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Abstract
In the misspecified kernel ridge regression prob-
lem, researchers usually assume the underground
true function f∗

ρ ∈ [H]s, a less-smooth interpola-
tion space of a reproducing kernel Hilbert space
(RKHS) H for some s ∈ (0, 1). The existing min-
imax optimal results require ∥f∗

ρ ∥L∞ < ∞ which
implicitly requires s > α0 where α0 ∈ (0, 1) is
the embedding index, a constant depending on H.
Whether the KRR is optimal for all s ∈ (0, 1) is
an outstanding problem lasting for years. In this
paper, we show that KRR is minimax optimal for
any s ∈ (0, 1) when the H is a Sobolev RKHS.

1. Introduction
Suppose that the samples {(xi, yi)}ni=1 are i.i.d. sampled
from an unknown distribution ρ on X × Y , where X ⊆ Rd

and Y ⊆ R. The regression problem aims to find a function
f̂ such that the risk

E(f̂) = E(x,y)∼ρ

[(
f̂(x)− y

)2]
is relatively small. It is well known that the conditional
mean function given by f∗

ρ (x) := Eρ[ y | x ] =
∫
Y ydρ(y|x)

minimizes the risk E(f). Therefore, we may focus on es-
tablishing the convergence rate (either in expectation or in
probability) for the excess risk (generalization error)

Ex∼µ

[(
f̂(x)− f∗

ρ (x)
)2]

, (1)

where µ is the marginal distribution of ρ on X .

In the non-parametric regression settings, researchers often
assume that f∗

ρ (x) falls into a class of functions with certain
structures and develop non-parametric methods to obtain
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the estimator f̂ . One of the most popular non-parametric
regression methods, the kernel method, aims to estimate f∗

ρ

using candidate functions from a reproducing kernel Hilbert
space (RKHS) H, a separable Hilbert space associated to
a kernel function k defined on X , e.g., Kohler & Krzyżak
(2001); Cucker & Smale (2001); Caponnetto & de Vito
(2007); Steinwart & Christmann (2008). This paper focuses
on the kernel ridge regression (KRR), which constructs an
estimator f̂λ by solving the penalized least square problem

f̂λ = argmin
f∈H

(
1

n

n∑
i=1

(yi − f (xi))
2
+ λ∥f∥2H

)
, (2)

where λ > 0 is referred to as the regularization parameter.

Since the minimax optimality of KRR has been proved for
f∗
ρ ∈ [H]s, 1 ≤ s ≤ 2 (Caponnetto & de Vito, 2007), a

large body of literature has studied the convergence rate
of the generalization error of misspecified KRR (f∗

ρ /∈ H)
and whether the rate is optimal in the minimax sense. It
turns out that the eigenvalue decay rate (β > 1), the source
condition (s > 0), and the embedding index (α0 < 1) of
the RKHS jointly determine the convergence behavior of
the misspecified KRR (see Section 2.2 for definitions). If
we only assume that f∗

ρ belongs to an interpolation space
[H]s of the RKHS H for some s > 0, the well-known
information-theoretic lower bound shows that the minimax
lower bound is n− sβ

sβ+1 . The state-of-the-art work Fischer &
Steinwart (2020) has already shown that when α0 < s ≤ 2,
the upper bound of the convergence rate of KRR is n− sβ

sβ+1

and hence is optimal. However, when f∗
ρ ∈ [H]s for some

0 < s ≤ α0, all the existing works need an additional
boundedness assumption on f∗

ρ to prove the same upper

bound n− sβ
sβ+1 . The boundedness assumption will result in a

smaller function space, i.e., [H]s ∩L∞(X , µ) ⫋ [H]s when
s ≤ α0. Fischer & Steinwart (2020) further reveals that the
minimax rate of the excess risk associated to the smaller
function space is larger than n− αβ

αβ+1 for any α > α0. This
lower bound of the minimax rate is smaller than the upper
bound of the convergence rate and hence they can not prove
the minimax optimality of KRR when s ≤ α0.

It has been an outstanding problem for years whether KRR is
minimax optimal for all the s ∈ (0, 1) (Pillaud-Vivien et al.,
2018; Fischer & Steinwart, 2020; Liu & Shi, 2022). This
paper concludes that, for Sobolev RKHS, KRR is optimal
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for all 0 < s < 1. Thus, we know that KRR is optimal
for Sobolev RKHS and all 0 < s ≤ 2. Together with a
recent work on the saturation effect where KRR can not be
optimal for s > 2 (Li et al., 2023), the optimality of KRR
for Sobolev RKHS is well understood.

1.1. Related work

Kernel ridge regression has been studied as a special kind
of spectral regularization algorithm (Rosasco et al., 2005;
Caponnetto, 2006; Bauer et al., 2007; Gerfo et al., 2008;
Mendelson & Neeman, 2010). In large part of the literature,
the ‘hardness’ of the regression problem is determined by
two parameters: 1. the source condition (s), which char-
acterizes a function’s relative ‘smoothness’ with respect to
the RKHS; 2. the eigenvalue decay rate (β) (or capacity,
effective dimension equivalently), which characterizes the
RKHS itself. These two parameters divide the convergence
behavior of KRR or spectral regularization algorithm into
different regimes and lead to different convergence rates
(Dicker et al., 2017; Blanchard & Mücke, 2018; Lin et al.,
2018; Lin & Cevher, 2020; Li et al., 2023, etc.). Caponnetto
& de Vito (2007) first proves the optimality when 1 ≤ s ≤ 2
and Lin et al. (2018) extends the desired upper bound of the
convergence rate to the regime s+ 1

β > 1.

KRR in the misspecified case (f∗
ρ /∈ H or s < 1) has also

been discussed by another important line of work which
considers the embedding index (α0) of the RKHS and per-
forms refined analysis (Steinwart et al., 2009; Dicker et al.,
2017; Pillaud-Vivien et al., 2018; Fischer & Steinwart, 2020;
Celisse & Wahl, 2020; Li et al., 2022). The desired upper
bound n− sβ

sβ+1 is extended to the regime s+ 1
β > α0, and

the minimax optimality is extended to the regime s > α0. It
is worth pointing out that when f∗

ρ falls into a less-smooth
interpolation space which does not imply the boundedness
of functions therein, all existing works (either considering
embedding index or not) require an additional boundedness
assumption, i.e., ∥f∗

ρ ∥L∞(X ,µ) ≤ B∞ < ∞ (Lin & Cevher,
2020; Fischer & Steinwart, 2020; Talwai & Simchi-Levi,
2022; Li et al., 2022, etc). As discussed in the introduction,
this will lead to the suboptimality in the s ≤ α0 regime.

This paper follows the line of work that considers the em-
bedding index, refines the proof by handling the additional
boundedness assumption, and solves the optimality prob-
lem for Sobolev RKHS and all s ∈ (0, 1). In addition, our
technical improvement also sheds light on the optimality for
general RKHS. Specifically, we replace the boundedness
assumption with a far weaker Lq-integrability assumption,
which turns out to be reasonable for many RKHS. Note
that our results focus on the most frequently used L2 con-
vergence rate for KRR, and it can be easily extended to
[H]γ , γ ≥ 0 convergence rate (e.g., Fischer & Steinwart
2020) and general spectral regularization algorithms (e.g.,

Lin et al. 2018).

2. Preliminaries
2.1. Basic concepts

Let X ⊆ Rd be the input space and Y ⊆ R be the output
space. Let ρ be an unknown probability distribution on
X × Y satisfying

∫
X×Y y2dρ(x, y) < ∞, and denote the

corresponding marginal distribution on X as µ. We use
Lp(X , µ) (in short Lp) to represent the Lp-spaces. Then the
generalization error (1) can be written as∥∥∥f̂ − f∗

ρ

∥∥∥2
L2

.

Throughout the paper, we denote H as a separable RKHS on
X with respect to a continuous and bounded kernel function
k satisfying

sup
x∈X

k(x, x) ≤ κ2.

Define the integral operator T : L2(X , µ) → L2(X , µ) as

(Tf)(x) :=

∫
X
k(x, y)f(y)dµ(y). (3)

It is well known that T is a positive, self-adjoint, trace-class,
and hence a compact operator (Steinwart & Scovel, 2012).
The spectral theorem for self-adjoint compact operators and
Mercer’s decomposition theorem yield that

k(x, y) =
∑
i∈N

λiei(x)ei(y),

T =
∑
i∈N

λi ⟨·, ei⟩L2 ei,

where N is an at most countable set, the eigenvalues
{λi}i∈N ⊆ (0,∞) is a non-increasing summable sequence,
and {ei}i∈N are the corresponding eigenfunctions. Denote
the samples as X = (x1, · · · , xn) and y = (y1, · · · , yn)′.
The representer theorem (see, e.g., Steinwart & Christmann
2008) gives an explicit expression of the KRR estimator
defined by (2), i.e.,

f̂λ(x) = K(x,X)(K(X,X) + nλI)−1y,

where
K(X,X) = (k (xi, xj))n×n ,

and
K(x,X) = (k (x, x1) , · · · , k (x, xn)) .

We also need to introduce the interpolation spaces of RKHS.
For any s ≥ 0, the fractional power integral operator T s :
L2(X , µ) → L2(X , µ) is defined as

T s(f) =
∑
i∈N

λs
i ⟨f, ei⟩L2 ei,
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and the interpolation space [H]s, s ≥ 0 of H is defined as

[H]s := RanT
s
2 =

{∑
i∈N

λ
s
2
i aiei |

∑
i∈N

a2i < ∞

}
, (4)

with the inner product

⟨f, g⟩[H]s =
〈
T− s

2 f, T− s
2 g
〉
L2 . (5)

It is easy to show that [H]s is also a separable Hilbert
space with orthogonal basis {λ

s
2
i ei}i∈N . Specially, we have

[H]0 ⊆ L2(X , µ) and [H]1 ⊆ H. For 0 < s1 < s2, the
embeddings [H]s2 ↪→ [H]s1 ↪→ [H]0 exist and are compact
(Fischer & Steinwart, 2020). For the functions in [H]s with
larger s, we say they have higher regularity (smoothness)
with respect to the RKHS.

