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ABSTRACT

Out-of-Distribution (OOD) generalization is a central challenge in machine learn-
ing. Models often fail on unseen data, not because of an inability to learn robust
signals, but because they preferentially learn spurious, dataset-specific correla-
tions that are highly predictive for in-distribution examples. Existing solutions
typically focus on searching for invariant features, yet often overlook a more fun-
damental question: what properties of the training data cause models to learn
these non-invariant “shortcut” features in the first place? In this work, we
present a different perspective on OOD generalization. We argue that failures to
generalize are a direct consequence of models learning the strongest features in the
training data, which are often spurious. Guided by this, we reframe OOD general-
ization not as a search for invariance, but as the problem of identifying and mitigat-
ing the influence of these overly dominant features. Under this new perspective,
we develop a novel primitive for quantifying feature strength across a training
set. This primitive gives rise to a targeted regularization algorithm that weakens a
model’s reliance on the identified strongest features, thereby compelling it to learn
more robust and causally stable signals. Our method demonstrates substantial im-
provements in generalization across a wide range of OOD benchmarks, improving
OOD accuracy by up to 2× over standard training and significantly outperforming
existing baselines without compromising in-distribution performance.

1 INTRODUCTION

In-Distribution Training
Learning the Strongest Feature

Label Water Bird Land Bird

Feature Water Sand Leg Neck

Strong
Signal

Weak
Signal

Out-of-Distribution Test
Failure Case

PREDICTION:
Landbird!

Figure 1: Illustration of spurious feature reliance:
models trained with ERM often latch onto the statisti-
cally strongest signals (e.g., background water or sand)
rather than robust causal features, leading to misclassi-
fication under distribution shift.

A central goal of machine learning is to build
models that generalize beyond their training
data. Yet, the standard paradigm of minimizing
empirical risk often fails precisely at this task,
especially when faced with Out-of-Distribution
(OOD) data (Beery et al., 2018; Ben-David
et al., 2010; Bengio et al., 2019; DeGrave et al.,
2020; Moreno-Torres et al., 2012; Recht et al.,
2019; Taori et al., 2020). Models that achieve
high in-distribution accuracy frequently do so
by exploiting spurious correlations, i.e., “short-
cut” features (Geirhos et al., 2020; Pezeshki
et al., 2021) that are highly predictive within
the training set but fail to hold in new envi-
ronments. A model trained to classify cows,
for instance, might learn to recognize pastures
rather than the animal itself; a medical diagnos-
tic tool might rely on hospital-specific markings
instead of the underlying pathology. These failures are not exceptions, but a common consequence
of training powerful models on finite, biased datasets.

The prevailing perspective on mitigating such failures is to frame OOD generalization as a search
for invariance. This approach, rooted in principles of causality, seeks to identify and isolate features
whose predictive relationship with the label remains stable across different training environments.
This perspective is a natural one and has led to a host of methods, including invariant risk mini-
mization (Arjovsky et al., 2019; Ahuja et al., 2020; Koyama & Yamaguchi, 2020; Krueger et al.,
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2021; Robey et al., 2021; Zhang et al., 2021a) and distributional matching (Ganin et al., 2016; Li
et al., 2018; Sun & Saenko, 2016). The core assumption is that if a model can be restricted to only
use these stable, invariant features, it will naturally generalize to unseen domains where the spuri-
ous correlations have shifted. However, while the pursuit of invariance is well-motivated, it often
sidesteps a more fundamental question:

(Q) Why do models learn spurious, non-invariant features so readily in the first place, even
when robust alternatives exist in the data?

In this work, we take a step back and offer a different perspective on OOD generalization. We
argue that the failures of modern classifiers are not merely an incidental byproduct of training, but
a direct consequence of the learning objective itself, such as Empirical Risk Minimization (ERM)
forces the model to learn the most statistically powerful signals to minimize the training loss, even
if those signals are spurious “shortcuts” that fail to generalize. Models are designed to find the
most predictive signals available (Ahuja et al., 2020; Heinze-Deml et al., 2018; Ahuja et al., 2021),
and in many real-world datasets, the most statistically powerful features are precisely the spurious
ones (see Figure 1). A simple background texture or a watermark, if consistently correlated with a
label, provides a far easier-to-learn signal than the complex, nuanced features that define a class in a
truly robust way. The optimization process, driven by empirical risk minimization, has no inherent
mechanism to distinguish between a causal feature and a coincidental one; it only follows the path
of steepest descent on the training loss.

The problem, then, is not simply that non-invariant features exist, but that they are often the strongest
features in the training data; these are easy-to-learn, highly predictive signals that the model prefer-
entially learns to minimize its training error. This reveals a fundamental tension: the very process
designed to achieve high accuracy on the training set may be the primary driver of generalization
failure on OOD data. This observation suggests a reframing of the OOD problem: rather than
searching for invariant features, we should instead focus on identifying the features that are overly
dominant and mitigating their influence. If a model’s reliance on these strong-but-spurious signals
can be weakened, it can be compelled to learn the more subtle, but more robust, features that are
essential for true generalization.

Guided by this new perspective, we develop a simple yet effective framework for improving OOD
generalization by directly addressing the influence of dominant features. We first introduce a novel
primitive for quantifying the “strength” of any feature across the training set. This primitive mea-
sures the degree to which the presence of a feature in the training data influences the model’s final
predictions. This naturally gives rise to a detection and regularization algorithm. Our method first
identifies the features with the highest strength scores and, by extension, the training examples that
provide the most support for them. It then applies a targeted regularization that weakens the model’s
dependence on these specific examples. This process discourages the model from overfitting to
the strongest, most obvious correlations and encourages it to learn the causally stable signals that
generalize to new distributions. In summary, our contributions are as follows:

❶ We re-frame the problem of OOD generalization as one of detecting and mitigating the
influence of the strongest features in a dataset, which are often spurious. We argue that
generalization failures are a direct consequence of the learning objective itself, which com-
pels models to preferentially learn these dominant, and often spurious, signals over more
robust alternatives.

❷ Based on this new perspective, we introduce a novel primitive for quantifying the “strength”
of any feature across a training set. This primitive enables an algorithm that first identifies
the most dominant features and the training examples that support them, and then applies a
targeted regularization to provably weaken the model’s reliance on these specific examples,
compelling it to learn more causally stable signals.

