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Abstract
Vision-Language models (VLMs), i.e., image-text
pairs of CLIP, have boosted image-based Deep
Learning (DL). Unseen images by transferring se-
mantic knowledge from seen classes can be dealt
with with the help of language models pre-trained
only with texts. Two-dimensional spatial rela-
tionships and a higher semantic level have been
performed. Moreover, Visual-Question-Answer
(VQA) tools and open-vocabulary semantic seg-
mentation provide us with more detailed scene
descriptions, i.e., qualitative texts, in captions.
However, the capability of VLMs presents still
far from that of human perception. This paper
proposes PanopticCAP for refined and enriched
qualitative and quantitative captions to make them
closer to what human recognizes by combining
multiple DLs and VLMs. In particular, captions
with physical scales and objects’ surface proper-
ties are integrated by counting, visibility distance,
and road conditions. Fine-tuned VLM models are
also used. An iteratively refined caption model
with a new physics-based contrastive loss function
is used. Experimental results using images with
adversarial weather conditions, i.e., rain, snow,
fog, landslide, flooding, and traffic events, i.e.,
accidents, outperform state-of-the-art DLs and
VLMs. A higher semantic level in captions for
real-world scene descriptions is shown.

1. Introduction
Segmentation has become an important task for real-

world applications by Deep Learning (DL) (Long et al.,
2015; Liu et al., 2021; Xie et al., 2021; Gu et al., 2022;
Dosovitskiy et al., 2021; Tan & Le, 2019; Kim et al., 2020;
Li et al., 2019; 2021). Segmentation has become diversified
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into semantic and instance segmentation. Although many
variants of segmentation models are presented, issues with
limits of training image datasets and robustness to illumi-
nation and noise remain unsolved. Only pretraining a finite
number of images could not have enhanced segmentation
accuracy in real-world scenes. Dynamic changes have been
dealt with by rain drops (Quan et al., 2021; Yang et al.,
2019), defog, and dehaze (Lee et al., 2022; Li et al., 2017;
Yan et al., 2020; Guo et al., 2022; Ma et al., 2022); how-
ever, these methods fail to deal with heavy fog and snowfall
events. Moreover, unpredicted disaster and traffic accident
scenes require more pretraining image datasets; however, in
spite of vital events, they are hard to collect sufficient images
and videos due to rare chances. Therefore, segmentation to
such conditions and events becomes degraded.

The single view metrology approach focuses on estab-
lishing correlations between low-level image features, such
as vanishing points and lines, the 3D dimensions of objects,
and their corresponding 2D positions and sizes in the scene.
Several studies have utilized this approach to estimate object
heights or camera height using camera parameters, image
features, and annotated size information of reference objects
(Lee et al., 2023). However, there is currently no research
that addresses the inclusion of 2D physical scale, i.e., object
location and size in meters, in image captions.

Recently, CV, DL, and NLP have been combined, i.e.,
Vision Language Model (VLM). It is known that unseen
images that have not been pretrained have been recognized
much better than only CV or DL models. VLMs can un-
derstand vision and text, allowing them to perform tasks
requiring multimodal understanding, i.e., Visual Question
Answer (VQA), image captioning, or image retrieval. More-
over, VLMs can be pre-trained on large datasets (Radford
et al., 2021; Miech et al., 2020; Li et al., 2022e) and fine-
tuned on smaller datasets for specific tasks, such as object
detection, segmentation, or classification. VLMs can save
time and resources in various applications and improve se-
mantic understanding by recognizing relationships between
objects and concepts and developing a comprehensive un-
derstanding of visual content.

Image captioning is an important and challenging task in
computer vision that involves generating natural language
descriptions of complex visual scenes that include objects
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and their surrounding context. However, single VML is
often weak for dynamic changes, i.e., disaster scenes (Sree-
lakshmi & Chandra, 2022) with heavy rainfall and snowfall
have been increasing, which may cause a chain reaction
of natural disasters observed from the satellite images, i.e.,
landslides and flooding (Hernández et al., 2022; Xiang et al.,
2023; Chen et al., 2023b). However, camera image-based
post-disaster object recognition for dirt, water, and rocks
remains unsolved on the road. Since domain adaptation
segmentation DL models (Wang et al., 2021; Hoyer et al.,
2022) require manual selection of the optimal pre-trained
model, they are not useful for dynamic changes.

Unseen images that have not been pre-trained have be-
come recognized by VLM frameworks (Chen et al., 2023a;
Francis et al., 2021). More diverse and out-of-distribution
data for pre-training and evaluation are used (Howard &
Ruder, 2018). Prompt learning to adapt VLMs to new tasks
without fine-tuning is also shown (Jiang et al., 2023). Con-
tents of captions have been enhanced for better descriptions
of real-world objects (Francis et al., 2021).

Geometric reasoning or depth estimation to infer 3-
D information from 2-D images (Yu et al., 2022; Zhang
et al., 2022) is shown using 3D point-cloud data and in-
door scenes. Pretraining VLMs require over 100 million
image-text paired datasets for high accuracy, more than
DL models require. Therefore, many efficient models have
been introduced (Chen et al., 2023a; Francis et al., 2021;
Li et al., 2022b;d; Sanghi et al., 2022; Shi et al., 2022;
Zhu et al., 2022; Radford et al., 2021). However, laborious
and time-consuming tasks remain unsolved in pretraining
VLMs. Visual ChatGPT API tool has become famous as the
image-text captioning tool.