As an example, the Sobolev space Hm(X ) is an RKHS if
m > d

2 , and its interpolation space is still a Sobolev space
given by [Hm(X )]s ∼= Hms(X ),∀s > 0, see Section 3.1
for detailed discussions.

2.2. Assumptions

This subsection lists the standard assumptions that fre-
quently appeared in related literature.

Assumption 2.1 (Eigenvalue decay rate (EDR)). Suppose
that the eigenvalue decay rate (EDR) of H is β > 1, i.e,
there are positive constants c and C such that

ci−β ≤ λi ≤ Ci−β , ∀i ∈ N.

Note that the eigenvalues λi and EDR are only determined
by the marginal distribution µ and the RKHS H. The polyno-
mial eigenvalue decay rate assumption is standard in related
literature and is also referred to as the capacity condition or
effective dimension condition.

Assumption 2.2 (Embedding index). We say that [H]α has
the embedding property for some α ∈ [ 1β , 1], if there is a
constant 0 < A < ∞ such that

∥[H]α ↪→ L∞(X , µ)∥ ≤ A, (6)

where ∥ · ∥ denotes the operator norm of the embedding.
Then we define the embedding index of an RKHS H as

α0 = inf {α : [H]α has the embedding property} .

In fact, for any α > 0, we can define Mα as the smallest
constant A > 0 such that∑

i∈N

λα
i e

2
i (x) ≤ A2, µ-a.e. x ∈ X ,

if there is no such constant, set Mα = ∞. Then Fischer &
Steinwart (2020, Theorem 9) shows that for α > 0,

∥[H]α ↪→ L∞(X , µ)∥ = Mα.

The larger α is, the weaker the embedding property is. Note
that since supx∈X k(x, x) ≤ κ2, Mα ≤ κ < ∞ is always
true for α ≥ 1. In addition, Fischer & Steinwart (2020,
Lemma 10) also shows that α can not be less than 1

β .

Note that the embedding property (6) holds for any α > α0.
This directly implies that all the functions in [H]α are µ-a.e.
bounded, α > α0. However, the embedding property may
not hold for α = α0.

Assumption 2.3 (Source condition). For s > 0, there is a
constant R > 0 such that f∗

ρ ∈ [H]s and

∥f∗
ρ ∥[H]s ≤ R.

Functions in [H]s with smaller s are less smooth, which will
be harder for an algorithm to estimate.

Assumption 2.4 (Moment of error). The noise ϵ := y −
f∗
ρ (x) satisfies that there are constants σ, L > 0 such that

for any m ≥ 2,

E (|ϵ|m | x) ≤ 1

2
m!σ2Lm−2, µ-a.e. x ∈ X .

This is a standard assumption to control the noise such that
the tail probability decays fast (Lin & Cevher, 2020; Fischer
& Steinwart, 2020). It is satisfied for, for instance, the Gaus-
sian noise with bounded variance or sub-Gaussian noise.
Some literature (e.g., Steinwart et al. 2009; Pillaud-Vivien
et al. 2018; Jun et al. 2019, etc) also uses a stronger assump-
tion y ∈ [−L0, L0] which directly implies both Assumption
2.4 and the boundedness of f∗

ρ .

2.3. Review of state-of-the-art results

For the convenience of comparing our results with previous
works, we review state-of-the-art upper and lower bounds of
the convergence rate of KRR (Fischer & Steinwart, 2020).

Proposition 2.5 (Upper bound). Suppose that Assumption
2.1,2.2, 2.3 and 2.4 hold for 0 < s ≤ 2 and 1

β ≤ α0 < 1.
Furthermore, suppose that there exists a constant B∞ > 0
such that ∥f∗

ρ ∥L∞(X ,µ) ≤ B∞. Let f̂λ be the KRR estimator
defined by (2). Then in the case of s+ 1

β > α0, by choosing

λ ≍ n− β
sβ+1 , for any fixed δ ∈ (0, 1), when n is sufficiently

large, with probability at least 1− δ, we have∥∥∥f̂λ − f∗
ρ

∥∥∥2
L2

≤
(
ln

4

δ

)2

Cn− sβ
sβ+1 ,

where C is a constant independent of n and δ.
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Remark 2.6. When s+ 1
β ≤ α0, Fischer & Steinwart (2020,

Theorem 1) also proves the state-of-the-art upper bound of
the convergence rate (n/ logr(n))−

s
α ,∀r > 0 and α > α0

which can be arbitrarily close to α0. We should note that
s + 1

β > α0 is always satisfied for Sobolev RKHS (see
Section 3.1), so we focus on s+ 1

β > α0 in this paper.

Proposition 2.7 (Minimax lower bound). Let µ be a prob-
ability distribution on X such that Assumption 2.1 and 2.2
are satisfied for 1

β ≤ α0 < 1. Let P consist of all the
distributions on X × Y satisfying 2.3, 2.4 for 0 < s ≤ 2
and with marginal distribution µ. For a constant B∞ > 0,
let P∞ consists of all the distributions on X × Y such
that ∥f∗

ρ ∥L∞(X ,µ) ≤ B∞. Then for any α > α0, there
exists a constant C, for all learning methods, for any fixed
δ ∈ (0, 1), when n is sufficiently large, there is a distribu-
tion ρ ∈ P ∩ P∞ such that, with probability at least 1− δ,
we have ∥∥∥f̂ − f∗

ρ

∥∥∥2
L2

≥ Cδn− max{s,α}β
max{s,α}β+1 .

Remark 2.8. Under the precondition s+ 1
β > α0, (1) when

s > α0, since there always exists α0 < α ≤ s, the upper
bound of the convergence rate in Proposition 2.5 coincides
with the minimax lower bound in Proposition 2.7 and hence
is minimax optimal; (2) but when s ≤ α0, existing results
fail to show the optimality of KRR. The same gap between
the upper and lower bound exists for gradient descent and
stochastic gradient descent with multiple passes (Pillaud-
Vivien et al., 2018).

Note that in Proposition 2.7, we consider the distributions
in P ∩ P∞. If we consider all the distributions in P , we
have the following minimax lower bound, which is often
referred to as the information-theoretic lower bound (see,
e.g., Rastogi & Sampath 2017).

Proposition 2.9 (Information-theoretic lower bound). Let
µ be a probability distribution on X such that Assumption
2.1 is satisfied. Let P consist of all the distributions on
X × Y satisfying 2.3, 2.4 for 0 < s ≤ 2 and with marginal
distribution µ. Then there exists a constant C, for all learn-
ing methods, for any fixed δ ∈ (0, 1), when n is sufficiently
large, there is a distribution ρ ∈ P such that, with probabil-
ity at least 1− δ, we have∥∥∥f̂ − f∗

ρ

∥∥∥2
L2

≥ Cδn− sβ
sβ+1 .

3. Main Results
The main results of this paper aim to remove the bounded-
ness assumption ∥f∗

ρ ∥L∞(X ,µ) ≤ B∞. We state the main
theorem in terms of general RKHS, and make detailed dis-
cussions for Sobolev space as a particular case.

Theorem 3.1. Suppose that Assumption 2.1, 2.2, 2.3 and
2.4 hold for 0 < s ≤ 2 and 1

β ≤ α0 < 1. Suppose that
f∗
ρ ∈ Lq(X , µ) and ∥f∗

ρ ∥Lq(X ,µ) ≤ Cq < ∞ for some

q > 2(sβ+1)
2+(s−α0)β

. Let f̂λ be the KRR estimator defined by (2).

Then, in the case of s+ 1
β > α0, by choosing λ ≍ n− β

sβ+1 ,
for any fixed δ ∈ (0, 1), when n is sufficiently large, with
probability at least 1− δ, we have∥∥∥f̂λ − f∗

ρ

∥∥∥2
L2

≤
(
ln

4

δ

)2

Cn− sβ
sβ+1 ,

where C is a constant independent of n and δ.

Remark 3.2. In Theorem 3.1, we replace the boundedness
assumption with a Lq-integrability assumption and prove
the same upper bound of the convergence rate as Proposition
2.5 in the case of s+ 1

β > α0. As shown in the following,

both s+ 1
β > α0 and q > 2(sβ+1)

2+(s−α0)β
are naturally satisfied

for Sobolev RKHS.

Remark 3.3. RKHS with uniformly bounded eigenfunc-
tions, i.e., supi∈N ∥ei∥L∞ < ∞ are frequently consid-
ered (Mendelson & Neeman, 2010; Steinwart et al., 2009;
Pillaud-Vivien et al., 2018). For this kind of RKHS, the As-
sumption 2.2 holds for α0 = 1

β (Fischer & Steinwart, 2020,
Lemma 10), hence s + 1

β > α0 is satisfied. In addition,

the assumption q > 2(sβ+1)
2+(s−α0)β

in Theorem 3.1 turns into
q > 2. Recalling that [H]0 ⊆ L2(X , µ) when s = 0, so it
is reasonable to assume that the functions in [H]s, s > 0, is
Lq-integrable for some q > 2.

Remark 3.4. If the RKHS H satisfies that [H]s ↪→ Lq, i.e.,
[H]s ∩ Lq = [H]s for some q satisfying the integrability
required in Theorem 3.1. Using Proposition 2.9, the mini-
max lower bound will be still n− sβ

sβ+1 even when making
the assumption ∥f∗

ρ ∥Lq < ∞.

