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Figure 1: Synthesized samples on various datasets, including FFHQ (10242 and 2562), LSUN
Church (2562), LSUN Bedroom (2562), LSUN Cat 256 (2562) and CIFAR10 (322).

ABSTRACT

Diffusion models, which learn to reverse a signal destruction process to generate
new data, typically require the signal at each step to have the same dimension. We
argue that, considering the spatial redundancy in image signals, there is no need
to maintain a high dimensionality in the evolution process, especially in the early
generation phase. To this end, we make a theoretical generalization of the forward
diffusion process via signal decomposition. Concretely, we manage to decompose
an image into multiple orthogonal components and control the attenuation of each
component when perturbing the image. That way, along with the noise strength
increasing, we are able to diminish those inconsequential components and thus
use a lower-dimensional signal to represent the source, barely losing information.
Such a reformulation allows to vary dimensions in both training and inference of
diffusion models. Extensive experiments on a range of datasets suggest that our
approach substantially reduces the computational cost and achieves on-par or even
better synthesis performance compared to baseline method. We also show that our
strategy facilitates high-resolution image synthesis and improves FID of diffusion
model trained on FFHQ at 1024× 1024 resolution from 52.40 to 15.07. Code and
models will be made publicly available.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Ramesh et al., 2022;
Saharia et al., 2022) have recently shown great potential in image synthesis. Instead of directly
learning the observed distribution, it constructs a multi-step forward process through gradually
adding noise onto the real data (i.e., diffusion). After a sufficiently large number of steps, the
source signal could be considered as completely destroyed, resulting in a pure noise distribution that
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Figure 2: Concept comparison between DDPM (Ho et al., 2020) and our proposed DVDP, where
our approach allows using a varying dimension in the diffusion process.

naturally supports sampling. In this way, starting from sampled noises, we can expect new instances
after reversing the diffusion process step by step.

As it can be seen, the above pipeline does not change the dimension of the source signal throughout
the entire diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021). It
thus requires the reverse process to map a high-dimensional input to a high-dimensional output at
every single step, causing heavy computation overheads (Rombach et al., 2022; Jing et al., 2022).
However, images present a measure of spatial redundancy (He et al., 2022) from the semantic
perspective (e.g., an image pixel could usually be easily predicted according to its neighbours).
Given such a fact, when the source signal is attenuated to some extent along with the noise strength
growing, it should be possible to get replaced by a lower-dimensional signal. We therefore argue that
there is no need to follow the source signal dimension along the entire distribution evolution process,
especially at early steps (i.e., steps close to the pure noise distribution) for coarse generation.

In this work, we propose dimensionality-varying diffusion process (DVDP), which allows dynam-
ically adjusting the signal dimension when constructing the forward path. For this purpose, we
first decompose an image into multiple orthogonal components, each of which owns dimension
lower than the original data. Then, based on such a decomposition, we theoretically generalize the
conventional diffusion process such that we can control the attenuation of each component when
adding noise. Thanks to this reformulation, we manage to drop those inconsequential components
after the noise strength reaches a certain level, and thus represent the source image using a lower-
dimensional signal with little information lost. The remaining diffusion process could inherit this
dimension and apply the same technique to further reduce the dimension.

We evaluate our approach on various datasets, including objects, human faces, animals, indoor
scenes, and outdoor scenes. Experimental results suggest that DVDP achieves on-par or even better
synthesis performance than baseline models on all datasets. More importantly, DVDP relies on much
fewer computations, and hence speeds up both training and inference of diffusion models. We also
demonstrate the effectiveness of our approach in learning from high-resolution data. For example,
we are able to start from a 64 × 64 noise to produce an image under 1024 × 1024 resolution. With
FID (Heusel et al., 2017) as the evaluation metric, our 1024×1024 model trained on FFHQ improves
the baseline Song et al. (2021) from 52.40 to 15.07. All these advantages benefit from using a lower-
dimensional signal, which reduces the computational cost and mitigates the optimization difficulty.

2 BACKGROUND

We first introduce the background of Denoising Diffusion Probabilistic Models (DDPM) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) and some of their extensions which are closely related
to our work. DDPM constructs a forward process to perturb the distribution of data q(x0) into
a standard Gaussian N (0; I). Considering an increasing variance schedule of noises β1, . . . , βT ,
DDPMs define the forward process as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, x0 ∼ q(x0), (1)

where αt := 1 − βt, t ∈ [1, T ] and ᾱt :=
∏t

s=1 αs. In order to generate high-fidelity images,
DDPM (Ho et al., 2020) denoises the samples from a standard Gaussian iteratively utilizing the
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Figure 3: Framework illustration. We first decompose the source signal, x0, and then control the
forward diffusion process to attenuate the inconsequential components, such that these components
can be neglected at some particular steps.

reverse process parameterized as

pθ(xt−1|xt) = N
(
xt−1;

1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, βt

)
, (2)

where ϵθ is a neural network used to predict ϵ from xt. The parameters θ are learned by maximizing
the following loss function

L(θ) = Et,x0,ϵ [∥ϵ− ϵθ(xt, t)∥2] . (3)
The standard diffusion model is implemented directly in the image space, which is probably not
the optimal choice according to Lee et al. (2022), which takes the relative importance of different
frequency components into consideration. Lee et al. (2022) implements the diffusion models in a
designed space by generalizing diffusion process with the forward process formulated as

q(UTxt|UTxt−1) = N (UTxt; (I−Bt)
1
2UTxt−1,BtI), (4)

where U is an orthogonal matrix to impose a rotation on xt, and the noise schedule is defined by
the diagonal matrix Bt. In this work, we extend the aforementioned generalized framework further
and make it possible to vary dimensionality during the diffusion process.

