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Abstract: Legged locomotion is commonly studied and expressed as a discrete
set of gait patterns, like walk, trot, gallop, which are usually treated as given
and pre-programmed in legged robots for efficient locomotion at different speeds.
However, fixing a set of pre-programmed gaits limits the generality of locomotion.
Recent animal motor studies show that these conventional gaits are only prevalent
in ideal flat terrain conditions while real-world locomotion is unstructured and
more like bouts of intermittent steps. What principles could lead to both structured
and unstructured patterns across mammals and how to synthesize them in robots?
In this work, we take an analysis-by-synthesis approach and learn to move by
minimizing mechanical energy. We demonstrate that learning to minimize energy
consumption plays a key role in the emergence of natural locomotion gaits at
different speeds in real quadruped robots. The emergent gaits are structured in ideal
terrains and look similar to that of horses and sheep. The same approach leads to
unstructured gaits in rough terrains which is consistent with the findings in animal
motor control. We validate our hypothesis in both simulation and real hardware
across natural terrains. Videos at https://energy-locomotion.github.io.
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1 Introduction

A common approach to understanding mammalian locomotion is to study it in terms of a set of discrete
gaits. Seminal works include Muybridge [1]’s motion video of a galloping horse and Hildebrand
[2]’s study of different gaits observed at different speeds. This has inspired research on replicating
these gaits in robots by pre-programming them to achieve effective locomotion. This approach of
pre-programming fixed gait patterns has lead to immense progress in robotic locomotion [3, 4, 5, 6].

However, pre-programmed gaits limit the ability of legged systems to perform general locomotion in
diverse terrains and at different speeds. Studies of motor control in both animals and human infants
[7] in the last few decades have shown that general locomotion in natural settings is irregular and does
not fit predefined fixed gaits. It is better defined in terms of bouts of steps than periodic cycles [8, 9].
That being said, we do see consistent regular patterns in ideal conditions when an animal is moving
in a straight line over flat terrain at different speeds, e.g., walk, trot, canter, gallop, etc. [2, 10, 11, 12]
and these patterns are shared across species of diverse animals [13]. How do we reconcile these
seemingly contradictory arguments about unstructured locomotion patterns on complex terrains with
that of regular patterns seen in flat terrains under the same rubric?

One way to make sense of these differences is to see them from the lens of minimizing energy
consumption. Locomotion consumes a significant fraction of an animal’s metabolic energy budget
which suggests that there would be evolutionary selection pressure for locomotion strategies that
minimize energy consumption. Indeed, this has been a focus of several studies in biomechanics and
energetics. Hoyt and Taylor [12] used energy minimization to explain why animals switch from
one gait to another as their speed increases. Similar studies explain gaits across different animals
including humans [14, 15]. However, most of the biomechanics studies are limited to the straight-line
motion of animals in ideal flat terrains. Furthermore, these studies take gaits as given and offer
simplified analytical models to explain them from an energy perspective without any statement about
their synthesis on relatively complex real robot systems.
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Figure 1: We demonstrate via analysis-by-synthesis approach that learning to move forward by minimizing
energy consumption plays a key role in the emergence of natural locomotion patterns in quadruped robots. We
do not pre-program any primitives for leg motions and the policy directly output desired joint angles. Top:
Bio-energetics driven learning on flat terrain leads to different gaits namely walk, trot and bounce (similar to
gallop) as the speed increases. Our high-speed bounce gait displays an emergent flight phase despite low energy
usage. This corresponds to the nearest animals (sheep/horse) with similar Froude numbers. Bottom: The same
pipeline on diverse uneven terrains leads to unstructured gait as is true in general animal locomotion. Please see
videos on the website.

In this work, we take an analysis-by-synthesis approach to show how energy minimization leads to
the emergence of structured locomotion gait patterns in flat terrains as well as unstructured gaits in
complex terrains. We use energetics to design an end-to-end learning framework and display the
resulting gait patterns in a real quadruped robot. We employ model-free reinforcement learning
as the optimizer to learn controllers to make the quadruped move forward while simultaneously
minimizing the bio-energetics constraints of minimizing work [16]. We train our policies on simple
fractal terrains with varying frequency of terrain heights instead of perfectly flat terrain. This mimics
the real world more closely and achieves efficient and robust gaits without the need for artificial
rewards for foot clearance or periodic external push during training. Low frequency fractal terrains
resemble the simple flat terrain settings and high frequency simulates complex terrains. In addition,
we present a learning pipeline that enables smooth gait transitions given changing target speeds by
combining RL rewards and distillation losses from trained expert gait policies. We then transfer the
policies onto the real robot using online adaptation at test time [17].

