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ABSTRACT

Synthesizing brain activity via generative models to localize concept-selective cor-
tical regions represents a promising advancement beyond traditional experimental
paradigms. However, existing methods largely overlook the spatial selectivity
of visual attention – when visual stimuli contain multiple central targets. The
spatial selectivity of human attention significantly reduces the signal intensity of
unattended targets during neural encoding, leading to suppressed neural repre-
sentations and consequently causing bias or failure in data-driven neural concept
localization. To address this synthesis-attention misalignment problem, we pro-
pose MindAttention, a generative brain visual encoding framework that anchors
concept representation to foveal gaze position. Grounded in the neuroscientific
principle that only high-acuity foveal input reliably drives semantic-level corti-
cal responses, we thereby construct a gaze-conditioned generator: simulated ac-
tivation of a target concept is triggered only when the corresponding object falls
within the foveal field. Experiments show that MindAttention significantly outper-
forms existing generative methods in localization accuracy. The incorporation of
spatial attention constraints endows the framework with neuro-mechanistic inter-
pretability and cognitive plausibility, establishing a more reliable and biologically
grounded paradigm for data-driven exploration of brain concept maps.

1 INTRODUCTION

Human visual perception is an extremely complex system. Extensive research (Grill-Spector &
Weiner, 2014; Kanwisher et al., 1997; Downing et al., 2001; Epstein & Kanwisher, 1998) has shown
that the brain cortex exhibits concept selectivity in processing visual stimulus inputs. Specifically,
when receiving stimuli belonging to a particular concept, specific brain regions are significantly
activated. In tradition, localizing concept-selective regions relies on the data collection with statis-
tical analysis. The experimental paradigm requires substantial investment in time, equipment, and
resources, leading to lengthy research cycles and limited exploration of open-world concept cate-
gories. Inspired by the application of artificial intelligence for science (AI4S) research (Senior et al.,
2020; Jumper et al., 2021), deep learning-based brain visual encoding models hold promise as a
novel and efficient paradigm for data-driven concept region localization (Bao et al., 2025a).

Functional magnetic resonance imaging (fMRI) is favored for brain visual encoding models due
to its non-invasive nature and high spatial resolution, effectively capturing neural responses to vi-
sual stimuli (Gu et al., 2022; Luo et al., 2023; Beliy et al., 2024; Xue et al., 2024; Bao et al.,
2025a; Luo et al., 2025; Yu et al., 2025). These encoding models can be broadly classified into
two paradigms: feature mapping and representation alignment. Feature mapping methods leverage
powerful pre-trained vision models to extract hierarchical features from images, which are then re-
gressed onto fMRI activity patterns using linear or nonlinear models. In contrast, representation
alignment strategies often employ autoencoder architectures to learn a joint latent space for image-
fMRI pairs. These models typically incorporate contrastive learning objectives to enforce cross-
modal consistency, pulling corresponding representations of matching pairs closer while distancing
those of non-matching pairs, thereby fostering more discriminative neural codes.
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Figure 1: Example of visual spatial selectiv-
ity in the functional localization experiment.
Left: Invalid stimuli. The background is
more visually salient than the target. Right:
Valid stimuli. The person is presented as the
clear and unambiguous focus.

Despite their progress, these methods are predicated on a
critical, biologically implausible assumption: that all re-
gions of a visual stimulus contribute uniformly to the en-
coding of neural responses. This premise starkly contrasts
with fundamental principles of the human visual system,
which is characterized by the high-acuity foveal region
and the selective allocation of attention to task-relevant
information(Rosenholtz, 2016). Decades of eye-tracking
research have confirmed that human gaze is not uni-
form but follows consistent, preferential patterns(Larson
& Loschky, 2009; Henderson, 2003). Consequently, by
processing images in their entirety, existing models in-
corporate substantial irrelevant visual information, which
not only degrades predictive accuracy but also obscures
the neuro-computational mechanisms underlying percep-
tion. As illustrated in Figure 1, a participant’s gaze may
be directed towards other elements in the scene rather
than the person. In this case, brain encoding models that
rely on global image features erroneously attribute neural
responses elicited by the attended object to the semantic category of the unattended person. This
fundamental synthesis-attention misalignment between the nominal image content and the subject’s
perceptual experience introduces substantial bias, which not only degrades predictive accuracy but
also obscures the neuro-computational mechanisms underlying perception.

To address this gap, we introduce MindAttention, a novel encoding framework that uniquely inte-
grates the foveal attention mechanism into the image-to–fMRI mapping process. We hypothesize
that high-level semantic information in the visual cortex is predominantly driven by stimuli within
the foveal field of view. By prioritizing these attentionally salient regions, MindAttention enhances
not only the biological plausibility but also the predictive performance of neural encoding models.

Our evaluations demonstrate that MindAttention consistently and significantly outperforms all base-
lines, achieving up to 3.6% relative improvement in voxel-wise correlation and 5.4% higher se-
mantic alignment scores on average across subjects and visual areas. Notably, the performance
gap widens in complex, multi-object scenes where attentional competition is high, confirming that
our fovea-anchored mechanism effectively resolves the synthesis-attention misalignment inherent in
global-feature models. These results further suggest that neural encoding models hold promise for
achieving better data-driven localization of concept-selective brain regions.

In summary, our primary contributions are as follows:

• Theoretically, we reframe the role of attention in neural encoding by treating human gaze fix-
ations as dynamic anchors that guide the formation of neural representations. This ”attention-
as-anchor” perspective provides a computational bridge for the biological mechanism of foveal
vision, offering a new way to model how attention shapes neural activity.

• Methodologically, we propose MindAttention, a novel gaze-conditioned generative brain vi-
sual encoding framework that integrates fovea-guided feature selection and spatial transfor-
mation. By aligning visual inputs with human fixation patterns, MindAttention enables an
interpretable and biologically grounded encoding of neural responses.