3 DIMENSIONALITY-VARYING DIFFUSION PROCESS

This section proposes the dimensionality-varying diffusion process (DVDP), which progressively
decreases the dimension of xt in forward process, thus allowing us to generate high-dimensional
data from a low-dimensional noise. To establish DVDP, we gradually attenuate components of x0

in different subspaces and effectively approximate xt in a sequence of subspaces with decreasing
dimensionality as timestep t progresses. To this end, we firstly decompose x0 into multiple
orthogonal components, and progressively attenuate each component as timestep evolves, which
can be approximated by DVDP (Sec. 3.1). Then, we construct a approximate reverse process with
controllable small error caused by the loss of attenuated x0 component (Sec. 3.2). Finally, we
analyze the approximation error in both forward and reverse processes (Sec. 3.3).

3.1 DIMENSIONALITY-VARYING DIFFUSION PROCESS

To construct a diffusion process with decreasing dimensionality, we decompose the data into
multiple subspaces and attenuate these components with different rates, enabling data to be gradually
approximated in decreasing dimensional subspaces.

To decompose the data point x0, we define a sequence of subspaces S0 ⊋ S1 ⊋ · · · ⊋ SK with
decreasing dimensionality d = d̄0 > d̄1 > · · · > d̄K , where S0 = Rd is the original space,
K ∈ N+. Then, x0 can be decomposed as

x0 = v0 + v1 + · · ·+ vK , (5)
where v0,v1, · · · ,vK are K + 1 orthogonal vectors satisfying vi ∈ Si/Si+1, i = 0, 1, · · · ,K −
1 and vK ∈ SK . With this definition of subspaces and decomposition of x0, we can attenuate
v0,v1, · · · ,vK−1 progressively with time and gradually change the main component of xt from S0
to the low-dimensional subspace SK , which will be shown later.

Because of the fact that adjacent pixels of an image tend to be similar in color, the main components
of images are in a low-dimensional subspace, encouraging us to define Si as the subspace after
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some 2× 2 average-pooling operations on S0. As Si is a d̄i-dimensional subspace, we use function
Di : Si → Rd̄i to denote the homomorphism between it and Rd̄i . In practice, this function will
downsample the attenuated image signal to low-resolution scale without lossing information in Sk,
thus we call it homomorphism downsampling operator similar with Jing et al. (2022).

With the decomposition defined in Eq. (5), it is easy to control the attenuation of each component
vi, i < K in the forward diffusion process. Such a generalized diffusion can be expressed as

xt =

K∑
i=0

(
λ̄i,tvi + σ̄i,tzi

)
, (6)

where λ̄i,t controls the attenuation of vi, zi is the component of a standard Gaussian noise in
subspace Si, and σ̄i,t is the standard deviation of zi. Here the decomposition of noise is a prerequisite
for approximating xt in low-dimensional subspace, since we also need to discard noise components
besides attenuating signal components.

With Eq. (6), we can progressively approximate xt by a sequence of subspace components x1,t ∈
S1 → x2,t ∈ S2 → · · ·xK,t ∈ SK in the following manner: consider a strictly increasing time
sequence T1, T2, · · · , TK , if for each k ≤ K, λ̄0,t, λ̄1,t, · · · , λ̄k−1,t become small enough after time
Tk (T0 ≜ 0 is the start time of forward diffusion), then the diffusion process can be approximated
in subspace Sk (dropping the small high-dimensional term

∑k−1
i=0 λ̄i,tvi) when time t satisfies Tk <

t ≤ Tk+1 (TK+1 ≜ T ) as

xt ≈ xk,t +

k−1∑
i=0

σ̄i,tzi =

K∑
i=k

(
λ̄i,tvi + σ̄i,tzi

)
+

k−1∑
i=0

σ̄i,tzi, Tk ≤ t ≤ Tk+1. (7)

where xk,t =
∑K

i=k

(
λ̄i,tvi + σ̄i,tzi

)
is an approximation of xt in subspace Sk when the time

variable t is inside [Tk, Tk+1]. Note that there is a turning point of dimensionality at xk,Tk
↔

xk−1,Tk
in both forward and reverse process. For better understanding, the attenuation process

of signal part in xk,t (i.e.,
∑K

i=k λ̄i,tvi) is illustrated in Fig. 3. This approximation includes two
terms: 1) low-dimensional component xk,t that can be stored and processed subsequently in a low-
resolution scale through the homomorphism downsampling operator Dk; and 2) high-dimensional
noise

∑k−1
i=0 σ̄i,tzi that can be discarded but equivalently compensated at the turning point of

resolution in the reverse process, i.e., xk,Tk
→ xk−1,Tk

, as we will discuss in Sec. 3.2. The error of
this approximation will be analyzed in Sec. 3.3. Thus we can approximate xt by xk,t in Rd̄k during
the attenuation process of λ̄k,t as

yk,t = Dkxk,t =

K∑
i=k

(
λ̄i,tDkvi + σ̄i,tDkzi

)
, Tk ≤ t ≤ Tk+1, (8)

where yk,t ∈ Rd̄k has a decreasing dimensionality as time evolves. The noise compensation in the
turning point of the reverse process, i.e., yk,Tk

→ yk−1,Tk
will be discussed later in Eq. (14). They

constitute the trajectory of our DVDP.

