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ABSTRACT

The ability to control robots with simple natural language instructions enables
non-experts to employ robots as general tools and has long been a goal in robot
learning. In this paper, we examine the problem of training a robotic grasping pol-
icy conditioned on language instructions. This is inherently challenging since ef-
ficient manipulation policy learning often exploits symmetry and geometry in the
task, but it is unclear how to incorporate language into such a framework. In this
work, we present Language-conditioned Equivariant Grasp (LEG), which lever-
ages the SE(2) symmetries of language-conditioned robotic grasping by mapping
the language instruction to an SO(2)-steerable kernel. We demonstrate the sam-
ple efficiency and performance of this method on the Language-Grasp Benchmark
which includes 10 different language-conditioned grasping tasks and evaluate it on
a real robot.

1 INTRODUCTION

Vision Language models (VLMs) have demonstrated promising performance on a variety of tasks
from image captioning to action recognition. Substantial progress has been made in adapting VLMs
to command robots to follow language instructions and reach visual goals (Chen et al., 2023; Driess
et al., 2023). For instance, CLIPort (Shridhar et al., 2022) combines the semantic understanding
of CLIP (Radford et al., 2021) with the spatial action prediction of Transporter (Zeng et al., 2021);
VIMA (Jiang et al., 2022), PerActor (Shridhar et al., 2023) and RVT (Goyal et al., 2023) fuse visuals
and textual tokens to learn a language conditioned multi-task policy with the Transformer (Vaswani
et al., 2017). However, directly interleaving language features with image features breaks the geo-
metric symmetries underlying the optimal policy. As a result, these methods require a large number
of demonstrations. For example, VIMA cannot learn a non-trivial policy without at least 104 demon-
strations. However, language-conditioned tasks also have symmetries. As illustrated in Figure 1, if

Figure 1: Illustration of the symmetry of language-conditioned grasp. Given the language in-
struction and the observation, the left subfigure highlights the action a∗ that could grasp the mug
by its handle. A consistent grasp function should satisfy that if the language goal is unchanged but
there is a transformation on the target object, the highlighted action should transform accordingly,
as shown in the right subfigure.
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the robot learned how to grasp a mug by the handle in the left image given a goal expressed via
language, that policy should generalize to a transformed mug in the right image automatically. To
leverage the symmetries of language-conditioned manipulation tasks, we use the language instruc-
tion to generate a steerable kernel (Cohen & Welling, 2017) and realize the equivariant policy, and
achieve a significant improvement in sampling efficiency.

Grasping has a long history in robotics due to the needs of various applications. Previous grasping
methods (Ten Pas et al., 2017; Huang et al., 2023; Mahler et al., 2017) pick every object presented
in the workspace. They need a segmentation mask or other prior knowledge to grasp the object of
interest. Furthermore, when it comes to grasping the target object by the specific part, e.g., “pick
the mug by its handle”, “pick the fork by the top”, most pretrained vision models fail to highlight
the specific proportion of the object since the fine-grain object parts are underrepresented in their
training dataset. Compared to the previous methods, we present an end-to-end model that directly
takes language instructions and outputs the grasp distribution over the entire action space. With 5
sets of human demonstrations, our method achieves a 90% success rate of picking the target object
by the specific part instructed by the language goal on the real robot. Our method also generalizes
to novel object instances.

Given that there are few ways to evaluate the performance of language-conditioned grasping, we
design the Language-Grasp benchmark that includes 10 different tasks from picking fruits to picking
captioned bottles; from picking colored toys to picking the object by the part. It inherits the Gym-
like API based on Ravens (Zeng et al., 2021). Each task contains i). a scripted oracle that provides
expert demonstrations and ii). a reward function that provides credit if the language goal is achieved.

Our contribution can be summarized as 1) We analyze the symmetry of language-conditioned
grasping and propose a general framework to leverage it. 2) We present a novel Learning-from-
Demonstration (LfD) language-conditioned grasp network, including a novel dynamic kernel gener-
ator that can map language instructions to steerable kernels with rotational symmetry. 3) We design
a new benchmark that includes 10 language-conditioned grasping tasks and also provides expert
demonstrations. 4) We demonstrate our inductive bias leads to high sample efficiency and grasping
performance in both simulated and real-world robot experiments.

2 RELATED WORK

2.1 LANGUAGE CONDITIONED MANIPULATION POLICY

Recent breakthroughs in Natural Language Processing (NLP) and computer vision, such as Large
Language Models (LLM) (Devlin et al., 2018; Brown et al., 2020; OpenAI, 2023) and Large Vision-
Language Models (VLM) (Driess et al., 2023; Chen et al., 2023; Liu et al., 2023), have demonstrated
impressive reasoning abilities revealing their potentials for robotic tasks. The ways to leverage the
power of pretrained models for robotics can be roughly divided into two categories. The first cat-
egory is using LLMs as high-level planners (Liang et al., 2023; Ahn et al., 2022; Lin et al., 2023)
which assumes that the robot is equipped with low-level action skills. However, there is a gap
between high-level reasoning to low-level robot actions since task-related robot data is underrep-
resented in their training data. The second category is to use the features from pretrained models
for end-to-end training on robot data (Shridhar et al., 2022; Brohan et al., 2022; Shridhar et al.,
2023; Goyal et al., 2023; Sundaresan et al., 2023; Brohan et al., 2023) (Rashid et al., 2023; Tang
et al., 2023). Shridhar et al. (2022) train a multi-task agent by using features from CLIP (Radford
et al., 2021) that aligns images and language during pretraining. Stepputtis et al. (2020) took GloVe
word embeddings and pretrained features from Fast-RCNN to realize a language-conditioned pol-
icy. Chen et al. (2021); Shao et al. (2021) use a pretrained ResNet and a text encoder, and train the
model with more than 10k samples. However, directly combining pretrained features with image
features did not leverage the geometric symmetries underlying robot tasks. As a result, a copious
number of robot data is required to train these models. For instance, Stepputtis et al. (2020) needs
30,000 datapoints to achieve 94% picking success rate. Jiang et al. (2022) requires 10,000 demos to
achieve 80% success rate in its Level-1 tasks. Tziafas et al. (2023) uses 75k training samples to train
the model. Instead, our proposed method shapes pretrained features to a steerable kernel to leverage
the symmetries of language-conditioned tasks and achieve better performance with a small number
of data.
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2.2 GRASP DETECTION

This is much work in grasp detection, i.e., detecting the position and orientation of grasps based on
visual observation. Key early examples are DexNet (Mahler et al., 2017) and GPD (Ten Pas et al.,
2017). Most recent grasping algorithms (Morrison et al., 2018; Mousavian et al., 2019; Breyer et al.,
2020; Huang et al., 2023) (Simeonov et al., 2022; Xu et al., 2023) focus on grasping the object
cluttered on the table but few of them explore grasping the specific object following language goals.
Compared to previous grasping methods, our method directly takes simple language instructions
along with visual input and generates the action distribution of all grasps in a (planar) scene. It can
not only grasp the target object successfully but also satisfy the need of grasping by the specific part
instructed by the language goal.