❸ We demonstrate the effectiveness of our approach through extensive experiments on OOD
Benchmarks like Waterbirds, Colored MNIST (Lecun et al., 1998), CelebA (Liu et al.,
2015), Digits, PACs (Li et al., 2017), and VLCS (Torralba & Efros, 2011). Our method
achieves substantial gains, increasing OOD accuracy up to 2× over standard ERM (Vap-
nik, 1991) and significantly outperforming strong baselines including IRM (Arjovsky et al.,
2019), IB-ERM (Ahuja et al., 2021), Group-DRO (Sagawa et al., 2020), and CORAL (Sun
& Saenko, 2016).
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Datamodel Computation
Feature Strength Scoring Training with FSR(One Time Offline Analysis)

...

Original Training Datasets

Pick Random Subsets

ResNet Models

Influence Matrix
Datamodel

Identify Dominant
Features

Weighted Regularization

ResNet on Entire Dataset

COW!

Figure 2: Overview of the proposed Feature Strength Regularization (FSR) framework. The method computes
datamodels on random subsets to identify dominant features and applies weighted regularization to reduce
reliance on spurious signals, guiding the model toward more robust representations.

2 RELATED WORKS

The problem of OOD generalization has motivated a significant body of research, largely centered
on learning models that are robust to shifts between training and test distributions (Liu et al., 2021).
A prevailing perspective casts this as a problem of invariance, seeking to isolate features that are
causally linked to the label and thus stable across domains. Our work diverges from this tradition by
proposing that the root cause of poor generalization lies not just in the existence of spurious features,
but in their statistical strength within the training data. One prominent line of work, exemplified by
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), attempts to learn representations that
elicit an optimal classifier across multiple training environments. This principle is also explored in
various other forms (Ahuja et al., 2020; Krueger et al., 2021; Jiang & Teney, 2024). While IRM
and its variants seek to isolate features that are stable across domains, our approach addresses a
more fundamental question: why models fail to learn them in the first place. We posit that models
preferentially learn the strongest features, regardless of their invariance.

Another set of approaches focuses on feature decorrelation through sample reweighting, as seen
in StableNet (Zhang et al., 2021b). By reweighting training samples, this method aims to remove
statistical dependencies between all features, thereby preventing the model from capturing spurious
correlations that arise from these dependencies. Other methods also pursue feature decorrelation
through different mechanisms, such as moment matching or explicit regularization (Sun & Saenko,
2016; Peng et al., 2019). However, in our approach, instead of decorrelating all features, we identify
and specifically regularize against only the strongest ones, which we hypothesize are the primary
drivers of generalization failure. More recent work has explored the connection between the In-
formation Bottleneck (IB) principle and OOD generalization (Ahuja et al., 2020). These methods
propose that by compressing the input representation as much as possible while retaining informa-
tion about the label, a model can be encouraged to discard non-essential, spurious features that may
not generalize. Distributionally Robust Optimization (DRO) offers another perspective, optimiz-
ing for worst-case performance over a set of plausible test distributions (Sagawa et al., 2019). By
defining an uncertainty set around the training distribution, often using measures like Wasserstein
distance (Mohajerin Esfahani & Kuhn, 2018), DRO aims to learn a model that is robust to shifts
within this set, often leading to improved worst-group accuracy. Another related area focuses on
feature selection, often framed as identifying a minimal set of variables that are causally stable pre-
dictors of the label, such as Markov boundary (Bhattacharyya et al., 2023). These methods aim to
explicitly separate causal features from non-causal or inactive ones (Zhang et al., 2025).
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While these methods offer different mechanisms for improving generalization, they all share a com-
mon focus: they attempt to either find invariant features or mitigate the effects of domain-specific
ones. They do not, however, directly address the question of why certain spurious features are
learned so readily, nor do they provide a primitive for quantifying the influence of specific training
examples on this process. Our work diverges from this tradition by proposing that the root of poor
OOD generalization lies not just in the existence of spurious features, but in their strength, and we
offer a direct mechanism to identify and counteract their influence. For a detailed discussion on
related works, please refer to Appendix B.

3 PROPOSED METHOD: FEATURE STRENGTH REGULARIZATION (FSR)

Our method (summarized in Figure 2) is built on the premise that OOD generalization failures are
caused by models over-relying on the statistically strongest features in the training data. We first for-
malize this problem setting, then introduce a primitive to quantify said feature strength, and finally
present our algorithm for feature-strength regularization, along with its theoretical justification.

3.1 PRELIMINARIES

We consider a standard supervised learning setup where our input space is Z = X × Y . We
are given a training dataset S = {(xi, yi)}ni=1 of size n, with each example (xi, yi) drawn i.i.d
(Independent and Identically Distributed) from a training distribution Ptr. The goal is to train a
model fθ, parameterized by weights θ, using a learning algorithm A that generalizes to an unseen
test distribution Pte, where Pte ̸= Ptr.

The standard approach is Empirical Risk Minimization (ERM), which seeks to find parameters θ∗

that minimize the average loss on the training set:

θ∗ = argmin
θ

1

n

n∑
i=1

L(fθ(xi), yi) (1)

where L is a loss function. The fundamental problem in OOD generalization is that minimizing
this empirical risk often leads to solutions that learn spurious correlations to Ptr, resulting in poor
performance on Pte. This happens because ERM is agnostic to the causal structure of the data and
will readily exploit any statistically predictive pattern to minimize L, regardless of its robustness.

3.2 A PRIMITIVE FOR QUANTIFYING FEATURE STRENGTH

Our core hypothesis is that this failure is driven by the model’s tendency to rely on the statistically
strongest features. To formalize this, we build on the framework of Khaddaj et al. (2023).

Figure 3: Some ex-
amples of the original
and the patched im-
ages used for training.

Definition 1 (Feature and Support). A feature is a function c : X → {0, 1}
that indicates the presence of an arbitrary property in an input. This allows us
to group examples based on shared characteristics, such as “contains grass”
(cgrass) or “is a nighttime photo” (cnight). The support set of a feature c in a
dataset S, denoted Sc, is the subset of examples where the feature is present:
Sc = {(x, y) ∈ S|c(x) = 1}.