Finally, to complete the forward process of DVDP, we need to induce the transition kernel of our
diffusion process. As a prerequisite, we write Eq. (8) in a matrix form, representing yk,t by yk,0 as

yk,t = UT
k Λ̄k,tUkyk,0 +UT

k L̄k,tUkϵk, Tk < t ≤ Tk+1, (9)

where yk,0,=

∑K
i=k Dkvi ∈ Rd̄k , ϵk ∈ Rd̄k is a standard Gaussian noise, Uk ∈ Rd̄k×d̄k , Λ̄k,t and

L̄k,t are given by

Uk = DkÛk = Dk[uk,1, · · · ,uk,dk
,uk+1,1, · · · ,uk+1,dk+1

, · · · ,uK,1, · · · ,uK,dK
] (10)

Λ̄k,t = diag(λ̄k,t, · · · , λ̄k,t︸ ︷︷ ︸
dk

, λ̄k+1,t, · · · , λ̄k+1,t︸ ︷︷ ︸
dk+1

, · · · , λ̄K,t, · · · , λ̄K,t︸ ︷︷ ︸
dK

), (11)

L̄k,t = diag(σ̄k,t, · · · , σ̄k,t︸ ︷︷ ︸
dk

, σ̄k+1,t, · · · , σ̄k+1,t︸ ︷︷ ︸
dk+1

, · · · , σ̄K,t, · · · , σ̄K,t︸ ︷︷ ︸
dK

), (12)
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with di = d̄i − d̄i+1 = dim(Si/Si+1), i = 0, 1, · · · ,K − 1 and dK = dim(SK), ui,1, · · · ,ui,di

is a set of orthonormal basis in Si/Si+1 for i = 0, 1, · · · ,K − 1 and uK,1, · · · ,uK,dK
is a set of

orthonormal basis in SK , these orthonormal vectors are columm vectors of Ûk ∈ Rd×d̄k .

Under the Markov assumption, the transition kernel can be expressed using the reparameterization
trick as (see Appendix A for proof)

yk,t = UT
k Λk,tUkyk,t−1 +UT

k Lk,tUkϵk, Tk < t ≤ Tk+1, (13)

where Λk,t = Λ̄−1
k,t−1Λ̄k,t, Lk,t = L̄−1

k,t−1L̄k,t.

3.2 REVERSE PROCESS APPROXIMATING DVDP

The forward process of DVDP has already been given by Eqs. (9) and (13) in Sec. 3.1. In this
section, we will derive an approximate reverse process, which induces a data generation process
with progressively growing dimensionality. In Sec. 3.3, the approximation error will be discussed,
and we can find that it actually converges to zero.

The reverse process is also defined as a Markov chain pθ(yk,t−1|yk,t) with learned Gaussian
transitions like DDPM when Tk < t ≤ Tk+1 (see Appendix B). However, we cannot step over
Tk (i.e., predict yk−1,Tk

from yk,Tk
at the turning point of dimensionality) using pθ(yk,t−1|yk,t).

As xk−1,Tk
∈ Sk−1 and xk,Tk

∈ Sk ⊊ Sk−1, it means that we need to predict the component
of xk−1,Tk

in subspace Sk−1/Sk from another orthogonal signal, which is impossible. Thus it is
also impossible to predict yk−1,Tk

from yk,Tk
. Fortunately, the component of xk−1,0 in subspace

Sk−1/Sk has already attenuated to almost zero, thus we can approximately sample xk−1,Tk
from

xk,Tk
by simply adding a Gaussian noise in Sk−1/Sk to compensate the high-dimensional noise in

xk−1,Tk
. Formally, this can be represented by yk−1,Tk

and yk,Tk
as (see Appendix C.3):

yk−1,Tk
= ÛT

k−1Ûkyk,Tk
+UT

k−1∆L̄k−1,Tk
Uk−1ϵk−1, (14)

where ∆L̄k−1,Tk
= diag(σ̄k−1,Tk

, · · · , σ̄k−1,Tk︸ ︷︷ ︸
dk−1

, 0, · · · , 0︸ ︷︷ ︸
d̄k

), represents the standard deviation of

added noise, and ϵk−1 is a standard Gaussian noise in Rd̄k−1 .

As the mean of pθ(yk,t−1|yk,t) is parameterized to predict noise, the loss function to train the model
pθ(yk,t−1|yk,t) has a similar form with that in DDPM:

L(θ) = Ek,x0,ϵEt∼U(Tk,Tk+1)

[
∥ϵk − ϵθ(yk,t(x0, ϵk), t)∥2

]
, (15)

where U(Tk, Tk+1) is a uniform distribution between Tk and Tk+1.

3.3 ERROR ANALYSIS

DVDP proposed in Sec. 3.1 is an approximation of the generalized diffusion in the whole space
S because of discarding components of x0. In Sec. 3.2 we also indicate that the reverse process
is just an approximation of DVDP. Both of these two approximation errors can be derived from
Proposition 1 (see Appendix C.1):

Proposition 1 Assume p1(x|x0), p2(x|x0) are two Gaussians that p1(x|x0) = N (x;A1x0,Σ)
and p2(x|x0) = N (x;A2x0,Σ), where positive semi-definite matrices A1, A2 satisfies A1 ⪰
A2 ⪰ 0, covariance matrix Σ is positive definite, and the support of distribution p(x0) is bounded,
then Jensen-Shannon Divergence (JSD) of the two marginal distributions p1(x) and p2(x) satisfies

JSD(p1||p2) ≤
√
2

2
e−

1
2B

(
2
√
2 +

Vd(r)

(2π)
d
2

)
∥Σ− 1

2 (A1 −A2)∥2 (16)

where B is the upper bound of ∥x0∥2, Vd(·) is the volume of d-dimensional sphere with respect to
the radius, and r = 2B∥Σ− 1

2A1∥2.