We further analyze our emergent walking behaviors by comparing them to biological quadrupeds.
Our quadruped robot is closest to sheep and horse in terms of physicality as determined by the
Froude number [18] which is a scalar metric characterizing gaits of quadrupeds (discussed more in
Section 4.2). Therefore, energetics-based training leads to similar three gaits in our robot as found in
horses and sheep, namely, walk, trot and gallop as the speed is gradually increased in flat terrains
Figure 1. Interestingly, we show that the gait selection is inherently linked with the speed of the robot.
For instance, trotting is only energy efficient around the medium speed of 0.9m/s. If we increase or
decrease the speed of the robot, it takes more energy for trot than to gallop (similar to bouncing gait)
or walk as shown in Figure 2. Finally, when the same pipeline is run in uneven complex terrains, it
leads to unstructured gaits as consistent with animal locomotion in usual diverse conditions [9, 8].

Prior works have used energy penalty to obtain energy-efficient gaits [19, 20] but have not shown
the correspondence to different gaits at different speeds. Furthermore, out of these works, the ones
which deploy these gaits on a real robot either use a predefined hand-coded gait library, use reference
motions [19], or only learn high-level contact sequences for a predefined swing leg motion [21].
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These approaches have some fundamental limitations in contrast to what we propose. Firstly, the
use of predefined foot motions never optimize for efficient swing leg motions, and using reference
trajectories gives gaits that look realistic, but are not necessarily energy-efficient for the specific robot
we have. Second, learning controllers end to end without the use of any priors (reference motions or
predefined motions) allows for the possibility of learning behaviors that don’t follow any predefined
gaits. We show the robustness of this complex terrain policy by successfully deploying it in complex
terrains in the real world.

The main contributions of this paper include:

» Show that minimizing energy consumption plays a key role in the emergence of natural loco-
motion patterns in both flat as well as complex terrains at different speeds without relying on
demonstrations or predefined motion heuristics.

* Show that the emergent gaits at different target speeds correspond to conventional animals in the
similar Froude number range (sheep/horse) without any sort of pre-programming.

* Present a distillation-based learning pipeline to obtain velocity-conditioned policy that displays
smooth gait transition as the target speed is changed.

* Demonstrate the emergent behaviors, robustness analysis, and gait patterns in simulation as well
as a real-world budget quadruped robot.

2 Method

2.1 Claim: Energy Minimization leads to Emergence of Natural Gaits

We would like to validate that indeed certain ® MPC walk
gaits will emerge at certain speeds if we min- 1401 @ MPC trot
imize the energy consumption. To do so, on X \® MPCbounce
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m/s, 1.5 m/s). This plot shows two things. First, 20

it is observed that certain gaits are only efficient . E

at certain speeds and using them for other speeds 0025 050 075 100 125 150 175 2.00
is suboptimal. For instance, walk is optimal at Speed (m/s)

low speeds with transition to trot and bounce. Figure 2: Energy consumed in moving Im distance
Secondly, we observe that our learning frame- using our method and MPC shows why certain gaits are
work converges to the optimal gait at each of the stable at certain speeds. Videos on the website.
speeds, and beats the efficiency of MPC gaits

from [6], which does not optimize the swing foot trajectory for energy. Details of MPC method are in
the supplementary.

