heterogeneous embodiments sampled from different distributions
D1, ...,Dk, ...,DK , we let Dk = {τ (i)}1≤i≤Mk

denote a set of Mk trajectories in dataset Dk, with
τ (i) = {o(i)t , a

(i)
t }1≤t≤T denoting the i-th trajectory of maximum length T of observation and action

tuples. The objective is to minimize the following loss across datasets

min
θ

K∑
k=1

L(θstem
k , θtrunk, θhead

k ;Dk). (1)

5

L is behavior cloning loss computed as the Huber loss between the normalized action labels based on
dataset statistics and the network’s action predictions. θ =

⋃K
k=1{θstem

k , θhead
k } ∪ θtrunk denotes the

network parameters comprised of embodiment-specific stem and head θstem
k , θhead

k for dataset k, and a
single set of shared trunk parameters θtrunk across all embodiments. This training procedure has two
axes of data scaling: the quantity Mk for one dataset Dk and the total number of datasets K. In the
pre-training stage, only the trunk parameters are updated at every iteration, and the stems and heads
for each heterogeneous embodiment and task are updated based on the training batch sampling. See
implementation details in Appendix Section A.3.

3.3 Transfer Learning

The policy transfer process is similar to aligning the features of the new domain (through pre-trained
stem encoders) to the pre-trained embedding space of the trunk [42, 45]. Given a new dataset DK+1

from a new embodiment, the objective can be the same as pre-training or alternatives [13]. We
reinitialize the head and stem parameters with embodiment-specific input and output dimensions
(such as different proprioception and action dimensions), and freeze the weights of the trunk.

4 Experiments on Pre-training

In this section, we aim to answer the following question: Does HPT pre-training have a scaling
behavior under heterogeneous data across domains?

Default Setting. We use 27 robot teleoperation datasets, including a subset of the recently public
Open-X Embodiment dataset [14] as the training corpus. By default, we use one camera view of
the scene with the pre-trained frozen ResNet18 image encode to compute the vision features. We
use proprioception information, such as end-effector poses and joint positions, whenever they are
available and provided. We use a maximum of 1000 trajectories from each dataset and a total number
of 16k trajectories, and a held-out validation dataset with a maximum 200 trajectories per data source.
Furthermore, we use a model with a trunk size of 3.17 million parameters, which is denoted as
HPT-Small (Table 1). The training uses a batch size of 256 for 80k iterations, which is around 0.65B
tokens in the latent space that feeds into HPTs and around 5B tokens in the vision and proprioception
token spaces (horizon-dependent). While we do not align or preprocess action space or observation
space [56, 87] other than normalization, data cleanup and filtering would be very helpful.

Scaled Setting. We use 200k trajectories with 52 datasets, including simulation (e.g. [50]), deployed
robots (e.g. [39]), human videos (e.g. [15]), from distinct embodiments in the training process.
This includes many public and accessible robotic datasets. In addition to different tasks in different
institutes, these heterogeneous mixtures of datasets (Fig. 4 and Fig. 13) come with multiple views,
language inputs, and different observation inputs in different environments.

4.1 Protocol

We evaluate the HPT pre-training performance with the averaged validation loss (prediction errors
on unseen trajectories) at the last iteration of pre-training. These validation datasets are fixed
independent of the trajectory counts and models during training. Unless particularly noted, the
validation datasets come from the same 27 datasets in the Default Setting. Note that it is unrealistic
to evaluate the pre-trained models on many real-world robotic environments at scale and there are
very few evaluation alternatives to measure large-scale pre-training if we ignore this objective. In
fields such as NLP[30, 34], training loss objective (e.g. perplexity) is often used to measure the
progress of pre-training. Admittedly, there are several caveats to this metric including the closed-loop
performance gap and the task success rate gap. We will address these issues in Section 5 on HPT
transfer learning. See Appendix Section A and Section D for more details and discussions.

4.2 Scaling Behaviors

Data Scaling. In Figure 5 (a), we observe stable and scaling validation losses even on increasingly
heterogeneous embodiments. Moreover, we found the compute (e.g. samples seen per training run)
and the data amounts needed to scale in tandem [34] to get closer to convergence in the training
process. In the red line in Figure 5 (a), we observe better validation losses as we scale up the total
number of trajectories, by using a larger model and doubling the batch size every order of magnitude
increase in trajectory counts. Strictly increasing data while keeping others bottlenecked (HPT-S

6

(a) (b)
Figure 5: Data Scaling. We run scaling HPT experiments along dataset sizes and the number of datasets. Each
point is the validation loss of a full training run. (a) We evaluate the losses on 27 datasets with the number of
total trajectories ranging from a maximum of 10 trajectories per dataset (270 in total) to a maximum of 100000
trajectories per dataset (170k in total). We compare two model sizes, HPT-S/L, where HPT-L is a bigger model
trained with 4 times more tokens than HPT-S. (b) We compute the validation losses for a fixed subset of 10
datasets with a fixed number of epochs (2). We compute mean and standard deviations for 4 runs across model
sizes from HPT-S to HPT-XL and across dataset counts from 10 to 52.

Figure 6: Epoch Scaling. We run scaling HPT experiments along the number of total samples. Each point is the
validation loss of a full pre-training run. Setting: HPT-S, 27 datasets with a maximum of 1000 trajectories for
each dataset. Left) We scale up the number of batch sizes and measure the changes in validation losses. Right)
Derived from the left figure, we multiply the batches seen by the number of samples in each batch.

and fixed iterations) might cause an early plateau performance at around 1000 trajectories max per
dataset, as shown in the blue line in Figure 5. In Figure 5 (b), we also pre-train on an increasing
number of datasets with a fixed number of epochs and evaluate on the fixed subset (first 10 datasets).
We hypothesize that training with more embodiments contributes to the generalization of the trunk.
These experiments can scale to the extent of 200k trajectories and 52 datasets.

Model Scaling. In Figure 7, we fix the number of datasets (27) in RT-X and use a maximum of 1000
trajectories for each dataset. We scale along model size (from 1M to 1B) and gradually increase
the batch sizes from 256 to 2048 (doubles every order of model size increase) and use the larger
dataset with 170k trajectories. We observe that when we scale to bigger models with larger amounts
of compute (red line), the pre-training can achieve low validation losses until it is plateaued. We do
not find a significant difference between scaling depth or scaling width.

Epoch Scaling. In this experiment, we fix the number of datasets (27) and use a maximum of 1000
trajectories for each dataset. In Figure 6, we observe that increasing batch sizes (Left), which effec-
tively scales training tokens (Right), can generally improve the model performance until convergence.
Another observation we have is to use distributed workers to load from as many datasets as possible
to aggregate each batch. We hypothesize that the large variance of training on heterogeneous datasets
can be reduced by using a large batch size. See Appendix B for more experiment details.