3.1. Optimality for Sobolev RKHS

Let us first introduce some concepts of (fractional) Sobolev
space (see, e.g., Adams & Fournier 2003). In this section,
we assume that X ⊆ Rd is a bounded domain with smooth
boundary and the Lebesgue measure ν. Denote L2(X ) :=
L2(X , ν) as the corresponding L2 space. For m ∈ N, we
denote Hm(X ) as the Sobolev space with smoothness m
and H0(X ) := L2(X ). Then the (fractional) Sobolev space
for any real number r > 0 can be defined through real
interpolation:

Hr(X ) :=
(
L2(X ), Hm(X )

)
r
m ,2

,

where m := min{k ∈ N : k > r}. (For details of real
interpolation of Banach spaces, we refer to Sawano (2018,
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Chapter 4.2.2)). It is well known that when r > d
2 , Hr(X )

is a separable RKHS with respect to a bounded kernel, and
the corresponding EDR is (see, e.g., Edmunds & Triebel
1996)

β =
2r

d
.

Furthermore, for the interpolation space of Hr(X ) under
Lebesgue measure defined by (4), we have (see, e.g., Stein-
wart & Scovel 2012, Theorem 4.6), for s > 0,

[Hr(X )]s = Hrs(X ).

Now we begin to introduce the embedding theorem of (frac-
tional) Sobolev space from 7.57 of Adams (1975), which is
crucial when applying Theorem 3.1 to Sobolev RKHS.

Proposition 3.5 (Embedding theorem). Let Hr(X ), r > 0
be defined as above, we have

(i) if d > 2r, then Hr(X ) ↪→ Lq(X ) for 2 ≤ q ≤ 2d
d−2r .

(ii) if d = 2r, then Hr(X ) ↪→ Lq(X ) for 2 ≤ q < ∞.

(iii) if d < 2(r − j) for some nonnegative integer j, then
Hr(X ) ↪→ Cj,γ(X ), γ = r − j − d

2 ,

where Cj,γ(X ) denotes the Hölder space and ↪→ denotes
the continuous embedding.

On the one hand, (iii) of Proposition 3.5 shows that, for a
Sobolev RKHS H = Hr(X ), r > d

2 and any α > 1
β = d

2r ,

[Hr(X )]α = Hrα(X ) ↪→ C0,γ(X ) ↪→ L∞(X ),

where γ > 0. So the Assumption 2.2 holds for α0 = 1
β , and

thus 2(sβ+1)
2+(s−α0)β

= 2. On the other hand, (i) of Proposition
3.5 shows that if d > 2rs,

[Hr(X )]s = Hrs(X ) ↪→ Lq(X ),

where q = 2d
d−2rs = 2

1−sβ > 2. In addition, (ii) and (iii)
of Proposition 3.5 show that q > 2 also holds if d ≤ 2rs.
Therefore, for any 0 < s ≤ 2, we have

Assumption 2.2; s+
1

β
> α0; q >

2(sβ + 1)

2 + (s− α0)β
= 2

hold simultaneously.

Now we are ready to state a theorem as the corollary of The-
orem 3.1 and Proposition 3.5, which implies the optimality
of KRR for Sobolev RKHS and any 0 < s ≤ 2.

Theorem 3.6. Let X ⊆ Rd be a bounded domain with a
smooth boundary. The RKHS is H = Hr(X ) for some
r > d/2. Suppose that the distribution ρ satisfies that

∥f∗
ρ ∥[H]s ≤ R for 0 < s ≤ 2, the noise satisfies Assumption

2.4, and the marginal distribution µ on X has Lebesgue
density 0 < c ≤ p(x) ≤ C for two constants c and C. Let
f̂λ be the KRR estimator defined by (2). Then, by choosing
λ ≍ n− β

sβ+1 , for any fixed δ ∈ (0, 1), when n is sufficiently
large, with probability at least 1− δ, we have∥∥∥f̂λ − f∗

ρ

∥∥∥2
L2

≤
(
ln

4

δ

)2

Cn− sβ
sβ+1 ,

where C is a constant independent of n and δ.

Note that we say that the distribution µ has Lebesgue density
0 < c ≤ p(x) ≤ C, if µ is equivalent to the Lebesgue
measure ν, i.e., µ ≪ ν, ν ≪ µ, and there exist constants
c, C > 0 such that c ≤ dµ

dν ≤ C.

Remark 3.7 (Optimality for Sobolev RKHS). Without the
boundedness assumption, Theorem 3.6 proves the same
upper bound of the convergence rate n− sβ

sβ+1 . Together with
the information-theoretic lower bound in Proposition 2.9,
we prove the optimality of KRR for all 0 < s ≤ 2, while
state-of-the-art result Fischer & Steinwart (2020, Corollary
5) can only prove for 1

β < s ≤ 2. Since when s > 2, the
saturation effect of KRR has been proved in a recent work
Li et al. (2023), the optimality of KRR for Sobolev spaces
is well understood.

3.2. Sketch of proof

In this subsection, we present the sketch of the proof of The-
orem 3.1. The rigorous proof of Theorem 3.1, Proposition
2.9, and Theorem 3.6 will be in the appendix. We refer
to Fischer & Steinwart (2020, Chapter 6) for the proof of
Proposition 2.5 and 2.7.

Our proofs are based on the standard integral operator tech-
niques dating back to Smale & Zhou (2007), and we refine
the proof to handle the unbounded case. Let us first intro-
duce some frequently used notations. Define the sample
operator as

Kx : R → H, y 7→ yk(x, ·),

and its adjoint operator

K∗
x : H → R, f 7→ f(x).

Next we define the sample covariance operator TX : H →
H as

TX :=
1

n

n∑
i=1

Kxi
K∗

xi
, (7)

and the sample basis function

gZ :=
1

n

n∑
i=1

Kxi
yi ∈ H.
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Then the KRR estimator (2) can be expressed by (see, e.g.,
Caponnetto & de Vito (2007, Chapter 5))

f̂λ = (TX + λ)
−1

gZ .

Define fλ as the unique minimizer given by

fλ = argmin
f∈H

(∫
X×Y

(f(x)− y)
2
dρ(x, y) + λ∥f∥2H

)
.

Note that the integral operator T can also be seen as a
bounded linear operator on H, fλ can be expressed by

fλ = (T + λ)
−1

g, (8)

where g is the expectation of gZ given by

g = EgZ =

∫
X
k(x, ·)f∗

ρ (x)dµ(x) = Tf∗
ρ ∈ H.

The first step in our proof is to decompose the generalization
error into two terms, which are often referred to as the
approximation error and estimation error,∥∥∥f̂λ − f∗

ρ

∥∥∥
L2

≤
∥∥∥f̂λ − fλ

∥∥∥
L2

+
∥∥fλ − f∗

ρ

∥∥
L2 , (9)

Then we will show that by choosing λ ≍ n− β
sβ+1 ,∥∥fλ − f∗

ρ

∥∥
L2 ≤ CRλ

s
2 = CRn− 1

2
sβ

sβ+1 ; (10)

and for any fixed δ ∈ (0, 1), when n is sufficiently large,
with probability at least 1− δ, we have

∥∥∥f̂λ − fλ

∥∥∥
L2

≤ ln
4

δ
C
λ− 1

2β

√
n

= ln
4

δ
Cn− 1

2
sβ

sβ+1 . (11)

Plugging (10) and (11) into (9) and we will finish the proof
of Theorem 3.1.

The approximation error Suppose that f∗
ρ =

∑
i∈N aiei.

Then using the expression (8) and simple inequality, we will
show that

∥∥fλ − f∗
ρ

∥∥2
L2 =

∑
i∈N

(
λλ

s/2
i

λ+ λi

)2

λ−s
i a2i ≤ λs∥f∗

ρ ∥[H]s .

The estimation error Denote TXλ = TX + λ and Tλ =
T + λ. We will first rewrite the estimator error as follows∥∥∥f̂λ − fλ

∥∥∥
L2

=
∥∥∥T 1

2

(
f̂λ − fλ

)∥∥∥
H

≤
∥∥∥T 1

2T
− 1

2

λ

∥∥∥ · ∥∥∥T 1
2

λ T−1
XλT

1
2

λ

∥∥∥ · ∥∥∥T− 1
2

λ (gZ − TXλfλ)
∥∥∥
H
.

(12)

For the first term in (12), we have

∥∥∥T 1
2T

− 1
2

λ

∥∥∥ = sup
i∈N

(
λi

λi + λ

) 1
2

≤ 1.

For the second term in (12), using the concentration result
between TXλ and Tλ, it can also be bounded by a constant.
The main challenge of the proof is bounding the third term.
We will show that the third term in (12) can be rewritten as∥∥∥T− 1

2

λ [(gZ − (TX + λ+ T − T ) fλ)]
∥∥∥
H

=
∥∥∥T− 1

2

λ [(gZ − TXfλ)− (T + λ) fλ + Tfλ]
∥∥∥
H

=
∥∥∥T− 1

2

λ [(gZ − TXfλ)− (g − Tfλ)]
∥∥∥
H
. (13)

The form of (13) allows us to use the well-known Bernstein
type inequality, which controls the difference between a sum
of i.i.d. random variables and its expectation. Traditionally,
this step requires the boundedness of f∗

ρ . We refine this
procedure by a truncation method and prove that with high
probability,

(13) ≤ ln
2

δ
C
λ− 1

2β

√
n

= ln
2

δ
Cn− 1

2
sβ

sβ+1 .

Specifically, we consider two subset of X : Ω1 = {x ∈
Ω : |f∗

ρ (x)| ≤ t} and Ω2 = X\Ω1 where t is allowed to
diverge as n → ∞. When choosing t as a proper order of
n, we show that on the one hand, the norm in Ω1 is still
upper bounded by n− 1

2
sβ

sβ+1 ; on the other hand, the norms
in Ω2 vanishes with a probability tending to 1 as n → ∞.
We argue that such t exists by taking advantage of the Lq-
integrability of f∗

ρ , which is required in the statement of
Theorem 3.1.

4. Experiments
In our experiments, we aim to verify that for functions
f∗
ρ ∈ [H]s but not in L∞, the KRR estimator can still

achieve the convergence rate n− sβ
sβ+1 . We show the results

for both Sobolev RKHS, and general RKHS with uniformly
bounded eigenfunctions mentioned in Remark 3.3.

