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Abstract
This work investigates a human-inspired sequen-
tial fine-tuning (SeqFT) method to improve the
performance of resource-constrained large lan-
guage models (LLMs) on math word problems.
Instead of training on the entire dataset simul-
taneously, models are exposed to progressively
harder tasks level by level, while earlier data is pe-
riodically reintroduced to mitigate catastrophic
forgetting. In addition, a strategy called Pro-
gressive LoRA Rank Shrinking (PLRS) is pro-
posed, which progressively reduces the LoRA
rank at each stage to prevent the overwriting of
parameters learned in earlier levels. Evaluations
on the MATH dataset demonstrate that this ap-
proach consistently outperforms both parameter-
efficient fine-tuning and naive multi-level train-
ing, yielding up to a 2%-7% improvement in
exact match accuracy. The study presents the
effect of (1) repeated data exposure, (2) difficulty-
based task ordering via SeqFT, and (3) PLRS. An
analysis of problem-solving trajectories further
reveals that PLRS facilitates retention of earlier
skills in a multi-stage setup. These findings sug-
gest that, beyond conventional data augmentation,
carefully designed training schedules can signifi-
cantly enhance math problem-solving capabilities
in LLMs.

1. Introduction
Recent LLMs excel at a range of tasks, from text genera-
tion to code completion. Yet mathematical problem solving
remains challenging, especially when smaller or resource-
constrained models are used. Typical approaches for im-
proving math performance center on data augmentation
e.g., generating synthetic examples (Lu et al., 2024; Li et al.,
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2024) or applying specialized tool integrations to offload
symbolic manipulation (Das et al., 2024; Gou et al., 2024).

Problem statement : How can we systematically train a
resource constrained LLM to handle multi-level math tasks
without relying on large-scale data augmentation? We turn
to SeqFT, reminiscent of how humans are taught math:
starting with basic tasks and progressively adding advanced
ones. The challenge, however, is catastrophic forgetting: a
model that masters Level 1 tasks might forget them after
exposure to Level 2 or 3. To counteract this, we re-expose
earlier data i.e., presenting Level 1 tasks together with Level
2 tasks, and so on. Yet, we observe that simply replaying
old tasks can harm performance if not paired with a suitable
adaptation strategy.

This work also leverages findings that LoRA adapters can
incrementally update a model with less forgetting (Biderman
et al., 2024). We push this further by shrinking LoRA rank
at each stage, hypothesizing that smaller-rank adapters at
higher difficulty levels help the model preserve earlier skills
while still adding specialized parameters for advanced tasks.

Our main contributions:

• This work introduces SeqFT + PLRS, a three-
component recipe: staged curriculum, selective replay,
and rank-shrinking adapters.

• The method demonstrates positive backward transfer:
the best variant lifts Level-1 accuracy from 42 % to 53
% after learning harder material, rather than merely
preserving it.

• The approach delivers 2%–7% absolute Exact match
(EM) gains on four open-source backbones (0.5B – 3B)
without increasing base-model parameters.

• A fine-grained error-trajectory analysis is provided, in-
cluding (lost / recovered / newly-solved) buckets show-
ing how replay and PLRS interact to reduce forgetting
while unlocking new successes.

Extensive ablations isolate the effect of (a) replay, and (b)
progressive rank shrinking, revealing that only their synergy
yields the final 20.32 % EM over direct fine-tuning.
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2. Related Work
Research on enhancing large language models for robust
mathematical reasoning spans multiple directions, from data
augmentation and tool integration to curriculum-style con-
tinual learning and novel evaluation benchmarks. In this
section, we outline key strategies explored in recent work:

Data Augmentation and Supervised Fine-Tuning. A
prevalent strategy is to gather or synthesize more math-
specific training data. Foundational datasets like MATH
(Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021)
have established strong baselines, but many follow-up works
focus on expanding these corpora to fill reasoning gaps.
Methods such as question back-translation (Lu et al., 2024),
query augmentation (Li et al., 2024), or multi-source in-
struction tuning (Yue et al., 2023) often boost final accuracy
by supplying more diverse examples. (Tang et al., 2024)
explore concept graph extraction and topic generation, (You
et al., 2024) emphasize reorganization and rephrasing of
existing items.

