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Abstract

Uncertainty quantification is crucial for the safe deployment of Al systems in clinical
radiology. We analyze the calibration of CheXzero (Tiu et al., 2022), a high-performance
self-supervised model for chest X-ray pathology detection, on two external datasets and
evaluate the effectiveness of two common uncertainty estimation methods: Maximum Soft-
max Probabilities (MSP) and Monte Carlo Dropout. Our analysis reveals poor calibration
on both external datasets, with Expected Calibration Error (ECE) scores ranging from
0.12 to 0.41. Furthermore, we find that the model’s prediction accuracy does not correlate
with the uncertainty scores derived from MSP and Monte Carlo Dropout. These find-
ings highlight the need for more robust uncertainty quantification methods to ensure the
trustworthiness of Al-assisted clinical decision-making. !
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1. Introduction

Deep learning has revolutionized automated medical image analysis (Han et al., 2023; Ra-
jpurkar and Lungren, 2023). However, safely integrating these Al systems into clinical ra-
diology practice requires understanding their level of uncertainty when making predictions.
Prior works have explored uncertainty estimation methods for clinical Al applications, in-
cluding ensemble methods (Guo et al., 2022), Bayesian methods like Monte Carlo Dropout
(Dohopolski et al., 2020), Dempster-Shafer Theory (Ghesu et al., 2021), and test-time aug-
mentation (Dong et al., 2021).

Self-supervised learning enables models to learn from vast amounts of unlabeled data,
which is critical for medical image interpretation. CheXzero, a state-of-the-art self-supervised
method based on the Contrastive Language-Image Pre-Training (CLIP) model (Radford
et al., 2021), achieves X-ray pathology classification accuracies comparable to radiologists
(Tiu et al., 2022) on external datasets. While prior works have investigated the robust-
ness of CLIP models on natural image classification tasks (Tu et al., 2024), studies have not
evaluated the uncertainty estimation of CLIP-derived models for medical image assessment.

In this work, we focus on evaluating the calibration of CheXzero and assessing the appli-
cation of two uncertainty quantification methods: maximum softmax probability (MSP) and
Monte Carlo Dropout. Our findings reveal that CheXzero exhibits poor calibration when
deployed on two external datasets. Furthermore, our preliminary analysis shows that the
model’s prediction accuracy does not directly correlate with the uncertainty scores derived
from MSP or Monte Carlo Dropout. These results emphasize the importance of thoroughly
evaluating model trustworthiness before deploying healthcare Al solutions and highlight the
need for further research to ensure the safe assessment of model uncertainty.

1. Source code is available at https://github.com/jennyziyi-xu/CheXzero-Uncertainty-Estimation
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2. Methods

CheXzero Model CheXzero (Tiu et al., 2022) is a self-supervised multi-label classification
model for detecting pathologies in chest X-rays. In our experiments, we use the ensemble
of top-performing checkpoints provided by (Tiu et al., 2022) without fine-tuning on the
test datasets. CheXzero is based on the Contrastive Language-Image Pre-Training (CLIP)
architecture. During inference, the model receives positive and negative prompts for each
disease condition in order to output the softmax probabilities for the presence or absence
of a condition.

Datasets We evaluate CheXzero on two datasets. We focus on five CheXpert competition
pathologies: pleural effusion, atelectasis, cardiomegaly, consolidation, and edema.

e CheXpert: The entire CheXpert test set, consisting of 500 chest X-ray images labeled
for the presence of 14 different conditions.

e PadChest: A dataset containing 160,868 chest X-ray images labeled with 174 different
radiographic findings. We use a randomly sampled subset of 2,985 images in our
experiments.

Model Calibration Assessment We assess model calibration using two methods:

e Expected Calibration Error (ECE): We use the softmax probability as the confidence
score. ECE = Zn]‘le ‘i—ml\acc(Bm) —conf(By,)| measures the difference between the
model’s predicted probabilities and the observed probabilities (Naeini et al., 2015),
where conf(By,) is the average confidence of bin By, and acc(By,) is the accuracy.

e Median Removal: We sort the softmax probabilities p; for the presence of each condi-
tion and iteratively remove 0-50% of samples with median probabilities while comput-
ing the AUROC score. If the model is well-calibrated, a higher softmax probability
indicates higher certainty about the presence of a condition, while a lower probability
indicates higher certainty about its absence.

Uncertainty Estimation We evaluate two uncertainty estimation methods:

e Maximum Softmax Probability (MSP): For each X-ray image, we define the certainty
score as § = max; p;, where p; is the softmax probability for the presence of condition
1. We calculate the AUROC score after removing 0-50% of samples with the lowest
certainty scores.

e Monte Carlo Dropout (Gal and Ghahramani, 2016): Using the pre-trained CheXzero
model, we randomly prune 15% of the output weights in all Multihead Attention layers
and obtain predictions for all diseases. This process is repeated 30 times. For each
condition and sample, we compute the standard deviation of the 30 p; values as the
uncertainty score, where p; is the softmax probability for the presence of a condition.
The uncertainty scores are sorted and we iteratively remove 0-50% of samples with
the highest uncertainty scores.

3. Results

Model Calibration Assessment
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Figure 1: A comparison of Median Removal (blue), MSP (red) and Monte Carlo Dropout
(green) on CheXpert and PadChest. Blue curve overlapping red curve for Edema.

AUC

e The ECE scores range from 0.12 to 0.35 on the CheXpert dataset and from 0.37 to
0.41 on the PadChest dataset for the five conditions. A well-calibrated model should
have an ECE score close to 0.

e Median Removal: The plot of the percentage of removed samples against AUC should
show an increasing trend for a well-calibrated model. On the CheXpert dataset,
atelectasis and cardiomegaly show an increasing trend. None of the conditions show
a clear increasing trend on the PadChest dataset (Fig.1). These findings suggest the
model isn’t well-calibrated on the external datasets. Fig. 1 shows that median removal
outperforms both MSP and MCD uncertainty estimation methods.

Uncertainty Estimation

e MSP: As shown by the red curves in Fig. 1, AUC decreases across all five conditions
when we filter out samples with low MSP scores, suggesting a prediction with high
softmax probability does not necessarily correspond to low uncertainty.

e Monte Carlo Dropout: As shown by the green curve, AUC decreases when we filter out
samples with high uncertainty scores derived from MCD’s standard deviation. This
indicates that MCD might not be a reliable uncertainty estimation measure here.

e The decreasing trends can be explained by the effect of filtering out true positives or
true negatives from an original model with high AUC.

4. Conclusion

Our findings underscore the need to explore novel calibration and uncertainty estimation
approaches, as well as establishing standardized evaluation frameworks for self-supervised
medical image classification models.
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