2.2 Learning Locomotion Policy

We learn the locomotion policy 7 which takes as input the current state z; € R3C, previous action
as—1 € R'? to predict the next action a; (Equation 1). The predicted action a; is the desired joint
position for the 12 robot joints which is converted to torque using a PD controller.

ay = (T, a—1) (D)

We implement 7 as MLPs (details in Section 3) and train the base policy 7 end to end using model-free
reinforcement learning. At time step ¢, 7 takes the current state x,, previous action a;_; to predict an
action a;. RL maximizes the following expected return of the policy 7:

T-1
J(?T) = E‘rwp(rhr) [ Z 'ytrt‘| ’ (2)

t=0
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Figure 3: Complex real-world behaviors at the low speed in 2 settings. Top: key frames on rocky terrain.
Bottom: Foot contact plots and key frames on unstable moving planks. Videos on the website.

where 7 = {(x9, ag, r0), (x1,a1,71)...} is the trajectory of the agent when executing policy 7, and
p(7|) represents the likelihood of the trajectory under .

2.3 Stable Gait through Natural Constraints

We train our agent with the following natural constraints. First, the reward function is motivated from
bio-energetic constraints of minimizing work [16]. We found these reward functions to be critical for
learning realistic gaits in simulation. Second, we train our policies on uneven terrain (Figure 1) as a
substitute for additional rewards used by [22] for foot clearance and robustness to external push. We
see that these constraints are enough to achieve all the gaits and results we demonstrate in this paper.

2.4 Energy Consumption-Based Reward

Let’s denote the linear velocity as v and the angular velocity as w, both in the robot’s base frame. We
additionally define joint torques as T and joint angles as g and joint velocities as g. We define our
reward as sum of the following three terms:

T = Tforward T Q1 * Tenergy 1 Talive 3)

t t 2 2
where, Tforward = —Q2 * |Um - ,Umarge | - |Uy| - |Wyaw‘ (4)
Tenergy — 7TTqa (5)

Tforward TeWards the agent for walking straight at the specified speed, Tenergy penalizes energy
consumption and 7,jive 1S the survival bonus.

We use simple rules to set the hyper-parameters. At a given target linear speed v!2"8°t, the survival
bonus c is set to 20 x vt We set oy = 0.04, and ap = 20 across all settings.

We estimate the unit energy consumption per time step by summing the instantaneous power of the
12 motors by multiplying the torque and the joint velocity at each motor. Also notice that this reward
is much more concise than those used in prior works. We discuss the role of minimizing energy
consumption in Section 4.4.

2.5 Sim to Real Transfer

For simulation to real transfer, we use RMA [17] which consists of the an adaptation module on top
of the base policy. During deployment, the adaptation module uses the state history to estimate the
vector of extrinsics (which contains environment information) online. Once the base policy is learned
using RL, this adaptation module can be trained in simulation itself using supervised learning with
the true extrinsics parameters as supervision. The environment perturbations we train on is listed in
Table 1.

3 Experimental Setup and Training Details

Hardware and Simulation: We use Unitree’s Al robot as our hardware platform [23] and use its
A1 URDF [23] to simulate the A1 robot in RaiSim simulator [24]. The full details of terrain and
environment setup are provided in supplementary due to space constraints.
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0.00 025 050 075 100 125 150 175 200
time (s)
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Figure 4: Foot contact plots for walking, trotting and bouncing gait of A1 robot in the real world. Bold color
means the corresponding foot is in contact with the ground and the light color means the foot is in the air. (RF:
Right-Front foot, LF: Left-Front foot, RR: Right-Rear foot, LR: Left-Rear foot)

State-Action Space:

The state is 30 dimensional containing the joint positions (12 values), joint

velocities (12 values), roll and pitch of the torso and binary foot contact indicators (4 values). The
action space is 12 dimensional corresponding to the target joint position for the 12 robot joints. The
predicted target joint angles a = ¢ € R'? is converted to torques T using a PD controller with target

joint velocities set to 0.

Environmental Variations:

the unstructured walking terrain.