Instruction Tuning and Chain-of-Thought Prompts In-
struction tuning aligns language models with more helpful
objectives by structuring tasks as explicit instructions (Long-
pre et al., 2023; Chung et al., 2024; Wang et al., 2022). In
practice, many math-focused methods incorporate chain-of-
thought prompts (Wei et al., 2022) by requesting models to
show their intermediate reasoning steps. In our work, we fol-
low this style of prompt design: at training time, we instruct
the model to solve the following problem and show all in-
termediate steps. (See Appendix Figures 3 and 4 for the
full prompt templates.) Moreover, having the final solution
enclosed in box simplifies exact-match evaluation, as we
can reliably extract the model’s final numeric or symbolic
answer for scoring.

Tool Integration and Verification Mechanisms. Another
branch of work moves beyond pure language modeling by
connecting LLMs with external solvers or verification mod-
ules. Techniques introduced by (Das et al., 2024) and (Gou
et al., 2024) integrate symbolic calculators or structured
reasoning frameworks, enabling models to offload complex
manipulations to specialized systems. This can yield higher
accuracy and more interpretable solution steps. While these
approaches leverage additional tooling, our study remains fo-
cused on rearranging existing data within a purely language-
based pipeline.

3. Background
3.1. The MATH Dataset

All experiments are based on the MATH dataset (Hendrycks
et al., 2021), which categorizes problems into difficulty Lev-

Table 1. Train and Test Data Distribution Across Levels

LEVEL TRAIN COUNT TEST COUNT

LEVEL 1 564 437
LEVEL 2 1348 894
LEVEL 3 1592 1131
LEVEL 4 1690 1214
LEVEL 5 2304 1324
TOTAL 7498 5000

els 1- 5, refer Table - 1 for data distribution. The dataset has
encoded a problem’s difficulty level from ‘1’ to ‘5,’ follow-
ing Art of Problem Solving. A subject’s easiest problems for
humans are assigned a difficulty level of ‘1,’ and a subject’s
hardest problems are assigned a difficulty level of ‘5.’ Our
Sequential approach exploits this labeling by training from
lowest to highest level, step by step. The dataset’s strong
difficulty gradient makes it an ideal testbed for analyzing
structured fine-tuning schedules.

3.2. Challenges and Techniques in SeqFT

Catastrophic forgetting: In a multi-level setting (where
an LLM is fine-tuned multiple times sequentially), focusing
on advanced tasks can overshadow the simpler fundamen-
tals from previous levels. This phenomenon, known as
catastrophic forgetting, has been extensively studied in the
continual learning literature. Instruction tuning effectively
optimizes LLMs for downstream tasks, but in evolving real-
world scenarios, continual adaptation is necessary and with-
out proper mitigation, this leads to forgetting. Prior work
has shown that sequentially learning multiple skills in LLMs
leads to degradation of earlier abilities (Dong et al., 2024).

Considering the computational burden of large-scale fine-
tuning, replay-based continual learning strategies are among
the most effective and widely adopted solutions (Wang et al.,
2024). Recent works like SSR (Self-Synthesized Rehearsal)
(Huang et al., 2024) further validate that LLMs suffer from
forgetting.

In our case, the model is not switching to a completely new
task but it is solving the same task (math word problems)
with increasing difficulty. This progressive setup creates
a unique challenge: the model may forget earlier, simpler
skills as it focuses on mastering more complex reasoning.
As we empirically demonstrate in Table 4, exact-match ac-
curacy on Level 1 problems drops significantly after training
on higher levels, clearly highlighting this forgetting effect
even within a single domain.