• Empirically, we demonstrate that MindAttention significantly surpasses state-of-the-art base-
lines across multiple visual areas in terms of both voxel-level prediction accuracy and semantic-
level fidelity. These results validate the effectiveness and generalizability of incorporating
foveal attention mechanisms into neural encoding models.

2 RELATED WORKS

fMRI Visual Encoding Models. Current fMRI visual encoding research largely follows two
paradigms: discriminative modeling (Kay et al., 2008; Han et al., 2019; Gu et al., 2022; Luo et al.,
2023; Beliy et al., 2024; Xue et al., 2024; Luo et al., 2025; Yu et al., 2025) and generative mod-
eling (Bao et al., 2025a). The former maps visual stimulus representations to voxel-wise brain re-
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sponses using regression models. The latter seeks to synthesize visual content conditional on fMRI
signals, leveraging generative modeling such as diffusion models (Ho et al., 2020; Ramesh et al.,
2022; Peebles & Xie, 2023). In contrast to prior work, we present a high-fidelity generative encod-
ing framework that substantially enhances reconstruction fidelity and semantic alignment through
the integration of multi-scale brain region features, cross-modal alignment cues, and diffusion priors.

fMRI Visual Semantic Decoding. Recent advances in brain decoding have captured high-level
semantic content, enabling the reconstruction of perceived visual scenes from fMRI activity, such
as images (Takagi & Nishimoto, 2023; Chen et al., 2023a; Lu et al., 2023; Ozcelik & VanRullen,
2023; Mai & Zhang, 2023; Liu et al., 2023; Scotti et al., 2023; Gong et al., 2024b; Scotti et al.,
2024; Gong et al., 2025; Bao et al., 2025b) and videos (Chen et al., 2023b; Lu et al., 2024; Gong
et al., 2024a; Fosco et al., 2024; Yeung et al., 2025). In our work, we repurpose such pre-trained
decoding models as components of our semantic-level evaluation pipeline, leveraging their powerful
visualization capability to assess the fidelity of synthetic fMRI with respect to the original one.

Preliminary on Human Visual Foveation Mechanism. The human visual system is fundamen-
tally foveated: high-acuity vision is restricted to the central 1°–2° of the retina, the fovea, where
photoreceptor density peaks and cortical magnification is highest (Wässle et al., 1991; Daniel &
Whitteridge, 1993). Outside this region, spatial resolution drops sharply, and semantic recognition
becomes increasingly dependent on saccadic eye movements to bring targets of interest into foveal
view (Larson & Loschky, 2009). Critically, neuroimaging and eye-tracking studies confirm that neu-
ral responses in high-level visual areas (e.g., FFA, PPA, EBA) are strongly modulated by foveal input
– only stimuli fixated within the central foveal field reliably elicit robust, category-selective activa-
tion (Kay et al., 2015; Allen et al., 2021). This physiological constraint implies that conventional
encoding models, which rely on full-image features, misrepresent the brain’s true input sampling
strategy. In particular, current encoding models introduce bias from non-foveal regions that are ei-
ther neurally suppressed or only weakly encoded (Rolfs et al., 2011). Building on this principle,
we treat the foveal fixation point not merely as a behavioral artifact but as a conceptual anchor of
attention, which gates semantic-level cortical representations. We explicitly embed this mechanism
into MindAttention to better align synthetic visual inputs with biological encoding priors.

3 METHODS

The proposed MindAttention reconstructs individualized cortical responses by aligning visual encod-
ing with human foveal attention. Below, we first motivate this fovea-aligned design from neurobio-
logical principles and provide an overview of the framework. We next elaborate on each core com-
ponent, namely the Fovea-Guided Encoder, the fMRI Variational Autoencoder, and the Diffusion-
Based Generator, and explain how they work together to enable attention-grounded, subject-specific
response synthesis. Finally, we demonstrate that calibrated image conditions can serve as personal-
ized priors to further synthesize stimulus-evoked fMRI signals.

3.1 MOTIVATION AND OVERVIEW

Reconstructing individualized brain cortical responses to visual stimuli is not merely a technical
mapping task but rather a problem of biological alignment. Although recent advances in brain encod-
ing models have achieved impressive predictive accuracy, most approaches rely on the assumption
that the entire visual field contributes uniformly to high-level neural representations. This assump-
tion overlooks a fundamental property of human vision, which is intrinsically fovea-centric (Rosen-
holtz, 2016; Larson & Loschky, 2009; Henderson, 2003). Evidence from both neurophysiology
and psychophysics demonstrates that semantic-level encoding in ventral visual regions, including
V4, LOC, and IT, is driven predominantly by information within the central 2–5 degrees of visual
angle(Grill-Spector & Malach, 2004; Larson & Loschky, 2009). Peripheral inputs, even when vi-
sually salient, are largely suppressed or represented only at coarse and non-semantic levels(Larson
& Loschky, 2009; Hasson et al., 2002). Models that disregard this spatial gating mechanism and
incorporate entire-image features into regressors or generative encoders encounter what we refer to
as the synthesis–attention misalignment problem. In this setting, the model is required to explain
neural activity using visual signals that the brain itself does not utilize. Such a mismatch not only in-
troduces bias and diminishes predictive fidelity but also compromises interpretability, as it becomes
unclear whether the model captures genuine neural encoding processes or merely increases statisti-
cal correlations by exploiting information present in the image but irrelevant to human attention.
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Figure 2: Overview of the MindAttention framework. This schematic shows the end-to-end frame-
work for synthesizing individualized, attention-grounded cortical responses. A fovea-guided en-
coder extracts visual embeddings, which are aligned with fMRI representations through contrastive
learning. A diffusion model then leverages these aligned features to generate high-fidelity, subject-
specific fMRI maps for novel images.