Policy Learning: The policy is a multi-layer perceptron
with 3 layers which takes in the current state z; € R30,
previous action a;_; € R'2 and outputs 12-dim target
joint angles. The hidden layers have 128 units. We train

All environmental varia-
tions with their ranges are listed in Table 1. Policies with
simple terrain and mild environment variations achieve
walking, trotting and bouncing gaits. To deploy our robot
in the complex terrain, we use aggressive environment
randomization with sharper fractal terrains which gives us

Parameters Normal Aggressive
Perturbation Perturbation
Friction Coeff. [0.6, 1.2] [0.05, 4.5]
K, [50, 60] [50, 60]
Kq [0.4,0.8] [0.4,0.8]
Payload (kg) [0.0, 0.5] [0.0, 6.0]
Center of Mass (m)  [-0.15, 0.15] [-0.15, 0.15]
Motor Strength [0.95, 1.05] [0.90, 1.10]
Re-sample Prob. 0.02 0.02

Table 1: Ranges of the environment parame-
ters in simulation. Normal perturbation is
used for regular gait emergence. Aggres-
sive perturbation is used for unstructured gait
emergence.

the policy and the environment encoder network using
PPO [25]. The training runs for 15, 000 iterations with a batch size of 100, 000 split into 4 mini-
batches and learning rate = 5e—4. We train for a total of 1.5 billion samples which takes roughly 24

hours on a desktop machine with 1 GPU.

4 Results and Analysis

4.1 Emergence of Locomotion Patterns in Complex Terrain

We analyze the performance of Method | Walk (0.375 m/s) Trot (0.9 m/s) Bounce (1.5 m/s)

the walking policy on complex Speed (m/s) | Energy | Speed (m/s) | Energy | Speed (m/s) | Energy
L . Ours 0353 30.7 0.970 12 1.439 90.7

terrain with aggressive perturba- oo | 0350 87.0 0.953 772 1.482 93.9

tions in the real world (videos
on website). We show two un-
even terrain deployments of our
method in Figure 3. During the
deployment of the robot in the
rocky terrain, we see that the
robot roughly follows the walk-

Table 2: We show the actual speeds and energy consumed to move
one meter of the our method and convex MPC, which does not directly
optimize for energy efficiency, for walking gait at target speed 0.375
m/s, trotting gait at target speed 0.9 m/s, and bouncing gait at target
speed 1.5 m/s in simulation. Our method shows the advantages in energy
consumption in all gaits.

ing gait while stepping over rocks of different heights which prematurely terminate the swing motion
of the leg. Consequently, the gait we observe is an unstructured walking gait. We further analyse
this in another deployment on unstable planks which move as the robot tries to cross it (see video).
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Figure 5: Trotting with 1 kg payload (two bottles of 500 ml water are strapped onto the robot). The 1 kg
payload is out of the normal perturbation of environment parameters used in simulation training shown in Table
1. We show qualitative and gait patterns for other two gaits in the appendix. We find that the gait patters are
robust and remain the same even in the presence of disturbances.

The foot contact plot for this setup is not periodic and changes depending on the complexity of the
terrain. In the video, this can been seen when the front right foot of the robot steps on an unstable
plank which moves as a result, but to maintain stability, the robot violates the periodic gait notions
automatically.

4.2 Emergence of Walking, Trotting and Bouncing

Simulation Gaits: We train 3 separate policies for 3 target speeds - 0.375 m/s (low), 0.9 m/s
(median) and 1.5 m/s (high) in simulation. We use the same hyper-parameters across all target speeds.
We observe that the walking gait emerges at target speed 0.375 m/s, trotting emerges at 0.9 m/s and
hopping emerges at 1.5 m/s in simulation. Note that we use RMA [17] (Section 2.5) to transfer our
policies to the real world without any fine-tuning. We observe the same foot contact sequence in the
real world as in simulation. In Table 2, we compare the performance of our policies with MPC [6]
and observe that our walking gait can achieve accurate speed tracking while being 50% more energy
efficient than the MPC baseline.

Real-World Behaviors: At the low speed (0.375 m/s), the robot demonstrates a quarter-off walking
gait with the following foot contact sequence: Right-Front (RF), Left-Rear (LR), Left-Front (LF) and
Right-Rear (RR). At the median speed (0.9 m/s), two beat trot gait emerges where diagonal legs (RF
& LR or LF & RR) are synchronized and hit the ground at the same time. At the high speed (1.5
m/s), the policy converges to bouncing with approximately half the gait cycle as flight phase. Key
frames of the 3 gaits are shown in Supplementary and the foot contact plots in Figure 4. We use the
foot contact sensor reading from the A1 robot to generate these plots.