2.3 EQUIVARIANT ROBOT LEARNING

Recent work using equivariant models (Wang et al., 2022d;c;a; Zhu et al., 2022; Park et al., 2022;
Zhao et al., 2022; 2023b;a; Huang et al., 2022; 2023; Jia et al., 2023) have illustrated that symmetry
is a vital prior for sample efficiency and spatial generalization in robotics. Although neural networks
can learn an equivariance property via data augmentation (Zeng et al., 2021; Zhong et al., 2020;
Krizhevsky et al., 2012; Laskin et al., 2020), symmetry-constrained neural networks often show
faster convergence and more robust performance (Wang et al., 2022d; Huang et al., 2022; Jia et al.,
2023). However, the aforementioned papers mainly use discrete groups, e.g. cyclic group or dihedral
group, and consider the global rotation of the entire observation. In this paper, we propose a new
way to map language instructions to steerable kernels and satisfy the local symmetry when an object
instead of the entire observation rotates with a continuous SO(2) group.

2.4 BENCHMARKS IN ROBOTIC MANIPULATION

There are various benchmarks for robotic manipulation tasks built on different simulators (Rohmer
et al., 2013; Coumans & Bai, 2016; Makoviychuk et al., 2021). Zeng et al. (2021); Wang et al.
(2022b); James et al. (2020); Mu et al. (2021); Gu et al. (2023); Jiang et al. (2022); Mees et al.
(2022) mainly cover pick and place tasks with simple shaped objects and a language template is
also provided to describe the goal of the task. However, there is no existing benchmark designed
specifically for language-conditioned grasping on various shaped, captioned, and patterned objects.
In this paper, we propose Language-Grasp Benchmark due to the problem’s significant interest
in real-world applications. It includes 10 tasks from picking the bottle with a specific caption to
picking an object by a specific part. We also introduce a set of metrics to measure the performance
of language-conditioned grasping. To the best of our knowledge, our designed benchmark is the first
to center on the specific problems of language-conditioned grasping.

3 METHOD

3.1 PROBLEM STATEMENT

This paper focuses on behavior cloning for the 2D language-conditioned robotic grasping problem.
Given a set of demonstrations that contains observation-language-action tuples (ot, ℓt, at), the ob-
jective is to learn a policy p(at|ot, ℓt), where at ∈ SE(2) denote the pose of end-effector. The visual
observation ot is a top-down orthographic RGB-D reconstruction of the scene that contains several
objects. Since each pixel corresponds to a point in 3D space, the action at is parameterized in terms
of SE(2) coordinates (u, v, θ), where u, v denote the pixel coordinates of the gripper position and
θ denotes the gripper orientation. The gripper orientation distribution is encoded as the N-channel
feature above each pixel. Each channel corresponds to a 2π

n rotation angle. The language instruction
ℓt specifies the current-step instruction, e.g., “pick the block with a fire logo”, “grasp the scissors by
its handle”.

3.2 SE(2)-EQUIVARIANT LANGUAGE-CONDITIONED GRASP

We first analyze the symmetry underlying the language-conditioned grasp and present LEG to realize
the symmetry.
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Figure 2: Architecture of Language-conditioned Equivariant Grasp (LEG). Our top branch
(green) processes that observation and language embedding to output pixel-wise attention logits.
Out bottom branch (yellow) takes the expanded language embeddings and outputs a language-
conditioned steerable kernel. The grasp action is evaluated by cross-correlation between the dy-
namic kernel and the attention logits in Fourier space.

3.2.1 ANALYZING THE SYMMETRY OF LANGUAGE-CONDITIONED GRASP

Our grasping model f takes as the input ot and ℓt and outputs the SE(2) pose distribution over the
action space

f(ot, ℓt) = p(at|ot, ℓt) (1)

The best pick pose can be queried by evaluating a⋆t = argmax p(at). Assume the observation ot
contains a set of m objects Bt = {bi}mi=1 on the workspace and denote the object bℓ as the goal
object instructed by the language instruction ℓt, the symmetry underlying f can be stated as

argmax f(og·b
ℓ

t , ℓt) = g · argmax f(bℓ, ℓt) (2)

where og·b
ℓ

t denotes that the target object instructed by the language instructed is transformed by
g ∈ SE(2) regardless of any transformation of other objects. Equation 2 claims that if there is
transformation g ∈ SE(2) on the object bℓ, the best action a⋆t to grasp the instructed object should
be transformed to g · a⋆t .

3.2.2 LEVERAGING THE SYMMETRY

Network Architecture. To leverage the symmetry of the language-conditioned grasp, we propose
Language-conditioned Equivariant Grasp (LEG) Network as shown in Figure 2. The framework
has two branches, the top branch (shaded in green) and the bottom branch (shaded in yellow), both
encoded with neural networks.

The top branch is designed to take both the observation ot and the current step language instruc-
tion ℓt as input and output the dense pixel-wise feature map. The language instruction ℓt is first
tokenized and encoded to the language embedding with pretrained language models, e.g., the CLIP
text encoder. Then, the language embedding and the visual observation are processed by the vision-
language model ϕ to generate a pixel-wise dense feature map. Our entire bottom branch is denoted
as κ and takes the same language embedding and outputs a steerable kernel κ(ℓt) that is condi-
tioned on the language instruction. The grasp pose distribution is calculated as the cross-correlation
between ϕ(ot, ℓt) and κ(ℓt)

f(ot, ℓt) = κ(ℓt) ∗ ϕ(ot, ℓt) (3)

Vision Language Encoder:ϕ(ot, ℓt)ϕ(ot, ℓt)ϕ(ot, ℓt). There are several choices of ϕ to encode the observation
and the language instruction. We present two options here. The first one is to train from scratch.