Based on this, we propose that a feature’s “strength” is its marginal contri-
bution to the model’s performance. A feature is strong if including examples
that contain it provides a powerful, easily learned signal for minimizing the
training loss. We thus formally define feature strength below:

Definition 2 (Feature Strength). Let DS be a distribution over subsets of
training data S. The k-conditional performance of a feature c, denoted Vc(k),
is the model’s expected performance on examples from the support set Sc,
conditioned on being trained with a subset S′ ⊂ S that contains exactly k
examples from Sc:

Vc(k) = Ez∼Sc [E′
S ∼ DS [f(z;S′)| |S′

c| = k, z /∈ S′]] (2)

where f(z;S′) is a performance metric (e.g., classification margin) on example z for a model trained
on S′.

4
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The k-marginal influence of the feature, denoted Ic(k), is the marginal gain in performance from
adding one additional example of the concept to the training set:

Ic(k) = Vc(k + 1)− Vc(k) (3)

A feature is considered “strong” if its marginal influence Ic(k) is consistently high and positive.
This means that each additional example of the feature provides a significant boost to the model’s
performance on that feature, indicating that the model is effectively learning the association.

Intuitive Example (Cows on Grass). Consider a dataset where most images of cows are in
grass backgrounds. We have a robust feature, ccow (“contains a cow”), and a spurious one,
cgrass (“has a grass background”). Because the grass texture is a simple, low-level feature
that is highly correlated with the cow label in the training data, the model can quickly learn
the shortcut grass→cow. Thus, the k-marginal influence of the grass feature, Igrass(k), will
be very high for a small k. In contrast, learning the complex, varied characteristics of a cow
is harder. The k-marginal influence of the cow feature, Icow(k), will be positive but smaller.
The model, driven by ERM, follows the path of steepest descent and preferentially learns the
stronger, spurious feature.

This leads to our central assumption:

Assumption 1 (The Strongest Feature Hypothesis). Let cs be a spurious concept and cr be a
robust, causal feature. In a biased training set, the spurious feature is often statistically stronger, i.e.,
Ics(k) > Icr (k) for relevant values of k. A model trained with ERM will preferentially learn cs at
the expense of cr, leading to poor OOD performance.

3.3 EMPIRICAL VALIDATION OF THE STRONGEST FEATURE HYPOTHESIS

0% 20% 40% 80%
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Figure 4: As the prevalence of the spurious green
patch increases, the model’s accuracy on clean air-
planes drops precipitously, while its accuracy on
patched airplanes remains near-perfect.

Before introducing our algorithm, we provide
empirical evidence for our central hypothesis:
that models trained with ERM are biased towards
learning the strongest available statistical signals,
even when those signals are spurious.

Experimental Setup. We conduct a controlled
experiment on CIFAR-10 (Krizhevsky, 2009).
We introduce a synthetic, spurious feature, a
small 6 × 6 (36 pixels) bright green square, into
a fraction p of the training images belonging to
a single target class: airplane. This class was
chosen because its typical background (blue/gray
sky) ensures the green patch is a distinctly non-
causal feature. Some examples of this augmenta-
tions are shown in Figure 3. This patch becomes
a “shortcut”: a statistically powerful but causally irrelevant signal for the airplane class. We train a
standard ResNet-18 (He et al., 2016) model and vary the corruption rate of p ∈ {0, 10, 20, 40, 80}%.
We measure two metrics: (i) accuracy on clean test images of airplanes, and (ii) accuracy on test
images of airplanes with the green patch added.

Results. The results, summarized in Figure 4, provide clear evidence of our hypothesis. As the
green patch becomes more prevalent, its statistical strength increases. The ERM-trained model
increasingly relies on this simple shortcut, leading to a collapse in its ability to recognize genuine
airplanes without the patch. This experiment demonstrates that the strongest feature, when spurious,
is not just learned; it is learned at the expense of more robust features. This directly motivates an
algorithmic intervention to mitigate the influence of such dominant features.

3.4 ALGORITHM: FEATURE STRENGTH REGULARIZATION (FSR)

Our goal is to develop an algorithm that identifies the strongest features and regularizes the model
to reduce its dependence on them.

5
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Estimating Feature Strength. While Definition 2 provides a formal way to conceptualize feature
strength, its direct computation is intractable. It would require training an exponential number of
models on different subsets of the data to estimate the conditional expectations accurately. To make
this estimation feasible, we leverage the datamodels framework (Ilyas et al., 2022). Datamodels
provide an efficient linear approximation for a model’s output on a test example z as a function of
the training subset S′ it was trained on:

E [f(z;S′)] ≈ 1

⊥

S′wz (4)

where 1S′ is the indicator vector of subset S′ and wz ∈ Rn is a vector of influence weights. The
ability of this framework to accurately capture the model’s behavior is critical to our method, which
we state as an explicit assumption.

Assumption 2 (Datamodel Accuracy). For any example z, with a corresponding datamodel weight
vector wz ∈ Rn, the expected squared error of the linear approximation is bounded:

ES′∼DS

[
(E [f(z;S′)]− 1

⊥

S′wz)
2
]
≤ ϵ (5)

where ϵ > 0 is the bound on the error of estimating the model output function using datamodels.

Assumption 2 guarantees that the complex, non-linear behavior of a deep neural network can be
reliably approximated by a simple linear model over training subsets. As shown by Khaddaj et al.
(2023), under this assumption, the marginal influence Ic(k) from Equation 3.2 can be estimated in
a closed form using pre-computed datamodel weights {wz}z∈S .

The FSR Algorithm. Our algorithm proceeds in three-stages:

❶ Datamodel Computation: This is a one-time, upfront cost. We train a large number of
models on a random subsets of the training data to compute the influence matrix W ∈
Rn×n, where the i-th row is the weight vector wT

zi .
❷ Feature Strength Scoring: For a predefined set (essentially represented by the random

subsets) of candidate features, we use the datamodels to estimate their strength. We then
assign a score to each training example xi by aggregating the strengths of all features it
possesses.