4.3 Pre-training on Synthetic Data and Internet Human Videos

We experiment beyond real-world robot teleop data, which is expensive to collect and scale. For the
additional datasets, we consider 7 simulation datasets across many popular simulators Drake [82],
Mujoco [90, 50], Isaac Sim [21], and PyBullet [86, 81], as well as Sapien [53] and Flex [67], with

7

Figure 7: Model Scaling. We run scaling HPT experi-
ments along model sizes. Each point is a full training
run. Setting: 27 datasets with a maximum of 1000 tra-
jectories for each dataset. We scale along model size
(from 1M to 1B) for both the blue and red lines. The
red line is trained with increasing data and epochs to
reach convergence. Specifically, we gradually increase
the batch sizes from 256 to 2048 (doubles every order
of model size increase) and use 170k trajectories.

Figure 8: Joint Pre-training with Simulation and Hu-
man Videos. The baseline denotes the default setting
without simulation and human datasets. Setting: We run
the experiments with a training corpus of datasets with
1000 trajectories maximum.

image inputs and expert demonstrations. For the human datasets that lack proprioception and action
information, we use poses and 2D positions as surrogates for the supervised policy learning objectives.
We use in total 300 trajectories from EPIC kitchen [15] and PoCo [83] with a maximum trajectory
length 1000. See Appendix Figure 13 and Table 4 for more details on the dataset compositions.

In Figure 8, we use a maximum of 1000 trajectories for each dataset and compare against the baseline
of 27 datasets with evaluation on all the pre-trained datasets. We show that pre-training on additional
embodiment datasets such as simulation and human video datasets can be possible, despite the large
embodiment gaps with real robots. These datasets provide complimentary embodiment data to pure
teleop data, and they illustrate how much heterogeneity can be handled in the HPT framework.

5 Experiments on Transfer Learning

In the previous section, we evaluate pre-training using the validation losses. In this section, we answer
the following question with task success rates in transfer learning: Can the pre-trained HPT model be
transferred to new embodiments, tasks, and environments in simulation and the real world?

5.1 Transfer to Embodiments in Simulations

Protocol. We evaluate the pre-trained representations on robot manipulation simulation benchmarks
Meta-world [90], RoboMimic [50], and Fleet-Tools [82]. Each training dataset uses from 20-100
trajectories per task and each testing covers 50 episodes with different initial conditions. The policies
use HPT-Small as the pre-trained trunk and reinitialize the stem and head for transferring.

During the evaluation phase, we compare the following models: No Trunk uses only the stem and
head without the trunk in the middle and trains from scratch as common practice [41]. From Scratch
trains the entire policy from scratch with the trunk, Pretrained Frozen uses and freezes the pre-
trained trunk during transfer learning and Pretrained Finetuned loads the pre-trained HPT-Base
trunk and finetunes the whole network end-to-end, and Pretrained Finetuned (HPT-XL) uses
the same fine-tuning procedure with a pre-trained HPT-XL trunk with a lower pre-training validation
loss. To reduce the variance, we conduct independent training runs and evaluations 5 times and
average for each model. The inference time during transfer on an RTX 3070 GPU is 47Hz for
HPT-base and 19Hz for HPT-XL, while a more recent GPU like A100 can be 3-4 times faster.

Experiment. In Figure 10 (a), we test the model on the downstream tasks in closed-loop simulation
and observe improved task success rate using the pre-trained models ranging from HPT-B to HPT-XL,
although pre-training for the simulation experiments only happens in the real-world embodiments.

In Figure 10 (b), we run HPT on the recently released Simpler [43] Benchmark, which allows for
comparing with Octo [56], RT1-X, and RT2-X [14] on a high-fidelity simulation. We focus on three
different tasks Close Drawer, Move Near, and Pick Coke Can in the Google EDR embodiment.
For each task, we test several different initializations with a total of over 300 episodes for all tasks.

8

Figure 9: Simulation Evaluation Tasks. We evaluate HPT across several simulation benchmarks and show
policy rollout visualizations of the experiments. Experiment details can be found in Section 5.1 and A.4.

(b)(a)

Figure 10: Success Rates in Simulation Experiments. (a) We evaluate transfer learning performance of
models from HPT-B to HPT-XL on tasks across 4 different simulator benchmarks. (b) We compare with several
generalist models in the recent Simpler [43] benchmark with Google GDR embodiment. The pre-trained trunks
are trained from the Scaled Settings. The success rates are computed over 150 rollouts per approach.

Note that the pre-training corpus of HPT-S does not include [6], and simulation tasks have a focus on
language conditioning and do not expose proprioception inputs, which is not suitable for HPT. To
address these issues, we finetune HPT on the supervised datasets with around 50 trajectories under
the simulation protocol. We use HPT-base as the backbone for this experiment. We use the baseline
results from [43]. See Section A.4 for more implementation and experiment details.

5.2 Transfer to Embodiments in the Real World

Protocol. For the real-world experiments, we evaluate the HPTs on two different embodiments for
tasks in pet care and assembly, which are not covered in the pre-training datasets [14]. In particular,
for these two robots, we experiment with different observation spaces 1 camera v.s. 2 cameras as
well as different action spaces relative pose v.s. absolute pose. For data collection, we experiment
with both an Oculus Quest to collect relative pose control as action labels as well as kinesthetic
teaching. The episode lengths of real-world teleoperation vary from 50 steps to 150 steps with 10 Hz
control frequencies. We experiment with the tasks Sweep Leftover, Fill Water, Scoop Food
and Switch Insertion, which require 5-20 seconds of interactions with granular or small objects
with fine contacts, shown in Figure 11. We collect around 100 demos for each task and evaluate them
for 15 trials to measure the average success rate.

Experiment. We adopt a similar transfer learning method in the previous section and evaluate the
pre-trained HPT representations under real-world evaluation protocols. We train the policy with
20000 iterations with a batch size of 256 and a learning rate of 5e−6. We defer implementation
details to Appendix Section A.5. Quantitatively in Figure 12, we observe pre-trained policies
attain a better success rate over the No-Trunk and the From-Scratch baselines. In particular, the
From-Scratch baselines in Fill-Water use the state-of-the-art diffusion policy architecture to
illustrate the flexibility of the pre-trained representations. In Figure 11, qualitatively, we observe
better generalization and robustness to varying poses and numbers of granular objects, and varying
camera configurations and lighting conditions with pre-trained HPT.

On Table 3, we perform an ablation study for the Sweep Leftover task. We also compare with R3M
[54], Voltron [35], and VC-1 [49]. We use a finetuned model with the released backbone and weights.
We note that these previous works focus on only pre-training the vision encoders of the policies
with human videos. Finally, we compared with policies that train from scratch (From Scratch)
and policies that do not use proprioception during pre-training (No Prop. Finetuned) and add
in proprioception afterwards. All of our experiments use pre-trained encoders and the trainable
parameters (stem and head) can be as few as 2% of the parameters.