In the forward process, xt is approximated by xk,t where Tk < t ≤ Tk+1. If we compensate xk,t

with a non-informative Gaussian noise and denote the result as x̃k,t, then the upper bound of JSD
between x̃k,t and xt is claimed in Theorem 1 (see Appendix C.2 for proof):
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Theorem 1 (Forward Process Error) Assume 0 < k ≤ K, t > Tk, xt and xk,t follow
distributions defined by Eqs. (6) and (7) respectively, x̃k,t = xk,t +

∑k−1
i=0 σ̄i,tzi where zi is

component of standard Gaussian ϵ in Si/Si+1 for i = 0, 1, · · · , k − 1, and ∥x0∥2 ≤
√
d, then

ξ1 ≤
√
2

2
e−

1
2

√
d

(
2
√
2 +

Vd(r)

(2π)
d
2

)
max
0≤i<k

λ̄i,t

σ̄i,t
= o( max

0≤i<k
λ̄i,t) (17)

where r = 2
√
dmax0≤i≤K

λ̄i,t

σ̄i,t
and ξ1 ≜ JSD(q(x̃k,t)||q(xk,t)).

Note that the assumption ∥x0∥2 ≤
√
d is satisfied when x0 represents an image, since pixel values

of images can be normalized in [−1, 1]. Theorem 1 indicates that as λ̄0,Tk
, · · · , λ̄k−1,Tk

all tend to
zeros, the difference between the real distribution of xt and our approximated distribution of xk,t

converges to zero.

In the reverse process, approximation occurs when stepping over time Tk. The upper bound of JSD
between p(yk−1,Tk

) obtained by the reverse process and q(yk−1,Tk
) defined by the forward process

is claimed in Theorem 2 (see Appendix C.3 for proof)

Theorem 2 (Reverse Process Error) Assume 0 < k ≤ K, q(yk−1,Tk
) and q(yk,Tk

) are
defined by Eq. (9), p(yk−1,Tk

) is the marginal distribution of q(yk,Tk
)p(yk−1,Tk

|yk,Tk
) where

p(yk−1,Tk
|yk,Tk

) is defined by Eq. (14), and ∥x0∥2 ≤
√
d, then

ξ2 ≤
√
2

2
e−

1
2

√
d

(
2
√
2 +

Vd(r)

(2π)
d
2

)
λ̄k−1,Tk

σ̄k−1,Tk

= o(λ̄k−1,Tk
) (18)

where r = 2
√
dmaxk−1≤i≤K

λ̄i,Tk

σ̄i,Tk
and ξ2 ≜ JSD(q(yk−1,Tk

)||p(yk−1,Tk
)).

Similar to ξ1, ξ2 can be arbitrarily small as λ̄k−1,Tk
→ 0. It means that if we get an exact q(yk,Tk

)
by reverse process, then the approximation error caused by stepping over Tk can be small enough.

4 EXPERIMENTS

In this section, we show that our DVDP can speed up both training and inference of diffusion models
while achieving competitive performance. Besides, thanks to the varying dimension, DVDP is able
to generate high-quality and high-resolution images from a low-dimensional subspace and exceeds
all of the existing methods containing advanced Cascaded Diffusion Models (CDM) (Ho et al., 2022)
on FFHQ 1024 × 1024. Specifically, we first introduce our experimental setup in Sec. 4.1. Then
we compare our DVDP with existing alternatives on several widely evaluated datasets in terms of
visual quality and modeling efficiency in Sec. 4.2. After that, we meticulously compare our DVDP
with the recently proposed Subspace Diffusion (Jing et al., 2022) which is closely related to us in
Sec. 4.3. Finally, we implement the necessary ablation studies in the last Sec. 4.4.

4.1 EXPERIMENTAL SETUP

Implementation details. We adopt the UNet of Nichol & Dhariwal (2021); Dhariwal & Nichol
(2021) which achieves better performance than the traditional version (Ho et al., 2020) in all of
the experiments. Considering that the Subspace Diffusion in Sec. 4.3 is the combination of two
diffusion processes of different resolutions, we use two networks for this comparison but only a
single network in all of the rest experiments. In principle, we use the same network structures for
DVDP and corresponding baselines. However, when the resolution comes to 1024, since DVDP has
timesteps equipped with low dimensionality, the structure of score SDE is too deep to be directly
applied in DVDP, thus we only maintain a similar number of parameters but use a different structure.

We set the number of timesteps to T = 1000 for all of our experiments. For DVDP, we reduce
the dimensionality by one-fourth, namely h × h → h

2 ×
h
2 , when the timestep t reaches one of the

pre-designed values, which are denoted as a set T̂ . As for the timestep to vary dimensionality, we set
T̂ = {600} for DVDP of 32×32, indicating the resolution is decreased from 32×32 to 16×16 when
t = 600. Similarly, we set T̂ = {300, 600} for DVDP of 256× 256 and T̂ = {200, 400, 600, 800}
for DVDP of 1024× 1024.
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Table 1: Quantitative comparison between DDPM (Ho et al., 2020) and our DVDP on various
datasets regarding image quality and model efficiency. ∗ indicates our reproduced DDPM, using the
same network architecture as ours.

