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ABSTRACT

We propose a gradient flow procedure for generative modeling by transporting
particles from an initial source distribution to a target distribution, where the
gradient field on the particles is given by a noise-adaptive Wasserstein Gradient of
the Maximum Mean Discrepancy (MMD). The noise-adaptive MMD is trained on
data distributions corrupted by increasing levels of noise, obtained via a forward
diffusion process, as commonly used in denoising diffusion probabilistic models.
The result is a generalization of MMD Gradient Flow, which we call Diffusion-
MMD-Gradient Flow or DMMD. The divergence training procedure is related
to discriminator training in Generative Adversarial Networks (GAN), but does
not require adversarial training. We obtain competitive empirical performance in
unconditional image generation on CIFAR10, MNIST, CELEB-A (64 x64) and
LSUN Church (64 x 64). Furthermore, we demonstrate the validity of the approach
when MMD is replaced by a lower bound on the KL divergence.

1 INTRODUCTION

In recent years, generative models have achieved impressive capabilities on image Saharia et al.
(2022), audio Le et al. (2023) and video generation Ho et al. (2022) tasks but also protein modeling
Watson et al. (2022) and 3d generation Poole et al. (2022). Diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020; Rombach et al., 2022) underpin these new methods. In these
models, we learn a backward denoising diffusion process via denoising score matching (Hyvärinen,
2005; Vincent, 2011). This backward process corresponds to the time-reversal of a forward noising
process. At sampling time, starting from random Gaussian noise, diffusion models produce samples
by discretizing the backward process.

One challenge that arises when applying these models in practice is that the Stein score (that is, the
gradient log of the current noisy density) becomes ill-behaved near the data distribution (Yang et al.,
2023): the diffusion process needs to be slowed down at this point, which incurs a large number of
sampling steps near the data distribution. Indeed, if the manifold hypothesis holds Tenenbaum et al.
(2000); Fefferman et al. (2016); Brown et al. (2022) and the data is supported on a lower dimensional
space, it is expected that the score will explode for noise levels close to zero, to ensure that the
backward process concentrates on this lower dimensional manifold Bortoli (2023); Pidstrigach (2022);
Chen et al. (2022). While strategies exist to mitigate these issues, they trade-off the quality of the
output against inference speed, see for instance (Song et al., 2023; Xu et al., 2023; Sauer et al., 2023).

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) represent an alternative popular
generative modelling framework (Brock et al., 2019; Karras et al., 2020a). Candidate samples are
produced by a generator: a neural net mapping low dimensional noise to high dimensional images.
The generator is trained in alternation with a discriminator, which is a measure of discrepancy
between the generator and target images. An advantage of GANs is that image generation is fast
once the GAN is trained (Xiao et al., 2022), although image samples are of lower quality than for
the best diffusion models (Ho et al., 2020; Rombach et al., 2022). When learning a GAN model,
the main challenge arises due to the presence of the generator, which must be trained adversarially
alongside the discriminator. This requires careful hyperparameter tuning (Brock et al., 2019; Karras
et al., 2020b; Liu et al., 2020), without which GANs may suffer from training instability and mode
collapse (Arora et al., 2017; Kodali et al., 2017; Salimans et al., 2016).
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Nonetheless, the process of GAN design has given rise to a strong understanding of discriminator
functions, and a wide variety of different divergence measures have been applied. These fall broadly
into two categories: the integral probability metrics (among which, the Wasserstein distance (Arjovsky
et al., 2017; Gulrajani et al., 2017; Genevay et al., 2018) and the Maximum Mean Discrepancy (Li
et al., 2017; Bińkowski et al., 2021; Arbel et al., 2018)) and the f-divergences (Goodfellow et al.,
2014; Nowozin et al., 2016; Mescheder et al., 2018; Brock et al., 2019). While it would appear that
f-divergences ought to suffer from the same shortcomings as diffusions when the target distribution is
supported on a submanifold Arjovsky et al. (2017), the divergences used in GANs are in practice
variational lower bounds on their corresponding f-divergences (Nowozin et al., 2016), and in fact
behave closer to IPMs in that they do not require overlapping support of the target and generator
samples, and can metrize weak convergence (Arbel et al., 2021, Proposition 14) and (Zhang et al.,
2018) (there remain important differences, however: notably, f-divergences and their variational
lower bounds need not be symmetric in their arguments).

A natural question then arises: is it possible to define a Wasserstein gradient flow (Ambrosio et al.,
2008; Santambrogio, 2015) using a GAN discriminator as a divergence measure? In this setting, the
divergence (discriminator) provides a gradient field directly onto a set of particles (rather than to a
generator), transporting them to the target distribution. Contributions in this direction include the
MMD flow Arbel et al. (2019); Hertrich et al. (2023), which defines a Wasserstein Gradient Flow on
the Maximum Mean Discrepancy (Gretton et al., 2012); and the KALE (KL approximate lower-bound
estimator) flow Glaser et al. (2021), which defines a Wasserstein gradient flow on a KL lower bound
of the kind used as a GAN discriminator based on an f-divergence (Nowozin et al., 2016). We
describe the MMD and its corresponding Wasserstein gradient flow in Section 2. These approaches
employ fixed function classes (namely, reproducing kernel Hilbert spaces) for the divergence, and are
thus not suited to high dimensional settings such as images. Moreover, we show in this work that
even for simple examples in low dimensions, an adaptive discriminator ensures faster convergence of
a source distribution to the target, see Section 3.