LoRA and Adapter Shrinking: LoRA (Hu et al., 2021)
addresses the efficiency of fine-tuning by updating only
a small subset of parameters through low-rank adapters
inserted into attention and feed-forward modules. While
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LoRA can reduce catastrophic forgetting by avoiding full-
parameter overwrite, training across multiple rounds using
a static LoRA rank still risks overshadowing earlier learned
representations.

We propose Progressive LoRA Rank Shrinking (PLRS): re-
duce the LoRA rank at each subsequent stage, allowing the
model to ”lock in” earlier knowledge in high-rank adapters
while assigning smaller, focused capacity to later stages.
This mitigates interference, preserves earlier skills, and en-
sures better retention throughout the sequential training pro-
cess.

4. Sequential Fine Tuning Method

Algorithm 1 Sequential Fine-Tuning Algorithm

Require: Pretrained model M , difficulty levels L1 <
L2 < · · · < Ln, dataset D sorted by difficulty, LoRA
configurations {R1, R2, . . . , Rn}
Initialize M with LoRA(R1)
for i = 1 to n do
Di ← {x ∈ D | difficulty(x) ≤ Li}
if i > 1 then
Dreplay ← sample(D1...i−1)
Di ← Di ∪Dreplay

Update M with LoRA(Ri)
end if
Fine-tune M on Di for E epochs using chosen hyper-
parameters

end for
return Trained model M

Difficulty Sequencing. Segment tasks by their difficulty
level, from Level 1 (easiest) through Level 5 (hardest). At
stage i, the model trains on≤Level i. This ensures a human-
like progression: basic then more advanced questions.

Data Re-exposure (Replay). To avoid forgetting funda-
mentals, we keep earlier-level data in the training set each
time we move to a higher level. Formally, at stage i, the
model sees

Di = {x ∈ D | difficulty(x) ≤ i}. (1)

To manage replay volume, a fraction ρ of earlier tasks can
optionally be sampled during replay. However, naive full
replay can occasionally degrade final performance if the
model over-fits on easy tasks.

PLRS We start large at r1 = 256, for example, to allow
broad capacity for initial learning. At each subsequent
stage, we shrink it (e.g., 256 → 128 → 64 → 32). Old
adapters remain loaded, while newly introduced adapters

for advanced tasks have smaller rank, preventing them from
overwriting everything. In Figure 1 we show a conceptual
diagram.

Taken together, these three components form the ba-
sis of our final approach Algorithm 1.

5. Experiments
5.1. Setup and Hyper-parameters

Dataset. The official MATH dataset split is used, con-
sisting of 7.5k training problems annotated with difficulty
levels (1–5) and step-by-step solutions, and a 5k-item test
set. Difficulty levels follow Art of Problem Solving (AoPS)
conventions, with AMC 8 questions typically at level 1 and
AIME questions at level 5. Each solution includes a boxed fi-
nal answer, allowing for exact-match (EM) evaluation after
standardizing whitespace and minor formatting.

Training recipe. All runs employ 4-bit NF4 quantisation,
LoRA injection, the prompt template in Figure 4, and deter-
ministic seeds. We fine-tune for five epochs per stage; more
passes hurt validation EM, so we keep early-stopping (pa-
tience=2). Batch size is 4; other hyper-parameters appear in
Appendix Tables 6 and 7. Checkpoints and logs are pushed
to the Hugging Face Hub for full reproducibility.

Compute Cost Considerations. Although each stage in
our sequential pipeline is configured for 5 epochs, early
stopping is applied, and it is observed that training often
converges much sooner, the full PLRS pipeline requires
approximately 9000 training steps, compared to 4000 steps
for the direct baseline. Notably, naively extending the base-
line to 9000 steps leads to overfitting (lower validation EM),
highlighting that our gains stem from structured training and
rank allocation not just longer compute. All experiments
were conducted using two NVIDIA Tesla T4 GPUs (15 GB
each)

Models. We ablate on LLaMA 3.2 1B and replicate the
best variant on LLaMA 3.2 3B, Qwen2.5-Math 1.5B, and
Qwen 2 0.5B to test generality across scale and architecture.