Dataset Method FID↓
Training Training Sampling Sampling
Speed Speed Up Speed Speed Up

(sec/iter) (sec/sample)

CIFAR10 64× 64
DDPM 3.17 − − − −
DDPM∗ 3.16 0.18 − 0.34 −
DVDP 3.24 0.15 1.2× 0.26 1.3×

LSUN Bedroom 256× 256
DDPM 6.36 − − − −
DDPM∗ 6.75 0.99 − 12.2 −
DVDP 5.34 0.45 2.2× 5.01 2.4×

LSUN Church 256× 256
DDPM 7.89 − −
DDPM∗ 7.54 0.99 − 12.2 −
DVDP 7.03 0.45 2.2× 5.01 2.4×

LSUN Cat 256× 256
DDPM 19.75 − −
DDPM∗ 18.11 0.99 − 12.2 −
DVDP 16.50 0.45 2.2× 5.01 2.4×

FFHQ 256× 256
DDPM∗ 8.33 0.99 − 12.2 −
DVDP 8.03 0.45 2.2× 5.01 2.4×

The noise schedule is similar to the linear schedule (Ho et al., 2020), with adaptation to keep a
comparable signal-to-noise ratio (SNR), as the ratio of lost noise is much larger than the ratio of lost
image signal when downsampling, and causing an increased SNR (see Appendix D for details).

Datasets. In order to verify that DVDP is widely applicable, we use six datasets covering a wide
range of resolutions from 32 to 1024 and various classes. To be specific, we implement DVDP
on CIFAR10 (Krizhevsky et al., 2009), FFHQ 256 × 256 (Karras et al., 2019), LSUN Bedroom
256×256 (Yu et al., 2015), LSUN Church 256×256, LSUN Cat 256×256, and FFHQ 1024×1024.

Evaluation metrics. For all of our experiments, we calculate the FID score (Heusel et al., 2017)
of 50k samples to evaluate the visual quality of samples, except for FFHQ 1024 × 1024 with 10k
samples due to a much slower sampling. As for training and sampling speed, both of them are
evaluated on a single NVIDIA A100 GPU. Training speed is the average number of iterations per
second estimated over 4,000 iterations, and sampling speed is the average number of samples per
second estimated on the generation of 100 batches. The training batch size and sampling batch size
are 128, 256 respectively for CIFAR10, and 24, 64 respectively for other 256×256 datasets.

4.2 IMPROVING VISUAL QUALITY AND MODELING EFFICIENCY.

Comparison with existing alternatives. We compare DVDP with other alternatives here to show
that DVDP has the capability of acceleration while maintaining a reasonable or even better visual
quality. For the sake of fairness, we reproduce DDPM using the same network structure as DVDP
with the same hyperparameters, represented as DDPM∗. Tab. 1 demonstrates our experimental
results on CIFAR10, FFHQ 256×256, and three LSUN datasets. The results show that our proposed
DVDP achieves better FID scores on all of the datasets of 256×256, illustrating an improved visual
quality. Meanwhile, DVDP enjoys improved training and sampling speeds. Specifically, DDPM and
DDPM∗ spend 2.2 times more time than DVDP when training the same epochs, while they spend 2.4
times more time generating one image. Although the superiority of DVDP is obvious on the datasets
of 256× 256, it becomes indistinct when it comes to CIFAR10, which is reasonable considering the
negligible redundancy of images of CIFAR10 due to the low resolution.

Towards high-resolution image synthesis. Since the high computation cost, it is hard for diffusion
models to generate high-resolution images. Score SDE (Song et al., 2021) tries this task by directly
training a large diffusion model but the sample quality is far from reasonable. Recently, CDM aims
to synthesize high-resolution images and obtain impressive results (Ramesh et al., 2022; Saharia
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Table 2: Synthesis performance
of different models trained on
FFHQ 1024× 1024.

Model #Params (M) FID

DVDP 105 15.07
Score-SDE 100 52.40

CDM
98 24.7
165 17.35
286 17.24

Table 3: Ablation study on the number of downsampling
times on CelebA 128×128.

Downsampling
times 0 1 2 3

FID 6.14 5.99 6.10 6.37

Training
Speed Up − 1.98× 2.24× 2.25×

Sampling
Speed Up − 2.12× 2.36× 2.43×

et al., 2022). We compare DVDP with score SDE and CDM on FFHQ 1024 × 1024 in Tab. 2,
where CDM is implemented using three levels of scale following Ho et al. (2022). The results
prove that DVDP beats the strongest CDM and achieves state-of-the-art performance in terms of
high-resolution image synthesis.

4.3 COMPARISON WITH SUBSPACE DIFFUSION

Subspace Diffusion (Jing et al., 2022) can also vary dimensionality during the forward process.
However, as they lack a proper method to replenish the loss of high-frequency information
introduced by dimensionality variation, their timestep to vary dimensionality has to be large enough
to make sure the variance of the noise is large, and thus the loss mentioned above can be ignored.
As a result, there is not enough space left for additional variation in dimensionality as the timestep
of the first variation is too large.