A number of more recent approaches employ trained neural net features in divergences for a subse-
quent gradient flow (e.g. Fan et al., 2022; Franceschi et al., 2023). Broadly speaking, these works
used adversarial means to train a series of discriminator functions, which are then applied in sequence
to a population of particles. While more successful on images than kernel divergences, the approaches
retain two shortcomings: they still require adversarial training (on their own prior output), with all the
challenges that this entails; and their empirical performance falls short in comparison with modern
diffusions and GANs (see related work in Section 6 for details).

In the present work, we propose a novel Wasserstein Gradient flow on a noise-adaptive MMD diver-
gence measure, leveraging insights from both GANs and diffusion models. To train the discriminator,
we start with clean data, and use a forward diffusion process from (Ho et al., 2020) to produce noisy
versions of the data with given levels of noise (data with high levels of noise are analogous to the
output of a poorly trained generator, whereas low noise is analogous to a well trained generator).
The added noise is always Gaussian. For a given level of noise, we train a noise conditional MMD
discriminator to distinguish between the clean and the noisy data, using a single network across all
noise levels. This allows us to have better control over the discriminator training procedure than
would be achievable with a GAN generator at different levels of refinement, where this control is
implicit and hard to characterize.

To draw new samples, we propose a novel noise-adaptive version of MMD gradient flow (Arbel et al.,
2019). Starting from Gaussian distribution, we move them in the direction of the target distribution
by following MMD Gradient flow (Arbel et al., 2019), adapting our MMD discriminator to the
corresponding level of noise. See Section 4 for details. This allows us to have a fine grained control
over the sampling process. As a final challenge, MMD gradient flows have previously required large
populations of interacting particles for the generation of novel samples, which is expensive (quadratic
in the number of particles) and impractical. In Section 5, we propose a scalable approximate sampling
procedure for a case of a linear base kernel, which allows single samples to be generated with a
very little loss in quality, at cost independent of the number of particles used in training. The MMD
is an instance of an integral probability metric, however many GANs have been designed using
discriminators derived from f-divergences. Section D demonstrates how our approach can be applied
to such divergences, using a lower bound on the KL divergence as an illustration. Section 6 contains
a review of alternative approaches to using GAN discriminators for sample generation. Finally, in
Section 7, we show that our method, Diffusion-MMD-gradient flow (DMMD), yields competitive
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performance in generative modeling on 2-D datasets as well as in unconditional image generation on
CIFAR10 (Krizhevsky et al., 2009), MNIST, CELEB-A, LSUN Church.

2 BACKGROUND

In this section, we define the MMD as a GAN discriminator, then describe Wasserstein gradient flow
as it applies for this divergence measure.

MMD GAN. Let X ⇢ RD and P(X ) be the set of probability distributions on X . Let
P 2 P(X ) be the target (data) distribution and Q 2 P(X ) be a distribution associated
with a generator parameterized by  2 RL. Let H be Reproducing Kernel Hilbert Space
(RKHS), see (Schölkopf & Smola, 2018) for details, for some kernel k : X ⇥ X ! R. The
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) between Q and P is defined as
MMD(Q , P ) = sup

kfkH1{EQ [f(X)] � EP [f(X)]}. We refer to the function fQ ,P that
attains the supremum as the witness function,

fQ ,P (z) /
R
k(x, z)dQ (x)�

R
k(y, z)dP (y), (1)

which will be essential in defining our gradient flow. Given X
N = {xi}

N

i=1 ⇠ Q
⌦N

 
and

Y
M = {yi}

M

i=1 ⇠ P
⌦M , the empirical witness function is known in closed form, f̂Q ,P (x) /

1
N

P
N

i=1 k(xi, x)�
1
M

P
M

j=1 k(yj , x), and an unbiased estimate of MMD2 (Gretton et al., 2012) is
likewise straightforward. In the MMD GAN (Bińkowski et al., 2021; Li et al., 2017), the kernel is

k(x, y) = kbase(�(x; ✓),�(y; ✓)), (2)

where kbase is a base kernel and �(·; ✓) : X ! RK are neural networks discriminator features with
parameters ✓ 2 RH . We use the modified notation MMD2

u
[XN

, Y
M ; ✓] to highlight the functional

dependence on the discriminator parameters. The MMD is an Integral Probability Metric (IPM)
(Muller, 1997), and thus well defined on distributions with disjoint support: this argument was made
in favor of IPMs by Arjovsky et al. (2017). Note further that the Wasserstein GAN discriminators
of Arjovsky et al. (2017); Gulrajani et al. (2017) can be understood in the MMD framework, when
the base kernel is linear. Indeed, it was observed by Genevay et al. (2018) that requiring closer
approximation to a true Wasserstein distance resulted in decreased performance in GAN image
generation, likely due to the the exponential dependence of sample complexity on dimension for the
exact computation of the Wasserstein distance; this motivates an interpretation of these discriminators
simply as IPMs using a class of linear functions of learned features. We further note that the
variational lower bounds used in approximating f-divergences for GANs share the property of being
well defined on distribtions with disjoint support Nowozin et al. (2016); Arbel et al. (2021), although
they need not be symmetric in their arguments. Finally, while Q and ✓ are trained adversarially in
GANs, our setting will only require us to learn the discriminator parameter ✓.