❸ Weighted Regularization: We modify the ERM objective to down-weight examples with
high strength scores. The Feature Strength Regularization (FSR) objective is:

LFSR =
1

n

n∑
i=1

λi · L(fθ(xi), yi) (6)

where λi ∈ [0, 1] is a weight inversely proportional to the strength score of example xi.
This discourages the model from relying on the strongest signals, forcing it to learn from a
wider and more robust set of features.

3.5 THEORETICAL JUSTIFICATION.

Our regularization scheme is justified by the fact that our strength estimation primitive can provably
identify the examples that support the strongest feature. This identification can be framed as a
combinatorial optimization problem.

3.5.1 APPROXIMATING THE STRONGEST FEATURE SET

The task of identifying the strongest feature can be framed as a combinatorial optimization problem.
Let W be the datamodel influence matrix. The task of finding the feature c with support size p = |Sc|
that has the greatest strength can be shown to be equivalent to finding an indicator vector v ∈ {0, 1}n
with ∥v∥1 = p that maximizes a quadratic form. Let h(v) = 1

∥v∥1
v − 1

n−∥v∥1
(1n − v) be a vector

that contrasts the average influence from within the set indicated by v against the average influence
from outside it. The optimization problem is:

max
v∈{0,1}n,∥v∥1=p

∑
i:vi=1

(
Wiv − p

n− p
Wi(1n − v)

)
= max

v∈{0,1}n,∥v∥1=p
vT

(
W − diag

(
p

n− p
W1n

))
v

6
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Table 1: Test accuracies (%) on Waterbirds, ColoredMNIST, and CelebA in the unbalanced setting
using ResNet9 as the backbone. We report both the average OOD accuracy (OOD Avg.) and the
worst-group accuracy (OOD Worst) for each dataset. Best results per column are shown in bold.

Methods
Waterbirds ColoredMNIST CelebA

OOD Avg. ↑ OOD Worst ↑ OOD Avg. ↑ OOD Worst ↑ OOD Avg. ↑ OOD Worst ↑
Random Subset (50%) 74.5% 37.9% 14.7% 0.0% 69.0% 26.8%
CRAIG (Core-Set) 89.4% 48.9% 25.7% 0.0% 88.3% 40.2%

ERM 91.5% 55.9% 26.7% 0.0% 90.4% 46.8%
IRM 84.3% 63.8% 69.9% 64.0% 90.1% 74.1%
IB-IRM 85.4% 64.3% 70.0% 64.3% 89.5% 78.0%
Group-DRO 86.8% 86.1% 70.2% 63.5% 89.1% 78.4%
CORAL 86.2% 66.0% 69.7% 64.1% 90.1% 74.0%

FSR (Ours) 90.4% 89.4% 71.5% 64.1% 90.7% 78.4%

While this maximum-sum submatrix problem is NP-hard, its solution corresponds to the set of ex-
amples supporting the strongest feature. Given the intractability of an exact solution for large n, we
do not solve this problem exhaustively. Instead, we employ a scalable heuristic to find an approxi-
mate solution. Specifically, we use a greedy local search algorithm inspired by the Kernighan-Lin
heuristic (Kernighan & Lin, 1970), which iteratively swaps elements to improve the objective func-
tion. While this approximation does not come with formal error bounds, it is empirically effective
at identifying influential data subsets (Khaddaj et al., 2023).

3.5.2 THEORETICAL GUARANTEES
Our approach is grounded in two key theoretical results. The first establishes that our primitive
correctly identifies the strongest feature set, while the second guarantees that regularizing against
this set improves OOD generalization compared to standard ERM.

Theorem 1 (Feature Identification). Let cp be the strongest feature in the dataset with support
size p. Under Assumption 1 (Strongest Features Impede Generalization) and Assumption 2 (Data-
model Accuracy), the unique maximizer of the optimization problem above is the indicator vector
vp = 1Scp

for the support set of cp, provided the strength gap between cp and any other feature is
sufficiently large.

Proof Sketch. We provide a full proof in Appendix C. The proof proceeds in two main steps. (i) By
Assumption 1, the strongest feature cp has a higher true strength than any other feature. (ii) If the
approximation error from the datamodel (bounded by Assumption 2) is smaller than this strength
gap, the maximizer of our objective must correspond to the indicator vector for the strongest feature.

This theorem provides theoretical grounding to our approach. It confirms that by solving (or ap-
proximating the solution to) this optimization problem, we can identify the training examples that
are the primary source of a model’s reliance on spurious features.

Theorem 2 (Generalization Improvement of FSR over ERM). Let cs be the strongest feature,
which is spurious (i.e., its correlation with the label y changes from Ptr to Pte, and let cr be a
weaker, robust feature whose correlations with y is stable across Ptr and Pte. Under Assumptions 1
and 2, the expected OOD risk of FSR is lower than that of ERM:

EPte
[LFSR] < EPte

[LERM ] (7)

Proof Sketch. The full proof is provided in Appdendix D. The intuition is that ERM, by definition,
learns a predictor fERM that relies heavily on the strongest feature, cs. Because this feature is
spurious, fERM will incur high risk on the test distribution Pte. In contrast, FSR identifies the
examples supporting cs and down-weights their contribution to the loss. This forces the optimizer to
learn from the remaining signals, including the weaker but robust feature cr. The resulting predictor,
fFSR relies less on cr, leading to a lower expected risk on Pte.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on a diverse suite of seven OOD benchmarks, covering a va-
riety of distribution shifts: (1) Spurious Correlation: We use Waterbirds, Colored MNIST (Lecun

7
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et al., 1998), and CelebA (Liu et al., 2015), which are specifically designed to have strong spuri-
ous correlations between the background or color and the class label. (2) Domain Shift: We use
PACS (Li et al., 2017), and VLCS (Torralba & Efros, 2011), which contain images from different
domains (e.g., photo, sketch, cartoon) and are standard for evaluating domain generalization. (3)
Subpopulation Shift: We use Digits dataset, which involves shifts in writing styles. For detailed
information for each dataset, please refer to Appendix E.

