Under review as a conference paper at ICLR 2025

SAMPLE-EFFICIENT ALIGNMENT FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study methods for efficiently aligning large language models (LLMs) with
human preferences given budgeted online feedback. We first formulate the LLM
alignment problem in the frame of contextual dueling bandits. This formulation,
subsuming recent paradigms such as online RLHF and online DPO, inherently
quests for sample-efficient algorithms that incorporate online active exploration.
Leveraging insights from bandit theory, we introduce a unified algorithm based on
Thompson sampling and highlight its applications in two distinct LLM alignment
scenarios. The practical agent that efficiently implements this algorithm, named
SEA (Sample-Efficient Alignment), is empirically validated through extensive ex-
periments across three model scales (1B, 2.8B, 6.9B) and three preference learning
algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves highly
sample-efficient alignment with oracle’s preferences, outperforming recent active
exploration methods for LLMs. We will release our codebase to hopefully accel-
erate future research in this field.

Fewer better

—
=

SFT Online DPO
Offline DPO SEA DPO

o

0
wn
=1
~

<
~

Passive APL
XPO SEA

e
o

Win rate v.s. reference respons
(=)
[*)
Queries required by Passive
S
~

(=)

1B 2.8B 6.9B 0 10k 20k 30k 40k 50k
Model size Queries required by alternatives

Figure 1: Win rate comparison of model responses against reference responses on the TL;DR task, judged by
the preference oracle. All compared methods use the same optimization method (DPO). (Left) Performance
improvements at convergence over SFT models achieved by offline (Offline DPO), passively online (Online
DPO), and our active exploration (SEA DPO) methods. (Right) The number of queries required by the pas-
sively online method (Passive) versus that by different active exploration methods to attain various levels of
win rates. SEA achieves the best sample efficiency for online alignment compared to XPO and APL.

1 INTRODUCTION

Aligning LLMs with human preferences is a crucial step to elicit various desirable behaviors, e.g.,
helpfulness and harmlessness (Bai et al., 2022). Moreover, it holds the potential to create superhu-
man capabilities with only human-level feedback, as verifying is believed to be easier than synthesiz-
ing novel behaviors. By iteratively generating massive new candidates and asking for human feed-
back, LLMs could learn to reinforce good behaviors and may eventually surpass human capabilities.

Existing methods, either via reinforcement learning from human feedback (RLHF) (Stiennon et al.,
2020; Ouyang et al., 2022) or direct alignment from preferences (DAP) (Rafailov et al., 2023; Azar
et al., 2024), typically require a large amount of human annotations to achieve effective alignment.
As a result, the volume of human feedback becomes a major bottleneck in practical alignment sce-
narios. This poses a challenging and under-explored research question:

How to align LLMs sample-efficiently?

To seek answers, in Section 2, we formalize LLM alignment as a contextual dueling bandit
(CDB) (Yue et al., 2012; Dudik et al., 2015), where the agent (i.e., the learner and decision maker, in

Under review as a conference paper at ICLR 2025

our case the LLM) interacts with the environment (i.e., human) to collect experience for improving
its policy. This formulation naturally calls for two key properties for alignment algorithms to be
sample-efficient:

Property 1 (Online interaction). Interacting and learning online allows the agent to act with the
latest learned policy and then use that experience to immediately improve the policy.

Property 2 (Active exploration). An actively exploring agent strategically selects actions such that
the collected experience leads to maximal policy improvement.

Since the CDB formulation is general and almost subsumes all existing LLM alignment methods,
it provides us a lens to scrutinize prior methods on the axes of Properties | and 2. In Section 3, we
thoroughly discuss prior alignment approaches, ranging from offline learning (Rafailov et al., 2023;
Azar et al., 2024) and passive learning with iterative (Christiano et al., 2017; Dong et al., 2024) or on-
line interaction (Guo et al., 2024), to active exploration for learning preference models (Dwaracherla
et al., 2024) or aligning LLMs (Muldrew et al., 2024; Zhang et al., 2024a; Xie et al., 2024). As will
be revealed, most prior methods (partially) fail to satisfy the two properties, resulting in inferior sam-
ple efficiency. Moreover, through the CDB formulation, we identify two LLM alignment scenarios,
namely aligning from online users’ feedback (e.g., ChatGPT (2024)) and aligning from crowdsourc-
ing (Christiano et al., 2017; Ouyang et al., 2022), and shed light on their correspondences to two
bandit settings (explore & exploit and best arm identification). Understanding their differences is
important for designing efficient alignment algorithms for respective scenarios. We detail these two
settings in Section 2 and discuss how prior works approach them in Section 3.

Leveraging algorithmic insights from bandit theory, our answer to the research question above is a
principled alignment algorithm based on Thompson sampling (TS) (Thompson, 1933). Our method
fulfills Properties | and 2 to enhance sample efficiency, and it solves either of the two settings de-
pending on practical scenarios (Section 4.1). We incorporate techniques including epistemic reward
model, policy-guided search and mixed preference learning to implement the proposed TS algo-
rithm (Section 4.2), yielding a practical agent which we call SEA (Sample-Efficient Alignment).
In addition, we develop and open source a highly efficient, distributed learning system for studying
online LLM alignment methods (Section 5), eliminating barriers to fair empirical comparisons of
different alignment algorithms. Through extensive experiments (Section 6), SEA shows strong em-
pirical results (see Figure 1), consistently achieving higher win rates and improved sample efficiency
compared to baseline approaches across three model scales. We will open source the codebase to
hopefully accelerate future research in this field.

2 LLM ALIGNMENT AS CONTEXTUAL DUELING BANDITS

We first review the definitions and two typical objectives of Contextual Dueling Bandits (Sec-
tion 2.1), then translate them into the language of LLM alignment (Section 2.2). The tight connection
between them, as we will see, allows us to leverage insights from bandit algorithms to design effi-
cient alignment algorithms for LLMs.

2.1 CONTEXTUAL DUELING BANDITS

Contextual dueling bandits (CDB) (Yue et al., 2012; Dudik et al., 2015) is proposed to study online
learning problems where the feedback consists of relative pairwise comparisons. A CDB problem
can be characterized by a tuple (C, A, P), where C is the context space, A is the action space, and P :
AxAxC + [0, 1] denotes the unknown preference oracle. An agent learns by iteratively interacting
with the environment (i.e., the preference oracle IP) as follows. At each round ¢ of the learning
process, a context ¢; ~ pec is presented to the agent, who needs to take two actions a;, a; € A for
a “dueling” comparison. The agent then receives stochastic feedback in the form of a comparison
result z; ~ Ber (P (a; > a}|c;)) from the environment, where Ber(-) is the Bernoulli distribution
and > denotes that the first action is preferred.

Regret. The quality of the dueling actions selected by the agent is measured by the immediate
regret: Ry = P(a} = ai|c;) +P(a; = a}|c;) — 1, where a] is the best action' the agent would
take at round ¢ if it had complete knowledge of P. Intuitively, if the agent has learned how to act
optimally from round ¢ onwards, it would no longer suffer any regret since its actions would be
indistinguishable from the best action (P(a’ > a,|c;) = % hence R, = 0 for 7 > t).

'We assume that a best action a* in the sense that P(a* > alc) > 1,Va € A exists for all context ¢ € C.

general:polished
these

two

para-

graphs

fdaLL

Under review as a conference paper at ICLR 2025

Offline RLHF Offline Online Alignment as CDB
7777777777777777777777777777777 . e
RUGREE ROOREE RUORREON
— e o Hen)
D:{(mi,yf,y[)};il D:{(mi»y;r’y;)}i]L e =Py, >—y£|:ct)

2y ~ Ber(pt)i

3 Supervised learning

proxy envu‘onment - CDB Agent
argemm L(6,D)] i To Tg
e DPO, IPO, Dy = {(r,yF,97)})
ol i l LSO, CIFO), oo i § Objectives: Exploit & Explore,
o 1 or Best Arm Identification
Policy optlmlzatlon irect Alignment from references A\ Contextual Dueling Bandit

Figure 2: (Left) A typical offline RLHF pipeline consists of three stages: collecting preference dataset, training
a reward model to serve as a proxy “environment”, and running RL to optimize the LLM policy inside the
proxy “environment”. (Middle) DAP simplifies RLHF by merging the last two stages of RLHF into a single
step of contrastive supervised learning. (Right) Unlike prior two offline approaches, online alignment employs
a CDB interface, where the agent directly interacts with the preference oracle (e.g., humans) online, learning to
produce good responses satisfying either E&E or BAI objectives. [general,fdal: use fig.2 to provide a clearer
comparison between our CDB formulation and RLHF/DPO.]

Optimal policy. A policy 7 € Aff associates each context ¢ € C with a probability distribution
m(-|c) € A4 over the action space. The total preference of policy m over policy u given a context
sampling distribution pc € A¢ and a preference oracle [P is defined as

Ppc7[p(7T - /J) = Ecwpc [anw(~|c)Ea’~u(~|c) []P’(a - a'|c)]] . (1)
We adopt the von Neumann winner (Dudik et al., 2015) as the solution concept, which requires the
optimal policy 7* to satisfy that

1
vr' € AG, Py p(n* = 7') > 3)

In words, the von Neumann winner policy should beat or tie with every policy (i.e., is zero-regret)
on average.

Learning objectives. The goal of bandit agents is to learn an optimal policy through interactions
with the environment. There are two subtypes of objectives that focus on different learning sce-
narios. The first type considers the conventional explore and exploit (E&E) setting (Robbins, 1952;
Auer et al., 2002), where the agent learns fully online and tries to minimize the cumulative regret
over T’ rounds: Z:{zl R;. The second type of objective concerns the best arm identification (BAI)
setting (Bubeck et al., 2009; Audibert & Bubeck, 2010), where the agent is only evaluated offline on
its average performance, possibly at any round (a.k.a., anytime regret), and tries to learn the optimal
policy with minimum interaction. Both settings call for effective online exploration strategies that
satisfy Properties 1 and 2. Their differences will be made clearer with real scenarios in Section 2.2.