9

Sweep Leftover

Fill Water Scoop Food Time

Time

Time

Switch Insertion Time

Figure 11: Real World Quali-
tative Results. Pre-trained HPT
policies can perform dynamic and
long-horizon contact-rich preci-
sion tasks in pet care and assem-
bly. The policies show robust
and generalized behaviors under
scene changes and disturbances.

Figure 12: Transfer Learning in the Real World. We evaluate the
pre-trained HPTs on four tasks / two embodiments. The average
success rate with standard deviations is computed for 45 trials per
approach. We use the default pre-training setup with HPT-Base for
this experiment. See Section 5.2 for detailed descriptions.

Method Success (%)
From Scratch No Prop. 26.7±3.3
From Scratch 43.3±3.8
R3M [54] 50.0±3.0
Voltron [35] 46.7±3.8
VC-1 [49] 53.3±2.6
No Prop. Finetuned 63.3±2.6
HPT-B Finetuned 70.0±3.0
HPT-XL Finetuned 76.7±3.3

Table 3: Comparison on the Sweep
Leftover. We compare the fine-tuned
HPT models with several baselines in-
cluding vision-only pre-trained models.

6 Conclusion

There is room for improvement for many aspects including the dataset curation and pre-training
objectives. Specifically, the embodiment splits in our balanced dataset mixture are rather simple.
Moreover, careful data filtering to ensure the data quality is under-explored in this work. Also, this
work has focused on supervised learning as the pre-training objective and the data size in tokens
and training compute sizes in FLOPs only reach a moderate scale of LLM training to ensure full
convergence. Although the model architecture and training procedure are modular and independent
of embodiment setups, heterogeneous pre-training can converge slowly. For evaluation, both the
simulation and real-world evaluation tasks are restricted to short-horizon manipulation tasks with a
fixed embodiment, which might limit the benefits of using a higher-capacity model. Furthermore, the
learned policies still do not offer very high reliability on the tested tasks (typically below 90%). See
Appendix §C for some failure modes.

Given the recent surge of scaled data, robot learning is still limited by its generality because of
the heterogeneity, including different embodiments, tasks, and environments where the robots are
operated. To handle the heterogeneity common in robotics, we propose HPT, a modular architecture
and framework to embrace this heterogeneity through pre-training. We explore and scale HPT with
heterogeneous datasets to over 50 available datasets. The learned representation can be transferred
and improve performance in both simulation and the real world, and it shows correlations with
pre-training performance. The code2 is open-source for future research. We hope this perspective
will inspire future work in handling the heterogeneous nature of robotic data for robotic foundation
models.

Acknowledgement. We would like to thank Russ Tedrake for discussions and suggestions, Liane
Xu for helping with real-world experiments, Tianhong Li for helping with cluster experiments, and
Remi Cadene for helping with the LeRobot implementation. We thank MIT Supercloud for providing
computing resources to process training data. This work is supported in part by the Amazon Greater
Boston Tech Initiative and Amazon PO No. 2D-06310236. Toyota Research Institute provided funds
to partially support this work.

2https://github.com/liruiw/HPT and https://github.com/liruiw/lerobot

10

https://github.com/liruiw/HPT
https://github.com/liruiw/lerobot

References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716–23736, 2022.

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–
1828, 2013.

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[4] Rogerio Bonatti, Sai Vemprala, Shuang Ma, Felipe Frujeri, Shuhang Chen, and Ashish Kapoor.
Pact: Perception-action causal transformer for autoregressive robotics pre-training. In 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3621–3627.
IEEE, 2023.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024.

[8] Remi Cadene, Simon Alibert, Alexander Soare, Quentin Gallouedec, Adil Zouitine, and Thomas
Wolf. Lerobot: State-of-the-art machine learning for real-world robotics in pytorch. https:
//github.com/huggingface/lerobot, 2024.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[10] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020.

[11] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa
Sadigh, Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with
spatial reasoning capabilities. arXiv preprint arXiv:2401.12168, 2024.

[12] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758,
2021.

[13] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

[14] Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://robotics-transformer-x.github.io, 2023.

[15] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari,
Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael
Wray. Scaling egocentric vision: The epic-kitchens dataset. In European Conference on
Computer Vision (ECCV), 2018.

11

https://github.com/huggingface/lerobot
https://github.com/huggingface/lerobot
https://robotics-transformer-x.github.io

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[17] Ria Doshi, Homer Walke, Oier Mees, Sudeep Dasari, and Sergey Levine. Scaling cross-
embodied learning: One policy for manipulation, navigation, locomotion and aviation. arXiv
preprint arXiv:2408.11812, 2024.

[18] Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev,
Vaishaal Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large
autoregressive image models. arXiv preprint arXiv:2401.08541, 2024.

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[20] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala,
Armand Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15180–15190, 2023.

[21] Ran Gong, Jiangyong Huang, Yizhou Zhao, Haoran Geng, Xiaofeng Gao, Qingyang Wu, Wensi
Ai, Ziheng Zhou, Demetri Terzopoulos, Song-Chun Zhu, et al. Arnold: A benchmark for
language-grounded task learning with continuous states in realistic 3d scenes. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

[22] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

[23] Siddhant Haldar, Zhuoran Peng, and Lerrel Pinto. Baku: An efficient transformer for multi-task
policy learning. arXiv preprint arXiv:2406.07539, 2024.

[24] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[25] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[27] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[29] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[30] Chip Huyen. Understanding evaluation metrics for language models. The Gradient, 2023.

[31] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,
David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver
io: A general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795,
2021.

12

[32] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[33] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen,
Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: Robot manipulation with
multimodal prompts. 2023.

[34] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[35] Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. arXiv preprint
arXiv:2302.12766, 2023.

[36] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

[37] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[39] FrodoBots Lab. Frodobots-2k dataset. https://huggingface.co/datasets/frodobots/
FrodoBots-2K, 2024. Accessed: 2024-05-27.

[40] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah,
and Lerrel Pinto. Behavior generation with latent actions. arXiv preprint arXiv:2403.03181,
2024.

[41] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[42] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[43] Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation.
arXiv preprint arXiv:2405.05941, 2024.

[44] Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Gosh, Luke
Zettlemoyer, and Armen Aghajanyan. Moma: Efficient early-fusion pre-training with mixture
of modality-aware experts. arXiv preprint arXiv:2407.21770, 2024.

[45] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[46] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

[47] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[48] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch,
Travis Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE
Robotics and Automation Letters, 2023.

13

https://huggingface.co/datasets/frodobots/FrodoBots-2K
https://huggingface.co/datasets/frodobots/FrodoBots-2K

[49] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha
Silwal, Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin
Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the
search for an artificial visual cortex for embodied intelligence? 2023.

[50] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning
from offline human demonstrations for robot manipulation. In Conference on Robot Learning
(CoRL), 2021.