Considering that the dimensionality decreases only once, we compare DVDP with Subspace
Diffusion when the downsampling is carried out at different timestep t. Besides, since the Subspace
Diffusion is only implemented on continuous timesteps before, we reproduce it on discrete timesteps
similar as DDPM and use the reproduced version as a baseline. Fig. 4 illustrates that DVDP
is consistently better with regard to sample quality on CelebA 64 × 64 (Liu et al., 2015) when
downsampling at different timesteps, where the advantage gets larger when the downsampling
timestep gets smaller. In addition, some samples of DVDP and Subspace Diffusion are shown in
Fig. 5, where the sample quality of Subspace Diffusion is apparently worse than that of DVDP
especially when downsampling timestep is small. In conclusion, DVDP is much more insensitive to
the downsampling timestep than Subspace Diffusion, resulting in the possibility of more variation
in dimensionality.

4.4 ABLATION STUDY

We implement ablation study in this section to show that DVDP is able to keep effective when
the number of downsampling growing. Specifically, we verify that on four different settings of
downsamling times, which are n = 0, 1, 2, 3. When n = 1, T̂ is set to {250}. Similarly, when
n = 2 and n = 3, T̂ is set to {250, 500} and {250, 500, 750}, respectively. Furthermore, we use
the same noise schedule for those four different settings. Tab. 3 shows that when the number of
downsampling grows, the sampling quality preserves a reasonable level, indicating that DVDP can
vary dimensionality for multiple times.

5 RELATED WORK

Diffusion models. Sohl-Dickstein et al. (2015) proposes diffusion models for the first time that
generate samples of target distribution by reversing a diffusion process in which target distribution is
gradually disturbed to an easily sampled standard Gaussian. Ho et al. (2020) further proposes DDPM
to reverse the diffusion process by learning a noise prediction network. Song et al. (2021) considers
diffusion models as stochastic differential equations with continuous timesteps and proposes a
unified framework.
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Figure 4: Quantitative comparison between
subspace diffusion (Jing et al., 2022) and our
DVDP on CelebA 64×64 regarding different
timesteps to perform downsampling.
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Figure 5: Qualitative comparison between
subspace diffusion (Jing et al., 2022) and our
DVDP on CelebA 64×64. T1 denotes the
timestep to perform downsampling.

Accelerating diffusion models. Diffusion models significantly suffer from the slow training and
inference speed. There are many methods that speed up sampling from thousands of steps to tens of
steps while keeping an acceptable sample quality (Bao et al., 2022; Lu et al., 2022; Song et al., 2020;
Nichol & Dhariwal, 2021; Watson et al., 2021a;b; San-Roman et al., 2021; Liu et al., 2022). Besides
improvements only on inference speed, there are other works aiming at speeding up both training
and inference. Luhman & Luhman (2022) proposes a patch operation to decrease the dimensionality
of each channel while accordingly increasing the number of channels, which greatly reduces the
complexity of computation. Besides, a trainable forward process (Zhang & Chen, 2021) is also
proven to benefit a faster training and inference speed. However, the price of their acceleration is a
poor sampling quality evaluated by FID score. In this work, we accelerate DPM on both training and
inference from a different perspective by heavily reducing the dimensionality of the early diffusion
process and thus improving the efficiency while obtaining on-par or even better quality of generation.

Varying dimensionality generative process using diffusion models The typical requirement of
diffusion models that maintain a high dimensionality may lead to poor efficiency and difficulty to
generate high-resolution images. Due to the spatial redundancy in image signals, it is possible
to improve the efficiency of diffusion models by varying dimensionality during the diffusion
process. The most relevant work to our proposed model is Jing et al. (2022), which can also vary
dimensionality in the diffusion process. However, simply varying the dimensionality as in Jing et al.
(2022) may result in an inferior performance (see experimental results in Sec. 4.3), as it lacks a
proper method to supplement the loss of high-frequency information at the moment of variation,
which is our main contribution in this paper. Consequently, the number of dimensionality variations
is limited to one time in Jing et al. (2022). Furthermore, Ryu & Ye (2022) takes advantage of position
coding to train a diffusion model adaptable to multiple resolutions, and inference by repeating a
series of growing dimensionality reverse processes, undergoing a lower efficiency.

6 CONCLUSION

This paper generalizes the traditional diffusion process to a dimensionality-varying diffusion process
(DVDP). The proposed DVDP has both theoretical and experimental contributions. Theoretically,
we carefully decompose the signal in the diffusion process into multiple orthogonal dynamic
attenuation components. With a rigorously deduced approximation strategy, this then leads to a
novel reverse process that generates images from much lower dimensional noises compared with the
image resolutions. Experimentally this design allows much faster training and sampling speed of the
diffusion models with on-par or even better synthesis performance, and superiority performance in
synthesizing large images of 1024× 1024 resolution compared with classic methods. The results in
this work can promote the understanding and applications of diffusion models in broader scenarios.
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APPENDIX

A PROOF OF THE FORWARD TRANSITION KERNEL

The Gaussian transition kernel can be written as

q(yk,t|yk,t−1) = N (yk,t;Uk
TΛk,tUkyk,t−1,Uk

TL2
k,tUk), (A1)

where Λk,t and Lk,t are to be determined.

q(yk,t−1|yk,0) is given by Eq. (9) as

q(yk,t−1|yk,0) = N (yk,t−1;Uk
T Λ̄k,t−1Ukyk,0,Uk

T L̄2
k,t−1Uk) (A2)

Thus, q(yk,t|yk,0) can be derived from Eqs. (A1) and (A2) and is also Gaussian with mean µt and
Σt expressed as

µt = Uk
TΛk,tΛ̄k,t−1Ukyk,0 (A3)

Σt = Uk
T
(
Λk,tL̄

2
k,t−1Λ

T
k,t +L2

k,t

)
Uk (A4)

According to the expression of q(yk,t|yk,0) in Eq. (9), µt and Σ also satisfies

µt = Uk
T Λ̄k,tUkyk,0 (A5)

Σt = Uk
T L̄2

k,tUk (A6)

Combining Eqs. (A3) to (A6), we can obtain Λk,t, Lk,t, which is just the definition in Eq. (13).