2.2 ONLINE ALIGNMENT AS CDB

Online LLM alignment can be framed as a CDB problem as illustrated in Figure 2 (Right). Specifi-
cally, at time ¢ a text prompt (cf. context) x; € X is sampled from a prompt distribution py. Then,
two distinct responses (cf. actions), y¢,y; €), are chosen by the agent, and presented to human
annotators (cf. the environment) for preference ranking. The winning and losing responses are la-
beled as (y;7,y;) based on a binary stochastic feedback z; ~ Ber (P (y; = y.|z;)). The agent
is expected to produce good responses satisfying either E&E or BAI objectives, with knowledge
learned from the experience accumulated so far: D; = {(x,, y,y;)}L_;. A standard assumption
is that human preferences follow the Bradley-Terry (BT) model (Bradley & Terry, 1952):

exp (r*(mtv yt))
exp (r* (x4, yr)) + exp (r* (x4, Y1)

P(y; > yi|z:) = =o(r*(x,ye) — (T, y1), (3

2We denote by A the set of all mappings C — A 4, where A 4 denotes the set of all probability distribu-
tions over A.

fdalL

Under review as a conference paper at ICLR 2025

Iterative RLHF Iterative or Online DAP Exploration with RMs Sample-Efficient Alignment
’ ’ Re ’ Re
ot Cman) | (7= | (757)~ Caman)| 1%~ men
1z 1z 1z T 1 1z
Te D D Ree—[D Roe—— D

()

(b)

©

(@)

Figure 3: Different paradigms to solve online LLM alignment in the CDB interface (Figure 2 (Right)). The
CDB agent is shaded in gray. We use colors to denote learnable components, RL optimizer, direct opti-
mizer, and active exploration. 74 denotes a point estimate of human’s implicit reward, while R4 refers to
an uncertainty-aware reward model. Please see Section 3 for detailed comparisons with references to prior
works. [fdal: updated fig.3 to highlight the differences between (b) and (d).]

where o is the sigmoid function and 7* encodes human’s implicit reward. The immediate regret of
LLM alignment can be rewritten as Ry = r*(xy,y;y) — (r*(z¢, yt) + r* (x4, y;)) /2 with the BT
assumption (Saha, 2021; Li et al., 2024), where y; is the best response for prompt «; given human’s
implicit reward, i.e., r*(x¢,yy) > r*(xt,y),Vy € Y. The von Neumann winner policy is also
redefined as

7% € argmax J(7), where J(7) = EqoprEyon(. o) [(2, y)] is the objective, 4)
TEAS

by substituting Eq. (3) into Eq. (1) and maximizing P, p(7 > 7*) towards 1/2.

The two settings in bandits have their respective applications in LLM alignment. (1) The E&E
setting applies to the scenario of serving an LLM-based application online and aligning it continually
with users’ preferences. In this setting, the agent needs to balance exploration with exploitation,
thus the cumulative regret is of interest because the quality of every response matters. In fact,
commercial systems like ChatGPT would strategically ask users to make a dueling comparison,
while upholding the quality of both responses. Please see Figure 12 in Appendix G for an example.
(2) The BATI setting corresponds to the other scenario where annotators are paid to provide human
feedback (Christiano et al., 2017; Ouyang et al., 2022). The desideratum in this scenario is to align
the LLM at the minimum labeling cost, while the quality of the dueling responses is not important
as long as the experience helps sample-efficiently learn the von Neumann winner policy.

After formalizing LLM alignment in the framework of CDB and uncovering their tight connec-
tions, we next thoroughly discuss existing alignment methods in the CDB framework and reveal the
sources of their sample inefficiencies.

3 HOW PRIOR WORKS (PARTIALLY) SOLVE LLM ALIGNMENT AS CDB

We first align the notations and terminology used in CDB with commonly referred ones in the LLM
community. Previously, we used the term “agent” to denote the learner and decision maker, and
referred to its overall behavior as the “policy” 7 (as in Eq. (4)), following the standard abstraction in
RL (Sutton & Barto, 2018; Sutton et al., 2022). However, in the LLM literature, “policy” typically
refers to the generative language model alone, excluding components like reward models (RMs) that
the agent might additionally build (see Figure 2 (Right)). To avoid confusion, from now on we use
Tt to denote the generative language model (policy) and r4¢ to denote the (optional) RM at time ¢,
both of which are learned from preference data D, collected up to time ¢. We will omit ¢ when the
time-indexing is not applicable (i.e., no online interaction) or not important in the context.

RLHF and DAP. Commonly adopted RLHF pipelines (Christiano et al., 2017; Stiennon et al., 2020;
Bai et al., 2022; Ouyang et al., 2022) first learn a proxy RM with a negative log-likelihood loss:

Lr(8D) = ~Eay+ y-)mpo [log o (r (2,y7) =1 (z.97))])

where D is collected by querying human annotators using a behavior policy s (typically the
supervised fine-tuned policy 7y). Afterwards, offline RL? (Lange et al., 2012; Levine et al., 2020)
is conducted to learn 7y with respect to the learned reward r internally within the agent (Figure 3a).
However, the learned model 7y might be inaccurate at regions out of the distribution (0.0.d.) of et
because little training data can be collected. An effective remedy is to incorporate a pessimistic
term to combat the distributional shift, leading to a reformulation of the von Neumann winner

3Offline in the sense that 7y is not directly learned from online human feedback. See Appendix B for details.

general:polished
sec.3

RtS4

fdaLL

Under review as a conference paper at ICLR 2025

policy objective in Eq. (4) as

o (y|x)
J(mg) = E E z,y) — Blog — L 6
(70) o re(x,y) — B gmedylw)] (6)
——
estimated r* 0.0.d. reward penalty
- E,| ol)] = BDx (ra(o)l 12)|. @
xz~px | y~mo(-|e)

which converts an online objective regarding the human’s implicit reward 7* to an offline objective
regarding the proxy reward r4. The KL penalty in Eq. (7) is widely used for language model
fine-tuning (Jaques et al., 2020; Xiong et al., 2024), and PPO (Schulman et al., 2017) has become a
default RL optimizer to maximize the KL-regularized reward. However, the performance of RLHF
is guaranteed only if the preference data D induced by m,.r adequately covers 7* (Zhu et al., 2023),
which is often approximated by updating 7..s with the latest (improved) 7y for re-sampling a batch
of online experience and repeating Eq. (5) and (7). Prior works typically focus on offline (Figure 2
(Left)) or iterative online (with only a few iterations) settings (Xiong et al., 2024; Dong et al.,
2024), which may compromise sample efficiency (Property 1).

True online RLHF is difficult due to the complexity and instability of RL optimizers. For example,
Huang et al. (2024) openly reproduces offline RLHF scaling behaviors but requires many imple-
mentation tricks for training, highlighting the difficulties of an online counterpart. Fortunately, the
introduction of DAP (or direct optimizers) largely simplifies and stabilizes fine-tuning by conducting
contrastive supervised learning directly on D (Figure 3b). While most DAP works focus on learning
from a fixed offline preference dataset (Figure 2 (Middle), including Zhao et al. (2023); Rafailov
et al. (2023); Azar et al. (2024); Meng et al. (2024); Zhang et al. (2024b)), iterative DPO (Xu et al.,
2023) observes improved results when allowing iterative online interaction. Guo et al. (2024) fur-
ther propose OAIF to make DAP faithfully online, satisfying Property 1, and demonstrate that online
learning prevents over-fitting and yields continual performance improvement. Nevertheless, it still
employs passive exploration strategies (using y, y’ ~ mg), hindering sample efficiency (Property 2).

Online exploration in LLMs. A line of recent works (Mehta et al., 2023; Das et al., 2024; Melo
etal., 2024; Dwaracherla et al., 2024) adopts the fully online bandit formulation and incorporates ac-
tive exploration with uncertainty-aware RMs for response selection (Figure 3c). In particular, Mehta
et al. (2023) consider the E&E setting and develop a UCB-style (Auer et al., 2002) algorithm; Das
et al. (2024) instead select the dueling responses with the most uncertain preference estimate, target-
ing the BAI setting in a pure exploration way; unlike the above, Melo et al. (2024) view the problem
from the angle of pool-based active learning and propose an acquisition function based on both en-
tropy and epistemic uncertainty; finally, the work by Dwaracherla et al. (2024) is the closest to ours
in the sense that they apply double Thompson sampling (DTS) (Wu & Liu, 2016) for exploration,
but DTS is designed for the E&E setting while they evaluate anytime average performance as in
the BAI setting. We will show in Appendix E.1 that pure exploration by Das et al. (2024) is not
the best choice for BAI, and the objective mismatch in Dwaracherla et al. (2024) could lead to sub-
optimal performance in respective settings. Meanwhile, all these works primarily focus on learning
uncertainty-aware RMs online without updating LLM policies. Therefore, all responses are sampled
from a fixed proposal policy 7g (or even a fixed dataset), making the data coverage a critical concern.

Another line of research updates LLMs online while incorporating exploration. Zhang et al. (2024a)
and Xie et al. (2024) independently propose to learn an optimistic RM to encourage exploration.
They leverage the property of DPO (Rafailov et al., 2023) to reparameterize RM with policy and
conclude with an extra optimistic term in the DPO loss function. Thus, their learning processes are
like Figure 3b but with an optimistic direct optimizer. Muldrew et al. (2024) adopt the vanilla DPO
loss but utilize the implicit reward margin to actively select dueling responses. Yet, these methods are
tightly coupled with DPO and not compatible to other direct optimizers. Their experiments are also
limited to a few online iterations, possibly due to the implementation difficulty of a faithfully online
learning system. Given their relevance to our approach, we will reproduce them in a fully online
manner for fair comparisons in Section 6.1. We summarize prior works in Table 3 in Appendix G.

4 SEA: SAMPLE-EFFICIENT ALIGNMENT FOR LLMS

In this section we present our online exploration agent SEA (Figure 3d). We first introduce a princi-
pled Thompson sampling algorithm inspired by bandit theory (Section 4.1), and then derive SEA as

Under review as a conference paper at ICLR 2025

Algorithm 1 Thompson sampling for LLM alignment (intractable).
Input: Prompt distribution px, unknown but queryable preference oracle IP.

1: Initialize experience Dy < &.
2: fort=1,...,7T do

3: Receive a prompt ; ~ px.
4: Sample 7 ~ p,(-|D¢—1) and set y; < arg max, 7 (x¢, b). /1 Select 1st response y.
// E&E objective: aligning an online system.
5: repeat
Sample ro~~ pr(~|'Dt,1) and set yé < arg maxbgyr(wt, b). // Select 2nd response y’.

until vy, # y;
// BAI objective: labeling via crowdsourcing.
6: Sety; < argmaxpeyV [0 (r(xe, yi) — 7(xt, b))], /7 OR select 2nd response y’.
where V [-] computes variance over the posterior p,(+|D¢—1).
Query P to label {y:,y:}, and update experience D; <+ Di—1J {(xs, ¥, y;)}
8: end for

~

// See Algorithm 2 for a practical version.

its practically efficient implementation (Section 4.2). Interestingly, SEA can also be viewed as an
instantiation of a classical model-based RL architecture called Dyna (Sutton, 1990), for which we
defer the discussion to Appendix B.