LoRA schedules. Single-pass baselines always use
rank=32. Our PLRS curriculum starts at r = 256 and
shrinks 256→128→64→32→32.

Capacity control. PLRS retains all adapter slices, so its
total trainable parameters exceed a plain rank-32 run. To
isolate capacity scheduling from mere size, we train a rank-
256 direct baseline. Table 2 shows this heavy baseline
under-performs rank-32 SFT, confirming that our gains stem
from staged allocation plus replay, not just more parameters.
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Figure 1. An illustration of PLRS
We begin with a large LoRA rank at Level 1, then load that adapter and add a smaller-rank adapter for Level 2, re-exposing old data and

so on.

Table 2. Parameter-matched single-pass baselines

MODEL LORA RANK EM (%)

LLAMA 3.2 1B 32 15.86
LLAMA 3.2 1B 256 13.28
LLAMA 3.2 3B 32 37.20
LLAMA 3.2 3B 256 25.52
QWEN 2 0.5B 32 6.96
QWEN 2 0.5B 256 6.72

5.2. Comparisons

Six primary experiments are conducted:

1. Direct Baseline (DB) (Baseline-1) : Fine-tune on the
entire dataset in a single pass (rank=32).

2. Sequential No-Replay (SNR) (Baseline-2) : Step
through levels but discard earlier-level data each time
(rank=32).

3. SNR + PLRS (Baseline-3) : SNR with reducing rank
at each stage(256→ 128→ 64→ 32→ 16).

4. Sequential Full Replay (SFR) + Fixed Rank
(Baseline-4) : Replay all older tasks at each stage,
but keep rank=32 throughout.

5. SFR + PLRS (Baseline-5) : This approach includes
re-exposing older tasks and reducing rank at every level
(256→ 128→ 64→ 32→ 16).

6. SFR + PLRS + No Final Shrink (Baseline-6): Our
final approach, re-exposing older tasks and reducing
rank (256 → 128 → 64 → 32 → 32) but not shrink-
ing at level 5.

5.3. Results and Analysis

Key takeaways at a glance :

• Synergy, not additivity. Replay or PLRS in isolation
yields at best baseline-level EM (14–15%); the com-
bination pushes accuracy to 20.32%, a gain of 4.46%
over the direct Baseline 1.

• Parameter efficiency. A single-pass, rank-256 base-
line underperforms rank-32 SFT on all models (e.g.,
13.28% vs. 15.86% on LLaMA-1B), showing that
capacity scheduling, not just rank budget, drives the
improvement.

• Positive backward transfer. Our final recipe boosts
Level-1 accuracy from 42.1% (Baseline 1) to 53.3%
(Baseline 6), even after the model has mastered harder
levels. Rehearsal + isolation not only preserves knowl-
edge it actively refines earlier skills.

• Cross-backbone robustness. Gains of 2–7% hold
across four model architectures from 0.5B to 3B,
suggesting that the curriculum–replay–PLRS triad is
architecture-agnostic.

Table 3 shows final ablations for LLaMA 3.2 1B. Notably,
replay alone (SFR + fixed rank) can drop performance to
12.38%, even below direct Baseline 1 (15.86%). Combining
replay with rank shrinking yields 17.22%, and one final
tweak no rank shrink at Level-5 raises accuracy to 20.32%.
Figure 5 illustrates this improvement with a representative
math problem.
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The final approach (Baseline 6) is extended to LLaMA 3.2
3B, Qwen2.5Math (1.5B), and Qwen 2 (0.5B). It could be
seen that improvements over the respective direct baselines
(Baseline 1) are consistent: 2–7% absolute, as shown in
Figure 2. Specifically, LLaMA 3.2 1B improves by +4.46%,
LLaMA 3.2 3B by +6.92%, Qwen2.5Math 1.5B by +4.10%,
and Qwen 2 0.5B by +1.92%.