[51] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial
Intelligence Review, 42:275–293, 2014.

[52] Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp
Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis &
insights from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

[53] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang,
Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

[54] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[55] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[56] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Dorsa Sadigh,
Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot policy. https:
//octo-models.github.io, 2023.

[57] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[58] OpenAI. Gpt-4 technical report, 2023.

[59] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[60] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[61] Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg, Trevor Darrell, and Jitendra Malik.
Robot learning with sensorimotor pre-training. In Conference on Robot Learning, pages
683–693. PMLR, 2023.

[62] Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real-world robot learning with masked visual pre-training. In Conference on Robot Learning,
pages 416–426. PMLR, 2023.

[63] Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor
Darrell, Koushil Sreenath, and Jitendra Malik. Humanoid locomotion as next token prediction.
arXiv preprint arXiv:2402.19469, 2024.

[64] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[65] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

14

https://octo-models.github.io
https://octo-models.github.io

[66] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[67] Gautam Salhotra, I-Chun Arthur Liu, Marcus Dominguez-Kuhne, and Gaurav S Sukhatme.
Learning deformable object manipulation from expert demonstrations. IEEE Robotics and
Automation Letters, 7(4):8775–8782, 2022.

[68] Saumya Saxena, Mohit Sharma, and Oliver Kroemer. Multi-resolution sensing for real-time
control with vision-language models. In 2nd Workshop on Language and Robot Learning:
Language as Grounding, 2023.

[69] Lucia Seminara, Strahinja Dosen, Fulvio Mastrogiovanni, Matteo Bianchi, Simon Watt, Philipp
Beckerle, Thrishantha Nanayakkara, Knut Drewing, Alessandro Moscatelli, Roberta L Klatzky,
et al. A hierarchical sensorimotor control framework for human-in-the-loop robotic hands.
Science Robotics, 8(78):eadd5434, 2023.

[70] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, pages
1332–1344. PMLR, 2023.

[71] Rutav Shah, Roberto Martín-Martín, and Yuke Zhu. Mutex: Learning unified policies from
multimodal task specifications. arXiv preprint arXiv:2309.14320, 2023.

[72] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[73] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[74] Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Gupta, Philip M Pham, Zhen Qin, Dara
Bahri, Da-Cheng Juan, and Donald Metzler. Omninet: Omnidirectional representations from
transformers. In International Conference on Machine Learning, pages 10193–10202. PMLR,
2021.

[75] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2024.

[76] DROID Team. Droid: A large-scale in-the-wild robot manipulation dataset. 2024.

[77] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[78] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[79] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18:77–95, 2002.

[80] Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin
Wang, Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large
language models. arXiv preprint arXiv:2310.01361, 2023.

[81] Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox. Goal-auxiliary actor-
critic for 6d robotic grasping with point clouds. In Conference on Robot Learning, pages 70–80.
PMLR, 2022.

[82] Lirui Wang, Kaiqing Zhang, Allan Zhou, Max Simchowitz, and Russ Tedrake. Fleet policy
learning via weight merging and an application to robotic tool-use, 2024.

[83] Lirui Wang, Jialiang Zhao, Yilun Du, Edward Adelson, and Russ Tedrake. Poco: Policy
composition from and for heterogeneous robot learning, 2024.

15

[84] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

[85] Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and
Aravind Rajeswaran. Masked trajectory models for prediction, representation, and control.
arXiv preprint arXiv:2305.02968, 2023.

[86] Manuel Wüthrich, Felix Widmaier, Felix Grimminger, Joel Akpo, Shruti Joshi, Vaibhav Agrawal,
Bilal Hammoud, Majid Khadiv, Miroslav Bogdanovic, Vincent Berenz, et al. Trifinger: An
open-source robot for learning dexterity. arXiv preprint arXiv:2008.03596, 2020.

[87] Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv Shah, Quan Vuong, Chelsea Finn,
Dorsa Sadigh, and Sergey Levine. Pushing the limits of cross-embodiment learning for manipu-
lation and navigation. arXiv preprint arXiv:2402.19432, 2024.

[88] Jonathan Yang, Dorsa Sadigh, and Chelsea Finn. Polybot: Training one policy across robots
while embracing variability. arXiv preprint arXiv:2307.03719, 2023.

[89] Hanrong Ye, De-An Huang, Yao Lu, Zhiding Yu, Wei Ping, Andrew Tao, Jan Kautz, Song Han,
Dan Xu, Pavlo Molchanov, et al. X-vila: Cross-modality alignment for large language model.
arXiv preprint arXiv:2405.19335, 2024.

[90] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

[91] Jialiang Zhao, Yuxiang Ma, Lirui Wang, and Edward H Adelson. Transferable tactile transform-
ers for representation learning across diverse sensors and tasks. arXiv preprint arXiv:2406.13640,
2024.

[92] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

16

A Implementation Details

Experiment Details. We conduct pre-training experiments across several orders of magnitudes
in computes and data. The number of trajectories and transitions in the dataset is limited by the
maximum number of trajectories in each of the constituent datasets. We use maximum episode counts
per dataset ranging from 10 trajectories to 100000 trajectories, and the total trajectories range from
around 300 trajectories and 6000 transitions to around 300k trajectories and 5 million data points.
When training with 80k iterations, the approximate training epochs with fixed batch size 512 range
from 200 epochs to 2 epochs. In terms of tokens, our experiment model ranges from 0.5 million to 1
billion parameters, the dataset tokens from all modalities range from approximately 32 million tokens
to 5 billion tokens, and the tokens in a batch range from 0.03 million tokens to 2 million tokens
(including sequence length). The compute FLOPs range from 0.03GFlops to 31GFlops. See Table 5
for more details of the scale and see Figure 13 for example lists of dataset mixtures. To facilitate
future research, we will open-source the data processing scripts.

Different from previous work [56, 87], we use minimal amounts of processing and cleaning of the
observation and actions in the raw trajectories. Specifically, the default training setup is to train 80000
iterations with a batch size 256, which is around 0.65B tokens in the latent space that feeds into HPTs
and around 5B tokens in the perception token spaces of the raw perception inputs (such as image
patches). Due to resource limits, for some bigger datasets such as Droid [76], we did not process the
full size.

A.1 Dataset Details

Real Robot Teleoperation Dataset. In total, we use a subset of 42 datasets in the Open-X Em-
bodiment dataset [14], including the recent Droid [76] dataset. These public datasets have high
heterogeneity including distinct embodiment, environments to operate on, tasks to solve, etc.

Simulation Dataset. For the additional 7 simulation dataset, we use the simulator benchmarks across
all popular simulators Drake [82], Mujoco [90, 50], Isaac Sim [21], and PyBullet [81], as well as
Sapien [53] and Flex [67], with image inputs and expert demonstrations. These are used as additional
training data from the simulation domains.