4.1. Experiments in Sobolev space

Suppose that X = [0, 1] and the marginal distribution µ is
the uniform distribution on [0, 1]. We consider the RKHS
H = H1(X ) to be the Sobolev space with smoothness 1.
Section 3.1 shows that the EDR is β = 2 and embedding
index is α0 = 1

β . We construct a function in [H]s\L∞ by

f∗(x) =

∞∑
k=1

1

ks+0.5
(sin (2kπx) + cos (2kπx)) , (14)

6
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for some 0 < s < 1
β = 0.5. We will show in Appendix

F that the series in (14) converges on (0, 1). In addition,
since sin 2kπ + cos 2kπ ≡ 1, we also have f∗ /∈ L∞(X ).
The explicit formula of the kernel associated to H1(X ) is
given by Thomas-Agnan (1996, Corollary 2), i.e., k(x, y) =

1
sinh 1 cosh (1−max(x, y)) cosh (1−min(x, y)).

We consider the following data generation procedure:

y = f∗(x) + ϵ,

where f∗ is numerically approximated by the first 1000
terms in (14) with s = 0.4, x ∼ U [0, 1] and ϵ ∼ N (0, 1).
We choose the regularization parameter as λ = cn− β

sβ+1 =
cn− 10

9 for a fixed c. The sample size n is chosen from 1000
to 5000, with intervals of 100. We numerically compute
the generalization error ∥f̂ − f∗∥L2 by Simpson’s formula
with N ≫ n testing points. For each n, we repeat the
experiments 50 times and present the average generalization
error as well as the region within one standard deviation. To
visualize the convergence rate r, we perform logarithmic
least-squares log err = r log n+ b to fit the generalization
error with respect to the sample size and display the value
of r.

1000 50002 × 103 3 × 103 4 × 103

n

1.1

1.0

0.9

0.8

lo
g 

er
r

Error Decay;k=sob; s=0.4; beta=2
r=-0.46

Figure 1. Error decay curve of Sobolev RKHS. Both axes are loga-
rithmic. The curve shows the average generalization errors over 50
trials; the region within one standard deviation is shown in green.
The dashed black line is computed using logarithmic least-squares,
and the slope represents the convergence rate r.

We try different values of c, Figure 1 presents the conver-
gence curve under the best choice of c. It can be concluded
that the convergence rate of KRR’s generalization error is
indeed approximately equal to n− sβ

sβ+1 = n− 4
9 , without the

boundedness assumption of the true function f∗. We also
did another experiment that used cross validation to choose
the regularization parameter. Figure 3 in Appendix F shows
a similar result as Figure 1. We refer to Appendix F for
more details of the experiments.

Remark 4.1. This setting is similar to Pillaud-Vivien et al.
(2018). The difference is that we choose the source condi-
tion s to be smaller than α0 so that f∗ /∈ L∞(X ).

4.2. Experiments in general RKHS

Suppose that X = [0, 1] and the marginal distribution µ is
the uniform distribution on [0, 1]. It is well known that the
following RKHS

H :=
{
f : [0, 1] → R | f is A.C., f(0) = 0,∫ 1

0

(f ′(x))
2
dx < ∞

}
.

is associated with the kernel k(x, y) = min(x, y) (Wain-
wright, 2019). Further, its eigenvalues and eigenfunctions
can be written as

λn =

(
2n− 1

2
π

)−2

, n = 1, 2, · · ·

and

en(x) =
√
2 sin

(
2n− 1

2
πx

)
, n = 1, 2, · · ·

It is easy to see that the EDR is β = 2, the eigenfunctions
are uniformly bounded, and the embedding index is α0 = 1

β

(see Remark 3.3). We construct a function in [H]s\L∞ by

f∗(x) =

∞∑
k=1

1

ks+0.5
e2k−1(x), (15)

for some 0 < s < 1
β = 0.5. We will show in Appendix F

that the series in (15) converges on (0, 1). Since e2k−1(1) ≡
1, we also have f∗ /∈ L∞(X ).

We use the same data generation procedure as Section 4.1:

y = f∗(x) + ϵ,

where f∗ is numerically approximated by the first 1000
terms in (15) with s = 0.4, x ∼ U [0, 1] and ϵ ∼ N (0, 1).

Figure 2 presents the convergence curve under the best
choice of c. It can also be concluded that the convergence
rate of KRR’s generalization error is indeed approximately
equal to n− sβ

sβ+1 = n− 4
9 . Figure 4 in Appendix F shows the

result of using cross validation.

5. Conclusion and Discussion
This paper considers the convergence rate and the mini-
max optimality of kernel ridge regression, especially in the
misspecified case. When the true function f∗

ρ falls into
a less-smooth (s ≤ α0) interpolation space of the RKHS

7
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1000 50002 × 103 3 × 103 4 × 103

n

1.7

1.6

1.5

1.4

lo
g 

er
r

Error Decay;k=min; s=0.4; beta=2
r=-0.44

Figure 2. Error decay curve of general RKHS. Both axes are loga-
rithmic. The curve shows the average generalization errors over 50
trials; the region within one standard deviation is shown in green.
The dashed black line is computed using logarithmic least-squares,
and the slope represents the convergence rate r.

[H]s ⊈ L∞, it has been an outstanding problem for years
that whether the boundedness assumption of f∗

ρ in the proof
can be removed or weakened so that KRR is optimal for
all 0 < s ≤ 2. This paper proves that for Sobolev RKHS,
the boundedness assumption can be directly removed. This
result implies that, on the one hand, the desired upper bound
of the convergence rate holds for all the functions in [H]s

(which can only be proved for [H]s ∩ L∞ before); on the
other hand, KRR is minimax optimal for all source condi-
tions 0 < s ≤ 2 (which can only be proved for 1

β < s ≤ 2
before). Together with the saturation effect of KRR (Li et al.,
2023) when s > 2, all convergence behaviors of Sobolev
RKHS are understood. For general RKHS, we also prove
that the boundedness assumption can be replaced by a Lq-
integrability assumption which turns out to be reasonable,
at least for RKHS with uniformly bounded eigenfunctions.
We verify the results through experiments for both Sobolev
RKHS and general RKHS.

If an RKHS H has embedding index α0 = 1, considering
the embedding index will just recover the results of (Lin
et al., 2018). Note that we assume α0 ∈ (0, 1) through-
out this paper, on which we will perform refined analysis.
Technical tools in this paper can be extended to general
spectral regularization algorithms and [H]γ-generalization
error. Another direct open question is to discuss whether
the Lq-integrability assumption in Theorem 3.1 holds for
general RKHS, which we conjecture to be true.

We also notice a line of work which studies the learning
curves of kernel ridge regression (Spigler et al., 2020; Bor-
delon et al., 2020; Cui et al., 2021) and crossovers between
different noise magnitudes. At present, their results all rely
on a Gaussian design assumption (or some variation), which

is a very strong assumption. Nevertheless, their empirical
results are enlightening and attract interest in the study of
the learning curves of kernel ridge regression. We believe
that studying the misspecified case in our paper is a crucial
step to remove the Gaussian design assumption and draw
complete conclusions about the learning curves of kernel
ridge regression. KRR is also connected with Gaussian pro-
cess regression (Kanagawa et al., 2018). Jin et al. (2021)
claimed to establish the learning curves for Gaussian pro-
cess regression and thus for KRR. However, there is a gap in
their proof where an essential covering argument is missing:
their Corollary 20 provides a high probability bound for
fixed ν, while the proof of their Lemma 40 and Lemma 41
mistakenly use Corollary 20 to assert that the bound holds
simultaneously for all ν.

Since Jacot et al. (2018) introduced the NTK , kernel regres-
sion has become a natural surrogate for the neural networks
in the ‘lazy trained regime’. Our work is also motivated
by our empirical studies in the neural networks and NTK
regressions. Specifically, we found that the source condition
with respect to the neural tangent kernel (or other frequently
used kernels) is relatively small (s ≪ 1) for some frequently
used real datasets (MNIST, CIFAR-10). This observation
urged us to determine the optimal convergence rate when
the RKHS is misspecified.
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A. Proof of Theorem 3.1
Throughout the proof, we denote

Tλ = T + λ; TXλ = TX + λ, (16)

where λ is the regularization parameter and T, TX is defined by (3), (7). We use ∥ · ∥B(B1,B2) to denote the operator norm
of a bounded linear operator from a Banach space B1 to B2, i.e., ∥A∥B(B1,B2) = sup

∥f∥B1
=1

∥Af∥B2
. Without bringing

ambiguity, we will briefly denote the operator norm as ∥ · ∥. In addition, we use trA and ∥A∥1 to denote the trace and
the trace norm of an operator. We use ∥A∥2 to denote the Hilbert-Schmidt norm. In addition, we denote L2(X , µ) as L2,
L∞(X , µ) as L∞ for brevity throughout the proof.

In addition, denote the effective dimension

N (λ) = tr
(
T (T + λ)−1

)
=
∑
i∈N

λi

λi + λ
, (17)

since the EDR of H is β, Lemma E.5 shows that N (λ) ≍ λ− 1
β .

The following lemma will be frequently used, so we present it at the beginning of our proof.
Lemma A.1. For any λ > 0 and s ∈ [0, 1], we have

sup
t≥0

ts

t+ λ
≤ λs−1. (18)

Proof. Since as ≤ a+ 1 for any a ≥ 0 and s ∈ [0, 1], the lemma follows from(
t

λ

)s

≤ t

λ
+ 1 =

t+ λ

λ
. (19)

A.1. Proof of the approximation error

The following theorem gives the bound of [H]γ-norm of fλ − f∗
ρ when 0 ≤ γ ≤ s. As a special case, the approximation

error
∥∥fλ − f∗

ρ

∥∥
L2 follows from the result when γ = 0.