Table 3. Ablations on LLaMA 3.2 1B.

TECHNIQUE EM (%) REPLAY SHRINK

DB (ALL-AT-ONCE) 15.86 NO NO
SNR + FIXED RANK 14.28 NO NO
SNR + PLRS 15.10 NO YES
SFR + FIXED RANK 12.38 YES NO
SFR + PLRS 17.22 YES YES
+NO FINAL SHRINK 20.32 YES YES

Figure 2. EM improvement on Baseline 6 compared to Baseline 1.

5.4. Interpretation of Sequential Strategies

(a) Sequential, No Replay. Training each level in isola-
tion triggers catastrophic forgetting: Level-1 accuracy sinks
from 42.1% (Baseline 1) to 34.1% by the time the model
reaches Level-5, and overall EM drops by 1.6% compared
to direct SFT.

(b) Sequential + Full Replay. Rehearsal revives easy-tier
performance (Level-1 rises to 39.4%, a gain of +3.3%), but
overwhelms the adapter: overall EM crashes to 12.4% (a
3.5% drop from Baseline 1) and Level-5 drops to just 2.3%.
Lesson: replay without extra capacity merely overfits easy
patterns.

(c) Replay + PLRS. The combination of rehearsal with
rank shrinking yields a balanced lift: Level-1 improves to
45.54% ( 3%), Level-5 reaches 4.31%, and overall EM rises
to 17.2% (improvement over Baseline 1).

(d) Replay + PLRS without the last shrink . Retaining
r=32 at Stage-5 injects fresh capacity for the hardest level,
nudging overall EM to 20.3% a +4.5% gain over direct SFT
(Baseline 1) while preserving lower-level improvements
from earlier stages. This configuration defines our final
recipe (Baseline 6).

Take-home pattern. Capacity isolation (PLRS) protects
against forgetting, replay refines early skills, and both are re-
quired to unlock Level-5 accuracy without sacrificing Level-
1 performance. Refer Table 4 for details.

Error–trajectory analysis: what the extra accuracy is
made of. Exact-match scores hide which problems are
gained, lost, or re-learned across stages. We therefore assign
every test item to one of six mutually exclusive buckets
(Table 5):

• stable correct: solved at every stage after first expo-
sure

• lost: solved at own level but wrong in the final model

• recovered: solved, forgotten, then solved again

• newly solved: first solved at a later stage

• never solved: always wrong

• other: mixed, non-terminal flips

Labels are computed by scanning the 0/1-correctness vector
from the problem’s introduction level through Stage 5

Following patterns stand out : (refer Table 5)

1. Replay alone amplifies forgetting. It introduces 332
newly solved items, but inflates the lost bucket to 459
(+7 % vs. SNR) and shrinks the stable correct set to
250. Easy samples dominate the gradient budget, eras-
ing mid-level skills.

2. PLRS alone protects but discovers little. Shrink-
ing rank cuts lost to 410 and restores stable correct
(332) to the no-replay baseline, yet adds only 25 ex-
tra newly solved items. Capacity isolation without
rehearsal is safe but conservative.

3. Replay plus PLRS is decisively synergistic. The
combined recipe slashes lost to just 176 and more
than doubles stable correct to 569. It also delivers the
largest haul of newly solved problems (408) and the
most recovered cases (39).
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Table 4. Level-wise EM accuracy (%) after the final stage (Level 5) of Sequential Fine-Tuning.