Human Video Dataset. Since the human datasets do not contain proprioception and action informa-
tion, we use hand poses and 2D positions in the image space as surrogates for the supervised learning
objectives. In the PoCo [83] dataset, we use 3D positions of the hand and use 6-Dof poses extracted
by ICP as actions, and for EPIC-Kitchen [15], we use normalized 2D centers of the detection box as
proprioceptions and the difference to the next frame as actions. We use in total of 2000 trajectories of
video clips from EPIC kitchen with a maximum trajectory length of 500.

Deployed Robot Dataset. To further increase the heterogeneity in the pre-training dataset, we
consider FrodoBot-2k [39] dataset that involves plays of driving robots in the wild for gaming.
This dataset is composed of deployed mobile robots in the wild. We use the front camera for this
dataset. The action space of this robot is parametrized by linear and angular velocity actions and the
proprioception space includes measurements from the IMU. We use a total of 150 trajectories and
each trajectory contains more than 500 steps.

See Figure 13 for visualization of some examples of heterogeneous dataset compositions. In practice
when training on the mixture of these datasets, users can define customized sampling weights or
apply stratified sampling methods. For generality, in this work, we use a balanced weight sampling
method, commonly used in multitask learning. For these datasets, we process the visual features
separately and save them on the disks.

A.2 Network Details

Stem. For vision inputs, we resize each image to the standard square size (224x224) before feeding
into a ResNet18 [26] into a 7x7 vision modality token. These tokens are specifically the features
before the final global pooling. If multiple views are available, we create individual projector MLP
for each image view and then concatenate the vision tokens. For the vision encoders. In Figure 18,
We have experimented with multiple vision encoders such as MAE ViT base [24], Dino V2[59], and
CLIP ViT Base [60]. We choose ResNet and the default image size for their simplicity and common

17

28 Datasets
10000 Episode Max

15 Datasets
1000 Episode Max

28 Datasets
1000 Episode Max

Trajectory Episode Step Sample Weight

Human Video
Simulation

Grouped Sample Weight

Droid + RT-X Droid

RT-X

Human Video

Simulation

5 Datasets
1000 Episode Max

50 Datasets
100000 Episode Max

Figure 13: Large-scale Dataset Heterogeneity in Robotics. We show different dataset mixtures at increasing
scales (top row) across trajectory counts, dataset sample counts, and sampling weights (bottom row). We also
show illustrations of the different embodiments including real robots, simulations, and human videos. By default,
during training, we use a uniform distribution to sample from each of the embodiment datasets.

usage in policy learning. The investigation of more complex fusion and processing for vision features
is left to future works.

When language is used, we use T5 [64] to encode trajectory-level language modality tokens. Rather
than using raw data and computing the tokens each time, these tokens are processed offline and saved
as datasets before training.

For low-dimensional inputs such as proprioceptions and actions, we first flatten these vectors and then
apply normalization to each dimension, as a single token. We have also experimented with increasing
the dimensions of these modalities by adding sinusoidal position embeddings. For multiple steps
in the observation horizon, we concatenate the sequence for each modality separately. At inference
time, these tokens are forwarded once and cached to avoid multiple calculations.

We apply cross attention (with sinusoidal position encodings) and a shallow MLP projector [42, 46]
within the stem to map different various sequences of tokens into a fixed number of tokens for that
modality. The cross-attention layer has 8 heads and 64 hidden dimensions per head. We map the
modality tokens into 16 tokens, 16 tokens, and 8 tokens respectively for image, proprioception, and
language.

Trunk. The trunk is parametrized by a decoder-only transformer architecture with embedding
dimension h that we ablate from 64 to 2048, and with block numbers ranging from 16 to 80. Note
that the number of parameters for the trunk scales quadratically with the dimension size and linearly
with the number of layers. The trunk also supports loading from existing large language models.
Refer to Table. 1 for more details on model sizes.

The code is modularized so that the trunk training and transfer are independent of the encoder
architecture or pre-trained weights of the stem, which can be ImageNet pre-trained ResNet [26],
R3M [54], Voltron [35], Dino v2 [59], etc, and can be fintuned during transfer learning. It is also
independent of the head, which can be diffusion policies, MLP, or transformer.

Head. For the head architecture, we normalize the action spaces of each embodiment dataset to be
between -1 and 1 element-wise, based on the dataset statistics, such that the output scale of the heads
and the loss and gradients remain at similar scales. Since action trajectories and observation history
can often help with the robotic problem, we pick a fixed action horizon (length 8) and observation
horizon (length 4) for each embodiment. We then apply random masking along the time dimensions
for each batch during training to be suitable for downstream tasks with different horizons.

18

Dataset Trajectory Trajectory % Sample Sample %
Austin Sailor Dataset 205 0.09% 290167 1.85%
Stanford Hydra Dataset 487 0.22% 300217 1.92%
Austin Buds Dataset 42 0.02% 27894 0.18%
Austin Sirius Dataset 478 0.21% 235175 1.50%
Berkeley MVP 410 0.18% 34039 0.22%
Berkeley RPT 776 0.35% 326504 2.08%
IAMLAb CMU Pickup Insert 539 0.24% 118055 0.75%
UT Austin Mutex 1283 0.57% 295042 1.88%
Imperial College Sawyer Wrist Cam 145 0.06% 4519 0.03%
Stanford Mask VIT 7788 3.49% 155760 0.99%
Language Table 29554 13.24% 175855 1.12%
Kuka 15903 7.13% 73158 0.47%
BC-Z 4365 1.96% 559009 3.57%
Robo Net 47127 21.12% 895413 5.72%
DLR Sara Pour 171 0.08% 19462 0.12%
Stanford Robocook 2103 0.94% 73493 0.47%
CMU Play Fusion 492 0.22% 192988 1.23%
Bridge 21768 9.75% 500331 3.19%
Furniture Bench Dataset 2763 1.24% 2424703 15.48%
UCSD Pick And Place Dataset 1158 0.52% 45162 0.29%
USC Cloth Sim 684 0.31% 60876 0.39%
Stanford Kuka Multimodal Dataset 2565 1.15% 100021 0.64%
Roboturk 1535 0.69% 127523 0.81%
KAIST Nonprehensile 171 0.08% 25478 0.16%
ASU Table Top 94 0.04% 22029 0.14%
UTokyo Xarm Pick And Place 78 0.03% 4860 0.03%
Berkeley Cable Routing 1266 0.57% 19328 0.12%
Droid 29437 13.19% 2800000 17.88%
UIUC D3Field 164 0.07% 9803 0.06%
Robo Set 15603 6.99% 1042887 6.66%
QUT Dexterous Manipulation 171 0.08% 150698 0.96%
NYU Door Opening Surprising Effectiveness 372 0.17% 11418 0.07%
NYU Franka Play Dataset 311 0.14% 25536 0.16%
Mimic Play 323 0.14% 303738 1.94%
ManiSkill Dataset 21346 9.57% 2969893 18.96%
Columbia CairLab Pusht Real 103 0.05% 20375 0.13%
Conq Hose Manipulation 96 0.04% 4078 0.03%
DLR EDAN Shared Control 88 0.04% 6698 0.04%
Berkeley GNM SAC Son 2526 1.13% 183078 1.17%
Berkeley Autolab UR5 766 0.34% 66425 0.42%
Aloha Mobile 236 0.11% 401754 2.57%
Agent Aware Affordances 101 0.05% 127403 0.81%
Epic Kitchen 58 0.03% 173012 1.10%
PoCo Hammer 220 0.10% 12517 0.08%
PoCo Spatula 142 0.06% 7517 0.05%
Drake Tooluse 925 0.41% 16650 0.11%
PyBullet Grasping Image 1788 0.80% 51852 0.33%
MuJoCo MetaWorld 741 0.33% 34725 0.22%
MuJoCo RoboMimic 180 0.08% 6735 0.04%
Isaac Arnold Image 3214 1.44% 16070 0.10%
PyBullet TriFinger 147 0.07% 89383 0.57%
MuJoCo Adroit 90 0.04% 8010 0.05%
FrodoBot 60 0.03% 12891 0.08%