Theorem A.2. Suppose that Assumption 2.3 holds for 0 < s ≤ 2. Denote fλ = (T + λ)−1g, then for any λ > 0 and
0 ≤ γ ≤ s, we have ∥∥fλ − f∗

ρ

∥∥
[H]γ

≤ Rλ
s−γ
2 . (20)

Proof. Suppose that f∗
ρ =

∑
i∈N aiei. Recall that fλ = (T + λ)

−1
g = (T + λ)

−1
Tf∗

ρ , we have

∥∥fλ − f∗
ρ

∥∥2
[H]γ

=

∥∥∥∥∥∑
i∈N

λ

λ+ λi
aiei(·)

∥∥∥∥∥
2

[H]γ

=
∑
i∈N

(
λ

λ+ λi

)2

λ−γ
i a2i

=
∑
i∈N

λλ
s−γ
2

i

λ+ λi

2

λ−s
i a2i

≤

λ sup
i∈N

λ
s−γ
2

i

λ+ λi

2∑
i∈N

λ−s
i a2i

≤ λ
s−γ
2 ∥f∗

ρ ∥[H]s ,

(21)

where we use Lemma A.1 for the last inequality and the [H]s norm defined by (5). Then the theorem follows from
Assumption 2.3, i.e., ∥f∗

ρ ∥[H]s ≤ R.
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A.2. Proof of the estimation error

Theorem A.3. Suppose that Assumption 2.1, 2.2, 2.3 and 2.4 hold for 0 < s ≤ 2 and 1
β ≤ α0 < 1. Suppose that

f∗
ρ ∈ Lq(X , µ) and ∥f∗

ρ ∥Lq(X ,µ) ≤ Cq < ∞ for some q > 2(sβ+1)
2+(s−α0)β

. Then in the case of s + 1
β > α0, by choosing

λ ≍ n− β
sβ+1 , for any fixed δ ∈ (0, 1), when n is sufficiently large, with probability at least 1− δ , we have∥∥∥f̂λ − fλ

∥∥∥
L2

≤ ln
4

δ
Cn− 1

2
sβ

sβ+1 . (22)

where C is a constant that only depends on κ,R,L, σ, Cq .

Proof. First, rewrite the estimator error as follows∥∥∥f̂λ − fλ

∥∥∥
L2

=
∥∥∥T 1

2

(
f̂λ − fλ

)∥∥∥
H

≤
∥∥∥T 1

2T
− 1

2

λ

∥∥∥ · ∥∥∥T 1
2

λ T−1
XλT

1
2

λ

∥∥∥ · ∥∥∥T− 1
2

λ (gZ − TXλfλ)
∥∥∥
H
. (23)

For the first term in (23), we have ∥∥∥T 1
2T

− 1
2

λ

∥∥∥ = sup
i∈N

(
λi

λi + λ

) 1
2

≤ 1. (24)

For the second term in (23), for any α > α0, using Proposition D.5 and we known that when λ, n satisfy that

u :=
M2

αλ
−α

n
ln

4κ2N (λ) (∥T∥+ λ)
δ
2∥T∥

≤ 1

8
, (25)

we have
a := ∥T− 1

2

λ (T − TX)T
− 1

2

λ ∥ ≤ 4

3
u+

√
2u ≤ 2

3
. (26)

with probability as least 1− δ
2 . Therefore,∥∥∥T 1

2

λ T−1
XλT

1
2

λ

∥∥∥ =

∥∥∥∥(T− 1
2

λ (TX + λ)T
− 1

2

λ

)−1
∥∥∥∥

=

∥∥∥∥(I − T
− 1

2

λ (TX − T )T
− 1

2

λ

)−1
∥∥∥∥

≤
∞∑
k=0

∥∥∥T− 1
2

λ (TX − T )T
− 1

2

λ

∥∥∥k
≤

∞∑
k=0

(
2

3

)k

≤ 3, (27)

with probability as least 1− δ
2 , where I is the identity operator H → H. Note that since we have s+ 1

β > α0, there always

exists α0 < α < s+ 1
β such that (25) is satisfied when λ ≍ n− β

sβ+1 and n is sufficiently large .

For the third term in (23), it can be rewritten as∥∥∥T− 1
2

λ (gZ − TXλfλ)
∥∥∥
H

=
∥∥∥T− 1

2

λ [(gZ − (TX + λ+ T − T ) fλ)]
∥∥∥
H

=
∥∥∥T− 1

2

λ [(gZ − TXfλ)− (T + λ) fλ + Tfλ]
∥∥∥
H

=
∥∥∥T− 1

2

λ [(gZ − TXfλ)− (g − Tfλ)]
∥∥∥
H
. (28)

Using Proposition D.4,with probability at least 1− δ
2 , we have∥∥∥T− 1

2

λ [(gZ − TXfλ)− (g − Tfλ)]
∥∥∥
H

≤ ln
4

δ
C
λ− 1

2β

√
n

= ln
4

δ
Cn− 1

2
sβ

sβ+1 . (29)

Plugging (24), (27) and (29) into (23) and we finish the proof.
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A.3. Proof of Theorem 3.1

Using the approximation-estimation error decomposition,∥∥∥f̂λ − f∗
ρ

∥∥∥
L2

≤
∥∥∥f̂λ − fλ

∥∥∥
L2

+
∥∥fλ − f∗

ρ

∥∥
L2 , (30)

together with Theorem A.2 and Theorem A.3 and we finish the proof of Theorem 3.1.

B. Proof of Theorem 3.6
Note that the RKHS H is defined as the (fractional) Sobolev space Hr(X ), which is regardless of the marginal distribution
µ. But the definition of interpolation space (4) is dependent on µ. When µ has Lebesgue density 0 < c ≤ p(x) ≤ C, Fischer
& Steinwart (2020, (14)) shows that

L2(X , µ) ∼= L2(X , ν), (31)

and
[Hr(X )]

s
µ
∼=
(
L2(X , µ), [Hr(X )]

1
µ

)
s,2

∼=
(
L2(X , ν), [Hr(X )]

1
ν

)
s,2

∼= [Hr(X )]
s
ν
∼= Hrs(X ), (32)

where we denote [Hr(X )]
s
µ as the interpolation space of Hr(X ) under marginal distribution µ. So we can also apply

Proposition 3.5 to [Hr(X )]
s
µ and the embedding property of it is the same as [Hr(X )]

s. Denote β = 2r
d , since α0 = 1

β , for
any 0 < s ≤ 2, we have

Assumption 2.2; s+
1

β
> α0; q >

2(sβ + 1)

2 + (s− α0)β
= 2 (33)

hold simultaneously.

Therefore, all the assumptions in Theorem 3.1 are satisfied, and the proof follows from applying Theorem 3.1.

C. Proof of Proposition 2.9
We will construct a family of probability distributions on X × Y and apply Lemma E.6. Recall that µ is a probability
distribution on X such that Assumption 2.1 is satisfied. Denote the class of functions

Bs(R) =
{
f ∈ [H]s : ∥f∥[H]s ≤ R

}
, (34)

and for every f ∈ Bs(R), define the probability distribution ρf on X × Y such that

y = f(x) + ϵ, x ∼ µ, (35)

where ϵ ∼ N (0, σ̄2) and σ̄ = min(σ, L). It is easy to show that such ρf falls into the family P in Proposition 2.9.
(Assumption 2.1 and 2.3 are satisfied obviously. Assumption 2.4 follows from results of moments of Gaussian random
variables, see, e.g., Fischer & Steinwart (2020, Lemma 21)).

Using Lemma E.8, for m = n
1

sβ+1 , there exists ω(0), · · · , ω(M) ∈ {0, 1}m for some M ≥ 2m/8 such that

m∑
k=1

∣∣∣ω(i)
k − ω

(j)
k

∣∣∣ ≥ m

8
, ∀0 ≤ i < j ≤ M. (36)

For ϵ = C0m
−sβ−1, define the functions fi, i = 1, 2, · · · ,M as

fi := ϵ1/2
m∑

k=1

ω
(i)
k em+k. (37)

Since

∥fi∥[H]s = ϵ

m∑
k=1

λ−s
m+k

(
ω
(i)
k

)2
≤ ϵ

m∑
k=1

λ−s
2m ≤ 2sβcϵ

m∑
k=1

msβ ≤ 2sβcϵmsβ+1 = 2sβcC0, (38)

13
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Where c in (38) represents the constant in Assumption 2.1. So if C0 is small such that

2sβcC0 ≤ R, (39)

then we have fi ∈ Bs(R), i = 1, 2, · · · ,M.

Using Lemma E.7, we have

KL
(
ρnfi , ρ

n
f0

)
=

n

2σ̄2
∥fi∥2L2(X ,µ)

=
nϵ

2σ̄2

m∑
k=1

(
ω
(i)
k

)2
≤ nϵm

2σ̄2
=

n

2σ̄2
C0m

−sβ . (40)

Recall that M ≥ 2m/8 implies lnM ≥ ln 2
8 m. For a fixed a ∈ (0, 1

8 ), since m = n
1

sβ+1 , letting

KL
(
ρnfi , ρ

n
f0

)
≤ n

2σ̄2
C0m

−sβ ≤ a
ln 2

8
m ≤ a lnM, (41)

we have

C0 ≤ σ̄2 ln 2

4
a. (42)

So we can choose C0 = c′a such that (39) and (42) are satisfied.

Denote
{
ρnfi , fi ∈ Bs(R)

}
as a family of probability distribution index by fi, then (41) implies the second condition in

Lemma E.6 holds. Further, using (36), we have

d (fi, fj)
2
= ∥fi − fj∥2L2 = ϵ

m∑
k=1

(
ω
(i)
k − ω

(j)
k

)2
≥ ϵm

8
=

c′a

8
m−sβ ≥ c′an− sβ

sβ+1 , (43)

where c′ is a constant independent of n.