BASELINE LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 OVERALL

DIRECT - BASELINE 1 42.11 25.50 18.48 9.72 4.08 15.86
SNR - BASELINE 2 34.10↓ 24.16↓ 16.62↓ 8.57↓ 4.31↑ 14.28
SNR + PLRS - BASELINE 3 38.44↓ 23.94↓ 18.04↓ 9.47↓ 4.08 15.10
SFR - BASELINE 4 39.36↓ 21.03↓ 13.35↓ 6.43↓ 2.27↓ 12.38
SFR + PLRS - BASELINE 5 45.54↑ 28.19↑ 19.01↑ 11.37↑ 4.31↑ 17.22
SFR + PLRS + NO FINAL SHRINK - BASELINE 6 53.32↑ 34.45↑ 21.13↑ 14.00↑ 4.98↑ 20.32

Note: ↑ indicates improvement over the Direct baseline; ↓ indicates performance drop.
In SNR, only Level 5 shows improvement, suggesting earlier capabilities are overwritten during sequential fine-tuning.

Table 5. Problem categories by training recipe (darker = more extreme; orange = worse, blue = better).

CATEGORY SNR SFR SNR + PLRS SFR + PLRS NO FINAL SHRINK

LOST 429 459 410 176 365
NEVER SOLVED 3778 3845 3756 3776 3704
OTHER 79 77 79 32 70
NEWLY SOLVED 361 332 386 408 451
RECOVERED 29 37 37 39 49
STABLE CORRECT 324 250 332 569 361

4. Final-stage rank restores head-room (Baseline 6).
Retaining a full r = 32 adapter at Level 5 injects
fresh capacity for the hardest questions and pushes
newly solved to an all-time high of 451 (+43 vs.
SFR + PLRS). It also lifts the recovered bucket to 49,
showing extra hard-problem wins can cascade back-
wards. The cost is a partial rebound in lost items (365
vs. 176), indicating that some early-stage parameters
are overwritten when the final, larger slice is trainable.
In short, extra rank at the last stage buys exploration
power but reopens a modest forgetting value; practi-
tioners can tune this trade off by choosing whether or
by how much to shrink on the final curriculum step.

Why this matters. The bucket view shows that the EM
gain of Replay + PLRS is not merely “finding a few more
answers”; it reflects a simultaneous preservation of prior
knowledge and a net expansion into previously incorrect
territory a strong indicator of genuine curriculum learning
rather than over-fitting.

Back-ward transfer, not just retention. The model didn’t
merely keep its level-1 skills it improved them after seeing
harder material. “The best variant (Replay + PLRS, no final
shrink) raises level-1 accuracy to 53%, a +11% gain over the
basline - 1. This indicates positive backward transfer: after
mastering harder problems the model not only preserves but
improves its performance on easier tasks. The effect arises
from repeated exposure (replay) plus parameter isolation
(rank-shrinking), which together prevent forgetting while

allowing new competencies to accumulate.

Reconciling the replay paradox. Full replay seems to
cut two ways: it raises Level-1 EM (36.4 %→ 39.4 %) yet
inflates the lost bucket to 459 items (Table 5).

PLRS breaks this trade-off by assigning each stage its own
shrinking slice, letting replayed gradients reinforce earlier
skills without overwriting later ones preserving Level-1
gains without inflating the lost bucket.

1. Easy-task dominance. Thousands of Level-1 exam-
ples monopolise gradients, so the rank-32 adapter al-
locates extra parameter capacity to them hence the
Level-1 bump.

2. Capacity overwrite. The same fixed adapter must also
encode mid-/high-level reasoning. Gradients from easy
tasks overwrite weights that formerly solved harder
items, which then migrate to the lost category.

6. Limitations and Future Work
While the proposed PLRS framework delivers strong per-
formance gains with minimal parameter overhead, it also
presents several limitations and open research questions.

First, the current rank-shrinking schedule was manually de-
signed; although effective, it may be suboptimal. Future
work could focus on learning adaptive rank schedules that
dynamically respond to training signals such as gradient
norms or task difficulty. Similarly, our approach relies on
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full-history replay, which is memory-intensive. A selective
or uncertainty-based replay strategy could maintain perfor-
mance while reducing compute demands.