Table 4: Detailed Dataset Mixture. We include the detailed number of trajectories and the number of dataset
samples in the training mixture. These include 41 dataset from Open-X [14], 7 datasets from simulation, 3
datasets from human video, and 1 from in-the-wild deployed dataset.

We support various types of policy heads in the network architectures such as standard MLP, trans-
former decoder, and diffusion policy. For the MLP head, we pooled the trunk feature (e.g. averaging)
and then applied a 3-layer MLP. For the transformer decoder, we concatenate learnable tokens to the
tokens before feeding into the trunk and use 1D convolution layer on these output tokens to regress
actions. For diffusion policy in real world experiments, we use a diffusion head and train with DDPM
[28]. Finally, the actions are unnormalized based on dataset statistics and Huber losses are applied
for regression. The reason behind Huber loss is to balance between the “difficult frame” in robot
trajectories and the easy but lengthy part of the trajectories.

As discussed, HPT is a meta-level architecture where the stem, trunk, and head code are modular
and each supports various architectural changes with pre-trained weights. The inference time, which
includes all the pre-processing and encoder time, on the local computer with an old NVIDIA RTX
3070 GPU is 39Hz for HPT-base and 33Hz for HPT-xlarge. A modern GPU such as A100 will likely
improve the speed by 3-4 times.

A.3 Pre-training Experiment Details.

We train HPT with AdamW [47] optimizer with a weight decay ratio 0.05, and a base learning rate
of 0.0002 with a cosine learning rate schedule with warmups and dropouts. We apply proportional
scaling of the base learning rate depending on the batch size. To support various horizons during

19

Figure 14: Flexible Head Architectures in HPT. We highlight that our HPT architecture is a meta-level
architecture for policy learning, and it can work with various head architectures. The important takeaway is the
scalable transformer architecture in the middle of the policy to absorb the diverse data and provide tokens for
these policy heads to regress on the action outputs.

Method Dataset Trajectories Model Size Heterogeneous Proprioception
RT-1 [6] 1 0.1M 16M ×
RT-2X [14] 12 - 55B ×
Octo [56] 25 0.8M 93M ×
OpenVLA [36] 25 1M 7B ×
HPT 52 0.2M 1.1B ✓

Table 5: Experiment Statistics. By leveraging heterogeneous datasets, the embodiment diversity in data
and training scales reaches across several orders. Note that the training flops and the number of tokens are
approximated from a single iteration and the model size only counts the trunk parameters (stem and head only
have a small active parameter count. HPT is also provided with multiple open-source implementations and
extensive simulation evaluation tasks across 6 different benchmarks.

transfer learning, we apply random masking along the time dimensions for each batch during training.
Since action trajectories can have imbalanced losses along prediction horizons, we use Huber loss
with δ = 0.1 (empirically found). We found the pre-training stage to be stable across various
hyperparameters in learning rate schedules and optimizers, and the choice of the validation dataset.
The code is open-sourced and the pre-released model can be downloaded easily from Huggingface.

In practice, since training losses can vary across different datasets and our goal is to perform well
on all embodiments and tasks, we apply a weighted sampling procedure for data loading. For every
training iteration, we sample a dataset with inverse probabilities based on an exponential of its dataset
size as a temperature. Specifically, we compute the squared root of each dataset size and sum these
sizes to compute a normalization constant. For each batch item, we then sample from these dataset
with the corresponding probability. This prevents large datasets from dominating a full training epoch,
which is a common practice in multitask learning.

Note that the stem and head for each embodiment are updated in different frequencies than the
trunk, similar to a mixture-of-expert [72] training procedure. Especially under distributed training
settings, each stem and head is trained with data from a particular embodiment and tasks, and the
trunk will accumulate gradients from all batches from training workers. The compute resources for
these pre-training experiments range from 8 V-100s to 128 V-100s and the training time spans from
half a day to 1 month. The total dataset disk size is around 10Tb and the RAM memory requirement
is below 50Gb. See Table 5 for summary details of the experiment.

A.4 Simulation Experiment Details

For simulation benchmarks, we use the released datasets as the expert demonstrations [90, 82, 13].
In summary, Metaworld [90] uses wrist camera view, and Robomimic [50] as well as Simpler [43]
uses third-person view, with their own proprioception definitions by the dataset. Fleet-Tools [82]
uses both views as inputs and uses the end effector poses as the proprioception inputs. We encode
the image using pre-trained frozen ResNet features and normalize the proprioception inputs before
passing them into the stem. We train single-task policies for all these simulation benchmarks except
for Metaworld.

For the Simpler [43] benchmark, we focus on the Close-Drawer, Move Near, and Pick Coke Can
task and Google EDR embodiment with a visual matching setting. We test 9 different initializations
with a total of 218 episodes. Note that the simulation tasks have a focus on language conditioning
and do not expose proprioception inputs, which is not the most suitable testbed for HPT. To address

20

(a) (b) (c)

Figure 15: Additional Architectural Ablation. (a) We found that architecture changes on HPT-Base such
as adding previous actions as inputs, multiview as inputs, and language input can help with HPT pre-training
performance. (b,c) We ablate other policy head architectures such as discrete classification heads as well as
action token heads by scaling along the number of trajectories. The experiment is conducted under the default
setting with HPT-Base, fixed 27 datasets with 1000 max trajectories in each dataset.

these issues, we finetune HPT on the RTX supervised datasets with 79 trajectories as other simulation
benchmarks. We use HPT-base as the backbone for this experiment.