Wasserstein gradient flows. Instead of a GAN generator, we can move a sample of particles
along the Wasserstein Gradient flow associated with the discriminator (Ambrosio et al., 2008). Let
P2(X ) be a set of probability distributions on X with a finite second moment equipped with the
2-Wasserstein distance. Let F(⌫) : P2(X )! R be a functional defined over P2(X ) with a property
that arg inf⌫ F(⌫) = P . We consider the problem of transporting mass from an initial distribution
⌫0 = Q to a target distribution µ = P , finding a continuous path (⌫t)t�0 starting from ⌫0 that
converges to µ. This problem is studied in Optimal Transport theory (Villani, 2008; Santambrogio,
2015). This path can be discretized as a sequence of random variables (Xn)n2N such that Xn ⇠ ⌫n,

Xn+1 = Xn � �rF
0(⌫n)(Xn), X0 ⇠ Q, (3)

where ⌘ > 0 and F
0(⌫n)(Xn) is the first variation of F associated with the Wasserstein gradient,

see (Ambrosio et al., 2008; Arbel et al., 2019) for precise definitions. As n ! 1 and � ! 0,
depending on the conditions on F , the process (3) will convergence to the gradient flow as a
continuous time limit (Ambrosio et al., 2008).

MMD gradient flow. For a choice F(⌫) = MMD2[⌫, P ] and a fixed kernel, conditions for
convergence of the process in (3) to P are given by Arbel et al. (2019). Moreover, the first variation
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of F 0(⌫) = f⌫,P 2 H is the witness function defined earlier.1 Using (1)-(3), the discretized MMD
gradient flow for any n 2 N is given by

Xn+1 = Xn � �rf⌫n,P (Xn), X0 ⇠ Q. (4)

This provides an algorithm to (approximately) sample from the target distribution P . We remark
that Arbel et al. (2019); Hertrich et al. (2023) used a kernel with fixed hyperparameters. In the
next section, we will argue that even for RBF kernels (where only the bandwidth is chosen), faster
convergence will be attained using kernels that adapt during the gradient flow. Details of kernel
choice for alternative approaches are given in related work (Section 6).

3 A MOTIVATION FOR ADAPTIVE KERNELS

In this section, we demonstrate the benefit of using an adaptive kernel when performing MMD
gradient flow. We show that even in the simple setting of Gaussian sources and targets, an adaptive
kernel improves the convergence of the flow. Let k↵(x, y) = ↵

�d exp[�kx � yk
2
/(2↵2)] be the

normalized Gaussian kernel. For any µ 2 Rd and � > 0 we denote by ⇡µ,� the Gaussian distribution
with mean µ and covariance matrix �2Id. We denote MMD↵ the MMD associated with k↵.
Proposition 3.1. For any µ0 2 Rd

and � > 0, let ↵
?

be given by

↵
? = argmax

↵�0krµ0MMD2
↵
(⇡0,�,⇡µ0,�)k.

Then, we have that

↵
? = ReLU(kµ0k

2
/(d+ 2)� 2�2)1/2. (5)

The result is proved in Appendix H. The quantity krµ0MMD2
↵
(⇡0,�,⇡µ0,�)k represents how

much the mean of the Gaussian ⇡µ0,� is displaced by a flow w.r.t. MMD2
↵

. We want
krµ0MMD2

↵
(⇡0,�,⇡µ0,�)k as large as possible as it denotes the maximum displacement possible.

We show that ↵? maximizing this displacement is given by (5). It is notable that assuming that
when � > 0 is fixed, this quantity depends on kµ0k, i.e. the distance between the two distributions.
This observation justifies our approach of following an adaptive MMD flow at inference time. We
further highlight the phase transition behaviour of Proposition 3.1: once the Gaussians are sufficiently
close, the optimal kernel width is zero (note that this phase transition would not be observed in the
simpler Dirac GAN example of Mescheder et al. (2018), where the source and target distributions are
Dirac masses with no variance). This phase transition suggests that the flow associated with MMD
benefits less from adaptivity as the supports of the distributions overlap. We exploit this observation
by introducing an optional denoising stage to our procedure; see the end of Section 4.

In practice, it is not desirable to approximate the distributions of interest by Gaussians, and richer
neural network kernel features �(x; ✓) are used (see Section 7). Approaches to optimize the MMD
parameters for GAN training are described by Arbel et al. (2018), which serve as proxies for
convergence speed: it is not sufficient simply to maximize the MMD, since the witness function
should remain Lipschitz to ensure convergence (Arbel et al., 2018, Proposition 2). It is achieved in
practice by controlling the gradient of the witness function; we take a similar approach in Section 4.

4 DIFFUSION MAXIMUM MEAN DISCREPANCY GRADIENT FLOW

In this section, we present Diffusion Maximum Mean Discrepancy gradient flow (DMMD), a new
generative model with a training procedure of MMD discriminator which does not rely on adversarial
training, and leverages ideas from diffusion models. The sampling part of DMMD consists in
following a noise adaptive variant of MMD gradient flow.

Adversarial-free training of noise conditional discriminators. In order to train a discriminator
without adversarial training, we propose to use insights from GANs training. In a GAN setting, at

1In the case of variational lower bounds on f-divergences, the witness function is still well defined, and the
first variation takes the same form in respect of this witness function: see Glaser et al. (2021) for the case of the
KL divergence.
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the beginning of the training, the generator is randomly initialized and therefore produces samples
close to random noise. This would produce a coarse discriminator since it is trained to distinguish
clean data from random noise. As the training progresses and the generator improves so does the
discriminative power of the discriminator. This behavior of the discriminator is central in the training
of GANs (Goodfellow et al., 2014). We propose a way to replicate this gradually improving behavior
without adversarial training and instead relying on principles from diffusion models (Ho et al., 2020).