4.1 THOMPSON SAMPLING FOR LLM ALIGNMENT

Thompson sampling (TS) (Thompson, 1933) is widely adopted for solving bandit problems at scale
due to its efficiency and strong empirical performance in general online learning problems (Chapelle
& Li, 2011; Russo et al., 2018). A bandit agent using Thompson sampling typically maintains and
incrementally updates a posterior distribution of the oracle reward p(r|D). Meanwhile, the agent
takes actions following a greedy policy with respect to a sampled RM: a; = arg max, r(a) with
r ~ p.(-|D). This simple yet effective algorithm naturally balances exploration and exploitation:
when the agent has limited knowledge about the environment, the posterior estimate exhibits high
uncertainty so that the sampled RM could guide the greedy policy to explore; after sufficient ex-
perience is gathered, the sampled RM approximates the oracle more closely, allowing the agent to
exploit near-optimal policies.

In the context of LLM alignment, we leverage the BT assumption (Eq. (3)) to replace the preference
oracle P with human’s implicit reward r*. This substitution enables us to model the reward posterior
p(r|D) in the standard TS framework, preserving the probabilistic structure necessary for effective
posterior sampling. Inspired by prior works (Wu & Liu, 2016; Gonzdlez et al., 2017) on non-
contextual /-arm bandits and preferential Bayesian optimization problems, we generalize them for
LLM alignment and develop a unified algorithm as shown in Algorithm 1. Note that we assume for
now the LLM agent can be fully described by the posterior p(r|D), and we defer practical reward
(r4) and policy () learning to Section 4.2.

As Algorithm 1 presents, the first response of the duel is always selected via standard TS (Line 4).
The selection of the second response varies across different settings. Line 5 will be used for scenarios
where preference feedback is collected from online users (the E&E setting). The dueling responses
selected in this case will both try to maximize a sampled RM, so that the online user experience
is warranted with best effort. However, such algorithm can have poor asymptotic performance for
BAI problems (Russo, 2016), because sub-optimal responses with confidently high rewards might
be tried for a long time at the expense of not exploring other potentially better choices. In light
of this, Line 6 provides an alternative for scenarios where we could hire annotators for feedback
and low-quality but exploratory responses are safe to try. Specifically, Line 6 selects the second
response as the one that maximizes the variance of the preference (Eq. (3)) over the first response
y;. This variance quantifies the epistemic uncertainty of the RM, pointing the agent to the maximally
informative direction to explore for better sample efficiency.

However, Algorithm 1 is yet to be practical for LLM alignment for three main reasons. First, com-
puting and sampling from a reward posterior is intractable for nearly all RMs at LLM scale, which
are mostly based on large transformers (Lambert et al., 2024). Second, even if we managed to ap-
proximate the reward posterior, the arg max operations for response selection are still intractable

Under review as a conference paper at ICLR 2025

since the search space) is discrete and massive for token sequences of arbitrary length. Last but
not least, an LLM agent (Achiam et al., 2023; Touvron et al., 2023) typically consists in a generative
model 7y (e.g., a transformer (Vaswani et al., 2017)), while the algorithm above is centered around
a reward posterior p(r|D) that cannot be easily converted into a generative model. We next detail
how SEA practically addresses the three aforementioned issues.

4.2 PRACTICAL IMPLEMENTATION
4.2.1 EPISTEMIC REWARD MODEL FOR POSTERIOR SAMPLING

To implement active exploration with TS, we seek an efficient way to maintain and incrementally
update the reward posterior p(r|D). We consider deep ensemble for our purpose, due to its capability
to model epistemic uncertainty (Lakshminarayanan et al., 2017) and provable results when applied to
TS in linear bandits (Qin et al., 2022). Specifically, we update a set of plausible RMs independently
and online, using the preference data and a regularized negative log-likelihood loss:

K

Lr(D'Dy) =" (L(64ID:) — M[dh — $R) » @®)

k=1

where £, is defined in Eq. (5), Pt = {(;5};}?:1 contains the weights of the ensemble of size K,
and A controls the regularization towards individual initial weights ¢?. Each ensemble member
is initialized independently with random weights, and then trained with regularization to maintain
the diversity across ensemble members (Dwaracherla et al., 2024). Randomly picking a ¢} from
&' would approximate the posterior sampling (7 ~ p,(-|D;)) for the RM (Lu & Van Roy, 2017;
Gustafsson et al., 2020). In practice, we train X MLP heads on top of a pretrained and frozen
transformer. We refer to the ensemble as the Epistemic Reward Model (ERM, denoted as Rg).

4.2.2 POLICY-GUIDED SEARCH TO APPROXIMATE arg max

With the ERM approximating the reward posterior, we need to further approximate the response se-
lection steps (Lines 4 to 6) which generally take the form of arg maxpcy U (b), where U absorbs the
sampled prompt, the sampled RM, and optionally the selected first response (for BAI, Line 6). To
obtain the maximum, bandit algorithms for large action spaces typically resort to an action optimiza-
tion oracle (Katz-Samuels et al., 2020; Zhu et al., 2022), but they assume a linear structure of U with
respect to b, which might be impractical for LLMs. Therefore, we instead replace the optimization
over) with sampling from a policy-guided distribution conditioned on U, mpyior (-|) exp (U(+) /1),
which is appropriate since it favors responses y that approximately maximize U (y). In practice, for
a given prompt x;, we sample M candidate responses from the prior policy Tprior(-|%¢) to construct
a proposal set S; = {y:},. We then conduct a greedy search in S; (taking — 0) to identify the
response y; (or y;) that locally maximizes the utility function U, which is subsequently used in the
duel. We also reuse the same S; for different U functions at time ¢ to save computation. The choice
of mprior Will be discussed in the next section.

4.2.3 ONLINE POLICY LEARNING FROM MIXED PREFERENCES

We finally resolve two remaining questions: (Q/) how to choose a sensible mpyior at each time ¢
and (Q2) how to get a good generative policy online. To this end, we propose a simple approach to
approximately address both questions simultaneously. That is, we can utilize any direct optimizer to
learn the policy 7y online with the following loss and use the latest online policy as Tprior:

‘Cﬂ'(et‘Bt) Tref s F) = E(w,y*,y*)wpm [FOt (ma y+a Yy, Wrcf)] ,)

where B; is a batch of preference data labeled by the oracle wherein the responses are proposed by
Tprior and selected by R+, I could be any DAP loss (see Appendix A for some examples), and et
is chosen to be g, Note that we use Tyt as mprior at any time ¢, thus Bt is a batch of on-policy data.
By contrastive training on these on-policy data, we leverage their orthogonal benefits to achieve
maximal policy improvement (Tajwar et al., 2024; Tang et al., 2024).

Now that optimizing Eq. (9) yields a good online policy 7y: (answering Q2), we need to assess
whether 7g: can serve as a suitable 7., for approximating the arg max in TS (Q1). If we optimize
mgt With oracle preference data, S; will be biased towards responses with high oracle reward r*.
Bias towards high-r* region is generally helpful because it aligns with arg maxpcyr(x,b) that
seeks high-reward responses. However, optimizing my: only with oracle data can average out the

RtS4

fdaLL

Under review as a conference paper at ICLR 2025

epistemic uncertainty of R, hindering the exploration efficiency. To mitigate this issue, we further
align 7g: with Rg¢ using the same direct optimizer to encourage mg: to propose high—rdﬁc responses

for individual 74 , leading to better approximation of arg maxpeyr(x, b) for any sampled r. To

implement, we optimize Eq. (9) over a mixture distribution pgmx = ypg, + (1- 'Y)pBERM, where

v € [0,1] controls the mixture ratio and BERM = {(z;, 9;", §;) }2_, consists of preference data

labeled by randomly sampled individual ensemble members 74 . Interestingly, learning from mixed
preferences further boosts sample efficiency because it utilizes the internal ERM to get pseudo labels
instead of querying humans. This relates closely to model-based RL, for which we discuss further
in Appendix B. We summarize our practical algorithm (Algorithm 2) in Appendix A.

5 EXPERIMENTAL SETUP

In this section, we elaborate the experimental setup employed to validate our algorithm and ensure
fair comparisons with other online alignment baselines. We start by introducing the distributed
learning system designed for experimenting with online LLM alignment using simulated human
preferences (Section 5.1). Then, we provide key experimental details in Section 5.2, with a full
description available in Appendix D.

5.1 DISTRIBUTED LEARNING SYSTEM

The interactive nature of LLM alignment necessitates an integrated online learning system that simu-
lates the interface depicted on the right of Figure 2. The absence of a performant open-source online
alignment system has restricted many existing works to only a few iterations of batch learning (Mul-
drew et al., 2024; Dong et al., 2024; Chen et al., 2024; Zhang et al., 2024a; Xie et al., 2024), which
creates a mismatch with their theories that typically require a large number of online interaction
rounds. Even worse, such absence also makes the comparison between different LLM exploration
methods difficult, often restricting evaluations to the simplest iterative DAP baselines (Zhang et al.,
2024a; Xie et al., 2024).

Experience

To fill this gap, we build a highly efficient learning system for exper-
imenting with online LLM alignment algorithms. We notice that the
computational bottleneck lies in online response sampling (i.e., au-
toregressive generation) and preference labeling (e.g., human, large
RMs, or large LLMs), which mirrors the slow actor-environment

Learner

interaction seen in RL systems. Inspired by distributed deep RL
systems which spawn many actors or environments in parallel (Es-
peholt et al., 2018; Weng et al., 2022), we design an Actor-Learner-

Learner
Master

Mosec
Experience

Oracle architecture for online LLM alignment, which is depicted in
Figure 4. The three types of workloads (i.e., actor, learner and ora-
cle) are heterogeneous and require different optimization. In partic-
ular, we adopt vVLLM (Kwon et al., 2023) for the actor to accelerate
the autoregressive response generation. We also use DeepSpeed’s
ZeRO (Rasley et al., 2020; Rajbhandari et al., 2020) strategies to enhance the memory efficiency of
the learner. The updated model weights are broadcasted from the learner master to all actors after
every optimizer step efficiently via NCCL, similar to Hu et al. (2024). Furthermore, to improve the
scalability, we wrap the oracle RM as a service using Mosec (Yang et al., 2021b), which supports
dynamic batching and parallel processing, to minimize preference query latency. Finally, we lever-
age DeepMind Launchpad (Yang et al., 2021a) to compose all workloads into a distributed program
and adopt Plasma (Philipp & Robert, 2017) to efficiently transfer data across process boundaries.

Figure 4: The learning system
for experimenting online LLM
alignment algorithms.