Applying Lemma E.6 to (41) and (43), we have

inf
f̂n

sup
f∈Bs(R)

Pρf

{∥∥∥f̂n − f
∥∥∥2
L2

≥ c′an− sβ
sβ+1

}
≥

√
M

1 +
√
M

(
1− 2a−

√
2a

lnM

)
. (44)

When n is sufficiently large so that M is sufficiently large, the probability in the R.H.S. of (44) is larger than 1− 3a. For
δ ∈ (0, 1), choose a = δ

3 , without loss of generality we assume a ∈ (0, 1
8 ). Then (44) shows that there exists a constant C,

for all estimator f̂ , we can find a function f ∈ Bs(R) and the corresponding distribution ρf ∈ P such that, with probability
at least 1− δ, ∥∥∥f̂ − f

∥∥∥2
L2

≥ Cδn− sβ
sβ+1 . (45)

So we finish the proof.

D. Useful propositions for upper bounds
This proposition bounds the L∞ norm of fλ when s ≤ α0.

Proposition D.1. Suppose that Assumption 2.1, 2.2 and 2.3 hold for 0 < s ≤ α0 and 1
β ≤ α0 < 1. Denote fλ = (T+λ)−1g,

then for any λ > 0 and any α > α0, we have

∥fλ∥L∞ ≤ Mα∥f∗
ρ ∥[H]sλ

−α−s
2 . (46)

14
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Proof. Suppose that f∗
ρ =

∑
i∈N aiei. Since s ≤ α0 and α > α0, we have

∥fλ∥2[H]α =
∑
i∈N

(
λ
1−α

2
i

λ+ λi

)2

a2i

=
∑
i∈N

(
λ
1−α−s

2
i

λ+ λi

)2

λ−s
i a2i

≤ ∥f∗
ρ ∥2[H]sλ

s−α,

(47)

where we use Lemma A.1 for the last inequality. Further, using ∥[H]α ↪→ L∞(X , µ)∥ = Mα by Assumption 2.2, we have
∥fλ∥L∞ ≤ Mα∥fλ∥[H]α ≤ Mα∥f∗

ρ ∥[H]sλ
−α−s

2 .

The following proposition is an application of the classical Bernstein type inequality but considering a truncation version of
f∗
ρ , which will bring refined analysis compared to previous work.

Proposition D.2. Suppose that Assumption 2.1, 2.2, 2.3 and 2.4 hold for 0 < s ≤ 2 and 1
β ≤ α0 < 1. Denote

ξi = ξ(xi, yi) = T
− 1

2

λ (Kxi
yi − Txi

fλ) and Ω0 = {x ∈ Ω : |f∗
ρ (x)| ≤ t}. Then for any α > α0 and all δ ∈ (0, 1), with

probability at least 1− δ, we have∥∥∥∥∥ 1n
n∑

i=1

ξiIxi∈Ω0 − EξxIx∈Ω0

∥∥∥∥∥
H

≤ ln
2

δ

(
C1λ

−α
2

n
· M̃ +

C2N
1
2 (λ)√
n

+
C3λ

−α−s
2

√
n

)
, (48)

where M̃ = MαRλ−α−s
2 + t+ L, and L is the constant in (2.4). C1 = 8

√
2Mα, C2 = 8σ,C3 = 8

√
2MαR.

Proof. Note that f∗
ρ can represent a µ-equivalence class in L2(X , µ). When defining the set Ω0, we actually denote f∗

ρ as
the representative f∗

ρ (x) =
∫
Y ydρ(y|x).

To use Lemma E.4, we need to bound the m-th moment of ξ(x, y)Ix∈Ω0
.

E ∥ξ(x, y)Ix∈Ω0∥
m
H = E

∥∥∥T− 1
2

λ Kx(y − fλ(x))Ix∈Ω0

∥∥∥m
H

≤ E
(∥∥∥T− 1

2

λ k(x, ·)
∥∥∥m
H
E
(
|(y − fλ(x))Ix∈Ω0

|m
∣∣ x)). (49)

Using the inequality (a+ b)m ≤ 2m−1 (am + bm), we have

|y − fλ(x)|m ≤ 2m−1
(∣∣fλ(x)− f∗

ρ (x)
∣∣m +

∣∣f∗
ρ (x)− y

∣∣m)
= 2m−1

(∣∣fλ(x)− f∗
ρ (x)

∣∣m + |ϵ|m
)
. (50)

Plugging (50) into (49), we have

E ∥ξ(x, y)Ix∈Ω0
∥mH ≤ 2m−1E

(∥∥∥T− 1
2

λ k(x, ·)
∥∥∥m
H

∣∣(fλ(x)− f∗
ρ (x))Ix∈Ω0

∣∣m ) (51)

+ 2m−1E
(∥∥∥T− 1

2

λ k(x, ·)
∥∥∥m
H
E
(
|ϵ Ix∈Ω0

|m
∣∣ x)) (52)

Now we begin to bound (52). Note that we have proved in Lemma E.1 that for µ-almost x ∈ X ,∥∥∥T− 1
2

λ k(x, ·)
∥∥∥
H

≤ Mαλ
−α

2 ; (53)
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In addition, we also have

E
∥∥∥T− 1

2

λ k(x, ·)
∥∥∥2
H

= E
∥∥∥∑

i∈N

(
1

λi + λ
)

1
2λiei(x)ei(·)

∥∥∥2
H

= E
(∑

i∈N

λi

λi + λ
e2i (x)

)
=
∑
i∈N

λi

λi + λ

= N (λ). (54)

So we have

E
∥∥∥T− 1

2

λ k(x, ·)
∥∥∥m
H

≤ sup
x∈X

∥∥∥T− 1
2

λ k(x, ·)
∥∥∥m−2

H
· E
∥∥∥T− 1

2

λ k(x, ·)
∥∥∥2
H

≤
(
Mαλ

−α
2

)m−2N (λ). (55)

Using Assumption 2.4, we have

E (|ϵIx∈Ω0
|m | x) ≤ E (|ϵ|m | x) ≤ 1

2
m!σ2Lm−2, µ-a.e. x ∈ X , (56)

so we get the upper bound of (52), i.e.,

(52) ≤ 1

2
m!
(√

2σN 1
2 (λ)

)2
(2Mαλ

−α
2 L)m−2. (57)

Now we begin to bound (51).

(1) When s ≤ α0, using the definition of Ω0 and Proposition D.1, we have

∥(fλ − f∗
ρ )Ix∈Ω0∥L∞ ≤ ∥fλ∥L∞ + ∥f∗

ρ Ix∈Ω0
∥L∞ ≤ MαRλ−α−s

2 + t := M. (58)

(2) When s > α0, without loss of generality, we assume α0 < α ≤ s. using Theorem A.2 for γ = α, we have

∥(fλ − f∗
ρ )Ix∈Ω0

∥L∞ ≤ Mα∥fλ − f∗
ρ ∥[H]α ≤ MαRλ−α−s

2 < M. (59)

Therefore, for all 0 < s ≤ 2 we have

∥(fλ − f∗
ρ )Ix∈Ω0∥L∞ ≤ M. (60)

In addition, using Theorem A.2 for γ = 0, we also have

E|(fλ(x)− f∗
ρ (x))Ix∈Ω0

|2 ≤ E|fλ(x)− f∗
ρ (x)|2 ≤ (Rλ

s
2 )2. (61)

So we get the upper bound of (51), i.e.,

(51) ≤ 2m−1(Mαλ
−α

2 )m · ∥(fλ − f∗
ρ )Ix∈Ω0

∥m−2
L∞ · E|(fλ(x)− f∗

ρ (x))Ix∈Ω0
|2

≤ 2m−1(Mαλ
−α

2 )m ·Mm−2 · (Rλ
s
2 )2

≤ 1

2
m!
(
2Mαλ

−α
2 M

)m−2(
2MαRλ−α−s

2

)2
. (62)

Denote

L̃ = 2Mα(M + L)λ−α
2

σ̃ = 2MαRλ−α−s
2 +

√
2σN 1

2 (λ), (63)

then we have E ∥ξ(x, y)Ix∈Ω0∥
m
H ≤ 1

2m!σ̃2L̃m−2. Using Lemma E.4, we finish the proof.
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Remark D.3. In fact, when we later applying Proposition D.2 in the proof of Proposition D.4, the truncation method in this
proposition is necessary only in the s ≤ α0 case. But for the completeness and consistency of our proof, we also include
s > α0 in this proposition.

Based on Proposition D.2, the following Proposition will give an upper bound of
∥∥∥T− 1

2

λ [(gZ − TXfλ)− (g − Tfλ)]
∥∥∥
H

.

Proposition D.4. Suppose that Assumption 2.1, 2.2, 2.3 and 2.4 hold for 0 < s ≤ 2 and 1
β ≤ α0 < 1. Suppose that

f∗
ρ ∈ Lq(X , µ) and ∥f∗

ρ ∥Lq(X ,µ) ≤ Cq < ∞ for some q > 2(sβ+1)
2+(s−α0)β

. Then in the case of s + 1
β > α0, by choosing

λ ≍ n− β
sβ+1 , for any fixed δ ∈ (0, 1), when n is sufficiently large, with probability at least 1− δ , we have∥∥∥T− 1

2

λ [(gZ − TXfλ)− (g − Tfλ)]
∥∥∥
H

≤ ln
2

δ
C
λ− 1

2β

√
n

= ln
2

δ
Cn− 1

2
sβ

sβ+1 , (64)

where C is a constant that only depends on κ,R,L, σ, Cq .