MindAttention is designed to resolve this mismatch at its source. It explicitly aligns visual feature
extraction with human fixation behavior, ensuring spatial consistency between input representation
and the actual encoding mechanism of the brain. As illustrated in Figure 2, the framework consists of
three core components: 1) Fovea-Guided Visual Encoder that dynamically focuses on local image
regions based on predicted fixations, extracting visual features the brain actually cares about; 2)
fMRI Variational Autoencoder that learns a compact, structure-preserving latent space of neural
responses; and 3) Diffusion-Based Conditional Generator that synthesizes diverse, biologically
plausible, individualized response patterns – built upon attention-aligned representations.

3.2 FOVEA MODULE FOR NEURALLY-ALIGNED VISUAL REPRESENTATION

To emulate the biological principles of human vision, we introduce the Fovea Module, a neural
component designed to generate visual representations that mirror the mechanics of foveal per-
ception. This module dynamically reweights image patch features to simulate cortical magnifica-
tion—producing a perceptual profile characterized by high acuity at a predicted attentional center
and gradually diminishing resolution toward the periphery.

Given each data pair (x,y) from the subject-individual fMRI dataset S, x ∈ RD (where D is typ-
ically tens of thousands of voxels) denotes preprocessed fMRI blood oxygenation level-dependent
(BOLD) voxels and y denotes the corresponding visual stimuli, i.e., an image. Each input image is
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first processed by a vision backbone (e.g., ViT) to yield image representation Yimg ∈ R(N+1)×d,
comprising N image patch embeddings and a single [CLS] token that captures global semantics.

The Fovea Module then operates as follows. First, the N patch embeddings, i.e., Y1:N
img , are spa-

tially rearranged into a 2D grid corresponding to their original image locations. A lightweight
predictor—denoted as Predictor(·) and implemented by a convolutional network (see Appendix
B)—takes the grid as input and regresses three key parameters that define the attentional field:

(µx, µy), ℓ̃, wlogit = Predictor(Grid(Y1:N
img )) (1)

From these raw outputs, the interpretable parameters are derived as:

• Attentional Center (µx, µy) ∈ [−1, 1]2: Normalized coordinates of the predicted fixation point.

• Spread Parameter σ = exp(ℓ̃) > 0: Controls the spatial extent of the foveal region. Smaller σ
yields sharper focus; larger σ produces broader attention.

• Global Context Weight wcls = σ(wlogit) ∈ [0, 1]: A sigmoid-scaled weight modulating the
contribution of the [CLS] token.

Each patch i with normalized spatial coordinate pi ∈ [−1, 1]2 is weighted via a 2D isotropic Gaus-
sian kernel centered at µ = (µx, µy). All weights are normalized across patches using Softmax:

wi =
exp

(
−∥pi−µ∥2

2σ2

)
∑N

j=1 exp
(
−∥pj−µ∥2

2σ2

) . (2)

The final fovea-modulated image representation zimg ∈ Rd integrates localized high-acuity features
with global context:

zimg =

N∑
i=1

wi · Patchi + wcls · CLS. (3)

To ensure biological plausibility and alignment with actual human visual processing, we train the
entire system—including the backbone and Fovea Module—using a contrastive learning objective
grounded in fMRI data. Specifically, we minimize the InfoNCE loss(Oord et al., 2018) between the
foveated image embedding zimg and its corresponding fMRI-derived neural embedding XfMRI of x:

LInfoNCE = −E(x,y)∼S

[
log

exp(sim(XfMRI, zimg)/τ)∑
z′

img
exp(sim(XfMRI, z′img)/τ)

]
, (4)

where sim(·, ·) denotes cosine similarity, the denominator sums over all image embeddings in the
batch (one positive, rest negative), and τ is a temperature hyperparameter.

This framework ensures that the learned visual representations not only mimic the spatial selectivity
of human foveal vision but are also neurally aligned with real brain activity patterns.

3.3 FMRI VARIATIONAL AUTOENCODER

Despite the use of attention-aligned visual features, directly modeling high-dimensional fMRI voxel
responses remains inherently noisy, computationally inefficient, and susceptible to overfitting —
particularly given the limited sample sizes typical in neuroimaging studies. More critically, such
direct modeling fails to capture or respect the brain’s intrinsic functional organization. To overcome
these limitations, we propose a dedicated fMRI Variational Autoencoder (fMRI-VAE) architecture
composed of a paired encoder-decoder framework that explicitly learns a compressed, neurobiolog-
ically meaningful latent representation of brain activity.

The encoder, denoted as qϕ(XfMRI|x), maps the high-dimensional fMRI voxel vector x into a low-
dimensional latent space XfMRI ∈ R(N+1)d. The encoder is implemented as a feedforward neural
network with parameters ϕ, outputting the mean µϕ(x) and log-variance log σ2

ϕ(x) of a diagonal
Gaussian distribution from which the latent code z is sampled via the reparameterization trick:

XfMRI = µϕ(x) + σϕ(x) · ϵ, ϵ ∼ N (0, I)

5
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The decoder, pθ(x̂|XfMRI), reconstructs the original fMRI response from the latent code z using
another multi-layer perceptron with parameters θ, yielding a reconstructed voxel vector x̂ ∈ RD.

The model is trained end-to-end by optimizing the following variational lower bound (ELBO):

LVAE = Eqϕ(XfMRI|x)
[
∥x− x̂∥2

]︸ ︷︷ ︸
LRecon

+β ·DKL (qϕ(XfMRI|x)∥N (0, I))︸ ︷︷ ︸
LKL

(5)

Here, LRecon is the voxel-wise mean squared error (MSE) ensuring faithful reconstruction of neural
activity patterns, while LKL regularizes the latent space by penalizing deviations of the approximate
posterior qϕ(XfMRI|x) from a standard isotropic Gaussian prior. The hyperparameter β controls the
trade-off between reconstruction fidelity and latent space regularization, and is fixed to 1.0 through-
out our experiments for simplicity and stability.