We benchmark our system’s efficiency against a concurrent implementation of online DPO by Hug-
gingFace*, which utilizes only DeepSpeed for memory optimization. Our system achieves up to
2.5x latency reduction compared to this counterpart, demonstrating its computational efficiency.
Due to space constraints, detailed benchmarking methods and results are presented in Appendix F.

5.2 SETTINGS

We adopt SFT models tuned on TL;DR (Stiennon et al., 2020) from Huang et al. (2024), which
cover three scales (1B, 2.8B, 6.9B) of the Pythia family (Biderman et al., 2023), as starting points

4ht‘cps ://huggingface.co/docs/trl/main/en/online_dpo_trainer.

https://huggingface.co/docs/trl/main/en/online_dpo_trainer

Under review as a conference paper at ICLR 2025

Pythia 1B Pythia 2.8B Pythia 6.9B
0.9 0.9
0.8 09
el 0.8
2 0.8
= 0.74 0.7 g
= 0.7 3
= 0.61 Offline XPO Offline XPO Offline ~ XPO | @
051 Online —APL | 0.6 Online == APL 0.6 Online = APL
SEA 0.5 SEA 05 SEA
09 0.9 | | | ‘ ‘ i |
0.8 . 0.9
IC I 0.8
& 08 =
g %7 0.7 0.7 3
= 0.6 Offline —SEA | 0.6 Offline ~SEA | 0.6 Offline ~ SEA
Online Online Online
0.51+ 0.5 / ‘ ‘ ‘ ‘ ‘ 0.51
09 0.9 0.9
o %] 08 08
< 0.7
s 0.7 0.7 &
S 0.6 a
051 Offline —SEA | 0.6 Offline ~SEA | 0.6 Offline ~ SEA
’ Online Online Online
| | | ‘ ‘ 0.5 ‘ ‘ ‘ ‘ 05 ‘ ‘ ‘ ‘ ‘
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k S50k
Query step Query step Query step

Figure 5: Win rate comparison of different algorithms against their initial SFT models across three scales and
three direct optimizers.

for our experiments. We use a strong scalar RM (Liu et al., 2024a)° to simulate the preference
oracle. To verify the effectiveness of SEA, we employ three direct optimizers: DPO (Rafailov et al.,
2023), IPO (Azar et al., 2024), and SLiC (Zhao et al., 2023) to serve as F' in Eq. (9). Besides, two
LLM exploration methods built on DPO, APL (Muldrew et al., 2024) and XPO (Xie et al., 2024),
are fairly compared when using DPO as the optimizer. Our experiments primarily focus on the BAI
setting (crowdsourcing labeling), where we report the win rate of learned models against initial
SFT models. All experiments are repeated three times to ensure statistical significance. Please see
Appendix D for more details.

6 EMPIRICAL STUDIES

We next present our empirical studies highlighting four results: (1) Comparisons with baselines
across various direct optimizers and model scales demonstrate SEA’s superior sample efficiency
(Section 6.1). (2) Ablations confirm that both online policy learning and active exploration con-
tribute to sample-efficient alignment, and using the learned ERM for Best-of-N sampling further
improves the performance (Section 6.2). (3) Different exploration strategies (Line 5 or Line 6 in Al-
gorithm 1) are verified to work best in respective settings. (4) SEA robustly outperforms baselines
when GPT4o0-mini is used as a judge to simulate human feedback. Results for (3-4) are deferred to
Appendices E.1 and E.2 due to space constraints.

6.1 OVERALL COMPARISON

We first compare SEA with all baselines across three model scales and three direct optimizers.
APL and XPO are only compared when DPO is used as the direct optimizer, because they are
incompatible with TPO or SLiC. Figure 5 shows the win rate curves versus the number of query
steps. Across all settings, Online agents consistently improve sample efficiency over their Offline
counterparts, validating the necessity of Property 1 for alignment algorithms. Focusing on the first
row, we observe that among prior active exploration methods, XPO gives a small improvement in
final performance over Online (passive) at the 1B scale, but falls short for larger scales. On the
other hand, APL shows a significant sample efficiency boost at the 1B scale, but this advantage
diminishes when scaling up and it performs almost the same as Online at 6.9B scale. Our method,
SEA, outperforms both offline and online passive methods across all scales and all direct optimizers,
confirming the critical role that Property 2 plays for sample-efficient alignment. Meanwhile, in the
special case of using DPO as the direct optimizer, SEA also shows superior performance to prior
online active exploration methods including APL and XPO. We invite readers to revisit Figure 1,

Shttps://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B

Under review as a conference paper at ICLR 2025

Table 1: Decomposition of different driving factors of online active alignment algorithms.

Variant Inference (Test) Exploration Learn Remark
1 o passive o Online DAP (Guo et al., 2024)
2 o active (7o, Ra) SEA without ERM sync (Section 4.2.3)
3 Y’ active (mo <> Rs) SEA
4 BoN(mg, Ra) passive (7o, Ra) -
5 BoN(ms, Ra) active (7m0, Ra) -
6 BoN(mg, Ra) active (mo <> Ro) SEA with Best-of-N sampling
7 BoN(7rref, Ra) active Ra Not learn policy (Dwaracherla et al., 2024)

where we show that SEA not only attains significantly improved final performance (Left) but also
achieves 2-5x better sample efficiency (Right).

Additionally, we note that the choice of direct optimizer matters for both online learning and
active exploration. When comparing different optimizers at 1B scale (the first column), all Offline
agents demonstrate comparable learning efficiency and reach the same level of final performance
(around 70% win rate), but SLiC Online agent deliver slightly less improvement than DPO and IPO
Online agents. Besides, when incorporating active exploration, the SEA agent using DPO shows
much larger improvement than the other two. This suggests that selecting the most suitable policy
optimizer coupled with active exploration would yield the best agent.

6.2 ABLATION ANALYSIS

Next, we decompose SEA into distinct components to evaluate their individual contributions. Ta-
ble 1 shows the three axes we dissect SEA on, including inference methods, exploration strategies,
and learning components. We construct seven agent variants from different combinations, which
cover two closely related baselines (Guo et al., 2024; Dwaracherla et al., 2024). We show in Fig-
ure 6 the performance curves of each variant, all trained with DPO on 1B scale.

The left plot compares variants that di- Inference with policy Inference with Best-of-N
rectly use the policy for inference. It 0.9 ——
clearly shows the benefits of learning o8 | ’

ERM for active exploration (Variant-2) g

and aligning mg: with Re: (Variant-3). £07

Since a reward model is learned within & o6l [/

the agent, we can further incorporate ' 4-6—7
inference-time alignment via Best-of-N 054 1=2-3 3

(BoN) sampling (Nakano et al.,, 2021; 0 10k 20k 30k 40k S0k 0 10k 20k 30k 40k 50k
Touvron et al., 2023). This also facilitates Query step Query step

a direct comparison between SEA and Figure 6: Win rate comparison of different agent variants
Dwaracherla et al. (2024), which learns when using (Left) policy and (Right) Best-of-N sampling for
a similar ERM for both exploration and inference.

BoN but does not align the LLM policy. Results in the right plot of Figure 6 suggest a similar
trend that Variant-6 > Variant-5 > Variant-4. The Variant-7 (Dwaracherla et al., 2024), however,
ceases to improve after ERM converges due to the limited capability of its fixed policy.

7 CONCLUSION

In this paper, we study the problem of LLM alignment through the lens of contextual dueling ban-
dits and propose a Thompson sampling-based algorithm to achieve sample-efficient alignment. We
incorporate three techniques, including epistemic reward model, policy-guided search and mixed
preference learning to yield a practically efficient online alignment method. Extensive empirical
evaluation demonstrates the superior sample efficiency of our method compared to existing base-
lines. To our knowledge, this is the first work to study active exploration for online LLM alignment
with fully online experimental verification. We hope our positive empirical results, along with the
open-sourced codebase, will encourage future research in this direction, ultimately enabling LLMs
to achieve superhuman intelligence with an affordable amount of human feedback.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint

10

Under review as a conference paper at ICLR 2025

arXiv:2303.08774, 2023.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In Conference on
learning theory, pp. 41-53, 2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235-256, 2002.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences.
In International Conference on Artificial Intelligence and Statistics, pp. 4447-4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav
Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement
learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Degbiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite
for analyzing large language models across training and scaling. In International Conference on Machine
Learning, pp. 2397-2430. PMLR, 2023.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: 1. the method of paired
comparisons. Biometrika, 39(3/4):324-345, 1952.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits problems. In
Algorithmic Learning Theory: 20th International Conference, ALT 2009, Porto, Portugal, October 3-5,
2009. Proceedings 20, pp. 23-37. Springer, 2009.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments
with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Robert Busa-Fekete, Baldzs Szorényi, Paul Weng, Weiwei Cheng, and Eyke Hiillermeier. Preference-based re-
inforcement learning: evolutionary direct policy search using a preference-based racing algorithm. Machine
learning, 97:327-351, 2014.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in neural informa-
tion processing systems, 24, 2011.

OpenAl ChatGPT. ChatGPT. https://chatgpt.com/, 2024. Accessed: 2024-09-30.

Changyu Chen, Zichen Liu, Chao Du, Tianyu Pang, Qian Liu, Arunesh Sinha, Pradeep Varakantham, and Min
Lin. Bootstrapping language models with dpo implicit rewards. arXiv preprint arXiv:2406.09760, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30, 2017.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Provably sample efficient
rlhf via active preference optimization. arXiv preprint arXiv:2402.10500, 2024.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. RIlhf workflow: From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863, 2024.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval: A
simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Miroslav Dudik, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi. Contextual
dueling bandits. In Conference on Learning Theory, pp. 563-587. PMLR, 2015.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient exploration
for llms. In International Conference on Machine Learning, 2024.

11

https://chatgpt.com/

Under review as a conference paper at ICLR 2025

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International conference on machine learning, pp. 1407-1416. PMLR, 2018.

Javier Gonzélez, Zhenwen Dai, Andreas Damianou, and Neil D Lawrence. Preferential bayesian optimization.
In International Conference on Machine Learning, pp. 1282-1291. PMLR, 2017.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tiangi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online ai feedback.
arXiv preprint arXiv:2402.04792, 2024.

Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable bayesian deep learning
methods for robust computer vision. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp. 318-319, 2020.

Jian Hu, Xibin Wu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use, scalable and
high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis Tunstall.
The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization. arXiv preprint
arXiv:2403.17031, 2024.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement learning.
arXiv preprint arXiv:2010.05848, 2020.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with pair-
wise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of the Association for
Computational Linguistics (ACL 2023), 2023.

Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson, et al. An empirical process approach to the union bound:
Practical algorithms for combinatorial and linear bandits. Advances in Neural Information Processing Sys-
tems, 33:10371-10382, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based offline
reinforcement learning. Advances in neural information processing systems, 33:21810-21823, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez,
Hao Zhang, and lon Stoica. Efficient memory management for large language model serving with pagedat-
tention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha
Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi. Rewardbench:
Evaluating reward models for language modeling, 2024.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learn-
ing: State-of-the-art, pp. 45-73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models. https:
//github.com/tatsu-lab/alpaca_eval, 52023.

Xuheng Li, Heyang Zhao, and Quanquan Gu. Feel-good thompson sampling for contextual dueling bandits.
arXiv preprint arXiv:2404.06013, 2024.

Chris Yuhao Liu, Liang Zeng, Liu Jiacai, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and
Yahui Zhou. Skywork reward model series. arXiv preprint arXiv:2410.18451, 2024a.

Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng Yan, and Zhongwen Xu. Efficient offline policy optimization
with a learned model. In International Conference on Learning Representations, 2023.

12

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval

Under review as a conference paper at ICLR 2025

Zichen Liu, Chao Du, Wee Sun Lee, and Min Lin. Locality sensitive sparse encoding for learning world models
online. In International Conference on Learning Representations, 2024b.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. Advances in neural information processing systems,
30, 2017.

Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and Willie
Neiswanger. Sample efficient reinforcement learning from human feedback via active exploration. arXiv
preprint arxiv:2312.00267, 2023.

Luckeciano C Melo, Panagiotis Tigas, Alessandro Abate, and Yarin Gal. Deep bayesian active learning for
preference modeling in large language models. arXiv preprint arXiv:2406.10023, 2024.

Yu Meng, Mengzhou Xia, and Dangi Chen. Simpo: Simple preference optimization with a reference-free
reward. arXiv preprint arXiv:2405.14734, 2024.

William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for large lan-
guage models. In International Conference on Machine Learning, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering
with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International Conference
on Machine Learning, volume 1, pp. 2, 2000.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730-27744, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In International Conference on Machine Learning, pp. 745-750, 2007.

Moritz Philipp and Nishihara Robert. Plasma: A high-performance shared-memory object store, 2017. URL
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/.

Chao Qin, Zheng Wen, Xiuyuan Lu, and Benjamin Van Roy. An analysis of ensemble sampling. Advances in
Neural Information Processing Systems, 35:21602-21614, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Infor-
mation Processing Systems, 37, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to g*: Your language model is secretly a
g-function. In Conference on Language Modeling, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 3505-3506, 2020.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematics
Society, 58:527-535, 1952.

Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on Learning Theory, pp.
1417-1418. PMLR, 2016.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson
sampling. Foundations and Trends® in Machine Learning, 11(1):1-96, 2018.

Aadirupa Saha. Optimal algorithms for stochastic contextual preference bandits. Advances in Neural Informa-
tion Processing Systems, 34:30050-30062, 2021.

13

https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/

Under review as a conference paper at ICLR 2025

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, loannis Antonoglou, and
David Silver. Online and offline reinforcement learning by planning with a learned model. Advances in
Neural Information Processing Systems, 34:27580-27591, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in Neural Infor-
mation Processing Systems, 33:3008-3021, 2020.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dy-
namic programming. In Machine Learning Proceedings, pp. 216-224. Morgan Kaufmann, 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

Richard S Sutton, Michael Bowling, and Patrick M Pilarski. The alberta plan for ai research. arXiv preprint
arXiv:2208.11173,2022.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano Ermon,
Chelsea Finn, and Aviral Kumar. Preference fine-tuning of 1lms should leverage suboptimal, on-policy data.
arXiv preprint arXiv:2404.14367, 2024.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov, Rémi
Munos, Bernardo Avila Pires, Michal Valko, Yong Cheng, et al. Understanding the performance gap between
online and offline alignment algorithms. arXiv preprint arXiv:2405.08448, 2024.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, 25(3-4):285-294, 1933.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via multi-
objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845, 2024.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen Liu, Yufan
Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. EnvPool: A highly parallel reinforcement
learning environment execution engine. In Advances in Neural Information Processing Systems, volume 35,
pp- 22409-22421, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229-256, 1992.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fiirnkranz. A survey of preference-based
reinforcement learning methods. Journal of Machine Learning Research, 18(136):1-46, 2017.

Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Advances in neural information
processing systems, 29, 2016.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and Alexander
Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation for sample-efficient
rlhf. arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang. Iterative
preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint. In
Forty-first International Conference on Machine Learning, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than others:
Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682, 2023.

Fan Yang, Gabriel Barth-Maron, Piotr Stariczyk, Matthew Hoffman, Sigi Liu, Manuel Kroiss, Aedan Pope,
and Alban Rrustemi. Launchpad: A programming model for distributed machine learning research. arXiv
preprint arXiv:2106.04516, 2021a.

14

Under review as a conference paper at ICLR 2025

Keming Yang, Zichen Liu, and Philip Cheng. MOSEC: Model Serving made Efficient in the Cloud. https:
//github.com/mosecorg/mosec, 2021b.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:

Conservative offline model-based policy optimization. Advances in neural information processing systems,
34:28954-28967, 2021.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits problem.
Journal of Computer and System Sciences, 78(5):1538-1556, 2012.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhaoran
Wang. Self-exploring language models: Active preference elicitation for online alignment. arXiv preprint
arXiv:2405.19332, 2024a.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference optimization:
Improving chain-of-thought reasoning in llms. Advances in Neural Information Processing Systems, 38,
2024b.

Yao Zhao, Rishabh Joshi, Tianqgi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence
likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo-
han Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in
Neural Information Processing Systems, 36:46595-46623, 2023.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feedback from
pairwise or k-wise comparisons. In Proceedings of the 40th International Conference on Machine Learning,
pp- 43037-43067. PMLR, 2023.

Yinglun Zhu, Dylan J Foster, John Langford, and Paul Mineiro. Contextual bandits with large action spaces:
Made practical. In International Conference on Machine Learning, pp. 27428-27453. PMLR, 2022.

15

https://github.com/mosecorg/mosec
https://github.com/mosecorg/mosec

Under review as a conference paper at ICLR 2025

A ALGORITHM DETAILS

While Algorithm 1 presents our Thompson sampling algorithm for LLM alignment, it is intractable and
centered around the reward posterior modeling. We next present a practical sample-efficient alignment agent
that learns both an LLM policy and an epistemic reward model online.

Algorithm 2 Sample-efficient alignment (SEA) for LLMs

Input: Reference policy 7rer, DAP loss function F', prompt distribution px, unknown but queryable
preference oracle P, mixture ratio ~y.
1: Initialize experience Dy < @, policy mgo < 7rer, and ERM weights 0 = {qﬁg}ﬁ;l randomly.
2: fort=1,...,7T do

3: Receive a prompt & ~ px. _
4: Sample M responses y; ~ Tyt—1(:|x;) to construct S; = {yi} ;.
5 Sample ¢ ~ Uniform(q?'til) and set Yt < arg maXycg, r¢(wt, b). // Select 1st response y.
// EQE objective: aligning an online system.
6: repeat
Sample ¢ ~ Uniform(®*~') and set y; <— arg max, 5,74 (z¢, b). // Select 2nd response y’.

until y; # y:
// BAI objective: labeling via crowdsourcing.
7: Set y{ — arg maxpcs; Vo [0’ (r¢(:1ct, yt) — r¢(azt, b))], // OR select 2nd response y’.
where V4 [-] computes variance across ensemble members of ®‘~ 1.
8: if g < ~y for g ~ Uniform(0, 1) then
Label {y¢, y; } with P to obtain B; = {(z+, y;",y;)} and update experience D; <+ D;—1 | B:.
else
Use Rgt—1 to get synthetic labels and obtain B; = {(z:, ¥;", ¥;)}
end if
9: Update ERM with the regularized NLL loss (Eq. (8)):

Cbt < (IDt_l — OARV<1>£R(<I>t_1"Dt).
// Reward learning.
10: Update policy with the direct optimizer (Eq. (9)):
9t < 9t71 - Clrrve[ﬂr(et71|8h Trref, F)

// Policy learning.
11: end for

In Algorithm 2, we describe an online setting where a single example is processed at each time ¢ (batch size
b = 1). This is mainly for notational convenience, while in implementation we set b to be the training batch
size (e.g., 128). We instantiate the reward posterior with an epistemic reward model, which allows for efficient
incremental update and sampling. We also replace the global optimization (arg maxscy) with a policy-guided
local search among proposals sampled from the latest online policy my:—1. At each time ¢, we update ERM
weights ® with m gradient steps with randomly sampled batches from the experience D;. We find setting
m = 5 suffices to achieve a reasonable accuracy. The policy parameters 6 are updated using mixed preference
data, with a «y proportion being the real environment experience and the remaining (1 —) from the ERM’s
synthetic experience. Note that the synthetic experience is not added into D; to ensure reward learning always
uses ground truth environment data.

We consider the following three direct optimizers in our experiments:

¢ DPO (Rafailov et al., 2023):

_ o (yT|®) meet (v~ |
Fo(x,y",y ,met) = —loga | Blog oy |+) f(yfl) (10)
Teet (Y+|x) mo (Y~)
¢ IPO (Azar et al., 2024):
2
_ o (Yt |x) meet (v~ |T) 1
Fo(z,yt,y ™, met) = | 1 - = 11
ooy Y) ("g(mef(yﬂwm (v le))~ 25 v
e SLiC (Zhao et al., 2023):
+ —
_ wo (Y |x) mrer (Y~ |
Fo(@,y",y™, Trer) = max (O’l_ﬂlog m E(ylll)m ((?JIla:))) (12

where 3 controls the rate of deviation of 7g from 7res.

16

general:add-
details

fdaL

Under review as a conference paper at ICLR 2025

B ON CONNECTIONS WITH SINGLE-STEP RL

By viewing contextual dueling bandits as single-step preference-based RL (PbRL) (Busa-Fekete et al., 2014;
Wirth et al., 2017) problems, we can interpret paradigms shown in Figure 3 from the RL perspective.

RLHF approaches (Figure 3a) are instances of offline model-based RL (Kidambi et al., 2020; Yu et al., 2021;
Schrittwieser et al., 2021; Liu et al., 2023; Tajwar et al., 2024), where they learn a reward model (no need for
a transition model since the prompt-response interaction is single-step) of the environment from a batch of
offline collected data, and train a policy (i.e., LLM) to maximize the return (i.e., expected one-step reward)
with respect to the learned reward.