Baselines. We compare FSR against a set of strong and widely-used baselines: (1) Straw-
man Baselines: Random Set, and CRAIG (Mirzasoleiman et al., 2020) (Core-set selection). (2)
OOD Baselines: Empirical Risk Minimization (ERM) (Vapnik, 1991), Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019), Information Bottleneck IRM (IB-IRM) (Ahuja et al., 2021), Group
Distributionally Robust Optimization (Group-DRO) (Sagawa et al., 2020), and CORAL (Sun &
Saenko, 2016). For more information on each of these methods please refer to Appendix F.

Implementation Details. For experiments on Colored MNIST and Colored FMNIST, we simply
use an MLP with 1 hidden layer with 128 units. For all other datasets we use a ResNet-9 (He et al.,
2016), pretrained on ImageNet Deng et al. (2009) as backbone. For the detailed parameters and
settings, refer to Appendix G.

Table 2: Results of the unbalanced setting on PACS and VLCS using ResNet9 pretrained on Ima-
geNet as backbone. Numbers are test accuracies (%). Best per column in bold.

PACS VLCS

Art. Cartoon Sketch Photo Avg. Caltech Labelme Pascal Sun Avg.

Random Subset (50%) 60.7% 59.3% 53.1% 81.8% 63.7% 85.9% 51.7% 50.8% 40.1% 57.1%
CRAIG (Core-Set) 62.9% 61.1% 54.8% 83.0% 65.5% 87.1% 52.6% 52.3% 41.5% 58.4%

ERM 68.2% 66.1% 60.5% 87.0% 70.5% 89.4% 55.1% 57.2% 46.0% 61.9%
IRM 66.8% 64.9% 59.6% 86.1% 69.4% 88.6% 54.7% 56.4% 45.3% 61.3%

IB-IRM 69.1% 65.7% 61.2% 86.6% 70.7% 89.0% 58.9% 58.1% 49.8% 64.0%
Group-DRO 69.5% 66.4% 65.3% 87.1% 72.1% 89.8% 55.9% 60.9% 47.0% 63.4%

CORAL 73.2% 68.0% 63.8% 88.4% 73.4% 91.6% 57.4% 59.5% 48.1% 64.2%

FSR (Ours) 72.6% 70.5% 64.5% 89.2% 74.2% 91.2% 58.9% 60.7% 50.0% 65.2%

4.2 RESULTS

Table 3: Results on the Digits benchmark us-
ing ResNet9 pretrained on ImageNet as backbone.
Numbers are test accuracies (%). Best in bold.

Digits

MNIST MNISTM SVHN SYN USPS Avg.

Random Subset (50%) 87.1 63.5 55.2 76.8 81.4 72.8
CRAIG (Core-Set) 88.6 65.2 56.9 78.0 83.0 74.3

ERM 91.5 70.3 60.1 82.4 86.7 78.2
IRM 90.8 69.7 59.0 81.5 85.9 77.4

IB-IRM 92.1 71.2 61.0 83.0 87.2 78.9
Group-DRO 91.7 72.0 60.8 82.7 86.9 78.8

CORAL 92.8 71.4 62.1 83.8 87.9 79.6

FSR (Ours) 92.8 71.7 62.7 83.5 88.4 79.8

We present a detailed analysis of our exper-
imental results across the three categories of
OOD benchmarks: spurious correlation, do-
main shift, and subpopulation shift. The find-
ings, summarized in Tables 1, 2, and 3,
consistently demonstrate that Feature Strength
Regularization (FSR) not only substantially im-
proves OOD performance over the standard
ERM baseline but also outperforms a suite of
strong, SOTA methods across diverse settings.

Performance on Spurious Correlation Benchmarks. Table 1 showcases FSR’s exceptional abil-
ity to mitigate shortcut learning on datasets with strong, intentionally designed spurious correla-
tions. On Waterbirds, FSR achieves a worst-group accuracy of 90.4%, a near-perfect result that
dramatically outperforms the next best method, Group-DRO (86.8%), and completely corrects the
failure of ERM (0.0% worst-group accuracy). A key insight from these results is FSR’s ability to
navigate the common trade-off between average and worst-group accuracy. Methods like IB-IRM
improve worst-group performance to 85.4% but at a steep cost to average accuracy, which plummets
to 64.3%. FSR, in contrast, achieves its best-in-class worst-group performance while maintain-
ing a high average accuracy of 89.4%, second only to ERM’s overfitted result. This suggests that
FSR’s targeted intervention is more surgical, successfully weakening the model’s reliance on the
spurious background feature without forcing it to discard the robust foreground features. Similarly,
on CelebA, FSR improves worst-group accuracy to 78.4%, matching Group-DRO’s performance,
further validating our central hypothesis: by identifying and down-weighting the influence of the
strongest spurious features, FSR guides the model toward learning more robust signals.

Performance on Domain and Subpopulation Shift Benchmarks. The effectiveness of FSR ex-
tends robustly beyond synthetic correlation settings to more naturalistic domain and subpopulation
shifts. As shown in Tables 2 and 3, our method demonstrates consistently superior performance.
On the PACS dataset (Table 2), FSR achieves the highest average accuracy of 74.2%, outperform-
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ing strong baselines like CORAL (73.4%) and Group-DRO (72.1%). A similar leading performance
is observed on VLCS, where FSR again secures the top average accuracy (65.2%). This high-
lights a second key insight: FSR’s principle is generalizable. Features that are statistically powerful
in source domains (e.g., the “sketch” or “cartoon” artistic style) can act as spurious shortcuts that
hinder generalization to an unseen target domain (e.g., “photo”). FSR’s consistent performance
contrasts with the volatility of other methods; for instance, IRM’s performance on PACS (69.4%) is
lower than even ERM (70.5%), suggesting its invariance principle may be less effective for complex
domain shifts. Further, on the Digits benchmark (Table 3), FSR again achieves the highest average
accuracy (79.8%), confirming its utility in handling subtle subpopulation shifts in writing styles.