After training, we freeze the encoder qϕ and use it to extract (N + 1)d-dimensional fMRI latent
embeddings XfMRI for downstream tasks. These embeddings preserve the essential structure of
neural responses while filtering out noise and redundancy, enabling stable, interpretable, and subject-
specific modeling of brain activity aligned with functional neuroanatomy.

3.4 CONDITIONAL DIFFUSION MODEL FOR PROBABILISTIC NEURAL RESPONSE SYNTHESIS

To model the conditional distribution p(XfMRI|zimg), we employ a diffusion-based generative frame-
work (Bao et al., 2025a). Our objective is not to learn a deterministic mapping from stimulus to neu-
ral response, but to capture the inherent stochasticity of brain activity. Neural responses to identical
stimuli exhibit significant trial-to-trial variability, influenced by factors such as attentional state and
intrinsic neural dynamics. Our model explicitly models the biologically plausible variance.

In the forward diffusion process, the clean neural latent X is corrupted gradually with Gaussian
noise over T discrete timesteps. A noised latent at timestep t, denoted Z(t), is generated as:

Z(t) =
√
ᾱtXfMRI +

√
1− ᾱtε, ε ∼ N (0, I) (6)

where ᾱt =
∏

m = 1tαm is determined by a predefined noise schedule.

For the reverse process, we diverge from standard DDPMs that predict the noise term ε. Instead,
we train a denoiser network, P (·), to directly predict the original clean latent XfMRI from its noised
version Z(t). This X-prediction parameterization is optimized via the following objective:

Ldiff = Eε,t,(x,y)∼S
[
||P

(
Z(t), zimg,Tt

)
−XfMRI||22

]
, ε ∼ N (0, I), t ∈ [1, T ]. (7)

The denoiser P (·) is implemented as a Transformer architecture. It integrates the stimulus condition
zimg through cross-attention mechanisms and is informed of the noise level by a learnable timestep
embedding Tt. This formulation enables the model to sample a diverse yet stimulus-consistent
distribution of neural responses, thereby emulating the stochastic dynamics of the brain.

During the inference phase, the trained denoiser network with frozen parameters is used to synthe-
size new neural responses.

4 EXPERIMENT SETUP

4.1 DATASETS

We utilize the Natural Scenes Dataset (Allen et al., 2022), a large-scale whole-brain fMRI dataset
collected from eight human subjects while viewing images drawn from the MSCOCO (Lin et al.,
2014). Each participant viewed 10,000 images across three experimental trials, yielding a total of
30,000 fMRI scans per subject. For our analysis, we focus on Subj1, Subj2, Subj5, and Subj7,
since they completed all experimental sessions. Among the 10,000 images per subject, 9,000 unique
images are designated for training, while the remaining 1,000 subject-shared images are reserved for
evaluation. Beta-activation estimates are derived using GLMSingle (Prince et al., 2022), with voxel
responses normalized to zero mean (µ = 0) and unit variance (σ = 1) on a per-session basis. For the
test set and resting-state data, we average multi-trial voxel responses to enhance signal reliability.
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To constrain our analysis to the visual system, we apply the official nsdgeneral region-of-interest
(ROI) mask, which encompasses visual cortical areas ranging from early visual areas to higher-
order visual areas. The selected fMRI voxels within this mask are flattened into one-dimensional
vectors, forming the input representation for subsequent encoding models.

4.2 IMPLEMENTATION DETAILS

In our framework, the image feature extractor is based on the pre-trained CLIP ViT-L/14 model,
which produces image embeddings of dimension 257×768. The voxel encoder is constructed as
a sequential stack of multi-layer perceptrons (MLPs) followed by residual blocks, while the voxel
decoder mirrors this architecture in reverse order. The fMRI autoencoder is trained end-to-end
for 300 epochs using the AdamW optimizer (Loshchilov & Hutter, 2017), with a cyclic learning
rate schedule initialized at 0.0003. For the diffusion-based estimator, we configure the diffusion
process with T = 100 timesteps, employing a cosine noise schedule and a 20% conditioning dropout
rate. The diffusion network comprises six Transformer blocks, each attending over three distinct
token sets: 257 image tokens, 257 noisy fMRI tokens, and a single time-step embedding. Training
proceeds for 150 epochs with gradient clipping applied, using the same learning rate schedule as
the autoencoder. The hyperparameter β is sampled uniformly at random from the interval [0, 1].
The entire MindAttention pipeline is computationally efficient and can be fully trained on a single
NVIDIA A6000 GPU. Additional implementation specifics are provided in Appendix B.

5 RESULTS

5.1 EVALUATION FOR SYNTHETIC FMRI

Accurately synthesizing fMRI signals is essential for identifying concept-selective brain regions.
To assess the fidelity of synthetic fMRI generated by our proposed MindAttention model, we em-
ployed both voxel-level and semantic-level evaluation metrics. We compared our model against
two representative encoding baselines: (1) a linear regression model, widely used in neuroscience
for its interpretability (Gifford et al., 2023), and (2) the MindSimulator encoding model, which
has demonstrated strong performance (Bao et al., 2025a). Additionally, we included semantic-level
metrics computed from ground truth fMRI as an empirical upper bound for encoding performance.

It should be noted that we report two sets of results for MindAttention, corresponding to manually
set thresholds of σ > 0.2 and σ > 0. As shown in Table 1, MindAttention consistently outperforms
the baseline models across both voxel-level and semantic-level metrics. Notably, its performance
closely approximates the upper bound, indicating that synthetic fMRI produced by MindAttention
preserves both fine-grained voxel-wise structure and global neural response patterns with high fi-
delity. In addition to these quantitative results, we provide qualitative visualizations of our model’s
accuracy, including reconstructed images from the generated fMRI using MindEye2 (Scotti et al.,
2024) (Figure 3). More results can be found in Appendix D.1

Moreover, the semantic divergence between synthetic and real fMRI signals is minimal, especially
when considering visual stimuli that the model has previously encountered. This close alignment
indicates that MindAttention is capable of capturing the underlying neural representations with high
fidelity, effectively mirroring the patterns observed in actual brain imaging data. Consequently,
MindAttention has the potential to function as a reliable surrogate for the limited and often difficult-
to-acquire ground truth fMRI recordings, thereby facilitating large-scale neuroscience studies and
enabling more extensive exploration of neural mechanisms without the practical constraints of tra-
ditional neuroimaging experiments.