B PROOFS OF REVERSE TRANSITION KERNEL

As in DDPM (Ho et al., 2020), the covariance matrix of pθ(yk,t−1|yk,t) can be set as the covariance
of q(yk,t|yk,0) (i.e., UT

k L̄2
k,tUk) or the covariance of q(yk,t−1|yk,t,yk,0), denoted as Σ̃k,t. The

mean of pθ(yk,t−1|yk,t) is set to learn the target µ̃k,t(yk,t(yk,0, ϵk),yk,0), which is the mean of
q(yk,t−1|yk,t,yk,0). Here we derive expressions of Σ̃k,t and µ̃k,t.
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Since q(yk,t−1|yk,t,yk,0) ∝ q(yk,t−1|yk,0)q(yk,t|yk,t−1) where q(yk,t−1|yk,0), q(yk,t|yk,t−1)
are two Gaussians given by Eqs. (9) and (13) respectively, q(yk,t−1|yk,t,yk,0) is also a Gaussian
and its exponent, denoted as h, can be written as

h =− 1

2

[
(yk,t−1 −Uk

T Λ̄k,t−1Ukyk,0)
TUk

T L̄−2
k,t−1Uk(yk,t−1 −Uk

T Λ̄k,t−1Ukyk,0)

+ (yk,t −Uk
TΛk,tUkyk,t−1)

TUk
TL−2

k,tUk(yk,t −Uk
TΛk,tUkyk,t−1)

]
=yT

k,t−1Uk
T (L̄2

k,t−1 +Λ2
k,tL

−2
k,t)Ukyk,t−1

− 2(Λ̄k,t−1L̄
−2
k,t−1yk,0 +Λk,tL

−2
k,tyk,t)

Tyk,t−1 + C,

(A7)

where C is a constant that irrelevant with yk,t−1.

Compare Eq. (A7) with the formulation of Gaussian distribution, we obtain the mean µ̃k,t and the
covariance Σ̃k,t of q(yk,t−1|yk,t,yk,0)

µ̃k,t =Uk
T L̄−2

k,t(L
2
k,tΛ̄k,t−1Ukyk,0 + L̄2

k,t−1Λk,tUkyk,t) (A8)

Σ̃k,t =Uk
T (L̄−1

k,tL̄k,t−1Lk,t)
2Uk (A9)

C PROOFS OF APPROXIMATION ERROR

C.1 PROOF OF PROPOSITION 1

According to the inequality between JSD and total variation, we have

JSD(p1||p2) ≤
1

2

∫
|p1(x)− p2(x)|dx (A10)

The right-hand side of Eq. (A10) satisfies

1

2

∫
|p1(x)− p2(x)|dx =

1

2

∫
|Ex0∼p[p1(x|x0)− p2(x|x0)]| dx

≤ 1

2

∫
Ex0∼p [|p1(x|x0)− p2(x|x0)|] dx

(A11)

By the assumption, p1(x|x0), p2(x|x0) are two Gaussians. Using the mean value theorem, there
exists θ = θ(x0,x) ∈ [0, 1] such that ξ = θ(x−A1x0) + (1− θ)(x−A2x0) = x− [θA1 + (1−
θ)A2]x0 satisfies

p1(x|x0)− p2(x|x0) =C1

[
e−

1
2 (x−A1x0)

TΣ−1(x−A1x0) − e−
1
2 (x−A2x0)

TΣ−1(x−A2x0)
]

=C1e
− 1

2ξ
TΣ−1ξξTΣ−1(A1 −A2)x0

=C1Fe−
1
4ξ

TΣ−1ξ,

(A12)

where C1 = 1
(2π)1/2det(Σ)1/2

, F = e−
1
4ξ

TΣ−1ξξTΣ−1(A1 −A2)x0.

Now, we consider F first.

|F | =∥Σ−1/2ξ∥2e−
1
4∥Σ

−1/2ξ∥2
2

∣∣∣ (Σ1/2ξ)T

∥Σ−1/2ξ∥2
Σ−1/2(A1 −A2)x0

∣∣∣
≤C2∥Σ−1/2(A1 −A2)x0∥2
≤C2B∥Σ−1/2(A1 −A2)∥2,

(A13)

where C2 = maxa≥0 ae
− 1

4a
2

=
√
2e−

1
2 , and B is the upper bound of ∥x0∥2 as assumption.

Combining Eqs. (A11) to (A13), we have

1

2

∫
|p1(x)− p2(x)|dx ≤

1

2
C1C2B∥Σ−1/2(A1 −A2)∥2

∫
Ex0∼p[e

− 1
4ξ

TΣ−1ξ]dx, (A14)
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where ξ = x− [θA1 + (1− θ)A2]x0.

Consider ξTΣ−1ξ = ∥Σ−1/2(x− (θA1 +(1− θ)A2)x0)∥22, let z = Σ−1/2[θA1 +(1− θ)A2]x0,
then

∥z∥2 =∥Σ−1/2[θA1 + (1− θ)A2]x0∥2
≤B∥Σ−1/2[θA1 + (1− θ)A2]∥2
≤B∥Σ−1/2A1∥2,

(A15)

where the last inequality is derived from the assumption that A1 ⪰ A2 ⪰ 0.