4



Under review as a conference paper at ICLR 2024

Specifically, we use the language encoder from CLIP to generate the language embedding of the
instruction and project it to a low-dimension feature with a linear layer. The observation ot is
encoded by a U-Net (Ronneberger et al., 2015) and the projected language feature is attached to each
pixel in the bottleneck layer. A detailed description of this ϕ network is described in Appendix A.3.
The second option is to use the pretrained vision-language model. To be specific, we adopt the
visual-language encoder from Cliport (Shridhar et al., 2022). This encoder has two networks. The
semantic network is built on top of the pretrained CLIP (Radford et al., 2021) visual encoder and its
language encoder to process the RGB image1 of the observation as well as the language instruction.
The spatial network is a Fully Convolutional Network (FCN) to process the RGB-D image only.
Then, element-wise products are conducted to fuse the semantic dense feature maps and the spatial
dense feature maps in the decoding process.

Language-conditioned Steerable Kernel: κ(ℓt)κ(ℓt)κ(ℓt). Our bottom branch generates a dynamic steerable
kernel conditioned on the language instruction. It essentially incorporates the language elements into
the geometric setting in a way that preserves the symmetry of the geometric features. We first project
the same language embedding from a pretrained CLIP text encoder to a low-dimension feature that
is then repeated and tiled to a 2D tensor. The network ψ processes the 2D tensor and generates the
dense feature map, where ϕ can be either a Fully Convolutional Network or a Vision Transformer.
We lift ψ(ℓt) with a finite number of rotations {gi |gi ∈ Cn} to generate a stack of rotated feature
maps, where Cn is a cyclic rotation group Cn = {Rotθ : θ ∈ { 2πi

n |0 ≤ i < n}}

L[ψ(ℓt)] = {g1 · ψ(ℓt), g2 · ψ(ℓt) · · · , gn · ψ(ℓt)} (4)

Here L denotes the lift operation which outputs a stack of orbit-traversing signals above each pixel.
This operation actually generates a steerable kernel that takes the trivial-type input and maps it to
a regular-type out. This regular-type steerable is limited to discrete rotations of Cn. To model
the SO(2) distribution, we apply the Fourier transform to the channel feature and generate the ir-
reducible steerable kernel. Intuitively, the SO(2) signal above each pixel is represented by the
coefficients of the basis functions. Detailed description can be found in Appendix A.2.

Proposition 1 if κ(ℓt) is a steerable kernel, it approximately satisfies the symmetry stated in Equa-
tion 2.

Intuitively, if ϕ is an identity mapping, the cross-correlation between a steerable kernel and the ot
captures the exact symmetry. That is any transformed bl will be cross-correlated at one pixel location
with the steerable kernel. Detailed proof of Proposition 1 can be found in Appendix A.2.

Bilateral Symmetry and Inverse Fourier Transformation. The language-conditioned steerable
kernel κ(ℓt) is cross-correlated with the dense feature map ϕ(ot, ℓt) and the outputted feature is in
the shape of Rk×H×W , where k is the number of truncated frequency and H×W denote the spatial
dimension. The k-dimension channel feature above each pixel models the SO(2) distribution of the
gripper orientation in Fourier space. A key observation in planar picking is that, for many robots,
the gripper is bilaterally symmetric, i.e., grasp outcome is invariant when the gripper is rotated by π.
We can encode this additional symmetry to reduce redundancy by only keeping the signal of even
frequencies that are periodic to π. Finally, a number of n rotations is sampled for each pixel location
with Inverse Fourier Transformation, and the best action a∗ is calculated by querying the argmax
over the spatial and channel dimension.

4 EXPERIMENTS

4.1 LANGUAGE-GRASP BENCHMARK

Since few benchmarks exist to effectively evaluate language-conditioned grasps, we designed a
simulation environment in Pybullet (Coumans & Bai, 2016) for training and testing 2D language-
conditioned grasps with a parallel-jaw Franka Gripper. It inherits the Gym-like API based on
Ravens-10 (Zeng et al., 2021). Each task contains i) a scripted oracle that provides expert demon-
strations and ii) a reward function that provides credit if the language goal is achieved. The observa-
tion ot ∈ R320×160×4 is an orthographic projection from captured point clouds from three RGB-D

1CLIP is trained with RGB images and cannot handle the depth channel directly.
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(a) pick-colored-ell (b) pick-fruit (c) pick-tool (d) pick-toy

(e) pick-captioned-bottle (f) pick-logo-block (g) pick-random-v1 (h) pick-colored-fruit

(i) pick-colored-tool (j) pick-colored-toy (k) pick-random-v2 (l) pick-by-part

Figure 3: Language-Grasp Benchmark. Each subfigure describes a randomly initialized environ-
ment of each task. The goal object that the robot is currently instructed to grasp is highlighted at the
top-right corner.

cameras pointing toward a 1m × 0.5m workspace. The corresponding language instruction to each
expert action has 20 variations generated by ChatGPT-3.5, e.g., “pick up a mug by the handle”,
“locate and take a mug with the handle”. A detailed description of the language instruction can be
found in Appendix A.6.

4.1.1 TASK DESCRIPTION

As shown in Figure 3, Language-Grasp Benchmark has 10 fundamental language-conditioned tasks
with 3 variations to evaluate the performance of language-conditioned grasp with a different focus.
To get a reward, the agent must successfully grasp the object and satisfy the language instruction.
The tasks could be split into two categories. The V-1 tasks allow only one variable, e.g., the color
difference, shape difference, or pattern difference. The V-2 tasks allow two variables, e.g., the
color difference combined with the shape difference, or the shape difference combined with the part
difference. Here, we provide a short description of each task and a detailed description can be found
in Appendix A.6.

V-1 Tasks. 1). pick-colored-ell: Pick the L-shape block with the instructed color. 2,3,4). pick-fruit,
pick-tool, pick-toy: For each of the three tasks, objects from the same category are randomly placed
on the workspace. The goal is to successfully grasp the object instructed by the language instruction.
5). pick-caption: Pick the bottle with the right caption on its cap. 6). pick-logo-block. The goal is to
pick a block painted with the correct logo, e.g., “fetch a block with fire logo”. 7). pick-random-v1:
Five objects are randomly sampled from task 1 to task 6 and the goal is to pick the right object
following the language.

V-2 Tasks. 8,9,10). pick-colored-fruit,pick-colored-tool,pick-colored-toy: Objects from the same
category are colored differently and the goal is to grasp the correct object with the correct color.
11). pick-random-v2: Randomly sample seen combinations of colors and objects from tasks 8, 9,
and 10. 12). pick-novel-v2: Randomly sample unseen combinations but seen colors and objects
from tasks 8,9, and 10. There are 220 combinations across 22 different shapes and 10 different
colors in tasks 8,9, and 10. A number of 45 combinations are novel. 13.) pick-by-part: The goal is
to pick the instructed object by the instructed part, e.g., “pick up a mug by the handle”.