5.2 ABLATION STUDIES

Our ablation study reveals that both the fMRI variational autoencoder and the foveal module are
critical for high-fidelity synthesis. As shown in our Table 2. Removing the VAE severely degrades
both voxel-level and semantic metrics, confirming its role in stabilizing latent representations. While
omitting the foveal module slightly improves voxel-wise correlation, it harms semantic alignment,
indicating that spatial attention prioritizes biologically meaningful patterns over pixel-perfect recon-
struction. The full MindAttention model achieves the best semantic fidelity, validating our design’s
emphasis on functional equivalence over superficial voxel matching.

7
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Table 1: Evaluation of fMRI synthesis accuracy. We report the average values for the 4 subjects.

Method Voxel-Level Semantic-Level
Pearson↑ MSE↓ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

GT fMRI (upper bound) - - 0.278 0.328 95.2 % 99.0 % 96.4 % 94.5 % 0.622 0.343

Linear Regressive 0.334 0.394 0.174 0.266 85.4 % 94.2 % 90.1 % 87.2 % 0.728 0.432
Transformer Encoding 0.337 0.387 0.166 0.286 83.5 % 93.0 % 89.8 % 85.5 % 0.759 0.440
MindSimulator (Trials=1) 0.346 0.403 0.197 0.297 88.9 % 96.5 % 92.1 % 90.4 % 0.701 0.396
MindSimulator (Trials=5) 0.357 0.385 0.202 0.298 89.7 % 97.0 % 93.1 % 91.2 % 0.689 0.391
MindAttention (σ > 0.2) 0.358 0.383 0.212 0.292 91.4 % 97.0 % 94.7 % 93.0 % 0.649 0.385
MindAttention 0.370 0.378 0.233 0.299 94.0 % 98.2 % 95.9 % 93.9 % 0.623 0.367

Table 2: Ablation results (Subj1) under voxel-level and semantic-level metrics.

Method Voxel-Level Semantic-Level
Pearson↓ MSE↑ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incept↑ CLIP↑ Eff↓ SwAV↓

w/o fMRI variational autoencoder 0.287 0.475 0.152 0.295 82.8% 78.2% 89.4% 85.5% 0.75.2 0.506
w/o foveal module 0.405 0.367 0.262 0.307 96.2% 98.8% 97.2% 95.3% 0.592 0.351
MindAttention (full) 0.386 0.372 0.262 0.303 96.3% 98.9% 97.3% 95.5% 0.591 0.348

Figure 3: Comparison between the original visual stimuli and the images reconstructed from syn-
thetic fMRI. It can be observed that the synthetic fMRI preserves the visual semantics.

6 LOCALIZATION CONCEPT-SELECTIVE REGIONS

Figure 4: The empirical findings of
faces-, bodies-, places-, and words se-
lective regions in NSD fLoc.

We leverage the NSD dataset’s functional localizer (fLoc)
experiments, which map cortical selectivity for places, bod-
ies, faces, and words. A notable observation from this data,
shown in Figure 4, is the spatial overlap between face- and
word-selective areas, a pattern absent between the largely
separate place- and body-selective areas. Our work focuses
on the latter: we predict the locations of place- and body-
selective regions using fMRI data synthesized by our Min-
dAttention model and evaluate its accuracy against the em-
pirical NSD fLoc findings and other results.

Our results in Table 3 confirm the superiority of our approach.
The MindAttention model significantly outperforms the linear regression and MindSimulator base-
lines. We achieved our best results with the MindAttention (selected) variant, which uses the model’s
attention mechanism to select the most salient images for a given concept (see Figure 5, more details
in the Appendix C). This targeted selection propelled the model to achieve top accuracies of 82.0%
for places and 82.4% for bodies, validating our method of using synthesized fMRI guided by an
attention mechanism for precise functional localization.
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Figure 5: Visual comparison of official floc stimuli and images selected by our method. Top Row:
Official NSD floc images. Below: Images chosen by our model based on whether MindAttention’s
attention coordinates fell within the bounding box of a target category (e.g., bodies).

Figure 6: The predicted concept-selective regions of Subj1. The visual regions significantly acti-
vated differ across different concepts. Zoom in for better view.

Table 3: Performance comparison for places and bodies across different models (Subj1).

Models Places Bodies

Acc↑ F1↑ Acc↑ F1↑

Linear 29.1% 0.437 29.1% 0.437
MindSimulator 39.7% 0.531 78.9% 0.737
MindAttention 57.2% 0.531 59.7% 0.399
MindAttention (selected) 82.0% 0.693 82.4% 0.419

7 CONCLUSIONS

In this work, we addressed the synthesis–attention misalignment in generative brain encoding by
proposing MindAttention, a fovea-grounded framework that conditions neural response synthesis
on human gaze. By modeling high-level visual representations only from the foveal field—where
semantic cortical responses are reliably driven—MindAttention achieves significantly higher local-
ization accuracy and neuro-cognitive plausibility than global-image baselines. Our results confirm
that incorporating spatial attention constraints not only boosts predictive performance but also yields
more interpretable and biologically faithful models of visual encoding.