Let D = {x : ∥Σ1/2x∥2 ≤ r}, where r = 2B∥Σ−1/2A1∥2, then the integration in Eq. (A14) can
be split into two regions as∫

Ex0∼p[e
− 1

4ξ
TΣ−1ξ]dx =

∫
D
Ex0∼p[e

− 1
4∥Σ

−1/2x−z∥2
2 ]dx+

∫
DC

Ex0∼p[e
− 1

4∥Σ
−1/2x−z∥2

2 ]dx

≤
∫
D
1dx+

∫
e−

1
16∥Σ

−1/2x∥2
2dx

≤Vd(r)det(Σ)
1/2 + 2

√
2(2π)d/2det(Σ)1/2,

(A16)
where Vd(·) is the volume of d-dimensional sphere with respect to the radius.

By Eqs. (A14) and (A16), we can get Proposition 1.

C.2 PROOF OF THEOREM 1

Let uk,1,uk,2,uk,dk
be a set of orthonormal basis of Sk for k = 0, 1, · · · ,K, and define U =

[u0,1, · · · ,u0,d0 ,u1,1, · · · ,u1,d1 , · · · ,uK,1, · · · ,uK,dK
]T , then Eq. (6) can be written as

q(xt|x0) = N (xt;U
T Λ̄tUx0,U

T L̄2
tU), (A17)

where Λ̄t and L̄t are defined as

Λ̄t =diag(λ̄0,t, · · · , λ̄0,t︸ ︷︷ ︸
d0

, λ̄1,t, · · · , λ̄1,t︸ ︷︷ ︸
d1

, · · · , λ̄K,t, · · · , λ̄K,t︸ ︷︷ ︸
dK

) (A18)

L̄t =diag(σ̄0,t, · · · , σ̄0,t︸ ︷︷ ︸
d0

, σ̄1,t, · · · , σ̄1,t︸ ︷︷ ︸
d1

, · · · , σ̄K,t, · · · , σ̄K,t︸ ︷︷ ︸
dK

) (A19)

q(x̃k,t|x0) can also be written as

q(x̃k,t|x0) = N (xt;U
T Λ̃k,tUx0,U

T L̄2
tU), (A20)

where
Λ̃k,t = diag(0, · · · , 0︸ ︷︷ ︸

d−d̄k

, λ̄k,t, · · · , λ̄k,t︸ ︷︷ ︸
dk

, · · · , λ̄K,t, · · · , λ̄K,t︸ ︷︷ ︸
dK

) (A21)

Thus, UT Λ̄tU ⪰ UT Λ̃k,tU ⪰ 0, UT L̄2
tU ≻ 0. According to the assumption, ∥x0∥2 ≤

√
d.

Then Theorem 1 can be easily derived from Proposition 1 as

ξ1 ≤
√
2

2
e−

1
2

√
d

(
2
√
2 +

Vd(r)

(2π)
d
2

)
∥L̄−1(Λ̄t − Λ̃k,t)∥2

=

√
2

2
e−

1
2

√
d

(
2
√
2 +

Vd(r)

(2π)
d
2

)
max
0≤i<k

λ̄i,t

σ̄i,t

=o( max
0≤i<k

λ̄i,t),

(A22)

where

r = 2
√
d∥L̄−1Λ̄t∥2 = 2

√
d max
0≤i≤K

λ̄i,t

σ̄i,t
(A23)
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C.3 PROOF OF THEOREM 2

By Eq. (9), we have

q(yk−1,Tk
|yk−1,0) = N (yk−1,Tk

;Uk−1
T Λ̄k−1,Tk

Uk−1yk−1,0,Uk−1
T L̄2

k−1,Tk
Uk−1). (A24)

By the assumption and Eq. (9), we have

p(yk−1,Tk
|yk−1,0) = N (yk−1,Tk

;Uk−1
T Λ̃k−1,Tk

Uk−1,Uk−1
T L̄2

k−1,Tk
Uk−1), (A25)

where Λ̃k−1,Tk
= diag(0, · · · , 0︸ ︷︷ ︸

dk−1

, λ̄k,t, · · · , λ̄k,t︸ ︷︷ ︸
dk

, · · · , λ̄K,t, · · · , λ̄K,t︸ ︷︷ ︸
dK

).

Then by Proposition 1, we can get Theorem 2.

D ADAPTATION ON NOISE SCHEDULE

Since we choose subspaces in which the main components of images stays, the image signal will
not lose much components when getting close to the subspace and downsampled to a smaller size.
However, Gaussian noise does not have this property and can lose large parts of components in
the downsampling operation. Thus, the signal-to-noise (SNR) ratio at the last timestep T will be
smaller than that in DDPM (Ho et al., 2020) if we just use the same noise schedule. Suppose at
Tk, k = 1, 2, · · · ,K, yk−1,Tk

∈ Rd̄k−1 is downsampled to yk,Tk
∈ Rd̄k with downsamling factor

fk = d̄k−1/d̄k, then the noise shedule is adapted as Algorithm 1, which can approximately keep the
SNR at the last timestep meanwhile maintaining the continuity of σ̄.

Algorithm 1 Adaptation on Noise Schedule
1: Initialize ᾱ[0 : T ] as in DDPM

2: σ̄ ←
√

1
ᾱ − 1

3: for k = 1, · · · ,K do
4: σ̄[Tk :]← σ̄[Tk − 1] + fk · (σ̄[Tk :]− σ̄[Tk − 1])
5: end for
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