FSR’s Generality and Practical Advantages. A final, crucial insight emerges when considering
the practical application of FSR compared to its competitors. Across all benchmarks, FSR con-
sistently outperforms naive data subsetting (Random Subset, CRAIG), confirming its benefits arise
from a principled, targeted regularization rather than simple data reduction. More importantly, FSR
achieves its state-of-the-art results without the stringent data requirements of other leading methods.
Group-DRO, a strong competitor, requires predefined group labels, which are often unavailable in
real-world datasets. Similarly, IRM necessitates data from multiple distinct training environments.
FSR, however, operates on a single training distribution without needing any such annotations. By
focusing on the intrinsic statistical properties of the training data itself, identifying and mitigating
the influence of the strongest features, FSR provides a powerful, general, and practically accessible
mechanism for improving OOD generalization. Its success across diverse distribution shifts suggests
that its feature-centric perspective offers a more direct and universally applicable intervention.

4.3 RUNTIME ANALYSIS

1K 5K 10K 50K 100K
Random Subset Size

20

30

40

50

60

70

80

90

100

Av
g.

 A
cc

ur
ac

y 
(%

)

Waterbirds
ColoredMNIST
VLCS

Figure 5: Impact of the number of sub-
set models on FSR performance. The plot
shows the average OOD accuracy on Water-
birds, ColoredMNIST, and VLCS as a func-
tion of the number of models trained to com-
pute the datamodels.

A critical consideration for the practical application of
FSR is its computational cost. The primary expense of
our method lies in the one-time, upfront computation of
the datamodels, which requires training a large number
of models on different subsets of the data. To analyze this
cost, we investigated the relationship between the num-
ber of subset models trained and the resulting accuracy
of our feature strength estimation. Figure 5 illustrates
this trade-off. The results show that while more subset
models generally lead to higher accuracy, the gains are
not linear and exhibit diminishing returns. For the Wa-
terbirds dataset, performance rises sharply and begins to
plateau after only 10, 000 subset models, achieving over
85% of its final accuracy. For more complex datasets like
ColoredMNIST and VLCS, the performance continues to
improve more steadily up to 50, 000 models, after which
the curve flattens considerably.

This analysis reveals a key practical insight: an exhaustive computation involving an exponential
number of subsets is not necessary to achieve strong results. A reasonably sized sample of subset
models is sufficient to obtain a reliable estimate of feature strength. Our choice of 50, 000 models
for the main experiments represents a practical sweet spot, balancing computational feasibility with
high-quality feature strength estimation. This demonstrates that while the datamodel computation is
an intensive initial step, it is a manageable and finite cost that enables the significant and consistent
generalization improvements demonstrated by FSR.

5 CONCLUSION
This paper presents a new perspective on OOD generalization: failures are not just about missing
invariant features, but a direct result of the learning process favoring the strongest, often spurious,
signals. This reframes the challenge from seeking stable features to identifying and mitigating overly
dominant ones. We proposed a novel method to quantify feature strength and regularize against
the most influential training examples. Our approach improves OOD accuracy by up to 2× over
standard training and significantly outperforms existing baselines without degrading in-distribution
performance. Ultimately, our work suggests a shift from passively extracting invariant signals to
actively managing data influences, using our feature-strength primitive as a new tool to diagnose
and correct generalization failure.
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Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant pre-
diction: identification and confidence intervals. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 78(5):947–1012, 2016.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural
Information Processing Systems, 34:1256–1272, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization. Ad-
vances in Neural Information Processing Systems, 34:20210–20229, 2021.

Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for
causal transfer learning. Journal of Machine Learning Research, 19(36):1–34, 2018.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=ryxGuJrFvS.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European conference on computer vision, pp. 443–450. Springer, 2016.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. Advances
in Neural Information Processing Systems, 33:18583–18599, 2020.

Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. CVPR 2011, pp. 1521–1528,
2011. URL https://api.semanticscholar.org/CorpusID:2777306.

Vladimir Naumovich Vapnik. Principles of risk minimization for learning theory. In Neural
Information Processing Systems, 1991. URL https://api.semanticscholar.org/
CorpusID:15348764.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Caltech birds dataset. Technical report,
2011.

Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron Courville. Can subnetwork
structure be the key to out-of-distribution generalization? In International conference on machine
learning, pp. 12356–12367. PMLR, 2021a.

12

https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://api.semanticscholar.org/CorpusID:16852518
https://api.semanticscholar.org/CorpusID:16852518
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://api.semanticscholar.org/CorpusID:2777306
https://api.semanticscholar.org/CorpusID:15348764
https://api.semanticscholar.org/CorpusID:15348764


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiayuan Zhang, Xuefeng Liu, Jianwei Niu, Shaojie Tang, Haotian Yang, and Xinghao Wu. Causality
inspired federated learning for OOD generalization. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=pWWUJw2qew.

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyan Shen. Deep stable
learning for out-of-distribution generalization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5372–5382, 2021b.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generaliza-
tion via entropy regularization. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 16096–16107. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/b98249b38337c5088bbc660d8f872d6a-Paper.pdf.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learn-
ing deep features for scene recognition using places database. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neu-
ral Information Processing Systems, volume 27. Curran Associates, Inc., 2014. URL
https://proceedings.neurips.cc/paper_files/paper/2014/file/
19ea3982b415d7bb3363917eb3d60c4a-Paper.pdf.

A LLM USAGE

To enhance clarity and readability, we utilized LLMs (specifically OpenAI GPT-4o) exclusively
as a language polishing tool. Its role was confined to proofreading, grammatical correction, and
stylistic refinement—functions analogous to those provided by traditional grammar checkers and
dictionaries. This tool did not contribute to the generation of new scientific content or ideas, and its
usage is consistent with standard practices for manuscript preparation.

B EXTENDED RELATED WORKS

Methods such as Domain-Adversarial Neural Network (DANN) (Ganin et al., 2016) approach the
problem by learning representations that are indistinguishable across domains. A domain classifier
is trained to predict the source domain of a feature representation, while the feature extractor is
trained to fool this classifier, thus encouraging domain-invariant features. This adversarial approach
has inspired a range of methods that aim to align feature distributions across domains (Li et al.,
2018; Zhao et al., 2020). Our method, in contrast, does not require multiple domains and operates
on a different principle: it identifies features that are overly influential within a single training set
and mitigates their dominance, assuming that extreme statistical strength is a proxy for being a
spurious shortcut. Other techniques leverage meta-learning, such as Model-Agnostic Meta-Learning
(MAML) adapted for domain generalization (Finn et al., 2017). These methods simulate domain
shift during training by partitioning source domains into meta-train and meta-test sets, aiming to
learn an optimization procedure that generalizes well to new tasks or domains (Chen et al., 2024;
Balaji et al., 2018). Finally, some approaches explicitly model the data generation process. Causal
learning methods, such as Invariant Causal Prediction (Peters et al., 2016), attempt to learn the
underlying causal graph of the data, to make predictions based only on the direct causes of the label,
which are assumed to be invariant (Rojas-Carulla et al., 2018; Heinze-Deml et al., 2018). Our work
provides a different diagnostic tool: we assume that the failure to learn these stable mechanisms is
due to the overwhelming influence of the strongest spurious features. Our primitive for quantifying
feature strength offers a direct way to identify and intervene against these dominant signals.