For future work, we aim to extend MindAttention to dynamic and naturalistic viewing scenarios,
where eye movements and temporal context jointly shape neural responses. Additionally, we plan
to explore cross-subject generalization using shared attention priors and investigate clinical appli-
cations, such as decoding attentional deficits in neurodevelopmental disorders. Integrating foveated
encoding with large-scale foundation models of vision and language could further enable brain-
aligned AI systems that mirror human perceptual and conceptual processing.
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Nancy Kanwisher, Josh McDermott, and Marvin M Chun. The fusiform face area: a module in
human extrastriate cortex specialized for face perception. Journal of neuroscience, 17(11):4302–
4311, 1997.

Kendrick N Kay, Thomas Naselaris, Ryan J Prenger, and Jack L Gallant. Identifying natural images
from human brain activity. Nature, 452(7185):352–355, 2008.

Kendrick N Kay, Jonathan Winawer, Aviv Mezer, and Brian A Wandell. Functional mri reveals
spatially specific attentional modulation in human primary visual cortex. Proceedings of the
National Academy of Sciences, 112(9):2796–2801, 2015.

Adam M Larson and Lester C Loschky. The contributions of central versus peripheral vision to
scene gist recognition. Journal of vision, 9(10):6–6, 2009.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Yulong Liu, Yongqiang Ma, Wei Zhou, Guibo Zhu, and Nanning Zheng. Brainclip: Bridging brain
and visual-linguistic representation via clip for generic natural visual stimulus decoding. arXiv
preprint arXiv:2302.12971, 2023.

11

http://dx.doi.org/10.1016/j.neuroimage.2019.05.039


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yizhuo Lu, Changde Du, Qiongyi Zhou, Dianpeng Wang, and Huiguang He. Minddiffuser: Con-
trolled image reconstruction from human brain activity with semantic and structural diffusion. In
Proceedings of the 31st ACM international conference on multimedia, pp. 5899–5908, 2023.

Yizhuo Lu, Changde Du, Chong Wang, Xuanliu Zhu, Liuyun Jiang, Xujin Li, and Huiguang He.
Animate your thoughts: Decoupled reconstruction of dynamic natural vision from slow brain
activity. arXiv preprint arXiv:2405.03280, 2024.

Andrew Luo, Maggie Henderson, Leila Wehbe, and Michael Tarr. Brain diffusion for visual explo-
ration: Cortical discovery using large scale generative models. Advances in Neural Information
Processing Systems, 36:75740–75781, 2023.

Andrew Luo, Jacob Yeung, Rushikesh Zawar, Shaurya Rajat Dewan, Margaret Marie Henderson,
Leila Wehbe, and Michael J Tarr. Brain mapping with dense features: Grounding cortical semantic
selectivity in natural images with vision transformers. In The Thirteenth International Conference
on Learning Representations, 2025.

Weijian Mai and Zhijun Zhang. Unibrain: Unify image reconstruction and captioning all in one
diffusion model from human brain activity. arXiv preprint arXiv:2308.07428, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using genera-
tive latent diffusion. Scientific Reports, 13(1):15666, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Jacob S Prince, Ian Charest, Jan W Kurzawski, John A Pyles, Michael J Tarr, and Kendrick N Kay.
Improving the accuracy of single-trial fmri response estimates using glmsingle. Elife, 11:e77599,
2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Martin Rolfs, Michael Dambacher, and Patrick Cavanagh. Focal attention is not required for object
categorization in natural scenes. Journal of Vision, 11(1):1–1, 2011.

Ruth Rosenholtz. Capabilities and limitations of peripheral vision. Annual review of vision science,
2(1):437–457, 2016.

Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
mind’s eye: fmri-to-image with contrastive learning and diffusion priors. Advances in Neural
Information Processing Systems, 36:24705–24728, 2023.

Paul S Scotti, Mihir Tripathy, Cesar Kadir Torrico Villanueva, Reese Kneeland, Tong Chen,
Ashutosh Narang, Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman,
et al. Mindeye2: Shared-subject models enable fmri-to-image with 1 hour of data. arXiv preprint
arXiv:2403.11207, 2024.

Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
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A THE USE OF LLMS

In this paper, the LLMs were solely used for assisting in Manuscript writing. All authors take full
responsibility for the entire content of the paper.

B ADDITIONAL IMPLEMENTATION DETAILS

fMRI Autoencoder Architecture. The fMRI autoencoder comprises an encoder and a decoder,
both operating on voxel inputs of dimensionality ranging from 12,682 to 15,724 (subject-dependent).
The encoder begins with a linear projection layer mapping voxels to a 256-dimensional hidden space.
This is followed by two residual blocks, each consisting of a LayerNorm, a two-layer MLP (with
GELU activation and 0.15 dropout), and a residual connection. The final output is projected via a
linear layer to produce a latent representation of shape 257 × 768, matching the structure of CLIP
image embeddings. The decoder mirrors this architecture in reverse: it first flattens the 257 × 768
tokens into a vector, projects to 256 dimensions, passes through two identical residual blocks, and
finally reconstructs the original voxel dimension via a linear output layer. All linear layers are
initialized with default PyTorch settings (Kaiming uniform for weights, zero bias). The latent space
is sampled via reparameterization from predicted mean and log-variance, both of which are clamped
to [−10, 10] via tanh scaling for numerical stability.

Central Fovea Attention Module. This module processes CLIP image embeddings (shape B ×
257×768) to generate spatially weighted representations. The input is reshaped to B×768×16×16
(excluding the [CLS] token), then passed through a lightweight CNN backbone: a 3×3 conv →
BatchNorm → ReLU → two ResBlocks (each: 3×3 conv → BatchNorm → ReLU → 3×3 conv
→ BatchNorm, with residual skip). Four separate 1×1 convolutions predict: (1) horizontal foveal
center µx, (2) vertical foveal center µy , (3) log-standard deviation log σ, and (4) [CLS] token weight.
Initializations: µ and [CLS] heads are zero-initialized; log σ bias is initialized to log(0.25). Spatial
weights over 256 patches are computed via a 2D isotropic Gaussian centered at (µx, µy) with σ =
exp(log σ), followed by softmax. The final output is a per-token multiplicative weighting of the
original CLIP embeddings.