The forward process in diffusion models allows us to generate a probability path Pt, t 2 [0, 1], such
that P0 = P , where P is our target distribution and P1 = N(0, Id) is a Gaussian noise. Given
samples x0 ⇠ P0 = P , the samples xt|x0 are given by

xt = ↵tx0 + �t✏, ✏ 2 N(0, Id), (6)
with ↵0 = �1 = 1 and ↵1 = �0 = 02. From the form of the xt|x0, we observe that for low
noise level t, the samples xt are very close to the original data x0, whereas for the large values of
xt they are close to a unit Gaussian random variable. Using the GANs terminology, xt could be
thought as the output of a generator such that for high/low noise level t, it would correspond to
undertrained / well-trained generator. Using this insight, for each noise level t 2 [0, 1], we define a
discriminator MMD2(Pt, P ; t, ✓) using the kernel of type (2) with noise-conditional discriminator
features �(x; t; ✓) parameterized by a Neural Network with learned parameters ✓. We consider the
following noise-conditional loss function

L(✓, t) = �MMD2(Pt, P ; t, ✓) (7)
where the minus sign comes from the fact that our aim is to maximize the squared MMD. In addition,
we regularize this loss with `2-penalty (Bińkowski et al., 2021) denoted L`2(✓, t) as well as with the
gradient penalty (Bińkowski et al., 2021; Gulrajani et al., 2017) denoted Lr(✓, t), see Appendix B.2
for the precise definition of these two losses. The total noise-conditional loss is then given as

Ltot(✓, t) = L(✓, t) + �`2L`2(✓, t) + �rLr(✓, t), (8)
for a suitable choice of hyperparameters �`2 � 0,�r � 0. Finally, the total loss is given as
Ltot(✓) = Et⇠U [0,1] [Ltot(✓, t)], where U [0, 1] is a uniform distribution. In practice, we use sampled-
based unbiased estimator of MMD, see Appendix B.2. The procedure is described in Algorithm 1.

Adaptive gradient flow sampling. In order to produce samples from P , we use the adaptive
MMD gradient flow with noise conditional discriminators MMD2[Pt, P ; t; ✓?], where ✓? are the
discriminator parameters obtained using Algorithm 1. Let ti = tmin + i�t, i = 0, . . . , T be the noise
discretisation, where �t = (tmax � tmin)/T such that t0 = tmin, tT = tmax for some tmin = ✏ and
tmax = 1� ✏, where ✏ << 1. We sample Np initial particles {Zi

|Z
i
⇠ N(0, Id)}

Np
i=1. For each t, we

follow MMD gradient flow (4) for Ns steps with learning rate ⌘ > 0

Z
i,n+1
t

= Z
i,n

t
� ⌘rf⌫t

Np,n
,P (Z

i,n

t
, t; ✓?). (9)

Here ⌫t
Np,n

= 1/Np
PNp

i=1 �Zt
i,n

is the empirical distribution of particles {Z
i,n

t
}
Np
i=1 at the noise

level t and the iteration n, � is a Dirac mass measure. The function f⌫t
Np,n

,P (z, t; ✓
?) is adapted

from equation (1) where ⌫ is replaced by this empirical distribution. After following the gradient
flow (9) for Ns steps, we initialize a new gradient flow with initial particles Zi,0

t��t
= Z

i,Ns
t

for each
i = 1, . . . , Np, with the decreased level of noise t��t. The recurrence is initialized with Z

i,0
tmax

= Z
i

where {Z
i
}
Np
i=1 are the initial particles. This procedure corresponds to running T + 1 consecutive

MMD gradient flows for Ns iterations each, gradually decreasing the noise level t from tmax to tmin.
The resulting particles {Zi,Ns

tmin
}
Np
i=1 are used as samples from P . See Algorithm 2.

In practice, we sample (once) a large batch Nc of {Xj

0}
Nc
j=1 ⇠ P

⌦Nc from the data distribution and
denote by P̂Nc(X0) the corresponding empirical distribution. Then we use the empirical witness
function f

⌫
t
Np,n

,P̂Nc (X0)
(z, t; ✓?) given by

1
Np

PNp
i=1 kbase(�(Z

n,i

t
, t; ✓?),�(z, t; ✓?))� 1

Nc

P
Nc
j=1 kbase(�(X

j

0 , t; ✓
?),�(z, t; ✓?)). (10)

2Different schedules (↵t,�t) are available in the literature. We focus on Variance Preserving SDE ones Song
et al. (2020) here
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Algorithm 1 Train noise-conditional MMD dis-
criminator

Input: Dataset D = {xi}
N

i=1
Discriminator features �(x, t; ✓) with parame-
ters ✓ 2 RK

�r � 0,�`2 � 0 - gradient and `2 penalty
coefficients
� > 0 – learning rate
Niter – number of iterations, B – batch size
Nnoise – number of noise levels per batch
for i = 1 to Niter do

Sample a batch B of clean particles
X0 ⇠ P (X0)
for n = 1 to Nnoise do

Sample noise level tn ⇠ U [0, 1]
Sample Xtn ⇠ p(Xtn |X0, tn)
Let the clean and noisy features be
�
X0
tn