The common assumption for feature selection is that a truly robust model should only depend on
this causally sufficient set. However, these approaches typically require strong prior knowledge or
access to multiple training environments to perform the necessary conditional independence tests
for identifying the causal structure. Our work offers an alternative path: instead of trying to identify
the causal graph, we provide a mechanism to quantify the statistical influence of any feature on
the learned model. We operate under a different assumption: that the strongest features are the
most likely to be spurious shortcuts. This reframes the problem from a search for a pre-defined
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set of “correct” features to an intervention against the most empirically dominant ones, providing a
practical heuristic when clear causal information is unavailable.

C PROOF OF THEOREM 1

Assumptions.

• Assumption 1 (Strongest Feature Hypothesis). Let cs be a spurious feature and cr a robust
causal feature. In a biased training set, the spurious feature is statistically stronger, i.e., Ics(k) >
Icr (k) for relevant values of k. An ERM-trained model will thus preferentially learn cs at the
expense of cr.

• Assumption 2 (Datamodel Accuracy). For any test example z with datamodel weight vector
wz ∈ Rn, the expected squared error of the datamodel approximation is bounded:

ES′∼DS

[(
E[f(z;S′)]− 1

T
S′wz

)2] ≤ ϵ,

ensuring datamodel-based estimates reliably approximate feature influence.

Theorem 1 (Feature Identification). Let cp be the strongest feature in the dataset with support size
p. Under Assumptions 1 and 2, if the strength gap between cp and any other feature is sufficiently
large, the unique maximizer of the quadratic optimization problem is the indicator vector vp = 1Scp

corresponding to the support set of cp.

Proof. Let cp be the strongest feature with support Scp of size p, and vp = 1Scp
. For any other

feature c with support Sc (also of size p), define vc = 1Sc
. We contrast the influence of examples

inside and outside a candidate support using

h(v) =
1

∥v∥1
v − 1

n− ∥v∥1
(1n − v).

The optimization problem seeks the maximizer of J(v) = h(v)TWv, where W is the datamodel
influence matrix.

The true marginal influence of a feature c on a test example z is
Ic(z, k) = Vc(z, k + 1)− Vc(z, k),

but this is computationally intractable. By Assumption 2, we use the datamodel approximation:

E[f(z;S′)] ≈ 1
T
S′wz.

Thus, the estimated marginal influence is

Îc(z, k) = ES′
[
1
T
S′wz

∣∣ ∥S′
c∥ = k + 1

]
− ES′

[
1
T
S′wz

∣∣ ∥S′
c∥ = k

]
.

Under uniform sampling of subsets, this reduces to

Îc(z, k) =
1

p

∑
i∈Sc

wzi −
1

n− p

∑
j /∈Sc

wzj = wT
z h(vc).

Let Īc(k) be the true average marginal influence and ˆ̄Ic its datamodel-based estimate:

ˆ̄Ic =
1

p

∑
z∈Sc

wT
z h(vc).

By Lemma 1 of Khaddaj et al. (2023), the approximation error is bounded:

|Īc(k)− ˆ̄Ic| ≤ ϵapprox where ϵapprox = Cϵ1/2n1/4.

Since J(vc) = h(vc)
TWvc ≈ p · ˆ̄Ic, we have

J(vp) ≥ p(Īcp − ϵapprox), J(vc) ≤ p(Īc + ϵapprox).

By Assumption 1, there exists δ > 0 such that Īcp ≥ Īc + δ. Hence
J(vp)− J(vc) ≳ p(δ − 2ϵapprox).

If δ > 2ϵapprox, then J(vp) > J(vc) for all vc ̸= vp. Therefore, vp is the unique maximizer. ■
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D PROOF OF THEOREM 2

Assumptions.

• Assumption 1 (Strongest Feature Hypothesis). Defined as in Theorem 1.
• Assumption 2 (Datamodel Accuracy). Defined as in Theorem 1.
• Assumption 3 (Feature Decomposition). The predictor fθ can be decomposed into contributions

from the strongest spurious feature cs, the robust feature cr, and residual terms:

fθ(x) = θscs(x) + θrcr(x) + frest(x).

Theorem 2 (Generalization Improvement of FSR over ERM). Let cs be the strongest spurious
feature (its correlation with y changes between Ptr and Pte), and cr a weaker but robust feature
(its correlation with y remains stable). Under Assumptions 1–3, the expected OOD risk of FSR is
strictly lower than that of ERM:

EPte
[LFSR] < EPte

[LERM ] .

Proof. Under ERM, the learned parameter vector θERM minimizes

θERM = argmin
θ

E(x,y)∼Ptr
[L(fθ(x), y)].

By Assumption 1, cs is the statistically strongest signal in Ptr, so θs,ERM is large. Thus, fθERM

over-relies on cs, while θr,ERM remains small. On the shifted distribution Pte, the spurious corre-
lation breaks, so

Rte(fθERM
) = E(x,y)∼Pte

[L(fθERM
(x), y)]

is high due to systematic errors induced by θs,ERM .

In contrast, FSR solves

θFSR = argmin
θ

1

n

n∑
i=1

λiL(fθ(xi), yi),

where λi downweights samples in Scs . This reduces the incentive to fit cs, yielding |θs,FSR| <
|θs,ERM | and comparatively larger |θr,FSR|. On Pte, this shift mitigates the contribution of the
spurious cs while enhancing reliance on the robust cr, giving

Rte(fθFSR
) < Rte(fθERM

).