Settings and Metrics. Every episode of each task is initialized with randomly placed n objects
(n ∈ {4, 5} due to the size of the workspace). A partial reward is assigned for each successful
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pick-colored-ell pick-fruit pick-tool pick-toy pick-caption pick-logo pick-random-v1

Model 1 10 1 10 1 10 1 10 1 10 1 10 1 10

LEG-UNet (ours) 65.0 76.5 76.5 88.5 91.0 94.0 98.2 99.5 59.7 60.7 66.2 80.7 88.2 94.8
FCGQ 38.5 64.7 66.2 79.5 74.7 88.5 67.5 87.7 60.2 59.7 51.0 54.7 74.2 86.8
ViT 14.2 8.75 67.7 73.75 41.5 61.75 41.0 39.5 55.0 59.75 47.2 50.0 40.0 52.6

LEG-Cliport (ours) 54.7 79.5 74.2 88.7 86.7 93.7 92.7 96.7 62.5 60.0 68.2 82.7 82.4 93.8
Cliport-RN50 54.7 72.2 71.0 81.2 79.5 89.2 70.75 73.5 58.7 57.2 63.5 89.0 73.4 91.8
Cliport-ViT 40.7 57.5 63.2 62.5 58.5 56.5 50.5 57.0 57.7 59.5 53.0 57.5 56.6 44.8

Table 1: Performance comparisons on Language-Grasp Benchmark V1 tasks (%) on 100 tests
v.s. the number of demonstration episodes (1, 10) used in training. Best performances are high-
lighted in bold.

pick-colored-fruit pick-colored-tool pick-colored-toy pick-random-v2 pick-novel-v2 pick-by-part⋆

Model 1 10 1 10 1 10 1 10 1 10 1 10

LEG-UNet (ours) 69.7 83.2 59.2 79.5 70.7 92.2 60.0 87.2 50.6 74.2 87.0 98.0
FCGQ 61.2 79.0 59.0 78.5 52.2 81.5 50.4 84.4 50.2 69.6 66.0 95.0
ViT 57.7 70.7 33.0 54.5 39.0 64.7 31.2 61.8 22.0 42.4 19.5 53.0

LEG-Cliport (ours) 72.5 86.5 65.0 89.0 72.2 94.0 67.4 92.2 60.0 85.0 81.5 97.7
Cliport-RN50 58.0 76.5 45.0 80.2 38.2 75.5 41.0 82.6 42.6 74.6 50.0 94.7
Cliport-ViT 50.0 51.2 40.0 53.0 30.5 44.7 32.2 44.6 34.8 47.2 30.5 30.7

Table 2: Performance comparisons on Language-Grasp Benchmark V2 tasks (%) on 100 tests
v.s. the number of demonstration episodes (1, 10) used in training. Best performances are high-
lighted in bold.

grasp. For example, if there are 4 toys presented in the workspace, each successful grasp will be
credited a reward of 0.25. The successful grasp is defined as the grasp lifting the object and satisfying
the language goal. A maximum of n+ 1 grasping trials is set for each task.

Demonstration. Each demonstration of the task contains a set of observation-language-action
triples (ot, ℓt, āt), where āt denotes the expert pick action. For V-1 tasks, one demonstration of
each task covers all the objects exactly once, while for V-2 tasks, one demonstration covers differ-
ent objects and different colors instead of the entire combinations roughly once. For instance, one
demonstration of pick-random-v1 contains 47 grasps that iterate different colored ell-shape blocks,
different fruits, etc. One demonstration of pick-random-v2 includes around 22 grasps that cover
the 22 different shapes and 10 different colors. For pick-by-part, one demo contains 23 grasps that
include the grasp of each part of each object once.

4.2 IMPLEMENTATION AND BASELINE

We implement two variations of our proposed method. One is trained from scratch with the U-
net as the visual-language encoder and we denote it as LEG-UNet. The other uses the vision-
language encoder from Cliport (Shridhar et al., 2022) and we call it LEG-Cliport. We compare our
models against several strong baselines. Baselines trained from scratch: FCGQ: It is a modified
architecture of Satish et al. (2019) where the language embedding is added into the bottleneck of the
FCN. This is an FCN with a 36-channel output that associates each grasp rotation to a channel of the
output. ViT: Inspired by Wang et al. (2022e); Shridhar et al. (2023), we use a Transformer to encode
image grids and language tokens and then reshape the tokens spatially and use FCN and upsampling
layers to generate the n-channel dense feature map. Baselines with pretrained models: Cliport-
RN50: It take use the pick module of Cliport (Shridhar et al., 2022) and outputs the n-channel dense
feature map. Cliport-ViT: It replaces the visual encoder of Cliport-RN50 with pretrained Clip-ViT32
visual encoder.

4.3 TRAINING AND TESTING DETAILS

We assume access to a dataset D = {ζ1, ζ2, ..., ζn} of n expert demonstrations, where each demo
ζi = {(o1, ℓ1, ā1), (o2, ℓ2, ā2), ..., (om, ℓm, ām)} is a set of successful language grasps that each
one of m objects in the environment is grasped once. The model of each method is trained with a
dataset of {1, 10} expert demonstrations on pick-random-v1 (47 grasps each demo), pick-random-v2
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(around 22 grasps each demo) and pick-part (23 grasps each demo) individually. The model trained
on pick-v1-random is tested on 100 different scenes of the V-1 tasks. Please note it is slightly differ-
ent from a multi-task agent which has seen the distribution of each task during training. Similarly,
models trained on pick-random-v2 are tested on V-2 tasks with 100 test scenarios. The model trained
on pick-part is measured on 100 test cases on the same task. The orientation resolution is set as π

36
for all methods. We report the training time and GPU memory requirement for each method in
Appendix A.1. We use the expert action to generate one hot map as the ground truth label. Cross-
entropy loss is used to train the model end to end. Each model is trained with the number of 40k
SGD steps and we test the model every 10k steps. We report the best performance for each model.

4.4 RESULTS ON SIMULATED TASKS

Table 1 shows the results of all the methods trained with {1, 10} demos of the pick-random-v1 task
and tested on 100 unseen configurations on all the V-1 tasks. Table 2 shows all the methods trained
with {1, 10} demos of the pick-random-v2 task and tested on 100 unseen configurations on all the
V-2 tasks. Please note that we train and test a single-task policy on the pick-by-part task. Several
conclusions could draw from Table 1 and 2.