Proof. Denote ξi = ξ(xi, yi) = T
− 1

2

λ (Kxi
yi − Txi

fλ) and ξx = ξ(x, y) = T
− 1

2

λ (Kxy − Txfλ), then (64) is equivalent to∥∥∥∥∥ 1n
n∑

i=1

ξi − Eξx

∥∥∥∥∥
H

≤ ln
2

δ
C
λ− 1

2β

√
n

= ln
2

δ
Cn− 1

2
sβ

sβ+1 . (65)

Consider the subset Ω1 = {x ∈ Ω : |f∗
ρ (x)| ≤ t} and Ω2 = X\Ω1. Since ∥f∗

ρ ∥Lq(X ,µ) ≤ Cq , we have

P (x ∈ Ω2) = P
(
|f∗

ρ (x)| > t
)
≤

E|f∗
ρ (x)|q

tq
≤ (Cq)

q

tq
. (66)

Decomposing ξi as ξiIxi∈Ω1
+ ξiIxi∈Ω2

, we have∥∥∥∥∥ 1n
n∑

i=1

ξi − Eξx

∥∥∥∥∥
H

≤

∥∥∥∥∥ 1n
n∑

i=1

ξiIxi∈Ω1
− EξxIx∈Ω1

∥∥∥∥∥
H

+

∥∥∥∥∥ 1n
n∑

i=1

ξiIxi∈Ω2

∥∥∥∥∥
H

+ ∥EξxIx∈Ω2
∥
H
. (67)

Given s+ 1
β > α0, here we firstly fixed an α such that

α0 < α < s+
1

β
. (68)

For the first term in (67), denoted as I, using Theorem D.2, for all δ ∈ (0, 1), with probability at least 1− δ, we have

I ≤ ln
2

δ

(
C1λ

−α
2

n
· M̃ +

C2N
1
2 (λ)√
n

+
C3λ

−α−s
2

√
n

)
, (69)

where M̃ = MαRλ−α−s
2 + t+ L. Recalling that s+ 1

β > α0, simple calculation shows that by choosing λ = n− β
sβ+1 ,

• the second term in (69):

C2N
1
2 (λ)√
n

≍ λ− 1
2β

√
n

= n− 1
2

sβ
sβ+1 ; (70)

• the third term in (69):
C3λ

−α−s
2

√
n

≍ n
1
2 (

α
s+1/β

−1) · n− 1
2

sβ
sβ+1 ≲ n− 1

2
sβ

sβ+1 ; (71)

• the first term in (69):

C1λ
−α

2

n
· M̃ ≍ λ−α

2

n
λ−α−s

2 +
λ−α

2

n
· t+ λ−α

2

n
· L. (72)
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Further calculations show that
λ−α

2

n
λ−α−s

2 = n
α

s+1/β
−1 · n− 1

2
sβ

sβ+1 ≲ n− 1
2

sβ
sβ+1 , (73)

and
λ−α

2

n
= n

1
2

αβ−sβ−2
sβ+1 · n− 1

2
sβ

sβ+1 ≲ n− 1
2

sβ
sβ+1 . (74)

To make (72) ≲ n− 1
2

sβ
sβ+1 when λ = n− β

sβ+1 , letting λ−α
2

n · t ≤ n− 1
2

sβ
sβ+1 , we have the first restriction of t:

(R1) : t ≤ n
1
2 (1+

1−αβ
sβ+1 ). (75)

That is to say, if we choose t ≤ n
1
2 (1+

1−αβ
sβ+1 ), we have

I ≤ ln
2

δ
C
λ− 1

2β

√
n

= ln
2

δ
Cn− 1

2
sβ

sβ+1 . (76)

For the second term in (67), denoted as II, we have

τn := P (II >
λ− 1

2β

√
n

) ≤ P
(
∃xi s.t. xi ∈ Ω2

)
= 1− P

(
xi /∈ Ω2,∀i = 1, 2, · · · , n

)
= 1− P

(
x /∈ Ω2

)n
= 1− P

(
|f∗

ρ (x)| ≤ t
)n

≤ 1−
(
1− (Cq)

q

tq

)n
. (77)

Letting τn := P (II > λ
− 1

2β√
n

) → 0, we have tq ≫ n, i.e. t ≫ n
1
q . This gives the second restriction of t, i.e.,

(R2) : t ≫ n
1
q , or n

1
q = o(t). (78)

For the third term in (67), denoted as III. Since we have already known that ∥T− 1
2

λ k(x, ·)∥H ≤ λ−α
2 , µ-a.e. x ∈ X , so

III ≤ E∥ξxIx∈Ω2
∥H ≤ E

[
∥T− 1

2

λ k(x, ·)∥H ·
∣∣(y − fλ(x)

)
Ix∈Ω2

∣∣]
≤ λ−α

2 E
∣∣(y − fλ(x)

)
Ix∈Ω2

∣∣
≤ λ−α

2

(
E
∣∣(f∗

ρ (x)− fλ(x)
)
Ix∈Ω2

∣∣+ E
∣∣(f∗

ρ (x)− y
)
Ix∈Ω2

∣∣)
≤ λ−α

2

(
E
∣∣(f∗

ρ (x)− fλ(x)
)
Ix∈Ω2

∣∣+ E
∣∣ϵ · Ix∈Ω2

∣∣). (79)

Using Cauchy-Schwarz and the bound of approximation error (Theorem A.2), we have

E
∣∣(f∗

ρ (x)− fλ(x)
)
Ix∈Ω2

∣∣ ≤ (∥∥f∗
ρ − fλ

∥∥
L2

) 1
2 · (P (x ∈ Ω2))

1
2 ≤ Rλ

s
2C

q
2
q t

− q
2 . (80)

In addition, we have

E
∣∣ϵ · Ix∈Ω2

∣∣ = E
(
E
∣∣ϵ · Ix∈Ω2

∣∣ ∣∣∣ x) ≤ σE |Ix∈Ω2
| ≤ σ(Cq)

qt−q. (81)

Plugging (80) and (81) into (79), we have

III ≤ RC
q
2
q λ

−α−s
2 t−

q
2 + σ(Cq)

qλ−α
2 t−q. (82)

Comparing (82) with C3
λ−α−s

2√
n

and C1
λ−α

2

n in (69). We know that if t ≥ n
1
q , (79) ≤ C λ

− 1
2β√
n

= Cn− 1
2

sβ
sβ+1 . So the third

term will not give further restriction of t.
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To sum up, if we choose t such that restrictions (75) and (78) are satisfied, then we can prove that (65) is satisfied with
probability at least 1− δ − τn, (τn → 0). Since for a fixed δ ∈ (0, 1), when n is sufficiently large, τn is sufficiently small
such that, e.g., τn < δ

10 . Without loss of generality, we say (65) is satisfied with probability at least 1− δ.

Note that, such t exists if
1

q
<

1

2
(1 +

1− αβ

sβ + 1
) ⇐⇒ q >

2(sβ + 1)

2 + (s− α)β
. (83)

Recalling that for (68), we only assume there exists α satisfying α0 < α < s+ 1
β , so such t exists if and only if

1

q
<

1

2
(1 +

1− α0β

sβ + 1
) ⇐⇒ q >

2(sβ + 1)

2 + (s− α0)β
. (84)

which is what we assume in the theorem.

Proposition D.5. Suppose that the embedding index is α0. Then for any α > α0 and all δ ∈ (0, 1), with probability at least
1− δ, we have

∥T− 1
2

λ (T − TX)T
− 1

2

λ ∥ ≤ 4M2
αλ

−α

3n
B +

√
2M2

αλ
−α

n
B, (85)

where

B = ln
4N (λ)(∥T∥+ λ)

δ∥T∥
. (86)

Proof. Denote Ai = T
− 1

2

λ (T − Txi
)T

− 1
2

λ , using Lemma E.2 we have

∥Ai∥ = ∥T− 1
2

λ TT
− 1

2

λ ∥+ ∥T− 1
2

λ Txi
T

− 1
2

λ ∥ ≤ 2M2
αλ

−α. (87)

We use A ⪯ B to denote that A − B is a positive semi-definite operator. Using the fact that E(B − EB)2 ⪯ EB2 for a
self-adjoint operator B, we have

EA2
i ⪯ E

[
T

− 1
2

λ Txi
T

− 1
2

λ

]2
. (88)

In addition, Lemma E.2 shows that 0 ⪯ T
− 1

2

λ Txi
T

− 1
2

λ ⪯ M2
αλ

−α, µ-a.e. x ∈ X . So we have

EA2
i ⪯ E

[
T

− 1
2

λ TxiT
− 1

2

λ

]2
⪯ E

[
M2

αλ
−α · T− 1

2

λ TxiT
− 1

2

λ

]
= M2

αλ
−αT−1

λ T, (89)

Defining an operator V := M2
αλ

−αT−1
λ T , we have

∥V ∥ = M2
αλ

−α λ1

λ1 + λ
= M2

αλ
−α ∥T∥

∥T∥+ λ
≤ M2

αλ
−α;

trV = M2
αλ

−αN (λ);

trV
∥V ∥

=
N (λ)(∥T∥+ λ)

∥T∥
. (90)

Using Lemma E.3 to Ai, V , we finish the proof.

E. Auxiliary lemma
E.1. Lemmas for upper bound

The following lemma is where we take advantage of the embedding index and embedding property in Assumption 2.2.

Lemma E.1. Suppose that the embedding index is α0. Then for any α > α0, for µ-almost x ∈ X , we have

∥T− 1
2

λ k(x, ·)∥2H ≤ M2
αλ

−α. (91)
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Proof. Recalling that ∥[H]α ↪→ L∞(X )∥ = Mα, we have

∥T− 1
2

λ k(x, ·)∥2H =
∥∥∥∑

i∈N

(
1

λi + λ
)

1
2λiei(x)ei(·)

∥∥∥2
H

=
∑
i∈N

λi

λi + λ
e2i (x)

=
[∑
i∈N

λα
i e

2
i (x)

]
sup
i∈N

λ1−α
i

λi + λ

≤ M2
αλ

−α, (92)

where we use Lemma A.1 for the last inequality, and we finish the proof.

Lemma E.1 has a direct corollary.