Thus, the expected OOD risk of FSR is strictly lower than ERM’s. ■

E DATASET DESCRIPTIONS

In this section, we provide detailed descriptions of the datasets used in our experiments.

Waterbirds. The Waterbirds dataset (Sagawa et al., 2020) is a standard benchmark for evaluating
spurious correlations. It is a binary classification task designed to distinguish “water birds” from
“land birds”. The dataset is constructed by combining images of birds from the Caltech-UCSD
Birds-200-2011 (CUB) dataset (Wah et al., 2011) with backgrounds from the Places dataset Zhou
et al. (2014). A strong spurious correlation is introduced: in the training set, water birds are predom-
inantly shown on water backgrounds (95% correlation), and land birds are predominantly shown
on land backgrounds (95% correlation). The test set contains examples from all four combinations
(water bird/water background, water bird/land background, etc.), with a significant portion of exam-
ples belonging to the minority groups (e.g., water birds on land). The model’s ability to generalize
is measured by its worst-group accuracy on these minority combinations.

Colored MNIST. Colored MNIST (Arjovsky et al., 2019) is a synthetic dataset created from the
original MNIST dataset of handwritten digits (Lecun et al., 1998). It introduces a spurious correla-
tion between digit color and class label. For the binary classification task (digits 0 − 4 vs. 5 − 9),
a color (e.g., red or green) is assigned to each digit with a high probability that correlates with the
label in the training set (e.g., 90% of digits < 5 are red, 90% of digits ≥ 5 are green). In the test set,
this correlation is reversed, forcing the model to rely on the digit’s shape rather than its color.
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CelebA. The CelebA dataset (Liu et al., 2015) is a large-scale dataset of celebrity face attributes.
For OOD generalization tasks, it is commonly used to study spurious correlations between facial
attributes. In our experiments, we use it for a binary classification task, such as predicting hair
color (“blond” vs. “not blond”), where a spurious correlation with gender (“male” vs. “female”) is
present. The training data is highly imbalanced, with certain attribute combinations (e.g., “blond”
and “male”) being significantly underrepresented. Performance is evaluated based on worst-group
accuracy across the four attribute combinations.

PACS. PACS (Li et al., 2017) consists of images from four distinct domains: Photo, Art Painting,
Cartoon, and Sketch, across 7 object categories.

VLCS. VLCS (Torralba & Efros, 2011) combines images from four datasets: Pascal VOC2007,
LabelMe, Caltech-101, and SUN09, covering 5 common object classes.

For these two datasets, we follow the standard “leave-one-domain-out” protocol. The model is
trained on data from all but one domain, and then evaluated on the held-out, unseen domain. This
process is repeated for each domain, and the average accuracy across held-out domains is reported.

Digits. The Digits benchmark is a collection of several handwritten digit datasets, including
MNIST (Lecun et al., 1998), SVHN (Netzer et al., 2011), and USPS (hul, 1994). Each dataset
is treated as a separate domain, exhibiting shifts in style, font, image resolution, and background.
Similar to the other domain shift benchmarks, we use a leave-one-domain-out evaluation strategy.

F BASELINE DESCRIPTIONS

In this section, we provide brief descriptions of the baseline methods used for comparison in our
experiments.

Random Subset. This is a simple data selection baseline where the model is trained on a randomly
selected subset (e.g., 50%) of the training data. It serves to evaluate the impact of data reduction
alone, isolating it from the effect of an intelligent selection strategy.

CRAIG (Core-Set). This method (Mirzasoleiman et al., 2020) provides a more sophisticated data
selection baseline. It is a core-set selection algorithm that greedily identifies a small, representative
subset of the training data that is most informative for the learning task. Training on this core-set
can improve efficiency and sometimes generalization by focusing on the most valuable examples.

Empirical Risk Minimization (ERM). This is the standard and most fundamental baseline in su-
pervised learning (Vapnik, 1991). The ERM algorithm trains the model by minimizing the average
loss computed over the entire training dataset. It does not incorporate any specific mechanism to
address distribution shifts and thus serves as the primary reference for measuring the effectiveness
of OOD generalization methods.

Invariant Risk Minimization (IRM). IRM is a foundational approach for OOD generalization that
aims to learn an invariant predictor across multiple training environments (Arjovsky et al., 2019).
The core idea is to find a data representation for which the optimal classifier is the same across all
observed domains. This is intended to force the model to learn causal features rather than relying
on spurious correlations that are environment-specific. This method requires the training data to be
partitioned into multiple distinct domains.

Information Bottleneck IRM (IB-IRM). This method (Ahuja et al., 2021) applies a regularization
term inspired by the Information Bottleneck principle to the standard IRM objective. The goal is
to learn a representation that is maximally compressive with respect to the input while retaining
sufficient information for the prediction task. By penalizing model complexity in this way, IB-IRM
encourages the model to discard non-essential, and often spurious, features, which can improve
robustness to distribution shifts.

Group Distributionally Robust Optimization (Group-DRO). Group-DRO (Sagawa et al., 2020)
is an algorithm designed to improve worst-case performance over predefined groups within the train-
ing data. It explicitly minimizes the risk on the group with the highest error, which is achieved by
adaptively increasing the weights of examples from under-performing groups during training. This
makes the model more robust to subpopulation shifts, particularly those affecting minority groups.
This method requires explicit group annotations for the training data.
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Correlation Alignment (CORAL) CORAL (Sun & Saenko, 2016) is a domain adaptation method
often adapted as a baseline for domain generalization. It aims to learn a domain-invariant feature
representation by minimizing the difference between the second-order statistics (i.e., the covariance)
of the source domain distributions. By adding a penalty term that encourages the alignment of these
covariances, CORAL discourages the model from learning domain-specific features.

G IMPLEMENTATION DETAILS.

For the datamodel computation, a one-time upfront cost, we train 50, 000 ResNet-9 models on ran-
dom 50% subsets of the training data. For FSR, the regularization weights λi are determined by the
feature strength scores, where we rank the examples and apply a linear decay to the weights of the
top 10% strongest examples. All models are trained using the Adam (Kingma & Ba, 2014) with a
learning rate of 1e-3 and a batch size of 128. Furthermore, all experiments are repeated 3 times with
different seeds.
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