We also measured the actual speed of the robot in the real world by taking the average of 3 trials
per target speed. In each trial, we log the total distance divided by total time taken to traverse. The
average real-world speeds are 0.396 m/s at target speed 0.375 m/s, 0.914 m/s at target speed 0.9 m/s,
and 1.714 m/s at target speed 1.5 m/s. The average real-world speeds closely match the target speeds
in all settings. The standard deviation of speeds across 3 trials is negligible.

We test the robustness of the emergent gaits by adding a 1 Kg payload on the robot by strapping two
bottles with 500 ml water. In Figure 5, we show 4 key frames of trotting gait. Note that the 1 kg
payload is outside the range of training perturbations (Table 1), but our policies with the Sim-to-Real
Adaptation in Section 2.5 learn to compensate the increase in weight by implicitly predicting changes
in dynamics via latent extrinsics. We didn’t test bouncing with payload, because the extra 1 kg
prevents the human operator from swiftly preempting the robot at high speed by lifting.

Froude Number Analysis: In Gaits

Biomechanics, Froude number F (Froude #) Al  Sheep [10] Horses [12] Dogs [10]

is a scalar metric characterizing

gaits of quadrupeds and bipeds [18]. TWaltk 8(3??2 828 82? 8;8
2 : Iro . . . .

Concretely, I = v?/gh, where vis g 0 7 170 173

the linear speed, g is the gravitational

acceleration, and h is the height of the
hip joint from the ground. Existing
research shows that animals with a

Table 3: We compare the Froude numbers of our emergent gaits
with other quadruped animals at their gait transition boundaries.
Our policies are closest to sheep in all gaits and to horse in walking

similar morphology but with different gait. Bounce includes canter and gallop.

sizes tend to use the same gait when walking with equal Froude numbers [26, 10]. We calculate the
Froude numbers of our robot in the real world for the low, median and high speeds, and compare
them with the Froude numbers of quadrupeds in nature — dogs, horses and sheep [12, 10]. We
compare the Froude number of animals at the gait transition boundaries and observe that our robot is
closest to the sheep in Table 3.
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Flgure 7: Energy consumptlon plot during training. Even though our reward function does not include the
hand-designed locomotion penalties that are commonly used in prior works (torque, delta torque, foot slip, joint
speed, and action), we show that all these penalties are minimized in our training framework as a byproduct of
minimizing energy consumption.

4.3 Gait Transition via a Velocity-Conditioned Policy

We have shown walking, trotting and bouncing emerged at three different target speeds. To demon-
strate foot patterns at a continuous range of velocities, we propose a learning scheme (Figure 6) for a
velocity-conditioned policy that enables smooth gait transition when the command velocity changes.

Naive Multi-Task Training Fails: We first tried the naive approach to train the velocity-
conditioned policy in a multi-task fashion by randomly sampling desired velocities and using the
corresponding velocity-conditioned reward (Section 2.4). However, this did not work and the resulting
emerged gaits collapse to only two modes: walking and trotting, but trotting at high speeds is not
energy-efficient (Figure 2). We believe the reason for failure is difficulty in optimization as the robot
is now tasked not only to learn to move forward but also do it by learning different gaits which causes
it to collapse.

Learning via Distillation and RL: We sidestep this issue via stage-wise distillation approach. We
first train our fixed-velocity policies as described in the paper which lead to walking, trottmg and
bouncing (galloping) gaits. We \

then treat these policies as ex- —
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as input. Expert supervisions Figure 6: Learnmg scheme for smooth gait transition. Trainable modules
along with the RL rewards guide 2 in red. The path indicates forward and backward passes for the
L2 loss on action, whereas the path is for training by RL.

T

the velocity-conditioned policy
to follow the energy-efficient gaits at the three expert velocities. To learn motor skills and smooth gait
transition at intermediate velocities in the continuous range of 0.375 m/s to 1.5 m/s, the learning relies
on the velocity-conditioned RL rewards only without expert supervision. To represent a randomly
sampled target velocity to feed into the policy, we use an interpolated vector based on the closest
two experts’ one-hot velocity representations (e.g. 1.2 m/s is represented as [0, 0.5, 0.5] and 0.5 m/s
as [0.238, 0.762, 0]). We linearly anneal the L2 supervision loss from the expert supervision (for
the three velocity modes) as the training progresses. Towards the end, the learning relies only on the
velocity-conditioned RL loss for the entire velocity range. Details are in the supplementary.