Corollary E.2. Suppose that the embedding index is α0. Then for any α > α0, for µ-almost x ∈ X , we have

∥T− 1
2

λ TxT
− 1

2

λ ∥ ≤ M2
αλ

−α. (93)

Proof. Note that for any f ∈ H,

T
− 1

2

λ TxT
− 1

2

λ f = T
− 1

2

λ KxK
∗
xT

− 1
2

λ f

= T
− 1

2

λ Kx⟨k(x, ·), T
− 1

2

λ f⟩H

= T
− 1

2

λ Kx⟨T
− 1

2

λ k(x, ·), f⟩H

= ⟨T− 1
2

λ k(x, ·), f⟩H · T− 1
2

λ k(x, ·). (94)

So ∥T− 1
2

λ TxT
− 1

2

λ ∥ = sup
∥f∥H=1

∥T− 1
2

λ TxT
− 1

2

λ f∥H = sup
∥f∥H=1

⟨T− 1
2

λ k(x, ·), f⟩H · ∥T− 1
2

λ k(x, ·)∥H = ∥T− 1
2

λ k(x, ·)∥2H. Use

Lemma E.1 and we finish the proof.

The following concentration inequality about self-adjoint Hilbert-Schmidt operator valued random variables is frequently
used in related literature, e.g., Fischer & Steinwart (2020, Theorem 27) and Lin & Cevher (2020, Lemma 26).

Lemma E.3. Let (X ,B, µ) be a probability space, H be a separable Hilbert space. Suppose that A1, · · · , An are i.i.d.
random variables with values in the set of self-adjoint Hilbert-Schmidt operators. If EAi = 0, and the operator norm
∥Ai∥ ≤ L µ-a.e. x ∈ X , and there exists a self-adjoint positive semi-definite trace class operator V with EA2

i ⪯ V . Then
for δ ∈ (0, 1), with probability at least 1− δ, we have∥∥∥∥∥ 1n

n∑
i=1

Ai

∥∥∥∥∥ ≤ 2Lβ

3n
+

√
2∥V ∥β

n
, β = ln

4trV

δ∥V ∥
. (95)

The following Bernstein inequality about vector-valued random variables is frequently used, e.g., Caponnetto & de Vito
(2007, Proposition 2) and Fischer & Steinwart (2020, Theorem 26).

Lemma E.4 (Bernstein inequality). Let (Ω,B, P ) be a probability space, H be a separable Hilbert space, and ξ : Ω → H
be a random variable with

E∥ξ∥mH ≤ 1

2
m!σ2Lm−2,

for all m > 2. Then for δ ∈ (0, 1), ξi are i.i.d. random variables, with probability at least 1− δ, we have∥∥∥∥∥ 1n
n∑

i=1

ξi − Eξ

∥∥∥∥∥
H

≤ 4
√
2 ln

2

δ

(
L

n
+

σ√
n

)
. (96)
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Lemma E.5. If λi ≍ i−β , we have

N (λ) ≍ λ− 1
β . (97)

Proof. Since c i−β ≤ λi ≤ Ci−β , we have

N (λ) =

∞∑
i=1

λi

λi + λ
≤

∞∑
i=1

Ci−β

Ci−β + λ
=

∞∑
i=1

C

C + λiβ
(98)

≤
∫ ∞

0

C

λxβ + C
dx = λ− 1

β

∫ ∞

0

C

yβ + C
dy ≤ C1λ

− 1
β . (99)

for some constant C1. Similarly, we have
N (λ) ≥ C2λ

− 1
β , (100)

for some constant C2.

E.2. Lemmas for minimax lower bound

The following lemma is a standard approach to derive the minimax lower bound, which can be found in Tsybakov (2009,
Theorem 2.5).

Lemma E.6. Suppose that there is a non-parametric class of functions Θ and a (semi-)distance d(·, ·) on Θ. {Pθ, θ ∈ Θ} is
a family of probability distributions indexed by Θ. Assume that M ≥ 2 and suppose that Θ contains elements θ0, θ1, · · · , θM
such that,

(1) d (θj , θk) ≥ 2s > 0, ∀0 ≤ j < k ≤ M ;

(2) Pj ≪ P0, ∀j = 1, · · · ,M , and

1

M

M∑
j=1

K (Pj , P0) ≤ a logM, (101)

with 0 < a < 1/8 and Pj = Pθj , j = 0, 1, · · · ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2a−

√
2a

logM

)
. (102)

Lemma E.7. Suppose that µ is a distribution on X and fi ∈ L2(X , µ). Suppose that

y = fi(x) + ϵ, i = 1, 2, (103)

where ϵ ∼ N (0, σ2) are independent Gaussian random error. Denote the two corresponding distributions on X × Y as
ρi, i = 1, 2. The KL divergence of two probability distributions on Ω is

K (P1, P2) :=

∫
Ω

log

(
dP1

dP2

)
dP1, (104)

if P1 ≪ P2 and otherwise K (P1, P2) := ∞. Then we have

KL (ρn1 , ρ
n
2 ) = nKL (ρ1, ρ2) =

n

2σ2
∥f1 − f2∥2L2(X ,dµ) , (105)

where ρni denotes the independent product of n distributions ρi, i = 1, 2.

Proof. The lemma directly follows from the definition of KL divergence and the fact that

KL
(
N
(
f1(x), σ

2
)
, N
(
f2(x), σ

2
))

=
1

2σ2
|f1(x)− f2(x)|2 . (106)
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The following lemma is a result from Tsybakov (2009, Lemma 2.9)

Lemma E.8. Denote Ω = {ω = (ω1, · · · , ωm) , ωi ∈ {0, 1}} = {0, 1}m. Let m ≥ 8, there exists a subset{
ω(0), · · · , ω(M)

}
of Ω such that ω(0) = (0, · · · , 0),

dHam

(
ω(i), ω(j)

)
:=

m∑
k=1

∣∣∣ω(i)
k − ω

(j)
k

∣∣∣ ≥ m

8
, ∀0 ≤ i < j ≤ M, (107)

and M ≥ 2m/8.

F. Details of experiments
F.1. Experiments in Sobolev RKHS

First, we prove that the series in (14) converges and f∗(x) is continuous on (0, 1) for 0 < s < 1
β = 0.5.

We begin with the computation of the sum of first N terms of {sin 2kπx+ cos 2kπx}, note that

− 2 sin(πx) (sin (2πx) + sin (4πx) + · · ·+ sin (2Nπx))

= [cos (2π + π)x− cos (2π − π)x] + [cos (4π + π)x− cos (4π − π)x]

+ · · ·+ [cos (2Nπ + π)x− cos (2Nπ − π)x]

= cos (2Nπ + π)x− cosπx. (108)

So we have

|(sin (2πx) + sin (4πx) + · · ·+ sin (2Nπx))| = |cos (2Nπ + π)x− cosπx|
|2 sin(πx)|

; (109)

Similarly, we have

|(cos (2πx) + cos (4πx) + · · ·+ cos (2Nπx))| = |sin (2Nπ + π)x− sinπx|
|2 sin(πx)|

. (110)

Note that (109) and (110) are uniformly bounded in [δ0, 1− δ0] for any δ0 > 0 and N . In addition, {k−(s+0.5)} is monotone
and decreases to zero. Use the Dirichlet criterion and we know that the series in (14) is uniformly convergence in [δ0, 1− δ0].
Due to the arbitrariness of δ0, we know that the series converges and f∗(x) is continuous on (0, 1).

In Figure 3 (a), we present the results of different choices of c for λ = cn− β
sβ+1 in the experiment of Section 4.2. Figure 2

corresponds to the curve c = 0.1 in Figure 3 (a), which has the smallest generalization error. In Figure 3 (b), we use 5-fold
cross validation to choose the regularization parameter in KRR and present the logarithmic errors and sample sizes. Again,
we use logarithmic least-squares to compute the convergence rate r, which is still approximately equal to n− sβ

sβ+1 = n− 4
9 .

F.2. Experiments in general RKHS

First, we prove that the series in (15) converges and f∗(x) is continuous on (0, 1) for 0 < s < 1
β = 0.5.

We begin with the computation of the sum of first N terms of e2k−1(x),

− 2 sin(πx)

(
sin
(πx

2

)
+ sin

(
5πx

2

)
+ · · ·+ sin

(
(4N − 3)πx

2

))
=
[
cos
(
π +

π

2

)
x− cos

(
π − π

2

)
x
]
+

[
cos

(
5π

2
+ π

)
x− cos

(
5π

2
− π

)
x

]
+ · · ·+

[
cos

(
(4N − 3)π

2
+ π

)
x− cos

(
(4N − 3)π

2
− π

)
x

]
= cos

(
(4N − 1)π

2

)
x− cos

π

2
x. (111)
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Figure 3. Error decay curves of Sobolev RKHS. Both axes are logarithmic. (a) The curves show the average generalization errors of
different c over 50 trials; and the regions within one standard deviation are shown in the corresponding colors. (b) The scatters show the
average generalization errors obtained by 5-fold cross validation over 50 trials. In both (a) and (b), the dashed black lines are computed
using logarithmic least-squares, and the slopes represent the convergence rates r.

So we have ∣∣∣∣sin(πx2 )+ sin

(
5πx

2

)
+ · · ·+ sin

(
(4N − 3)πx

2

)∣∣∣∣ =
∣∣∣cos( (4N−1)π

2

)
x− cos π

2x
∣∣∣

|2 sin(πx)|
, (112)

which is uniformly bounded in [δ0, 1− δ0] for any δ0 > 0 and N .

Note that {k−(s+0.5)} is monotone and decreases to zero. Use the Dirichlet criterion and we know that the series in (15)
is uniformly convergence in [δ0, 1 − δ0]. Due to the arbitrariness of δ0, we know that the series converges and f∗(x) is
continuous on (0, 1).

In Figure 4 (a), we present the results of different choices of c for λ = cn− β
sβ+1 in the experiment of Section 4.2. Figure 2

corresponds to the curve c = 1.0 in Figure 4 (a), which has the smallest generalization error. In Figure 4 (b), we use 5-fold
cross validation to choose the regularization parameter in KRR and present the logarithmic errors and sample sizes. Again,
we use logarithmic least-squares to compute the convergence rate r, which is still approximately equal to n− sβ

sβ+1 = n− 4
9 .
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Figure 4. Error decay curves of general RKHS.
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