In contrast, DAP methods (Figure 3b) are similar to policy-based model-free RL algorithms, e.g., REIN-
FORCE (Williams, 1992) which conducts policy gradient update:

BonxByomy 2y [R(2, Y) Ve log o (y|x)] (13)
where R(x, y) is the return (i.e., cumulative reward) of the trajectory. To connect with DAP, we could set R as
arbitrary scalar values based on the binary preference outcomes, e.g., R(x,y™) = ¢ and R(x,y~) = —(for
preference triplet {a, y™, ¥~ }. In this way we could rewrite Eq. (13) as

IEGBN/\’IEy,y/Mro(~|ﬂv)E(y‘*—>y—)~1P’ [C (VG log 779(y+ |&) — Vo logme(y~ |‘13))}) (14)

by repeating action sampling twice and querying the oracle for preference labeling. This matches the gradient
direction of contrastive DAP losses (e.g., see Section 4 of DPO (Rafailov et al., 2023)) if we optimize them
online (Guo et al., 2024).

Additionally, active reward learning from behavior policy’s data distribution (Figure 3c) can be regarded
as inverse RL (Ng & Russell, 2000), which tries to recover environment’s reward function given expert
trajectories. In the context of LLM alignment, the preference data {a,y™",y ™ }IL, directly encodes human’s
implicit reward r*, which can be inversely learned with assumptions such as the BT model (Bradley & Terry,
1952). However, existing methods belonging to this paradigm mostly rely on a fixed (and suboptimal) behavior
policy for response sampling, whose coverage inherently limits the quality of the recovered reward function.

Last but not least, SEA depicted in Figure 3d resembles a class of online model-based RL algorithms, known
as Dyna (Sutton, 1990; Janner et al., 2019), that learns a world model from environment experience and
trains a base agent (consisting of reactive policies and value functions) from both environment experience and
model experience. Compared to model-free methods, Dyna naturally enables more sample-efficient learning
by planning with the learned world model to update the base agent. In SEA, we learn the reward model
online and update the LLM (i.e., the reactive policy) with model-planing experience by mixed preference
learning (Section 4.2.3). Online model-based RL algorithms could suffer from catastrophic forgetting in the
face of nonstationary data (Liu et al., 2024b), and we leave it for future work. Overall, this model-based RL
formulation is powerful and explains popular LLM techniques, e.g., Best-of-N sampling (Touvron et al., 2023)
can be viewed as planning for acting, which trades compute for performance. We believe it is a promising path
leading us to unlock superhuman capabilities of LLMs.

C BASELINE METHODS

We review four baseline methods that are relevant to this work and used for comparisons in our experiments.

Offline DAP. We review DPO (Rafailov et al., 2023), which is a representative work in the direction of Direct
Alignment from Preferences (DAP). It simplifies the two-stage pipeline of offline RLHF (Figure 2 (Left)) as a
single step of supervised learning (Figure 2 (Middle)) by leveraging the closed-form solution (Peters & Schaal,
2007; Peng et al., 2019) of the RL objective in Eq. (7):

1 1
r = 57 N Tre - 5 5 15
mrlyle) = ZoymetWle) exp(gr(@,) (15)
where Z () normalizes such that ¥y, (y|x) = 1, to reparametrize r as a function of 7:
r(@,y) = Blog U4 5100 7(a). (16)
Tret (Y| 22)

Consequently, plugging Eq. (16) into the reward model loss (Eq. (5)) yields a contrastive loss that directly
optimizes the policy:

mo (YT |) meet (v~ |))} 7 (17

i —1 1
o E(eytu) o { 087 <ﬂ O et (@) o (y |2)

where D is a pre-collected offline preference dataset.

17

general

fdalL

fdaLL

Under review as a conference paper at ICLR 2025

We also experiment different DAP methods® besides DPO, such as IPO (Azar et al., 2024) and SLiC (Zhao
et al., 2023), whose loss functions are shown in Eq. (11) and (12).

Online DAP (Guo et al., 2024). In contrast to the conventional DAP methods that learn a policy from a
fixed dataset D, online DAP proposes to collect on-policy preference data to update the policy online. It first
samples responses from the current policy (y,y’) ~ mg,, then acquires preference labels to form a batch
B: = {(=,y",y7)}_;. One gradient step minimizing the DAP loss over this data batch to get g, 41» Which
is used for the next iteration. Such approach not only mitigates the over-fitting issue faced by offline DAP
methods (Guo et al., 2024), but also facilitates online interaction (Property 1) with the environment, falling into
the second paradigm of CDB solution algorithms (Figure 3b).

Active Preference Learning (APL) (Muldrew et al., 2024). APL follows the online DAP paradigm, but is
restricted to DPO due to its reliance on DPO implicit rewards. Two techniques are proposed by APL to actively
select both prompts and dueling responses for querying the preference oracle:

1. Predictive entropy (PE) for selecting prompts. In this step APL computes a Monte-Carlo esti-
mate of PE for each prompt as Hr, (y|z) =~ —X2_, log 7 (yn|z)/N, where y,, ~ mp(-|z) and
log mg(yn|x) is the summation of log probabilities of each token. Then, APL filters a subset of
prompts with high PE to form Xs.

2. Preference model certainty for selecting dueling responses. For prompts in X’s, APL generates many
responses for each prompt, then selects the pair with largest reward margin measured as |7 (x;, y;) —
7(x;,y;)|, where 7 is the DPO implicit reward 7#(x, y) = B(log mo(y|z) — log mret (y|x)).

By above two steps, APL actively explores more uncertain prompts and responses in an online DPO paradigm,
satisfying both Properties 1 and 2.

Exploratory Preference Optimization (XPO) (Xie et al., 2024). XPO studies LLM alignment in the frame-
work of token-level MDP, and leverages the property that DPO conducts implicit Q*-approximation (Rafailov
et al., 2024), so that

*
Blog D _ (@ y) Vi @) v, (18)
Trer (Y |2)
where V* is the optimal value function depending only on the prompt . XPO incorporates the implicit (global
P p g only promp p /4 8
optimism for exploration by overestimating the value V,(z) = r*(x,y) — S log %. This is achieved

by optimizing the policy with a modified DPO loss:

Tret (YT |) 70 (Y~ |)

o

mo (Yt @) meet (y_|93)>} ’ (19)

min E(w’y+7y_ e) | log 7T0(yref @) — log o <ﬂ log

where y™f ~ T..¢(:|&) and B is an on-policy data batch in the same vein as online DPO. Intuitively, the
first term in Eq. (19) biases the policy toward a large value estimation such that V, 2 V™, implementing
the optimism in the face of uncertainty (OFU) for exploration. Theoretically, Xie et al. (2024) also prove the
sample complexity bound of XPO, making it a promising algorithm for online LLM alignment.

Self-exploring language model (SELM) (Zhang et al., 2024a) is a concurrent work of Xie et al. (2024) that
proposes nearly the same theoretic algorithm to achieve OFU. However, the practical implementation of SELM
involves offline preference dataset for training, making it hard to benchmark in an online alignment setting like
ours. Therefore, we will keep XPO as our baseline while omitting the comparison with SELM.

D FULL EXPERIMENTAL DETAILS

In the main text we focus on the task of summarization using the TL ;DR dataset. This provides a lightweight
and clean setting to extensively study different algorithmic designs with affordable computational resources.
Appendix D.1 provides the full details of this setting.

To further validate the sample efficiency of SEA in aligning LLMs to perform general tasks, we adopt the
UltraFeedback dataset (Cui et al., 2023) and evaluate trained LLMs on AlpacaEval 2.0 (Li et al., 2023). Ap-
pendix D.2 provides more details of this setting.

D.1 DETAILS OF TL;DR TASK
Models. We experiment three model scales (1B, 2.8B, 6.9B) from the Pythia family (Biderman et al., 2023).

We take pretrained SFT models from Huang et al. (2024) as mer for the starting model in all experiments.
Except in Section 6.1, we use 1B model for other experiments to save computation.

SWe use “DAP method” and “direct optimizer” interchangeably.

18

cF2f

z8J]2

Under review as a conference paper at ICLR 2025

Preference oracle. We simulate the process of human feedback with a strong scalar RM and refer it as
preference oracle. We choose Skywork-Reward-L1lama-3.1-8B’ (Liu et al., 2024a), which is top-ranked in
RewardBench leaderboard (Lambert et al., 2024), as the preference oracle.

Epistemic reward model. We build ERM on top of a pretrained 0.4B transformer (Jiang et al., 2023), by re-
moving its head and adding an ensemble of MLPs. The size of ensemble is set to X = 20, and all MLPs contain
2 hidden layers of 128 nodes. Note that the ERM is chosen to be much smaller than the preference oracle fol-
lowing Dwaracherla et al. (2024), which reflects the fact that human preferences can be more complex than what
the agent can model. The regularization coefficient A is fixed to be 0.5 after a coarse hyperparameter search.

Data. We employ the widely adopted TL ;DR dataset (Stiennon et al., 2020) for our experiments. It consists of
Reddit posts as prompts, and the agent is required to give summaries that align with human preferences. We fix
50k prompts for training and limit the query budget to 50k as well.

DAP methods. We adopt three DAP methods (direct optimizers) to thoroughly validate our algorithm, includ-
ing DPO (Rafailov et al., 2023), IPO (Azar et al., 2024) and SLiC (Zhao et al., 2023). Except in Section 6.1,
all experiments are done with DPO as the direct optimizer.

Baselines. Similar to Guo et al. (2024), we include the offline and online variants of different DAP methods as
baselines. Additionally, we compare with two active exploration baselines built on online DPO: APL (Muldrew
et al., 2024) and XPO (Xie et al., 2024). A detailed review of all baselines can be found in Appendix C.

Metrics. We use the win rate of agent’s responses against reference responses judged by the preference oracle
as the performance metric. This metric can reflect both the agent’s cumulative regret and anytime regret (i.e., av-
erage performance). In the E&E setting, we measure the “online” win rate of the agent’s dueling responses that
are executed during experience collection and take the average. In the BAI setting, we measure the “offline” win
rate by evaluating the latest agent’s responses given a fixed set of 1000 holdout prompts periodically. We mainly
focus on the BAI setting because crowdsourcing seems a major scenario for most practitioners, and present one
set of experiments for comparing different exploration strategies in both settings. When the comparison is only
made within a model scale, we report the relative win rate against the initial STF models. When the comparison
is across scales (Figure 1 Left), we report the absolute win rate against the ground truth responses in the dataset.