= �(X0, tn; ✓)

�
Xtn
tn

= �(Xtn , tn; ✓)
For linear base kernel (11), use opti-
mized (19) to compute MMD loss (7)
Compute the loss Ltot(✓, tn) using (8)

end for

Compute total loss
Ltot(✓) =

1
Nnoise

P
Nnoise
n=1 Ltot(✓, tn)

Update discriminator features
✓  ADAM(✓,Ltot(✓), �)

end for

Algorithm 2 Noise-adaptive MMD gradient flow
Inputs: T – number of noise levels
tmax, tmin – maximum/minimum noise levels
Ns – number of gradient flow steps per noise
level
⌘ > 0 – gradient flow learning rate
Np – number of noisy particles
Batch of clean particles X0 ⇠ P0.
Steps: Sample initial particles Z ⇠ N(0, Id)
Set �t = (tmax � tmin)/T
for i = T to 0 do

Set the noise level t = tmin + i�t

Set Z0
t
= Z

for n = 0 to Ns � 1 do

Use (10) to compute
f
⌫
t
Np,n

,P̂Nc (X0)
(Zn

t
, t; ✓?)

Z
n+1
t

= Z
n

t
�⌘rf

⌫
t
Np,n

,P̂Nc (X0)
(Zn

t
, t; ✓?)

end for

Set Z = Z
N

t

end for

Output Z

Final denoising. In diffusion models (Ho et al., 2020), it is common to use a denoising step at the
end to improve samples quality. We found empirically that a few MMD gradient flow steps at the
end of the sampling with a higher learning rate ⌘ allowed to reduce noise and improve performance.

5 SCALABLE DMMD WITH LINEAR KERNEL

The computational complexity of the MMD estimate on two sets of N samples is O(N2), so as as of
the witness function (10) for N clean and noisy particles. Using linear base kernel (see (2))

kbase(x, y) = hx, yi, (11)

allows to reduce the computation complexity of both quantities down to O(N), see Appendix B.3.
We consider the average noise conditional discriminator features on the whole dataset

�̄(X0, t; ✓?) =
1
N

P
N

i=1 �(X
i

0, t; ✓
?). (12)

Using linear kernel (11) allows us to use average features (12) in the second term of (10). In practice,
we can precompute these features for T timesteps and store them in memory for later use for sampling
purposes. The associated storage cost is O(TK) where K is the dimensionality of these features.

Approximate sampling procedure. MMD gradient flow (9) requires us to use multiple interacting
particles Z to produce samples, where the interaction is captured by the first term in (10). In practice
this means that the performance will depend on the number of these particles. In this section, we
propose an approximation to MMD gradient flow with a linear base kernel (11) which allows us
to sample particles independently, therefore removing the need for multiple particles. For a linear
kernel, the interaction term in (10) for a particle Z, equals to h 1

Np

PNp
i=1 �(Z

n,i

t
, t; ✓?),�(Z, t; ✓?)i.

For a large number of particles Np, the contribution of each particle Z
t

n,i
on the interaction term

with Z will be small. For a sufficiently large Np, we hypothesize that 1
Np

PNp
i=1 �(Z

n,i

t
, t; ✓?) ⇡
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Figure 1: Samples from MMD Gradient flow with different parameters for the RBF kernel.

1
N

P
N

j=1 �(X
j

t
, t; ✓?), where N is the size of the dataset and X

j

t
are produced by the forward

diffusion process (6) applied to each X
j

0 . In Section 7, we test this approximation in practice. Using
this approximation, we consider an approximate witness function

f̂Pt,P (z) = h�(z, t; ✓
⇤), �̄(Xt, t; ✓?)� �̄(X0, t; ✓?)i, (13)

with �̄(Xt, t; ✓?) precomputed using (12). In practice, we sample single particle Z ⇠ N(0, Id)
and follow noise-adaptive MMD gradient flow with (13), i.e. Zn+1

t
= Z

n

t
� ⌘rf̂Pt,P (Z

n

t
). The

corresponding algorithm is described in Appendix B.4.

6 RELATED WORK

Adversarial training and MMD-GAN. Integral Probability Metrics (IPMs) are good candidates
to define discriminators in the context of generative modeling, since they are well defined even in
the case of distributions with non-overlapping support (Muller, 1997). Moreover, implementations
of f-divergence discriminators in GANs rely on variational lower bounds (Nowozin et al., 2016): as
noted earlier, these share useful properties of IPMs in theory and in practice (notably, they remain
well defined for distributions with disjoint support, and may metrize weak convergence for sufficiently
rich witness function classes (Arbel et al., 2021, Proposition 14) and (Zhang et al., 2018)). Several
works (Arjovsky et al., 2017; Gulrajani et al., 2017; Genevay et al., 2018; Li et al., 2017; Bińkowski
et al., 2021) have exploited IPMs as discriminators for the training of GANs, where the IPMs are
MMDs using (linear or nonlinear) kernels defined on learned neural net features, making them
suited to high dimensional settings such as image generation. Interpreting the IPM-based GAN
discriminator as a squared MMD yields an interesting theoretical insight: Franceschi et al. (2022)
show that training a GAN with an IPM objective implicitly optimizes MMD2 in the Neural Tangent
Kernel (NTK) limit (Jacot et al., 2020). IPM GAN discriminators are trained jointly with the generator
in a min-max game. Adversarial training is challenging, and can suffer from instability, mode collapse,
and misconvergence (Xiao et al., 2022; Bińkowski et al., 2021; Li et al., 2017; Arora et al., 2017;
Kodali et al., 2017; Salimans et al., 2016). Note that once a GAN has been trained, the samples can
be refined via MCMC sampling in the generator latent space (e.g., using kinetic Langevin dynamics;
see Ansari et al., 2021; Che et al., 2021; Arbel et al., 2021).