Diffusion Prior Architecture. The diffusion estimator is built upon a non-causal Transformer
with 6 layers. Each layer employs multi-head attention (8 heads, 48-dim per head, total dim 768)
with rotary positional embeddings and feed-forward blocks (hidden dim 2048). Absolute positional
embeddings are added to the noised fMRI tokens; no learnable queries are used. The model condi-
tions on both the time embedding (SinusoidalPosEmb, dim 768) and the attended CLIP tokens (from
Central Fovea Attention). Time conditioning is injected via adaptive layer norm (as in DiT). The net-
work predicts denoised fMRI tokens in a single forward pass (non-autoregressive). All parameters
are initialized using default PyTorch schemes (Xavier for linear layers, constant for LayerNorm).
Training uses 100 diffusion timesteps with a cosine noise schedule.

Reproducibility Notes. All experiments use a fixed random seed (42) for weight initialization,
data shuffling, and noise sampling. Training is conducted on 1×NVIDIA A6000 GPUs with mixed-
precision enabled. Batch size is 32 for VAE and Prior stages. Learning rate follows OneCycleLR
(max 3e-4, final div factor 1000, warmup 2/total epochs). Gradient clipping (max norm 2.0) is
applied during Prior training. Checkpoints are saved every 10 epochs (VAE) or every epoch (Prior).
Code, hyperparameters, and data preprocessing scripts are provided in the supplementary material
to ensure full reproducibility.

C ADDITIONAL DETAILS ON LOCALIZATION

Prompts. In the NSD fLoc experiments, researchers select visual stimuli from fixed categories.
Specifically, places-stimuli contain ”house” and ”hallway”, bodies-stimuli contain human ”body”
and ”limb”, faces-stimuli contain real ”adult face” and ”children face”, and words-stimuli contain
”characters” and ”numbers”. Therefore, to validate our localization with places-, bodies, faces- and
words-selective regions, we utilize the following prompts for zero-shot classification: [”houses or
corridors”, ”human bodies or human limbs”, ”real human faces”, ”words or numbers”].
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T-test for locate roi regions To assess the statistical significance of predicted fMRI activation pat-
terns, we performed a one-sample t-test across the generated samples for each voxel (i.e., along the
sample dimension), testing the null hypothesis that the mean activation equals zero. This yielded a t-
statistic and raw p-value for each of the voxels within the general brain mask. Critically, we applied
a directional constraint: only voxels with positive t-statistics (indicating above-baseline activation)
were considered for significance testing; voxels with negative t-values were explicitly masked out
by setting their p-values to 1.0, ensuring no false positives from deactivations. Subsequently, we ap-
plied False Discovery Rate (FDR) correction (Benjamini-Hochberg procedure, α = 0.01) across all
voxels to control for multiple comparisons. The final binary ROI mask was derived from the FDR-
corrected significance map, where “activated” voxels were defined as those surviving correction and
exhibiting positive mean activation.

Attention-Guided Stimulus Selection via Central Foveal Prior. To further validate the spatial
specificity of our decoded neural representations, we introduced a biologically inspired attention
localization module that explicitly models the foveal bias inherent in human visual processing.
Specifically, we employed a Central Fovea Attention (CFA) mechanism — a lightweight neural
module trained to predict a 2D Gaussian attention focus (µx, µy) and a spatial attention weight
map W ∈ R16×16 — conditioned on the CLIP image embedding of each stimulus. The predicted
Gaussian center (µx, µy), mapped to the 224×224 image coordinate space, serves as a proxy for the
model’s “foveal point of maximal attention,” while the attention map W reflects the relative saliency
distribution across spatial patches.

This attention mechanism was jointly optimized during training with a variational objective that
encourages alignment between the predicted attention focus and behaviorally or neurally derived
gaze priors (see Section 3.2 for training details). At inference, we leveraged this module to filter
stimuli based on whether the predicted attention focus fell within bounding boxes of semantically
relevant objects — as detected by a YOLOv8n object detector fine-tuned on the COCO dataset.

Semantic Region Filtering via Object Detection. For each ROI category (e.g., places, bodies,
animals), we defined a corresponding set of COCO class IDs (e.g., chairs, beds, and dining tables
for places; persons for bodies; birds, cats, dogs, etc., for animals). We retained only those stimuli for
which the CFA-predicted foveal point (fx, fy) spatially intersected with at least one high-confidence
(confidence > 0.3) bounding box belonging to the target semantic category. This filtering ensures
that visualizations and downstream analyses are restricted to stimuli where the model’s attentional
focus is meaningfully aligned with the intended semantic content — thereby reducing noise from
mislocalized or semantically irrelevant fixations.

D ADDITIONAL RESULTS

D.1 ADDITIONAL RESULTS ON EVALUATION FOR SYNTHETIC FMRI

In Table 4, we present detailed metrics for each subject. We find that the synthetic fMRI for Subj7
performs the best, while Subj1 ranks among the lowest. We suggest that this performance is linked
to the number of voxels in the target fMRI. As the number of voxels to be synthesized increases,
the complexity of the synthesis also rises, leading to a decrease in the quality of the synthetic fMRI.
We include additional metrics, specifically R-squared R2, which is commonly used in neuroscience
studies. The results are presented in figure 7.

D.2 ADDITIONAL RESULTS ON LOCALIZATION

In Tables 5 to 8., we provide the prediction validation results for Subj2, Subj5, and Subj7, which
further show that our synthetic fMRI can predict concept-selective regions more accurately. Fur-
thermore, we present qualitative localization results for Subj1, visualizing the selective voxels for
various categories: bodies (Figure 8), food (Figure 9), words (Figure 10), faces (Figure 11), and
animals (Figure 12).
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subj1 subj2

subj5 subj7

Figure 7: The R2 metric of synthetic fMRI for all four subjects.