Hyperparameters. We set 5 = 0.1 for DPO and f = 0.2 for SLiC and find they are robust for all scales.
We tune § from {0.2,0.3,0.5,1.0} for IPO across scales and report the best performing results. We sample
M = 20 on-policy responses with a temperature n = 0.7 during training, and use greedy decoding for offline
evaluation (BAI's metric). We use the Adam optimizer with learning rate of 5 x 10" and cosine scheduling,
and set the batch size to be 128. We initialize the mixture ratio v of SEA to be 1 and adjust it to 0.7 after a
burn-in period of 1k samples.

All hyperparameters are kept the same for offline and online baselines, except that online methods update the
sampling policy after every gradient step as the latest mg,. For APL and XPO, we keep the learning rate and
DPO’s 3 the same for apple-to-apple comparisons. Specifically for APL, we initially sample 1024 prompts per
batch and use the predictive entropy to filter a subset of 128 prompts. Then, we sample 8 responses per prompt
and use the preference model certainty to finalize two responses for the duel. Specifically for XPO, we follow
the their recommended optimism coefficient to set @ = 5 x 10~°.

Statistical significance. There are various factors to introduce randomness during online learning. We thus
launch 3 independent runs for every experiment with different random seeds. All the results are reported with
mean and standard error to indicate their statistical significance.

Computational resources. Experiments at all scales are conducted on a single machine with 8 A100 GPUs
to run the learner and actors. We additionally host a separate remote server with workers spawned on 16 A100
GPUs for the oracle RM®, so that it can be queried by all concurrently running experiments. All experiments
conducted for this research consume about 2 A100 GPU years.

D.2 DETAILS OF GENERAL TASKS

Model. Following Meng et al. (2024); Zhang et al. (2024a), we employ L1ama3-8B-Instruct’ as our initial
model 7ref.

Preference oracle. We follow Meng et al. (2024) to adopt ArmoRM-L1ama3-8B-v@.1'" (Wang et al., 2024) as
the preference oracle to provide online preference feedback.

7https://huggingface.co/Skywork/Skywork—Reward—Llama—3. 1-8B.

8We utilize the Kubernetes service for routing requests to multiple Mosec (Yang et al., 2021b) instances.
ghttps://huggingface.co/meta—llama/Meta—Llama—3—SB—Instruct.
'Ohttps://huggingface.co/RLHFlow/ArmoRM—Llama3—88—v0.1.

19

fdalL

fdaL

z8J2,RtS4,fdalL

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B.
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1

Under review as a conference paper at ICLR 2025

Online performance (E&E) Offline performace (BAI) GPT40-mini-as-a-judge
0.9
0.8 ~/'V -
L
g
=07
= . X
0.6 Uncertainty / Uncertainty
E&E TS E&ETS Offline ~ XPO — SEA
05 BAITS BAITS Online — APL

0 10k 20k 30k 40k 50k

Query step

10k 20k 30k 40k 50k

Query step

10k 20k 30k 40k 50k

Query step

Figure 7: (Left and Middle) Win rate comparison of different exploration strategies measured in E&E and
BALI settings. (Right) Win rate comparison of different agents when using GPT40-mini to simulate human
feedback via LLM-as-a-judge.

Data. We take the UltraFeedback dataset (Cui et al., 2023), which is widely used for LLM alignment in the
literature. We filter out samples whose prompt is longer than 1800 tokens and result in 61k samples. We extract
prompts from the filtered dataset while excluding the responses. The prompt set are collected from multiple
sources and cover diverse domains, making it suitable to improve LLM’s capability on general tasks.

DAP method and baselines. We employ the state-of-the-art DAP method, SimPO (Meng et al., 2024), as our
direct optimizer. Since SimPO is originally an offline algorithm, we extend it to Online SimPO and take both
offline and online variants as baselines.

Evaluation. We evaluate SEA and baselines using AlpacaEval 2.0 (Li et al., 2023). It consists of 805 test
prompts, and uses GPT4-Turbo to judge the quality of model responses against reference responses generated
by GPT-4-Turbo. We follow the standard protocol to report both the win rate (WR) and the Length-Controlled
win rate (LC) (Dubois et al., 2024).

Hyperparameters. We follow SimPO’s recommended hyperparameters to set 5 = 10 and /8 = 0.3. We
use a learning rate of 8 x 10~ and batch size of 128. The decoding temperature is set to be 0.9 for generating
evaluation outputs. The same hyperparameters apply to baselines and our method. Configurations of SEA are
kept the same as those in the TL ;DR task (Appendix D.1).

E EXTENDED EMPIRICAL STUDIES

We present additional empirical studies in this section, including investigation on different exploration strate-
gies (Appendix E.1) and preference oracles (Appendix E.2) on the TL;DR task, as well as the performance
comparison on AlpacaEval 2.0 for general tasks (Appendix E.3).

E.1 CHOICE OF EXPLORATION STRATEGIES

Recalling that different LLM alignment scenarios (online system or crowdsourcing) require different explo-
ration strategies to meet their respective learning objectives (Section 2.2). We investigate three strategies based
on posterior sampling and compare them on both online and offline performance. The first strategy (Uncer-
tainty) focuses on pure exploration with information maximization. It seeks the pair of dueling responses that
exhibits the largest epistemic uncertainty, which is implemented by selecting the pair whose logits difference
has the largest variance across ensemble members. The second (E&E-TS) and the third (BAI-TS) strategies
follow the principles in Algorithm 1, and their differences are between Line 5 and Line 6. The comparison
results are shown in Figure 7 (Left and Middle). Focusing on the left plot, we observe that E&E-TS strategy
achieves the best online performance, which is within our expectation. In contrast, Uncertainty shows the
worst online performance because it tries to maximize the information gain but does not prioritize reward
maximization. On the other hand, conclusions are interestingly different when taking the offline performance as
the metric. In this case, BAI-TS and Uncertainty both exhibit more efficient offline performance improvement
than E&E-TS. This can be attributed to that exploration for uncertainty minimizing helps to identify more
informative responses to train the LLM policy. Moreover, BAI-TS > Uncertainty indicates exploration with
both reward and information maximization is better than exploration with only information maximization.
E&E-TS, however, always chooses two responses with similarly high quality to exploit. This can not only lead
to less efficient exploration, but also result in less efficient policy learning due to smaller DAP loss gradients.

E.2 ALIGNING LLMS WITH A HUMAN SIMULATOR

Results presented so far are based on experimenting LLM alignment with the preference oracle being a scalar
reward model, which is deterministic and does not capture the potential randomness of the choice by real
humans. To test different agents in a more realistic setting, we use generative models as human simulator in an
LLM-as-a-judge (Bubeck et al., 2023; Zheng et al., 2023) manner. In particular, we directly query the OpenAl

20

Under review as a conference paper at ICLR 2025

Table 2: AlpacaEval 2.0 results. LLM ex-
045 ploration methods are highlighted in blue.

—

S 40 Model LC WR
<

% 35 GPT-4 Omni (05/13) 575 51.3

] GPT-4 Turbo (04/09) 550 46.1

:? 30 Offline -+ SEA Offline + SEA Yi-Large Preview 519 575

Online Online SEA+SimPO 474 41.1

2575 20K 20K ok 0 200 200 Claude 3 Opus (02/29) 40.5 26.1

Query step Gradient step SELM 347 34.8

XPO 29.4

Figure 8: LC win rates on AlpacaEval 2.0 with respect to query ~ Llama 3 8B Instruct ~ 22.9 22.6
budget and gradient update budget.

API and use gpt-40-mini-2024-07-18 as the judge to provide preference feedback. We use a similar prompt
template to Li et al. (2023)’s, which is shown in Figure 11. We also randomly swap the order of two responses
to mitigate the known position bias of LLM judges. The results are shown in Figure 7 (Right). We can observe
the performance curves generally exhibit higher variance, possibly due to the randomness introduced in the
feedback process, which puts more stringent requirements for learning algorithms. The two active exploration
methods demonstrate opposite results to those in Section 6.1—APL learns fast initially but is eventually out-
performed by Online, while XPO improves over Online after stabilizing its training and delivers a better final
performance. Our agent, SEA, is shown to offer the best sample efficiency as well as asymptotic performance,
further validating the importance of online learning and well-designed active exploration mechanism.

E.3 PERFORMANCE ON GENERAL TASKS

We investigate the generalizability of SEA by training with the prompt set from UltraFeedback (Cui et al.,
2023) and evaluating the model performance on AlpacaEval 2.0 (Li et al., 2023). Figure 8 shows the Length-
Controlled (LC) win rate of different models against GPT-4-Turbo. The left plot compares the sample efficiency
(in terms of the number of queries) of offline, online and SEA SimPO. The results suggest that enabling online
interaction does not improve the sample efficiency over the offline counterpart. Such observation is in stark
contrast to what we have seen in the TL ;DR task, where the online agent always improves over the offline ones.
We hypothesize that this is due to the different coverage of myer in these two tasks. For TL;DR, which is a
much easier task, the initial SFT models already have good coverage, permitting online DAP with only passive
exploration to work reasonably well; however, for more challenging tasks, the insufficient coverage of myer
would lead to sample complexity exponential in % (Xie et al., 2024), which necessitates deliberate exploration,
such as Thompson sampling proposed in this work. The above claim is justified by observing that SEA largely
improves the sample efficiency over the online and offline variants.

Attentive readers may have noticed that comparing query budget could be advantageous to SEA because pseudo
labels are used in mixed preference learning (Section 4.2.3), which results in more gradient steps given the
same query budget. In the right plot of Figure 8, we show the performance versus gradient step. We can
observe SEA has the steepest learning curve, verifying that it explores more informative samples to yield faster
improvement.

Last but not least, in Table 2, we show the AlpacaEval 2.0 LC win rates of XPO and SELM (as reported in
their papers), along with ours and several cutting-edge LLMs. SEA is agnostic to direct optimizers, thus it can
leverage the state-of-the-art SimPO to achieve a high LC of 47.4%. On the other hand, XPO and SELM can only
be applied to DPO, restricting their potential to incorporate future advances in direct optimization algorithms.

F SYSTEM BENCHMARKING
We conduct a rigorous benchmarking comparison on the efficiency of online DPO training using our learning
system, alongside the trl’s implementation'".