Discriminator flows for generative modeling. Wasserstein Gradient flows (Ambrosio et al., 2008;
Santambrogio, 2015) applied to a GAN discriminator are informally called discriminator flows, see
(Franceschi et al., 2023). A number of recent works have focused on replacing a GAN generator by a
discriminator flow. Fan et al. (2022) propose a discretisation of JKO (Jordan et al., 1998) scheme to
define a Kullback-Leibler (KL) divergence gradient flow. Other approaches have used a discretized
interactive particle-based approach instead of JKO, similar to (3). Heng et al. (2023); Franceschi et al.
(2023) build such a flow based on f-divergences, whereas Franceschi et al. (2023) focuses on MMD
gradient flow. In all these works, an explicit generator is replaced by a corresponding discriminator
flow. The sampling process during training is as follows: Let Yk be the samples produced at training
iteration k by the gradient flow Fk induced by the discriminator Dk applied to samples Yk�1 from
the previous iteration. We denote this by Yk  Fk(Dk, Yk�1). Then, the discriminator at iteration
k + 1 is trained on samples Yk. A challenge of this process is that the training sample for the next
discriminator will be determined by the previous discriminators, and thus the generation process is
still adversarial: particle transport minimizes the previous discriminator value, and the subsequent
discriminator is maximized on these particles. Consequently, it is difficult to control or predict
the overall sample trajectory from the initial distribution to the target, which might explain the
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performance shortfall of these methods in image generation settings. By contrast, we have explicit
control over the training particle trajectory via the forward noising diffusion process.

On top of that, these approaches (except for Heng et al., 2023) require to store all intermediate
discriminators D1, . . . ,DN throughout training (N is the total number of training iterations). These
discriminators are then used to produce new samples by applying the sequence of gradient flows
FN (DN , ·) � . . . � F1(D1, ·) to Y0 sampled from the initial distribution. This creates a large memory
overhead. An alternative is to use pretrained features obtained elsewhere or a fixed kernel with
empirically selected hyperparameters (see Hertrich et al., 2023; Hagemann et al., 2023; Altekrüger
et al., 2023), however this limits the applicability of the method. To the best of our knowledge, our
approach is the first to demonstrate the possibility to train a discriminator without adversarial training,
such that this discriminator can then be used to produce samples with a gradient flow. Unlike the
alternatives, our approach does not require to store intermediate discriminators.

MMD for diffusion refinement/regularization. MMD has been used to either regularize training
of diffusion models (Li & van der Schaar, 2024) or to finetune them (Aiello et al., 2023) for fast
sampling. The MMD kernel in these works has the form (2) with Inception features (Szegedy et al.,
2014). Our method removes the need to use pretrained features by training th MMD discriminator.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020)
represent a powerful new family of generative models due to their strong empirical performance
in many domains (Saharia et al., 2022; Le et al., 2023; Ho et al., 2022; Watson et al., 2022; Poole
et al., 2022). Unlike GANs, diffusion models do not require adversarial training. At training time, a
denoiser is learned for multiple noise levels. As noted above, our work borrows from the training
of diffusion models, as we train a discriminator on multiple noise levels of the forward diffusion
process (Ho et al., 2020). This gives better control of the training samples for the (noise adapted)
discriminator than using an incompletely trained GAN generator.

7 EXPERIMENTS

Understanding DMMD behavior in 2-D. Our aim is to get an understanding of the behavior of
DMMD described in Section 4. We expect DMMD to mimic GAN discriminator training via noise
conditional discriminator learning. To see whether this manifests in practice, we design an experiment
with Radial Basis Function (RBF) kernel for MMD, kt(x, y) = exp[�kx� yk

2
/(2�2(t; ✓))], where

the noise dependent kernel width function �(·; ✓) : [0, 1]! [0,+1) is parameterized by ✓ 2 RK .
This parameter controls the coarseness of the MMD discriminator. We consider 2-D checkerboard
dataset, see Figure 1, left. We learn noise-conditional kernel widths �(t; ✓) using a neural network.
As baselines, we train MMD-GAN where distriminator learns �, as well as MMD gradient flow with
fixed values of � and with a manually selected noise-dependent �(t) = 0.1(1 � t) + 0.5t called
linear interpolation. All experimental details are provided in Appendix C.

We report the learned RBF kernel widths for DMMD in Figure 2, left. As expected, as noise
level goes from high to low, the kernel width �(t) decreases. In Figure 2, center, we show the
learned MMD-GAN kernel width parameter � as a function of training iterations. When the training
progresses, this parameter decreases, since the corresponding generator produces samples, close to
the target distribution. The behaviors of DMMD and MMD-GAN are quite similar and so as the
range of values for the kernel widths is also similar. This highlights our point that DMMD mimics the
training of a GAN discriminator. The exact dynamics for �(t) in DMMD depends on the parameters
of the forward diffusion process (6). The sharp phase transition is consistent with the phase transition
highlighted in Section 3. In addition, we report MMD2(Pt, P ; t) for different methods in Figure 2,
right. We see that DMMD behaves similarly to linear interpolation, but is more nuanced for higher
noise levels. The samples are reported in Figure 1. DMMD produces samples which are visually
better than the other baselines. For RBF kernel, we noticed the presence of outliers. The amount of
outliers generally depends on the kernel, see Appendix of (Hertrich et al., 2023) for more details.