LEG v.s. Others. As shown in Table 1 and Table 2, with 1 demo available, LEG outperforms all
baselines on the 13 tasks. It can also achieve above 90% success rate on pick-tool and pick-toy. With
10 demos available, LEG outperforms all baselines on the 12 tasks. It hits above 90% success rate
on 6 tasks. It indicates the sample efficiency as well as the compelling success rate of our proposed
method.

Pretrained-LEG v.s. Training From Scratch. For tasks with shape difference only, the train-
from-scratch LEG-UNet is overall better than our per-trained LEG-Cliport. For tasks involved
with colors, captions, and logos, our pretrained model shows better performance and generalization
ability, especially on pick-novel-v2 that requires the model to distinguish novel geometric-semantic
combinations.

ViT Backbone v.s. FCN Backbone. The Fully Convolutional Network (FCN) backbone varia-
tions are overall better than the ViT backbone variations by a large margin. Since ViT processes
the image by flattening the patches and utilizing self-attention layers, it breaks the well-formatted
pixel structure and also loses the translational equivariance compared with FCNs. The observa-
tion aligns with that geometric features and symmetries are more vital in learning robot skills.

Figure 4: Real World Experiment. The left figure
shows the robot setting and the right figures show
seen (top) and novel objects (bottom)

4.5 REAL-WORLD EXPERIMENTS

We evaluated LEG-UNet on pick-by-part with
a physical robot - all demonstrations were per-
formed on the real robot. As shown in Fig-
ure 4, we used a UR5 robot with a Robotiq-85
end effector. The workspace was defined as a
35 cm × 48 cm region on a table and the ob-
servation ot were 208 × 288 RGB-D images
captured by an Azure Kinect sensor that was
mounted pointing directly down to the table.
We obtained 5 human demonstrations with a
total of 100 grasps of pick-by-part on a set
of 10 objects. Each object was labeled with
two parts, as shown in the top-right image of
Figure 4 and each demonstration contains 20
grasps, i.e., one grasp per part per object.

Training and Testing. We trained the LEG-UNet with {1, 5} demonstrations for 40k SGD steps.
During testing 5 objects were randomly selected and placed on the table without replacement. We
evaluate the model with 8 runs (a total of 40 grasps and 2 grasps per part). We report three metrics:
the success rate of grasping, the success rate of grasping the instructed object, and the success rate of
grasping the instructed object by the instructed part. We also tested our model trained with 5 demos
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grasp success rate grasp correct object grasp correct object-part
8 unseen objects 83.3% (25/30) 56.6% (17/30) 46.6% (14/30)
Pick-part-1 demo 82.5% (33/40) 75.0% (30/40) 62.5% (25/40)
Pick-part-5 demos 97.5% (39/40) 92.5% (37/40) 90.0% (36/40)

Table 3: Real World Experiments

on 8 novel objects, as shown in the bottom image of Figure 4. A detailed description of the objects
and demonstration can be found in Appendix A.5.1.

Results on Real-Robot Experiments. Table 3 shows the results of the pick-by-part experiments.
With only 5 demos, our method can achieve a 97.5% grasping success rate and 90.0% success rate
of grasping the correct object by the correct part. The results of 8 runs of the model trained with 1
demo are lower than those of simulated experiments. This is likely caused by the fact that 1). Real
sensor noises and lighting affected the results 2). A single top-down camera cannot provide a perfect
orthographic projection of the workspace. As shown in the first row of Table 4, the model trained
with 5 demos can generalize to objects with novel shapes and names. Similar objects own similar
language embeddings and generate similar functional dynamic kernels. Videos of the real-robot
experiment are included in the supplementary materials.

4.6 ABLATION STUDY

pick-by-part pick-random-V1 pick-random-V2 pick-novel-V2
LEG-UNet 98.0 94.8 87.2 74.2

kernel w.o Lan Condi. 92.6 (↓ 6.8) 90.0(↓ 4.8) 85.0 (↓ 2.2) 75.8 (↑ 1.6)
kernel w.o Steerablility 90.7 (↓ 7.3) 85.8 (↓ 9.0) 80.2 (↓ 7.0) 62.0 (↓ 12.2)

ϕ w.o Lan Emd 97.0 (↓ 1.0) 92.6 (↓ 1.8) 88.4(↑ 1.2) 78.2(↑ 4.0)

Table 4: Ablation Study. Arrows indicate the performance difference between LEG-UNet and each
three ablation variations.

To investigate the relative importance of the steerability and language-conditioned property of our
dynamic kernel, we design 3 variations of LEG-UNet: 1) LEG-UNet without language condition.
We remove the language embedding from the dynamic kernel generator. Instead, we randomly
initialize the trainable parameters and feed it the ψ network. It will generate an unconditioned
steerable kernel. 2) LEG-UNet without steerability. We keep the language embedding for the ϕ
network but remove the lifting and Fourier Transformation to generate a language-conditioned non-
steerable kernel. 3). We remove the language input to the ϕ network and the top branch only takes
the image as the input while the language-conditioned kernel remains. All the models are trained
with 10 demos on the tasks of pick-by-part, pick-random-v1, and pick-random-v2 individually. We
report the results in Table 4. We find that 1) Without the language-condition kernel generator, the
performance overall drops, especially for the pick-by-part. It shows that the generated kernel with
aligned language feature is better than the unconditioned kernel ; 2). Without the steerability, the
success rate drops significantly due to the lack of the local SO(2) equivariance; 3). Without the
language embedding to the ϕ branch, there are trade-offs related to tasks. The ablation study suggests
the importance of the two key components in LEG-UNet, the language-conditioned property and the
steerability property.

5 CONCLUSION

In this work, we analyze the symmetry of the language-condition grasping and propose Language-
conditioned Equivariant Grasp (LEG). It realizes the underlying symmetry of the task with a flexible
two-branch design and links the language instruction in the format of a steerable dynamic kernel
to visual features. We further present a language-conditioned grasp benchmark and evaluate the
performance of our method and baselines on various tasks. Our proposed method demonstrates a
strong inductive bias on sampling efficiency and a high success rate in language-conditioned grasp.
Finally, we demonstrate that the method can effectively learn manipulation policy on a physical robot
and can generalize to novel objects. Distilling the large models to low-level manipulation skills still
has a long way to go. Using the diffusion model to generate steerable kernels and extending our
method to 3D language-conditioned grasping are interesting future directions.
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A APPENDIX

A.1 TRAINING TIME AND GPU MEMORY AND NUMBER OF PARAMETERS.