Settings. In alignment with the examples provided by trl, we use the TL;DR (Stiennon et al., 2020) dataset
and evaluate training efficiency at three model scales: 1B, 2.8B and 6.9B parameters for both SFT-ed LLMs '

llhttps://github.com/huggingface/trl/blob/main/trl/trainer/online_dpo_trainer.py

'zhttps://huggingface.co/trl—lib/pythia—1b—deduped—tldr—sft;https://huggingface.
co/trl-1lib/pythia-2.8b-deduped-tldr-sft;https://huggingface.co/trl-1ib/pythia-6.
9b-deduped-tldr-sft

21

fdaLL

z8J2,RtS4,fdalL

cF2f fdalL

https://github.com/huggingface/trl/blob/main/trl/trainer/online_dpo_trainer.py
https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-sft
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-sft

Under review as a conference paper at ICLR 2025

Config 1: full collocation Config 2: half collocation
device:0 CEOOEM CEOOMM CEOOM deviee:d (OO0 EDO CEDC
device:! T |CE00)| | o0 deviee!l (OO0 D0 CED0)
device:2 (6)] A 600 " Ce.)0 6 device:2 (o)) 60 %)0
device:3 (oo J(J l a0 l 0 l device:3 (o)) e)0 0
device:4 ([0 J() 5 o)) 5 6 () i device:4 N o 6
device:5 (6o () o)) 6 () device:5 l l
device:6 (0o ())0 %)) device:6 ‘i’l H)
device:7 (G)OO J ()OO J 6)00 device:7 s
time —> time —>
(J Actor: vVLLM inference () Oracle: Mosec service [Learner: DeepSpeed Weights synchronization

Figure 9: Two example configurations of our learning system used in benchmarking experiments.

and exclusively trained RMs'?. This is similar to the settings in our experiments (see Appendix D) except that
we fix the preference oracle to be a strong general-purpose RM.

Hardware & Software. All benchmarking experiments are conducted on a single machine with eight A100-
40G GPUs and 96 AMD EPYC 7352 CPUs. To ensure fair comparison, we align all key hyperparameters
for both our codebase and trl. The DeepSpeed ZeRO-2 strategy is employed by default when GPU memory
suffices; otherwise, ZeRO-3 or ZeRO-2-offload is utilized as applicable. Notably, the distributed architec-
ture of our implementation provides flexibility in system configuration, enabling adjustments to accommodate
memory and computational time constraints. Figure 9 illustrates two example configurations employed in our
benchmarking experiments. We will provide all benchmarking scripts in our codebase for reproducibility.

* Config 1 collocates all three workloads on each of the GPUs. Specifically, eight vLLM instances
(for actors) and eight Mosec workers (for oracle RMs) are spawned to run independently on each
GPU. After a batch of responses is generated (by actors) and labeled (by oracle RMs), it is sent to
the learner, which runs on all eight GPUs coordinated through ZeRO strategies for policy learning.
The updated policy weights are then broadcasted to all actors for on-policy response sampling on
subsequent prompt batch. While this configuration maximizes GPU utilization, it requires substantial
GPU memory to accommodate all workloads and is thus employed only for 1B scale experiments.

* Config 2 only collocates actor and oracle workloads on half of the GPUs, reserving the remaining
four GPUs exclusively for the learner. This is suited for larger-scale experiments (e.g., 2.8B or 6.9B),
where additional GPU memory is allocated to the learner. However, this setup incurs idle time on
half of the GPUs due to data dependency, as the learner must await new preference data, and the
actor must await updated policies. An alternative is to implement asynchronous data collection,
where minor data staleness is allowed by using 6,_; to generate data for updating ;. Although this
data would not be strictly on-policy, asynchronous training could reduce idle time and enhance GPU
utilization. This approach has proven effective in large-scale RL systems (Berner et al., 2019), and
we leave this optimization to future work.

Results. Benchmarking results for the latency of training a batch of 128 samples are presented in Figure 10.
Overall, training with the config 2 demonstrates consistently greater efficiency than trl, achieving up to a 2.5 x
reduction in latency at the 2.8B scale.

We next analyze the time costs for individual stages: generate, oracle and learn. Across all scales and configu-
rations, ours demonstrates significantly lower generate time than trl, due to distributed actors utilizing vVLLM.
Additionally, at the 6.9B scale, ours requires substantially less oracle time than trl, as trl employs ZeRO-3
to prevent GPU memory overflow, thereby slowing inference. In contrast, ours config 2 allows for flexible col-
location, enabling oracle RMs hosted via Mosec to operate in parallel without sharding. However, ours config
2 incurs longer learn time compared to trl due to the use of only half the available GPUs. This limitation also
explains why, at the 1B scale, config 2 has higher latency than config 1 across all stages.

The other category accounts for time costs associated with data loading, tokenization, and communication.
Here, inter-process communication is the primary cost, with trl showing minimal overhead as all three stages
operate within the same process on identical micro-batches, avoiding weight synchronization. By contrast,
ours requires considerable time to transfer updated policy weights from the learner to all actors. While NCCL

]3https://huggingface.co/trl—lib/pythia—1b—deduped—tldr—rm;https://huggingface.
co/trl-1lib/pythia-2.8b-deduped-tldr-rm;https://huggingface.co/trl-1lib/pythia-6.
9b-deduped-tldr-rm

22

https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-2.8b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-rm
https://huggingface.co/trl-lib/pythia-6.9b-deduped-tldr-rm

Under review as a conference paper at ICLR 2025

Benchmarking ours against huggingface/trl

trl-learn B ours-learn GRS
< 60
2 trl-oracle ours-oracle
3 48.83
3 trl-generate M ours-generate :
w
=401 trl-other ours-other
8 34.43
g
i 23.56
S 20
< 13.77
m 9.25
. 4.67
NIECRECAECNY | [
config 1 config 2 config 2 config 2 config 2 config 2
gloo ncc gloo ncc gloo ncc
1B 2.8B 6.9B

Figure 10: Averaged training latency (over 10 batches, equivalent to 1280 samples) comparing ours against
huggingface/trl.

is recommended for synchronization over GLOO, it requires older vVLLM packages (prior to version 0.4.3),
which may lack support for newer LLM architectures. Moreover, NCCL is incompatible with config 1 due to
its restriction on the learner master process establishing two separate process groups (one for DeepSpeed, the
other for weight synchronization). In summary, we recommend future researchers prioritize the config 2 and
employ NCCL when feasible.

G SUPPLEMENTARY MATERIALS

In this section, we include a comparison of prior works (Table 3), the prompt template we use for
LLM-as-a-judge (Figure 11), and an example showing ChatGPT actively explores (Figure 7).

Method Exploration Interaction Proposal Policy

Active Passive Online Iterative Offline L) T3

Christiano et al. (2017)
RL Stiennon et al. (2020)
Optimizer Bai et al. (2022)
Ouyang et al. (2022)

Zhao et al. (2023)
Rafailov et al. (2023)
Azar et al. (2024)
Meng et al. (2024)
Xu et al. (2023)
Guo et al. (2024)
Mehta et al. (2023)
Das et al. (2024)
Melo et al. (2024)
Dwaracherla et al. (2024)
Zhang et al. (2024a)
Xie et al. (2024)
Muldrew et al. (2024)

AN NE NN

SSSSSN [SSAN
SN SSAS
AN N NN Y NN NN

Direct
Optimizer

AN N NN
AN

AN NN

Table 3: A summary of prior work. 7y denotes the proposal policy that is continuously updated based on
newly collected preference data, while mg denotes a fixed proposal policy. Algorithms that encompass online
interaction (Property 1), active exploration (Property 2), and learnable 7y offer the best sample efficiency.
Notably, only three methods (listed at the bottom of the table) satisfy these characteristics, and we include
them for comparisons in our experiments.

23

Under review as a conference paper at ICLR 2025

LLM-as-a-Judge Prompt Template

I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding outputs. Your task is to assess these responses,
and select the model that produces the best output from a human perspective.

Instruction

{instruction}

Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{

"model_identifier: "0",

"output": {response0}

"model_identifier: "1",

"output": {responsel }

}

Task

Evaluate the models on the basis of the quality and relevance of their results, and select
the model that generated the best result. Reply with the identifier of the best model. Our
evaluation will only take into account the first character of your answer, so make sure it
contains only one of the identifiers and nothing else (no quotation marks, no spaces, no new
lines, ...).

Figure 11: We provide the prompt with two responses and ask GPT to choose the preferred one. We parse the
first token’s logits of “0” and “1”” and apply the BT model to obtain the relative preference.

24

Under review as a conference paper at ICLR 2025

I want to use this For k8s readiness check, which requires a return
value "0" if success, how to write the script?

You're giving feedback on a new version of ChatGPT.

which response do you prefi

@

To create a script for a Kubernetes readiness check using curl, where
youreturna @ status on success (typically when the HTTP status code
is 280), you can combine curl with a conditional check on the HTTP

status code. I the status is 200 , the script will exit with @ (indicating

success); otherwise, it will return a non-zero value (indicating Failure).

Here's an example of how you can write this scripk:

{curl -X POST -H

Explanation:

= curl sends the request and captures the HTTP status code in the
STATUS variable.

« The if statement checks if the status code is 280 .

= IF the status code is 208, the script exits with @ , indicating
success (readiness).
= If the status is anything other than 208 , the script exits with

1, indicating failure.

You can modify the binary string or URL as necessary for your specific

readiness check.

| prefer this response

Figure 12: ChatGPT system asks for users’ preference feedback to strategically explore better answers. In
this case, algorithms should be designed around the objective of minimizing cumulative regret (i.e., the E&E

For a Kubernetes readiness check, you need to return @ ifthe curl
command succeeds (e.g., status code 20), and a non-zero value if it

fails.

Here's a simple bash script that achieves this:

url -X POST -H

Breakdown:

« curl ... -w "%{http_code}" : Captures the HTTP status code

from the curl request.

« The if condition checks if the status code is 280 (indicating

SUCCess).
« exit ©:Indicates a successful readiness check.
« exit 1:Indicates failure, so Kubernetes will consider the pod not

ready.

You can adjust the script depending on the specific status code(s) that

you consider successful.

| prefer this response

setting), because the quality of both responses generated by the system affects user experience.

25

	Introduction
	LLM alignment as contextual dueling bandits
	Contextual dueling bandits
	Online alignment as CDB

	How prior works (partially) solve LLM alignment as CDB
	SEA: sample-efficient alignment for LLMs
	Thompson sampling for LLM alignment
	Practical implementation
	Epistemic reward model for posterior sampling
	Policy-guided search to approximate red!20!violet
	Online policy learning from mixed preferences

	Experimental setup
	Distributed learning system
	Settings

	Empirical studies
	Overall comparison
	Ablation analysis

	Conclusion
	Algorithm details
	On connections with single-step RL
	Baseline methods
	Full experimental details
	Details of TL;DR task
	Details of general tasks

	Extended empirical studies
	Choice of exploration strategies
	Aligning LLMs with a human simulator
	Performance on general tasks

	System benchmarking
	Supplementary materials