By default, we train with 20000 iterations with batch size 512 and small learning rate 1e−5. The
image and state stem are one-layer MLP with hidden dimension 128 and the head is two-layer MLP.
We only use an observation window of length 1 and MLP as the policy head. Each training dataset
uses from 10-100 trajectories per task and each test covers 50 episodes with different initial conditions.
Each trajectory in the simulation has a slight difference in scene initialization. To reduce the variance,
we conduct independent training runs 5 times, and the average for each baseline. In Figure 9, we
show illustrations of some simulation tasks we evaluated.

A.5 Real-World Experiment Details

Task Definition. We experiment with robotic tool-use tasks Sweep Leftover, Fill Water,
Scoop Food and Switch Insertion across two different robot setups. While for both setups, we
use Franka Panda as the robot, we note that the sensor locations as well as the action spaces are
drastically different. We collect approximately 100 demos for each task and evaluate each task for 15
trials to measure the average success rate.

During evaluation, a human supervises the robot at all times. An evaluation episode can be termi-
nated due to safety concerns, robot faults, timeout, etc. An episode is considered successful if it
accomplishes the task. In the Fill Water task, the success score of 1 means some water is poured
into the bowl. In the Sweep Leftover tasks, a success score of 1 means all the piles are pushed
into the plate, and a success score of 0.5 means some piles are pushed into the plate. In the Scoop
Food task, a success score of 1 means some dog food is scooped and all is poured into the bowl and a
score of 0.5 means some food is scooped. In the Switch Insertion task [91], a success score of
1 means the switch is precisely inserted into the three pins on the PCB board. The robot moves to
a pre-defined pose before it attempts the insertion. We pick these challenging tasks as they require
contact-rich interactions with tools and granular objects, and they require high-precision as well as
dense contacts. We make sure the initial conditions of the robots are the same. Due to the complexity
of these tasks and human errors, the initial conditions of the object setups are not exactly the same.

Transfer Learning. For the policy head in the real-world experiments, we have experimented with
both MLPs and diffusion policies [13]. Fine-tuning only has active parameters of no more than 3Mb,
compared to much bigger models (e.g. 100M) often used for a single task in other works. We use an
observation history window of 2 with a small learning rate 2e−5. We train with batch size 256 on a
single NVIDIA RTX 2080Ti GPU for 20000 iterations (around 4 hours of wall time).

B Additional Experiments

In this section, we present some additional experiments and ablation studies.

B.1 Additional Simulation Experiments

Based on the training curves of the four baselines in Figure 16 (a), we observe that leveraging
a pre-trained HPT representation can often achieve a lower validation loss curve (lower) during
fine-tuning.

21

Fleet-Tools MetaWorldRobomimic

Figure 16: Transfer Learning Objective. We run transfer learning across several simulator benchmarks
[82, 50, 90]. We compare the validation loss curves of several baselines with and without pre-trained HPT trunks.
The pre-trained trunks are trained from the Default Settings.

Real Robot Dataset
Transfer Learning Loss Curve

Aloha-Transfer

PushT-Keypoint Aloha Dataset Sample Efficiency

Figure 17: Simulation Task Performance compared with Single-Task Policy in LeRobot Implementation.
We do evaluation in a different implementation in unseen simulation benchmarks. Left) we show that an
improvement in performance can be achieved with pre-trained HPT trunks and outperforms single-task state-of-
the-art architectures. We note that HPT trunks have not been pre-trained with diffusion heads and transformer
decoder heads. Middle) we show the sample efficiency ablation study for HPT-Base. Right) We show model size
ablation study in loss curves.

In Figure 10 (a), we run HPT on the Simpler [43] Benchmark, which allows for comparing with
Octo [56], RT1-X, and RT2-X [14] on a high-fidelity simulation. We focus on three different tasks
Close Drawer, Move Near, and Pick Coke Can in the Google EDR embodiment. For each task,
we test several different initializations with a total of over 300 episodes for all tasks. Note that the
pre-training corpus of HPT-S does not include [6], and simulation tasks have a focus on language
conditioning and do not expose proprioception inputs, which is not suitable for HPT. To address these
issues, we generate training data using the RT-1[6] as the expert, and finetune HPT on the RT-1X
supervised datasets with around 50 trajectories and the simulation protocol. We use HPT-base with
language tokenizers as the backbone for this experiment. We use the results from the paper [43].

Additionally, under the LeRobot [8] implementation, we compare HPT with state-of-the-art single-
task policy architecture such as Diffusion Policy [13] and ACT [92]. In particular, we inherit a simple
version of these complex policies as the head architectures (Figure 14). We run full training runs with
50 evaluation trials every 20000 training steps, and use the maximum task success rates during the
100000 training steps for comparisons. In Figure 17, we compare HPT with DP on the PushT task
with keypoint representations using the diffusion head and achieve similar success rates at 78%. We
also compare with ACT on the Aloha Transfer Box task with the image representations using the
transformer decoder head and achieve similar success rates at 60%. This showcases the flexibility
of HPT architecture to work with state-of-the-art policy architectures for high-frequency control in
fine-grained tasks. Moreover, in the experiment with 50 episodes in total and HPT-base, we observe
an improvement in sample efficiency with pre-trained models. We also see improvement in transfer
learning loss with pre-trained models at increasing scales.

In Figure 10 (b), we ablate on the number of visual and proprioceptive tokens in the simulation
transfer learning experiments. We observe that missing either information hurts the performance of
the downstream policies. See Section A.4 for more implementation and experiment details.

B.2 Ablation Study on the Stem

In this experiment, we fix the number of datasets (27) in Open-X datasets and use a maximum
of 1000 trajectories for each dataset. We consider several ablations on the stem part of the HPTs.

22

(a) (b) (c)

Figure 18: Ablation Study on HPT Stem. We ablate the pre-training performance for (a) proprioception,
(b) vision stems, and (c) vision encoders. Setting: HPT-S, batch 256, iterations 80000, 27 datasets with a
maximum of 1000 trajectories for each dataset.

(a) Test Initial Conditions (b) Failure Cases

Figure 19: (a) Initial Condition Overlay. We visualize different rollout initial conditions during test times.
(b) Failure Cases of the Learned Policy in the Real World. The robot sometimes has issues executing very
precise manipulation.

Specifically, in Figure 18 (a, b), we observe an increase in validation losses when not using either
the proprioception information or the vision. Intuitively, not using such proprioception or vision
information would make learning action predictions from heterogeneous datasets very challenging.
This also implies that both information are critical for policy pre-training at scale.

We also conduct an ablation experiment over vision backbones on a smaller subset of the training
datasets among several popular vision encoders such as ViT-base [24] and DiNO [59] (Figure
18). Further ablating on input image resolution or joint finetuning of the vision backbone on the
downstream task success rates will be interesting future work. Although the default implementation
focuses on single-view visual information, the stem can naturally extend to multiple views and other
modalities such as languages and action history.