We report the number of parameters of our methods and baselines in Table 5. Another possible
baseline is Cliport-Rotator which is similar to Cliport-UNet but feeds a stack of n rotated images to
the visual encoder and generates a one-channel dense feature per image. The results are then counter-
rotated at the network’s output and each channel corresponds to one pick orientation (Shridhar et al.,
2022). However, it has a heavy computation load to process a batch of n images. Since the rotation
resolution of our action space is π

36 , it requires a stack of 72 differently rotated images to train
Cliport-Rotator, which excess the limit of GPU memory we have access to. To compare it with
others, we also report the number of GPU memory to train Cliport-Rotator with a batch of 36
rotated images.

LEG-UNet Uet ViT LEG-Cliport Cliport-Unet Cliport-ViT Cliport-rotator-36⋆

# of parameters (M) 3.3 6.8 14 63 94 61 61

GPU memory (GB) 2.6 2.3 2.4 3.9 4.1 3.4 14

training time/step (s) 0.12 0.09 0.1 0.16 0.14 0.12 1.3

Table 5: Memory and computation time. Test on NVIDIA 3090.

A.2 PROOF

A.2.1 BACKGROUND ON SYMMETRY GROUPS

Group and Representation. SO(2) contains the continuous planar rotations {Rotθ : 0 ≤ θ < 2π}.
Cn = {Rotθ : θ ∈ { 2πi

n |0 ≤ i < n}} contains only rotations by angles which are multiples of
2π/n. A d-dimensional representation ρ : G → GLd of a group G assigns to each element g ∈ G
an invertible d×d-matrix ρ(g). Different representations of SO(2) or Cn help to describe how
different signals are transformed under rotations.

1. The trivial representation ρ0 : SO(2) → GL1 assigns ρ0(g) = 1 for all g ∈ G, i.e. no
transformation under rotation.

2. The standard representation

ρ1(Rotθ) =

(
cos θ − sin θ
sin θ cos θ

)
represents each group element by its standard rotation matrix. Notice that ρ0 and ρ1 can be
used to represent elements from either SO(2) or Cn.

3. The regular representation ρreg of Cn acts on a vector in Rn by cyclically permuting its
coordinates ρλ(Rot2π/n)(x0, x1, ..., xn−2, xn−1) = (xn−1, x0, x1, ..., xn−2).

4. The irreducible representation ρiirrep could be considered as the basis function with the
order/frequency of i, such that any representation ρ of G could be decomposed as a direct
sum of them. Signals defined on the group SO(2) can be decomposed as limits of linear
combinations of complex exponential functions (sin, cos).

Feature Vector Field. We formalize images and 2D feature maps as feature vector fields, i.e.,
functions f : R2 → Rc, which assign a feature vector f(x) ∈ Rc to each position x ∈ R2. The
action of an element g ∈ SO(2) on f is a combination of a rotation in the domain of f via ρ1
(this rotates the pixel positions) and a transformation in the channel space Rc (i.e., fiber space) by
ρ ∈ {ρ0, ρ1, ρλ, ρirrep}. If ρ = ρ0, the channels do not change. If ρ = ρreg, then the channels
cyclically permute according to the rotation. If ρ = ρirrep, then the channels shift.

We denote this action (the action of g on f via ρ) by T ρ
g (f):

[T ρ
g (f)](x) = ρ(g) · f(ρ1(g)−1x). (5)
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Equivariant Mapping and Steerable Kernels A function F is equivariant if it commutes with the
action of the group,

T out
g [F (f)] = F (T in

g [f ]) (6)

where T in
g transforms the input to F by the group element g while T out

g transforms the output of
F by g. The most equivariant mappings between spaces of feature fields are convolutions with
G-steerable kernels (Weiler et al., 2018; Jenner & Weiler, 2021). Denote the input field type as
ρin : G → Rdin×din and the output field type as ρout : G → Rdout×dout . The G-steerable kernels
are convolution kernels K : Rn → Rdout×din satisfying the steerability constraint, where n is the
dimensionality of the space

K(g · x) = ρout(g)K(x)ρin(g)
−1 (7)

SO(2)SO(2)SO(2) Fourier Transformation. Signals defined over the group SO(2) can be decomposed as
limits of linear combinations of complex exponential functions (for SO(2)). We refer to the Fourier
transform that maps SO(2)-signals to the coefficients of the basis functions as F+ and the inverse
Fourier Transform as F−1.

A.2.2 PROOF OF PROPOSITION 1

Translational Equivariance. Since FCNs are translationally equivariant by their nature, if the target
object bℓ is translated to a new location, the cross-correlation between κ(ℓt) ∗ ϕ(ot, ℓt) will capture
this translation and there is no change in the change space.

Rotation Equivariance. Assuming ϕ satisfies the equivariant property that ϕ(T 0
g ot, ℓt) =

T 0
g ϕ(ot, ℓt) and the rotation of bℓ is represented by T 0

g ot, we start the proof with lemma 1 and
lemma 2.

Lemma 1 if k(x) is a steerable kernel that takes trivial-type input signal, it satisfies
T 0
gK(x) = ρout(g

−1)K(x).

Prove Lemma 1. ρ0(g) is an identity mapping. Substituting ρin with ρ0(g) and g−1 with g in
Equation 7

T 0
gK(x) = K(g−1x)

= ρout(g
−1)K(x)ρin(g)

= ρout(g
−1)K(x)

Lemma 2 Cross-correlation satisfies that

(T 0
g (K ⋆ f))(v⃗) = ((T 0

gK) ⋆ (T 0
g f))(v⃗) (8)

Prove Lemma 2. We evaluate the left-hand side of Equation:

T 0
g (K ⋆ f)(v⃗) =

∑
w⃗∈Z2

f(g−1v⃗ + w⃗)K(w⃗).

Re-indexing the sum with y⃗ = gw⃗,

=
∑
y⃗∈Z2

f(g−1v⃗ + g−1y⃗)K(g−1y⃗)

is by definition

=
∑
y⃗∈Z2

(T 0
g f)(v⃗ + y⃗)(T 0

gK)(y⃗)

= ((T 0
gK) ⋆ (T 0

g f))(v⃗)

as desired.
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Given Lemma 1 and lemma 2, we can prove that

κ(ℓt) ∗ ϕ(T 0
g ot, ℓt) =κ(ℓt) ∗ T 0

g ϕ(ot, ℓt)

=κ(ℓt) ∗ T 0
g ϕ(ot, ℓt)

=T 0
g T

0
g−1κ(ℓt) ∗ T 0

g ϕ(ot, ℓt)

=T 0
g [T

0
g−1κ(ℓt) ∗ ϕ(ot, ℓt)] lemma 2

=T 0
g [ρout(g)κ(ℓt) ∗ ϕ(ot, ℓt)] lemma 1

It states that if there is a rotation on ot, the grasp position is changed by T 0
g , and the rotation is

changed by ρout(g). Since the cross-correlation is calculated for each pixel without stride, the ro-
tated bℓ is captured by ρ(g). In our implementation, we generate the language-conditioned steerable
kernel κ(ℓt) but remove the constraint of the equivariant property of ϕ. However, the U-Net archi-
tecture with the long skip connection can maintain the equivariance a little bit, and extensive data
augmentation is used to force the model to learn the equivariance.