Real-World Smooth Gait Transition: We test our velocity-conditioned policy in the wild and want
to highlight the smooth gait transition happening at different speeds. Video is in the supplementary.

4.4 Ablation Studies

The two key components we use during policy training to get reliable walking gaits is an energy
based reward function, and a fractal terrain. We posit that these ingredients are minimal, and we
demonstrate this by ablating each of them below.

Minimizing Energy Consumption Also Minimizes Artificial Penalties: To demonstrate the suf-
ficiency of minimizing energy consumption, we plot the decreasing trend of the artificial penalties
during training in Figure 7, even though these artificial penalties are not included in our reward
function. These include Torque penalty, delta torque penalty, foot slip penalty, joint speed penalty, and
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Figure 8: Resulting gait plots of policies without minimizing energy consumption. All policies exhibit a
high-frequency tapping behavior that is not energy-efficient and not transferable to robots in the real world. In
(c), the robot in simulation falls off the terrain after 4 seconds.

the action regularization [21, 27, 22, 28, 29]. A high positive correlation between energy consumption
and artificial penalties can be observed. All these artificial penalties are minimized in our training
framework as a byproduct of minimizing energy consumption. During training, the robot first learns
to stand still with a minimal energy consumption (around epoch 500), and then starts moving forward
with a slightly higher energy consumption.

Minimizing Energy Consumption: In Figure 8, we show the the resulting gaits of policies trained
without the unit energy consumption term in the reward function. All policies show high-frequency
tapping behaviors that are not natural and inefficient. The high-frequency joint movements can burn
the joint motors in the robot and are not transferable to the real hardware.

Fractal Terrain during Training: We train the policies with energy minimization (Section 2.4)
but on a flat terrain without fractal perturbations (Section 2.3). All training trials converge to unnatural
and unstable gaits. We found that adding fractal terrain also facilitates a larger foot clearance and
robustness which improves real-world hardware deployment. We show the key frames of 2 example
unnatural gaits in the supplementary.

5 Related Works

Model-Based Optimization for Gaits: Model-based controllers to generate gaits [6] optimize for
the stance legs for a given foot contact sequence. They use predefined swing leg motion and show
stable gait generation on a real robot system. One class of method is contact-implicit optimization [30,
31, 32], optimizing contact forces along with sequences. However, these gaits do not emerge as an
energy-minimizing solution to moving at different speeds. [33] analyzes biped gaits by optimizing
energy consumption, but uses a minimal mechanical model assuming point-mass body and massless
legs. In contrast, our swing leg motion, stance leg force and contact sequence, all emerge from
minimizing energy consumption of moving of a real robot. We take a functional approach to gaits
where we achieve them not as predefined movements, but as a consequence of energy minimization.

Learning for Legged Locomotion and Gaits: Data-driven learning for legged locomotion has
shown robust controllers for quadrupedal robots [22, 34, 35, 36, 37, 38]. Of these, [34, 22] focus on
a controller on complex terrains but do not synthesize and analyze leg patterns of the robot across
diverse gaits at different target speeds. [35] demonstrates a learning method to select gait controllers,
but the low-level gait controllers are predefined primitives. Concurrent work [21] shows the learned
gaits and gait transition, but their method relies on many human priors (e.g. predefined cyclic motion
priors), shows trotting at high speed with short periods of flight phase, and requires powerful on-board
computation power (Apple M1 chip) to solve online MPC optimization. In graphics, [39] shows low
energy also plays a role in generating natural locomotion animations.

6 Conclusion

This work demonstrates that energy consumption plays a key role in the emergence of natural
locomotion patterns in animals by following an analysis-by-synthesis approach of showing the result
in real quadruped robots. The allows generation of the straight line lab gaits, as well as unstructured
complex terrain gaits in animals. We perform thorough analysis of gait patterns, show their robustness
under disturbances, and propose a learning pipeline for smooth gait transition . Interestingly, the gaits
obtained by our robot are most similar to those in horses and sheep — the animals which are close to it
in terms of the Froude number metric space.
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