Moreover, PLRS benefits from the MATH dataset’s naturally
tiered structure. Applying this method to less-structured do-
mains may require more sophisticated curriculum design
or automatic task partitioning. Finally, despite LoRA’s effi-
ciency, multi-stage fine-tuning still incurs non-trivial com-
pute costs—especially on larger backbones—underscoring
the need for scalable optimization strategies.

Promising Future Directions.

• Adaptive replay scheduling. Instead of naively replay-
ing all prior data, future work could develop policies
that adapt replay ratios per stage or level based on
metrics like validation loss, uncertainty estimates, or
gradient conflict.

• Dynamic rank allocation. Replace the fixed PLRS
schedule with a learnable controller that allocates
LoRA rank on-the-fly.

7. Conclusion
We propose a capacity-aware sequential learning framework
for small language models that integrates three key compo-
nents: (i) level-wise training from easy to hard, (ii) rehearsal
of earlier problems to mitigate forgetting, and (iii) a novel
Progressive LoRA Rank Shrinking (PLRS) strategy that iso-
lates stage-specific competencies via structured parameter
allocation.

When applied to the MATH benchmark, our approach yields
consistent exact-match improvements of +2–7% across four
open source models ranging from 0.5B to 3B parameters all
within a 4-bit quantized memory footprint.

Beyond raw accuracy, our error trajectory analysis reveals
that the combination of replay and PLRS does more than
preserve prior skills it actively enhances them, demonstrat-
ing positive backward transfer.

These findings underscore a broader insight: with careful
orchestration of task progression and parameter allocation,
even lightweight models can exhibit emergent reasoning
capabilities challenging the assumption that scale alone is
the path to skill.

Impact Statement
“This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.”
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A. Appendix

Qwen Prompt

<|im start|> system
You are an expert math assistant. <|im end|>
<|im start|> user
Solve the following math problem: {problem}. Show all steps and the final answer in LaTeX format in a box like \boxed{}.
<|im start|> assistant {answer}

Figure 3. Qwen Prompt Format

Llama Prompt

<|begin of text|>
<|start header id|>system <|end header id|>
You are an expert math assistant<|eot id|>
<|start header id|>user <|end header id|>
Solve the following math problem: {problem} Show all steps and include the final answer in LaTeX format in a box like \boxed{}.<|eot id|>
<|start header id|> assistant <|end header id|> {answer}

Figure 4. Llama Prompt Format

Algebra Problem Example

Question: If (x, y) = (3, 9), what is y2 − 3xy + 8?
Level: 1
Subject: Algebra
Ground Truth: We have

y2 − 3xy + 8 = 92 − 3(3)(9) + 8 = 81− 81 + 8 = 8 .

Baseline 1 Solution:
The expression y2 − 3xy + 8 is the expansion of (y − 3x)2.
Substituting (3, 9) for (x, y):

(9− 3 · 3)2 = 92 − 3 · 9 · 3 + 32 = 81− 81 + 9 = 9 .

Baseline 6 Solution:
Step 1: Substitute the given values of x and y into the equation.
Step 2:Calculate y2: 92 = 81.
Step 3:Calculate 3xy: 3× 3× 9 = 81.
Step 4: Substitute values into the equation: 81− 81 + 8.
Step 5:Simplify: 81− 81 + 8 = 8.
Final Answer: 8 .

Figure 5. Comparison of Ground Truth, Baseline 1, and Baseline 6 Solutions (instance where Baseline 6 is correct and Baseline 1 is
incorrect)

The project code and supplementary materials are available at: https://gadmin7.github.io/forget less solve more/
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Table 6. Training arguments for LLaMA 3.2 1B baselines.