A.2.3 PROOF OF THE STEERABILITY OF L(ψ(·))

L(T 0
g ψ(·)) =T 0

g {T 0
g1ψ(·), T

0
g2ψ(·) · · · , T

0
gnψ(·)} gi ∈ Cn

={T 0
gg1ψ(·), T

0
gg2ψ(·) · · · , T

0
ggnψ(·)}

={T 0
g2ψ(·), T

0
g3ψ(·) · · · , T

0
gnψ(·), T

0
g1ψ(·)} if g = g1

=ρreg(g
−1)L(ψ(·))

Since L(T 0
g ψ(·)) = L(g−1x), we achieve that L(g−1x) = ρreg(g

−1)L(x). Substituting g−1 with
g shows that κ(c) = L(ψ(·)) satisfies the steerability constraint shown in Equation 7 and it is a
steerable kernel with regular-type output and trivial-type input. Since Fourier transformation on
the channel space maps the discrete SO(2) signal above each pixel to the coefficients of the basis
function. It realizes an irreducible steerable kernel that has trivial-type input and irrep-type out-
put (Weiler & Cesa, 2019; Cesa et al., 2021).

A.3 NETWORKS.

ϕ Network. The green branch in Figure 2 is the ϕ network which encodes the current observation
and the language instruction jointly. ϕ network is a U-Net architecture with concatenated language
embeddings from CLIP (Radford et al., 2021) in its intermediate features. Since the ϕ network is
a function that takes images and instructions and outputs feature maps, it is flexible to be replaced
with any modern pretrain VLM to leverage the prior knowledge from large datasets.

Language-conditioned dynamic Kernel Generator κ. As shown in Figure 2, the bottom yellow
branch illustrate our language kernel generator. There are two main phases: generation and lifting.
During generation, we repeat the pretrained instruction embedding from CLIP text encoder (Radford
et al., 2021) to form a 2D tensor with spatial dimensions. Then, the 2D feature is then fed into a U-
Net to generate a 3-channel trivial feature map ψ(ℓt). After that, we lift the ψ(ℓt) with C90, i.e., we
rotate the ψ(ℓt) 90 times and generate a stack of rotated features. As a result, there is 90-dimension
channel feature above each pixel. Finally, we apply Fourier transformation on the channel space and
represent the SO(2) with coefficients of the basis functions.

Language as input for both ϕ and κ. One thing we would like to address is that the ϕ and the κ
module both take language as input. It is more like a self-attention mechanism during the convolu-
tion between the steerable kernels and the attention logits rather than repetitive language inputs. We
notice that the language input on both branches is overall beneficial and stable during training.

Cliport-rotator Baseline. In order to demonstrate the efficiency of the rotation equivariance com-
pared with the pre-rotation technique which has shown effective for rotation generalization (Zeng
et al., 2021), we implement a baseline called Cliport-Rotator. The idea is to rotate our observation
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36 times for every ten degrees and to rotate then back at the end so that the argmax rotation an-
gle can be obtained. However, in order to store all the padded and rotated observations, it is very
memory-heavy, which makes it impractical for further investigation.

A.4 REAL-WORLD EXPERIMENT DETAILS.

Demo Collection: In the real-world demo collection, we collect a total of five demonstrations.
Every single demonstration is defined as 20 grasps, i.e., one grasp per part of each of the 10 training
objects as shown in the top-right photo in Figure 4.

The labels (actions) are created from scratch by controlling the UR5 robot arm manually and placing
it in the correct orientation and position for a successful grasping of the goal object. Meanwhile,
an instruction of the goal object is also given. Worth mentioning, that our real-world model is only
trained on real-world data instead of doing sim-to-real transfer.

Testing the Model: After the training process is completed, we test performance by giving the
model an observation and an instruction on randomly initialized objects. During the testing process,
we did not move the robot arm manually but purely input the instructions via the terminal such as
“Grasp the middle part of the cup.” and the model outputs the action then completes the grasping
with a predefined motion planner.

Failure Mode of Seen Objects: Although performance in training sets is good, there are two grasp-
ing failures:

• Wrong part: The goal is to grasp the cup rim → grasp the cup’s handle.

• Wrong part: The goal is to grasp the shoe heel → grasp the shoe’s middle part

Failure Mode of Novel Objects: The error rate on unseen objects increases with the unseen in-
structions and unseen geometric shapes. Part of the failure examples including the instructions and
the consequences are demonstrated below:

• Grasping failure: aim for the middle of the pen → grasp a random pose on table

• Wrong object: aim for dinosaur’s tail → obtained the pen

• Wrong object: aim for the green mug’s handle → get the flashlight

• Wrong part: aim for the green mug’s handle → locate on its rim section

Failure Analysis: Obviously, the failure rate is affected by the objects’ geometric pattern. Specif-
ically, for example, both the shoe’s heel and the cup’s rim have a “ring”-like pattern so the model
fails to distinguish these two which indicates that the model focuses more on geometric patterns
instead of semantic patterns in this case.

Besides the object’s features, interrelationships between objects in different groups also affect the
grasping success rate. For instance, the successful grasping of the green mug happens after we
move the flashlight according to the fact that the flashlight’s material is more reflective than the
mug’s, producing more unseen illumination patterns, and making the model fail to recognize the
green mug. Statistically, the outcome tended to be influenced by the combination of objects in the
same group via the aspect of brightness, color, and identical geometry.

A.5 OBJECT SETTINGS

A.5.1 OBJECT SETTINGS IN SIMULATION

We get 3D meshes from two sources, YCB dataset (Calli et al., 2015) and GraspNet dataset (Fang
et al., 2020). Some of the large meshes, e.g. lion, elephant, etc., from GraspNet are simplified using
Meshlab (Cignoni et al., 2008).