B.3 Pre-training Ablation Study

In Figure 15, we conduct several ablations to pre-train the HPTs, such as using multiple views to
provide 3D information implicitly, using languages for task guidance, and using previous action
trajectories as additional ablations. We found these ablations to improve over the default HPT setting
with a single view and vision and proprioceptive inputs. These ablations are more pronounced in
certain datasets such as multiple views for insertion [68], and language modality for Language Table
[48]. Using previous action trajectories is helpful in providing additional context and embodiment
information as well. We believe that integrating multiple modalities and investigating how to handle
missing modalities is an exciting future direction. We leave the exploration of these ablations to
future work.

From the architecture perspective, we also ablate over the token sizes and observation history
and do not find a big effect on the averaged validation loss. We hypothesize there is a trade-off
between the information given to the policy and the desired generalization. In Figure 15(b,c), we
have also experimented with a discretized version [6] of the policy head and architecture that uses
additionally learned position encodings as action tokens for transformer, with conv1D head for action
regression. We opt for regression on continuous values for its generality. An initial investigation of
the attention map of the transformer blocks shows that there is a dense attention weight attributed to
the proprioception and vision tokens.

23

C Failure Cases

In Figure 19, we show some failure cases of the learned HPT policies in the real world. One of the
common issues is overshooting or undershooting. For example, the policies tend to pour the water
before it reaches the mug or pour the dog food a bit in front of the bowl. These issues could be
due to the spatial precision of the policies and due to the data qualities failing to uncover the causal
relationships. More targeted data recollection and better finetuning of the vision encoders might help
address these issues.

D Discussion and Future Directions

We first discuss the metric used for measuring pre-training performance, or intrinsic evaluation.
Validation (or training) loss is a common metric to evaluate the progress of large-scale pre-training
[34]. It is based on the goal of training a generalist model, where even fitting all the data can be a
challenge [58], as opposed to training a specialist model where overfitting is often appreciated. This
is also considered a step towards more scientifically studying pre-training and scaling behavior in
robotics [30]. Previously, people often rely on a single binary metric for evaluating task success rates
in the real world, with only some amount of test trials.

Admittedly, there are several caveats to this metric. From the evaluation perspective, the averaged
validation loss depends on the overall multitask losses of all datasets. For example, increasing the
number of trajectories in one dataset might lower validation loss on the associated dataset, but may
not lead to an overall loss decrease. In practice, the exact subset for evaluation and the number of
training steps in each dataset also play a role in the averaged validation loss metric. For example,
when evaluating whether additional datasets to the default setting contribute to the representation
learning, selecting the default datasets allows us to compare on the same metric. But these datasets
are inevitably trained less, if we fix the number of total training iterations. Moreover, the validation
loss during pre-training and the downstream policy learning performance have an evaluation gap due
to task differences, and downstream policy learning and task execution have another evaluation gap
due to closed-loop execution.

Given the recent surge of scaled data, robot learning is still limited by its generality because of
the heterogeneity, including different embodiments, tasks, and environments where the robots are
operated. We propose HPT, a novel architecture and framework to embrace this heterogeneity through
pre-training. We align proprioception and vision information of different embodiments through a
modular stem, a shared scalable transformer trunk, and task-specific heads to actions. We explore
and scale HPT with heterogeneous datasets to over 50 available datasets. The learned representation
can be transferred and improved performance in both simulation and the real world. We hope this
perspective will inspire future work in handling the heterogeneous nature of robotic data.

Since fine-tuning is still required for robotics generalist models, future research directions include
exploring different algorithms including network architectures that incorporate embodiment-specific
structures, such as URDF, into network architecture as well as tokenization. One can also explore
training objectives beyond supervised learning. As we move towards scaling robot pre-training, more
high-quality diverse datasets with clear annotations would be crucial, including teleoperation data,
simulation data, human videos, and deployed robot data. Understanding what kinds of mixture will
contribute to better representations is interesting future work.

Due to the complexity of real-world evaluation, large-scale unified simulation benchmarks with
varying dexterity and generalization challenges would be very crucial to consistently compare among
different models. For real-world policy performance, we believe that extending to longer-horizon fine
manipulations with a bimanual or mobile setup would be interesting future works.

Future works can also study and extend scaling laws in policy learning, and explore representations
from heterogeneous data in other domains beyond robotic policy learning. Finally, leveraging more
modalities and domains in robotics such as 3D point clouds, tactile data, simulation domains, and
human data, etc, is worth investigating.

24

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we make the relevant claims on heteroge-
neous pre-training, scaling behaviors, and transfer learning experiments as backed by our
experiment sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

25

Justification: In Section 6, we discuss the limitations and potential future work of this
project.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical results associated with this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details are disclosed to full extent in the appendix. The
code are also open-source for checking experiments relevant to the main results.
Guidelines:

26

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open-source the code with detailed instructions to reproduce the main
experimental results. The data can be generated on the fly as they come from online public
datasets in Figure 13.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section §4 and Section §A, we discuss all the relevant training and test
detials, including dataset splits, training hyperparameters, type of optimizers. We will also
open-source our code to follow open research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Most training curve experiments (measured with validation losses) in Figure 8,
6, 5,7 are relatively stable with statistical significance. For simulation experiments in Figure
16 with task successes as the metric, we run experiments and average across 5 trials, which
results in stable and small variances. For real world task performance experiments in Figure
11 and 12 and 3, we report the standard errors across different trials for each model for each
task.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

28

Answer: [Yes]
Justification: In Section A.3, we discuss the compute resources, including workers, memory,
time of execution for experiments in this work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The code of ethics is strongly followed in this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The project focuses on pre-training from heterogeneous robotic data. There is
no direct societal impacts associated with it.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

29

https://neurips.cc/public/EthicsGuidelines

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We released a series of robotic models that are trained on action data and
output action data. The data all have public licenses and do no contain any sensitive or risky
information.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] The released code, data, and models are under MIT license.

Justification: The code and models are free to use by most audience for the purpose of
advancing the field.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] The new released models and codebases are well documented for the released
version.

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

30

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This project does not include crowdsourcing experiments with human subjects.
The involved human video datasets are directly used from the dataset. The robot teleoperation
is conducted by the authors.
Guidelines: [NA]

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: There is no human subjects with crowsourcing experiments in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Related Works
	Heterogenoues Pre-trained Transformers (HPT)
	Network Architecture
	Training Objective
	Transfer Learning

	Experiments on Pre-training
	Protocol
	Scaling Behaviors
	Pre-training on Synthetic Data and Internet Human Videos

	Experiments on Transfer Learning
	Transfer to Embodiments in Simulations
	Transfer to Embodiments in the Real World

	Conclusion
	Implementation Details
	Dataset Details
	Network Details
	Pre-training Experiment Details.
	Simulation Experiment Details
	Real-World Experiment Details

	Additional Experiments
	Additional Simulation Experiments
	Ablation Study on the Stem
	Pre-training Ablation Study

	Failure Cases
	Discussion and Future Directions