Table 4: Reconstruction metrics for synthetic fMRI across subjects. Higher is better except MSE.

Subject Model Voxel-Level Semantic-Level
Pearson↑ MSE↓ PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓

subj1 mindsimulator 0.326 0.417 0.207 0.305 90.6% 97.1% 92.8% 89.8% 0.714 0.402
ours(σ >0.2) 0.383 0.383 0.252 0.297 95.4% 98.8% 96.3% 94.2% 0.618 0.363
ours 0.386 0.372 0.262 0.303 96.3% 98.9% 97.3% 95.5% 0.591 0.348

subj2 mindsimulator 0.386 0.375 0.198 0.289 89.6% 97.0% 92.2% 90.7% 0.694 0.393
ours(σ >0.2) 0.342 0.394 0.195 0.284 89.5% 96.2% 93.4% 91.4% 0.680 0.403
ours 0.387 0.371 0.216 0.282 93.3% 98.0% 94.8% 92.3% 0.650 0.381

subj5 mindsimulator 0.415 0.376 0.190 0.296 89.1% 97.2% 93.9% 92.7% 0.669 0.382
ours(σ >0.2) 0.430 0.367 0.214 0.308 92.8% 97.9% 96.1% 95.6% 0.614 0.369
ours 0.441 0.367 0.241 0.319 94.8% 98.8% 97.5% 96.4% 0.581 0.347

subj7 mindsimulator 0.303 0.373 0.214 0.300 89.6% 96.6% 93.5% 91.6% 0.679 0.387
ours(σ >0.2) 0.275 0.388 0.187 0.278 87.8% 95.0% 93.0% 90.9% 0.684 0.406
ours 0.263 0.404 0.212 0.291 91.4% 96.9% 94.1% 91.5% 0.671 0.391

Table 5: Performance comparison for Places across different top-N settings and models on Subj1.

Model Top-N Acc↑ F1↑

Linear

Top 100 36.0% 0.498
Top 200 33.0% 0.470
Top 300 31.5% 0.458
Top 500 30.4% 0.449

Top 1000 29.1% 0.437

MindSimulator

Top 100 64.4% 0.517
Top 200 56.2% 0.570
Top 300 51.3% 0.581
Top 500 46.3% 0.570

Top 1000 39.7% 0.531

MindAttention

Top 100 59.2% 0.576
Top 200 58.2% 0.559
Top 300 57.8% 0.548
Top 500 57.5% 0.537

Top 1000 57.2% 0.531

MindAttention (selected)

Top 100 81.7% 0.791
Top 200 81.7% 0.737
Top 300 82.6% 0.727
Top 500 82.3% 0.729

Top 1000 82.0% 0.693
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Table 6: Performance comparison for Places across different top-N settings and models on Subj2.

Model Top-N Acc↑ F1↑

Linear

Top 100 36.2% 0.500
Top 200 33.5% 0.478
Top 300 32.3% 0.467
Top 500 31.0% 0.456

Top 1000 29.6% 0.452

MindSimulator

Top 100 66.1% 0.592
Top 200 57.2% 0.612
Top 300 52.2% 0.603
Top 500 48.1% 0.593

Top 1000 42.4% 0.559

MindAttention

Top 100 53.8% 0.454
Top 200 53.7% 0.446
Top 300 53.6% 0.441
Top 500 54.3% 0.429

Top 1000 54.2% 0.427

MindAttention (selected)

Top 100 77.7% 0.688
Top 200 77.4% 0.636
Top 300 79.1% 0.605
Top 500 80.2% 0.573

Top 1000 80.1% 0.556

Table 7: Performance comparison for Places across different top-N settings and models on Subj5.

Model Top-N Acc↑ F1↑

Linear

Top 100 42.6% 0.560
Top 200 38.5% 0.528
Top 300 36.8% 0.515
Top 500 35.3% 0.501

Top 1000 33.8% 0.488

MindSimulator

Top 100 68.8% 0.694
Top 200 61.0% 0.687
Top 300 56.4% 0.667
Top 500 51.7% 0.643

Top 1000 42.4% 0.609

MindAttention

Top 100 51.4% 0.499
Top 200 51.6% 0.503
Top 300 51.0% 0.500
Top 500 51.1% 0.501

Top 1000 51.1% 0.502

MindAttention (selected)

Top 100 73.2% 0.760
Top 200 73.1% 0.759
Top 300 72.8% 0.755
Top 500 72.9% 0.754

Top 1000 73.1% 0.754
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Table 8: Performance comparison for Places across different top-N settings and models on Subj7.

Model Top-N Acc↑ F1↑

Linear

Top 100 31.4% 0.421
Top 200 33.1% 0.433
Top 300 28.3% 0.417
Top 500 27.1% 0.398

Top 1000 26.4% 0.401

MindSimulator

Top 100 78.0% 0.532
Top 200 67.4% 0.613
Top 300 58.7% 0.609
Top 500 51.8% 0.602

Top 1000 43.0% 0.589

MindAttention

Top 100 57.4% 0.570
Top 200 56.7% 0.556
Top 300 56.4% 0.546
Top 500 56.4% 0.544

Top 1000 56.3% 0.539

MindAttention (selected)

Top 100 79.5% 0.793
Top 200 80.0% 0.700
Top 300 84.0% 0.379
Top 500 84.2% 0.455

Top 1000 84.1% 0.395

Figure 8: The predicted bodies concept-selective regions of Subj1.
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Figure 9: The predicted food concept-selective regions of Subj1.

Figure 10: The predicted words concept-selective regions of Subj1.

Figure 11: The predicted words concept-selective regions of Subj1.
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Figure 12: The predicted animals concept-selective regions of Subj1.
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