Image generation We study the performance of DMMD on unconditional image generation of
CIFAR10 (Krizhevsky et al., 2009). We use the same forward diffusion process as in (Ho et al., 2020)
to produce noisy images. We use a U-Net (Ronneberger et al., 2015) backbone for discriminator
feature network �(x, t; ✓), with a slightly different architecture from the one used in (Ho et al., 2020),
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see Appendix F. For all the image-based experiments, we use linear base kernel (11). We explored
using other kernels such as RBF and Rational Quadratic (RQ), but did not find an improvement
in performance. We use FID (Heusel et al., 2018) and Inception Score (Salimans et al., 2016) for
evaluation, see Appendix F. Unless specified otherwise, we use the number Np = 200 of particles for
Algorithm 2. We provide ablation over the number of particles in Appenidx F.3. The total number
of iterations for DMMD equals to T ⇥ Ns, where T is the number of noise levels and Ns is the
number of steps per noise level. For consistency with diffusion models, we call this number of

function evaluations (NFE). For DMMD, we show performance with different NFEs. As we show in
Appendix G (see Table 6), there is an improvement on FID as we increase NFEs, but only up to a
point (NFE=250).

Table 1: Unconditional image generation on

CIFAR-10. For MMD GAN (orig.), we used
mixed-RQ kerned (see (Bińkowski et al., 2021)).
”Orig.” – original paper, ”impl.” – our implemen-
tation. For JKO-Flow (Fan et al., 2022), the NFE
is taken from their Figure 12.

Method FID IS NFE

MMD GAN (orig.) 39.90 6.51 -
MMD GAN (impl.) 13.62 8.93 -
DDPM (orig.) 3.17 9.46 1000
DDPM (impl.) 5.19 8.90 100

Discriminator flow baselines

DGGF-KL 28.80 - 110
JKO-Flow 23.10 7.48 ⇠ 150

MMD flow baselines

MMD-GAN-Flow 450 1.21 100
GS-MMD-RK 55.00 - 86

DMMD (ours) 8.31 9.09 100
DMMD (ours) 7.74 9.12 250

Figure 2: Toy experiment. Left, learned RBF
kernel widths �(t) for DMMD. Center, � for
MMD-GAN as function of training iterations.
Right, MMD2(Pt, P ; t) for different methods.

Table 2: Approximate sampling performance
on CIFAR10. IS stands for Inception score

Method FID IS NFE

DMMD 8.31 9.09 100
DMMD-e 8.21 8.99 102

a-DMMD 24.86 9.10 50
a-DMMD-e 9.185 8.70 52
a-DMMD-a 11.22 9.00 52

As baselines we consider our implementation of MMD-GAN (Bińkowski et al., 2021) with linear
base kernel and DDPM (Ho et al., 2020) using the same neural network backbones as for DMMD.
We also report results from the original papers. On top of that, we consider baselines based on
discriminator flows. JKO-Flow (Fan et al., 2022), which uses JKO (Jordan et al., 1998) scheme
for the KL gradient flow. Deep Generative Wasserstein Gradient Flows (DGGF-KL) (Heng et al.,
2023), which uses particle-based approach (similar to (3)) for the KL gradient flow. These approaches
use adversarial training to train discriminators, see Section 6 for more details. On top of that, we
consider Generative Sliced MMD Flows with Riesz Kernels (GS-MMD-RK) (Hertrich et al., 2023)
which uses similar particle based approach to DGGF-KL to construct MMD flow, but uses fixed
(kernel) discriminator. On top of that, we report results using a discriminator flow defined on a trained
MMD-GAN discriminator which we call MMD-GAN-Flow. More details on experiments are given
in Appendix F. The results are provided in Table 1.

We see that DMMD achieves better performance than the MMD GAN. As expected, MMD-GAN-
Flow does not work at all. This is because the MMD-GAN discriminator at convergence was
trained on samples close to the target distribution. Making a parallel with RBF kernel experiment
from, this means that the gradient of MMD will be very small on samples far away from the target
distribution. This highlights the benefit of adaptive MMD discriminators. Moreover, we also see
that DMMD performs better than GS-MMD-RK, which uses fixed kernel. This highlights the
advantage of learning discriminator features in DMMD. DMMD achieves superior performance
compared to other discriminator flow baselines. We believe that one of the reasons of the under-
performance of these methods is adversarial training, which makes the hyperparameters choice tricky.
DMMD on the other hand, relies on a simple non-adversarial training procedure from Algortihm 1.
Finally, we see that DDPM performs better than DMMD. This is not surprising, since both, U-Net
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architecture and forward diffusion process (6) were optimized for DDPM performance. Nevertheless,
DMMD demonstrates strong empirical performance as a discriminator flow method trained without
adversarial training. The samples from our method are provided in Appendix I.1. We provide results
on CELEB-A, LSUN Church and MNIST below.