SETUP BASELINE 6
PARAMETER VALUE

BATCH SIZE 4
LEARNING RATE 5E-5
NUMBER OF EPOCHS (PER LEVEL) 5
PRECISION FP16
OPTIMIZER PAGED ADAMW 8BIT
WARMUP RATIO 0.1
EVALUATION STRATEGY STEPS
LOAD BEST MODEL AT END TRUE
METRIC FOR BEST MODEL EVAL LOSS
LORA RANKS 256 → 128 → 64 → 32 → 32
LORA ALPHA 512 → 256 → 128 → 64 → 64
LORA DROPOUT 0.2
QUANTIZATION 4-BIT NF4

Table 7. Training arguments for LLaMA 3.2 1B baselines.

SETUP BASELINE 1
PARAMETER VALUE

BATCH SIZE 4
LEARNING RATE 5E-5
NUMBER OF EPOCHS 5
PRECISION FP16
OPTIMIZER PAGED ADAMW 8BIT
WARMUP RATIO 0.1
EVALUATION STRATEGY STEPS
LOAD BEST MODEL AT END TRUE
METRIC FOR BEST MODEL EVAL LOSS
LORA RANK 32 (FIXED)
LORA ALPHA 64
LORA DROPOUT 0.2
QUANTIZATION 4-BIT NF4
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Table 8. EM accuracy comparison of Baseline 1 and Baseline 6 across models.

LEVEL TECHNIQUE LLAMA3.2 1B LLAMA3.2 3B QWEN2.5MATH 1.5B QWEN2 0.5B

L1 BASELINE 1 42.10 64.53 69.79 19.22
BASELINE 6 53.31 72.54 83.30 27.92
IMPROVEMENT 11.21 8.01 13.50 8.70

L2 BASELINE 1 25.50 45.86 54.59 10.07
BASELINE 6 34.45 55.37 61.86 15.32
IMPROVEMENT 8.95 9.51 7.27 5.26

L3 BASELINE 1 18.47 36.43 43.06 6.81
BASELINE 6 21.13 45.62 48.81 8.84
IMPROVEMENT 2.66 9.20 5.75 2.03

L4 BASELINE 1 9.71 22.82 30.40 3.79
BASELINE 6 14.00 28.75 33.03 3.62
IMPROVEMENT 4.29 5.93 2.64 -0.16

L5 BASELINE 1 4.07 10.05 16.01 2.95
BASELINE 6 4.98 13.82 14.80 2.19
IMPROVEMENT 0.91 3.78 -1.21 -0.76

SUBJECT TECHNIQUE LLAMA3.2 1B LLAMA3.2 3B QWEN2.5MATH1.5B QWEN2 0.5B

ALGEBRA BASELINE 1 24.17 44.65 54.76 8.59
BASELINE 6 31.76 55.86 59.39 11.88
IMPROVEMENT 7.59 11.20 4.63 3.29

COUNTING BASELINE 1 13.71 27.64 28.69 5.91
BASELINE 6 15.82 35.23 37.34 6.96
IMPROVEMENT 2.11 7.60 8.65 1.05

GEOMETRY BASELINE 1 12.96 23.80 29.44 7.10
BASELINE 6 16.07 30.48 35.91 6.89
IMPROVEMENT 3.11 6.68 6.47 -0.21

INT. ALGEBRA BASELINE 1 5.98 13.73 20.16 3.65
BASELINE 6 5.75 14.62 17.72 3.77
IMPROVEMENT -0.23 0.89 -2.44 0.11

NUMBER THEORY BASELINE 1 12.96 23.33 30.56 5.56
BASELINE 6 13.14 27.41 32.04 4.63
IMPROVEMENT 0.18 4.07 1.48 -0.93

PREALGEBRA BASELINE 1 24.56 45.92 52.70 9.99
BASELINE 6 36.73 58.55 65.21 15.84
IMPROVEMENT 12.17 12.63 12.51 5.86

PRECALCULUS BASELINE 1 7.50 16.30 23.44 4.03
BASELINE 6 8.05 17.22 20.33 5.13
IMPROVEMENT 0.55 0.92 -3.11 1.10
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