Colors variations. In some tasks, such as pick-colored-ell and pick-colored-tool, we set objects to
have different colors. The colors are randomly selected from a pre-defined color set blue, red, green,
orange, yellow, purple, pink, cyan, brown, gray.
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task name Object set

(1) pick-colored-ell ell shape block with color variations

(2) pick-fruit banana, apple, strawberry, lemon, starfruit, avocado

(3) pick-tool fork, knife, medium-clamp, mini-claw-hammer,
mug, scissors, spoon, bowl

(4) pick-toy deer, elephant, giraffe, hippo, lion, monkey, rhino, zebra

(5) pick-caption bottles captioned by ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘H’, ‘K’, ‘S’

(6) pick-logo blocks textured by coke, benz, fire, husky, manga-girl, manga-boy

(7) pick-random-v1 objects from task (1)-(6)

(8) pick-colored-fruit objects from pick-fruit with color variations

(9) pick-colored-tool objects from pick-tool with color variations

(10) pick-colored-toy objects from pick-toy with color variations

(11) pick-random-v2 objects from task (8-10)

(12) pick-novel-v2 objects from task (8-10) with novel color shape combinations

(13) pick-by-part objects with part specifications:
fork (head, middle, end), knife (head, middle, end),
spoon (head, middle, end), medium-clamp (head, handle),
mini-claw-hammer (head,handle), mug(brim,handle),
scissors(handle,middle), lion (head,body),
hippo (head, body), rhino (head, body)

Table 6: Object sets in simulation tasks

A.5.2 OBJECT SETTINGS IN REAL WORLD

All the data in real-world grasping experiments are collected from scratch by ourselves and are
separated into two parts: normal training data and novel data. The training data contains 10 different
items each with two parts such as hammer’s head, cup’s handle, triceratops’ tail, shoe’s heel, etc.
Parallel to training data, the novel object settings contain 8 objects in training data: mug/cup’s
handle, dinosaur’s head, pen’s middle part, etc., and most parts of them share similar features
as those in original training setting. We name it novel objects not only for the unseen features
in geometry aspects but also in language’s description such as pen, mug, flashlight, etc. which
never appear in the training set. The specific descriptions for objects’ names and their respective
instruction examples can be found in Table 7.

A.6 LANGUAGE INSTRUCTION PREPROCESSING

For our model, the performance depends on the assumption that the text embeddings should be
similar for similar instructions, e.g. “pick up the mug by its handle” and “grab the cup with its
handle”. The text encoder of CLIP has the ability to distinguish language meanings on a certain
level because it is pretrained on both text and image data. However, since no robot data is involved
during pretraining, the text encoder is not necessarily able to produce similar embedding for the two
aforementioned instructions. In order to close the gap between the pretraining data and the robot
data in terms of language, we perform data augmentation on language instructions in our training set
in order to ensure our steerable kernels are the same given similar instructions. The approach is to
generate rephrased instruction templates based on a basic template, e.g. “pick up the [object name]
by the [part name]”. Using chatGPT (OpenAI, 2023), we generate synonym candidates and filter
them manually. For each task, we provide 20 instruction templates as shown in Table 8
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Object name Object part Instruction example

Training objects

(1)Cup Handle Pick up a cup by the handle.
Rim Retrieve a cup by the rim.

(2)Hammer Head Gather a hammer by the head.
Handle Select a hammer by the handle.

(3)Triceratops Head Choose a Triceratops by the head.
Tail Find and collect a Triceratops by the tail.

(4)Rex Head Locate and take a Rex by the head.
Tail Collect a Rex by the tail.

(5)Banana Root Pick out a banana by the root from the bunch.
Middle Procure a banana by the middle.

(6)Silver Bar Side Collect a silver bar by the middle.
Middle Secure a silver bar by the middle.

(7)Shoe Heel Obtain a shoe by the heel.
Middle Pluck a shoe by the middle.

(8)Screwdriver Head Gather a screw driver by the head.
Handle Pick up a screw driver by the handle.

(9)Bottle Body Find and collect a bottle by the body.
Head Retrieve a bottle by the head.

(10)Bowl Brown part Handpick a bowl by the brown part.
Black part Acquire a bowl by the black part.

Novel objects

(1)Cup/Mug Handle Collect the cup/mug by the handle.
Rim Obtain the cup/mug by the rim.

(2)Tape Rim Secure a tape by the rim.

(3)Dinosaur Head Pick out a dinosaur by the head from the bunch.
Tail Acquire a dinosaur by the tail.

(4)Flashlight Middle Harvest a flashlight by the middle.
Side Pluck a flashlight by the side.

(5)Hammer Head Find and collect a hammer by the head.
Handle Collect a hammer by the handle .

(6)Bottle Head Gather a bottle by the head.
Body Handpick a bottle by the body.

(7)Pen Side Retrieve a pen by the side.
Middle Obtain a pen by the middle.

(8)Block Side Fetch a block by the side.
Middle Secure a block by the middle.

Table 7: Training and novel object sets in real robotic tasks
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Task Language instruction templates

(1) pick-color-ell Pick up [color] [object name].
(8) pick-colored-fruit Retrieve a [object name] of the [color] variety.
(9) pick-colored-tool Gather a [color] [object name].
(10) pick-colored-tool Select a [object name] that is [color].
(11) pick-random-v2 Choose [color] [object name] from the collection.

Find and collect a [color] [object name].
Acquire a [object name] in the shade of [color].
Pluck a [object name] that is [color].
Handpick a [color] [object name].
Secure a [object name] with the color [color].
Locate and take a [color] [object name].
Fetch a [object name] in the [color] variant.
Hand-select a [color] [object name].
Procure a [object name] with the color [color].
Harvest a [color] [object name].
Obtain a [color] variety of [object name].
Retrieve a [color] [object name] from the orchard.
Pick out a [color] [object name] from the bunch.
Collect a [object name] in [color] form.
Search for and bring a [color] [object name].

(13) pick-by-part Pick up a [object name] by the [part].
Retrieve a [object name] by the [part].
Gather a [object name] by the [part].
Select a [object name] by the [part].
Choose a [object name] by the [part] from the collection.
Find and collect a [object name] by the [part].
Acquire a [object name] by the [part].
Pluck a [object name] by the [part].
Handpick a [object name] by the [part].
Secure a [object name] by the [part].
Locate and take a [object name] by the [part].
Fetch a [object name] in the by the [part].
Hand-select a [object name] by the [part].
Procure a [object name] by the [part].
Harvest a [object name] by the [part].
Obtain a [object name] by the [part].
Retrieve a [object name] by the [part] from the orchard.
Pick out a [object name] by the [part] from the bunch.
Collect a [object name] by the [part].
Search for and bring a [object name] by the [part].

Table 8: Language instruction templates of example tasks.
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