Approximate sampling. We run approximate MMD gradient flow (see Section 5) with the same
discriminator as for DMMD. We call this variant a-DMMD, where a stands for approximate. On
top of that, we use denoising procedure described in Section 4. Starting from the samples given by
a-DMMD, we do 2 gradient flow steps with higher learning rate using either approximate gradient
flow, which we call a-DMMD-a, or exact gradient flow (9) applied to a single particle, which we
call a-DMMD-e, e stands for exact. On top of that, we apply the denoising to DMMD, which we
call DMMD-e. Results are provided in Table 2. We observe that a-DMMD performs worse than
DMMD, which is as expected. Applying a denoising step improves performance of a-DMMD,
bringing it closer to DMMD. This suggests that the approximation (13) moves the particles close to
the target distribution; but once close to the target, a more refined procedure is required. By contrast,
we see that denoising helps DMMD only marginally. This suggests that the exact noise-conditional
witness function (10) accurately captures fine detais close to the target distribution.

Results on MNIST, CELEB-A (64x64) and LSUN-Church (64x64) Besides CIFAR-10, we study
the performance of DMMD on MNIST (Lecun et al., 1998), CELEB-A (64x64 (Liu et al., 2015)
and LSUN-Church (64x64) (Yu et al., 2016). For MNIST and CELEB-A, we consider the same
splits and evaluation regime as in (Franceschi et al., 2023). For LSUN Church, the splits and the
evaluation regime are taken from (Ho et al., 2020). For more details, see Appendix F.1. As baselines,
we consider our implementations of DDPM (Ho et al., 2020), MMD-GAN (Bińkowski et al., 2021).
In addition to DMMD, we report the performance of Discriminator flow baseline from (Franceschi
et al., 2023) with numbers taken from the corresponding paper. This baseline uses adversarial
training together with MMD gradient flow to produce samples. The results are provided in Table 3.
We see that DMMD performance is better compared to the discriminator flow and MMD-GAN,
which is consistent with our findings on CIFAR-10. It also underperforms compared to DDPM. The
corresponding samples are provided in Appendix I.2.

Table 3: Unconditional image generation on additional datasets. The metric used is FID. The
number of gradient flow steps for DMMD is 100.

Dataset MMD-GAN DDPM DMMD Disc. flow

MNIST 7.0 1.94 3.0 4.0

CELEB-A 12.1 6.72 8.3 41.0

LSUN 8.4 3.84 6.1 -

8 CONCLUSION

In this paper we have presented a method to train a noise conditional discriminator without adversarial
training, using a forward diffusion process. We use this noise conditional discriminator to generate
samples using a noise adaptive MMD gradient flow. We provide theoretical insight into why an
adaptive gradient flow can provide faster convergence than the non-adaptive variant. We demonstrate
strong empirical performance of our method on uncoditional image generation of CIFAR10, as well
as on additional, similar image datasets. We propose a scalable approximation of our approach which
has close to the original empirical performance.

A number of questions remain open for future work. The empirical performance of DMMD will be
of interest in regimes where diffusion models could be ill-behaved, such as in generative modeling
on Riemannian manifolds; as well as on larger datasets such as ImageNet. DMMD provides a
way of training a discriminator, which may be applicable in other areas where a domain-adaptive
discriminator might be required. Finally, it will be of interest to establish theoretical foundations for
DMMD in general settings, and to derive convergence results for the associated flow.
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Sauer, A., Lorenz, D., Blattmann, A., and Rombach, R. Adversarial diffusion distillation. arXiv

preprint arXiv:2311.17042, 2023.

Schölkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. The MIT Press, 06 2018. ISBN 9780262256933. doi: 10.7551/mitpress/
4175.001.0001. URL https://doi.org/10.7551/mitpress/4175.001.0001.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. Deep unsupervised learning
using nonequilibrium thermodynamics, 2015.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consistency models. arXiv preprint

arXiv:2303.01469, 2023.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. Going deeper with convolutions, 2014.

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319–2323, 2000.

Villani, C. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2008. ISBN 9783540710509. URL https://books.google.
co.uk/books?id=hV8o5R7_5tkC.

Vincent, P. A connection between score matching and denoising autoencoders. Neural Computation,
23(7):1661–1674, 2011.

Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L., Yim, J., Eisenach, H. E., Ahern, W.,
Borst, A. J., Ragotte, R. J., Milles, L. F., et al. Broadly applicable and accurate protein design by
integrating structure prediction networks and diffusion generative models. BioRxiv, pp. 2022–12,
2022.

13

https://doi.org/10.7551/mitpress/4175.001.0001
https://books.google.co.uk/books?id=hV8o5R7_5tkC
https://books.google.co.uk/books?id=hV8o5R7_5tkC


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiao, Z., Kreis, K., and Vahdat, A. Tackling the generative learning trilemma with denoising diffusion
gans, 2022.

Xu, Y., Zhao, Y., Xiao, Z., and Hou, T. Ufogen: You forward once large scale text-to-image generation
via diffusion gans. arXiv preprint arXiv:2311.09257, 2023.

Yang, Z., Feng, R., Zhang, H., Shen, Y., Zhu, K., Huang, L., Zhang, Y., Liu, Y., Zhao, D., Zhou, J.,
and Cheng, F. Eliminating lipschitz singularities in diffusion models, 2023.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. Lsun: Construction of a large-scale
image dataset using deep learning with humans in the loop, 2016.

Zhang, P., Liu, Q., Zhou, D., Xu, T., and He, X. On the discrimination-generalization tradeoff in gans.
In 6th International Conference on Learning Representations, 2018.

14