The advantage of Visual ChatGPT (Wu et al., 2023) is
that it can produce acceptable results on the general scene
and unseen classes. However, since Visual ChatGPT (Wu
et al., 2023) is trained on the limited data of the year 2021, it
generates captions under older datasets. So far, Visual Chat-
GPT (Wu et al., 2023) is weak at generating dynamic scene
descriptions like weather and road conditions. Moreover,
the physical size of objects and fog visibility distance is con-
tained. Besides, for images to be best captioned, they need
to depict information most similar to Human perception. Hu-
man perception can simultaneously process different visual
cues, i.e., texture, and shape, to identify and label objects
at varying distances. Therefore, a method for refining and
enriching captions with different visual cues is needed.

To this end, this paper proposes PanopticCAP: a panop-
tic vision-language model under adversarial visual condi-
tions using single images. This paper proposes refined and
enriched captions for scene descriptions under adversar-
ial conditions by the proposed PanopticCAP with multiple
task-oriented DLs and VLMs. PanopticCAP consists of

eight modules, i.e., Deep Visual Language Classification
(Dvlc), Deep Visual Language Segmentation (Dvls), Con-
trastive Language Physical scale Pretraining (CLPP), Deep
Road conditions (Droad), Deep anomaly (Danomal), Deep
snowfall (Dsnow). The branched architecture allows us to
maintain and upgrade each of the eleven modules efficiently.

Contributions of this paper are fourfold:

1. Multiple vision language and Transformer-based Deep
Learning (DL) models with branched structures for ef-
ficiency in light of memory, training, and maintenance.
Danomal excludes difficult images, i.e., lenz reflec-
tion, to stabilize the overall system. Due to enormous
datasets of VLMs, Dvls, and Dvlc are fine-tuned VLMs
from SOTA models for segmentation and classification,
respectively.

2. It is the first time to contain dynamic changes with
physical scales, i.e., weather conditions by Dsnow,
and road conditions by Droad. Unseen images like
adversarial weather and disaster conditions can be dealt
with. Moreover, more detailed scene descriptions of
traffic accident events are shown.

3. More refined and enriched captions are generated based
on fixed queries at CLPP, and the above multiple mod-
ules. A new contrastive loss function is proposed in
CLPP to refine and enrich captions with the object’s
physical scale, i.e., size and position, under an itera-
tive refinement process. API tools, i.e., Visual Chat-
GPT (Wu et al., 2023), may be hard to generate dy-
namic scene changes with physical scales as this paper
presents.

4. Many experimental results show the superiority of the
proposed PanopticCAP over SOTA DLs and VLMs.
The proposed PanopticCAP will help notify detailed
scene descriptions, i.e., more quantitative texts, to
drivers, auto-driving, and rescue workers from camera
images.

2. Proposed Method
This section describes the proposed PanopticCAP

method/system for refinement and enrichment of captioning
and classes from a single image input. In particular, this
paper introduces a dynamic caption by a physical scale that
cannot be pre-trained in a vision-language model.

To realize this, SOTAs in segmentation and vision-
language models face their limits. Therefore, instead of
using only vision models or a single vision-language model,
this paper proposes a new architecture that integrates multi-
ple Deep Learning and vision-language modules. Figure 1
shows an overview of the proposed PanopticCAP.
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Figure 1. Overview of the proposed PanopticCAP model.

Since this paper deals with many challenging scenes
with disasters and car accidents, adversarial conditions are
considered. And a Danomal-like DeepReject in (Sakaino,
2023a;b; 2022) is proposed to avoid the degradation of the
cascaded other recognition modules. Further detailed expla-
nations of the multiple modules will be given in Sections
2.1 to 2.3.

2.1. Proposed Dvlc and Dvls

Dvlc is a vision-language model trained on image and
text pairs that can predict the most relevant text given an
image. It does not need to be directly optimized for this
task and can perform “zero-shot” learning like GPT-2 and
-3. Dvlc matches the performance of the original ResNet50
on ImageNet “zero-shot” without using any of the original
1.28M labeled examples, which is a significant accomplish-
ment in Computer Vision.

Dvlc utilizes the input texts of five distinct disaster cate-
gories: car crashes, flooding, fog, landslide, and rain. Tai-
lored textual input descriptions are employed for each dis-
aster category to enhance natural language processing tech-
niques in analyzing disaster-related data. These scenes are
associated with domain-specific terms such as pedestrian,
airplane, debris flow, and eruption to improve the accuracy
of automated disaster detection and classification.

Dvls is proposed to obtain semantic segmentation of these
scenes. Dvls is finetuned from OvSeg (Liang et al., 2022)
by adding a new physical constraint to the loss function.
To obtain descriptions of disasters for the Dvlc, a classifi-
cation task is performed using keywords corresponding to
each disaster scene. These texts are used to generate text
descriptions of the disasters that are fixed for each type of
scene.

Therefore, since Dvlc and Dvls recognize texts and seg-
mented objects from a single image, this paper proposes to

combine respective outputs.

2.2. Proposed CLPP

The proposed Contrastive Language Physical-Scale Pre-
training (CLPP) is a VLM with inputs from object locations
from pairs of images and text descriptions and a modified
contrastive loss function. Unlike SOTA VLMs with no
physical models in contrastive loss functions, this paper pro-
poses CLPP with additional physical constraints, as shown
in Figure 2. The original contrastive loss function of CLIP
(Radford et al., 2021) is defined by

L =
1

2
(1− Y ) ∗D2 +

1

2
Y ∗max(0,m−D)2 (1)

where * denotes a multiplication, Y is the binary label indi-
cating whether the text and image are similar or dissimilar,
D is the distance between the learned embeddings of the
text and image, and m is the margin hyperparameter, i.e.,
0.2. In order to incorporate the physical scale, including the
size and location of objects, i.e., meters, a similarity metric
is added. The modified contrastive loss is then defined as

L =
1

2
(1−Y )∗D2 ∗ (1−sim)+

1

2
Y ∗max(0,m−D)2 ∗sim

(2)
where sim is the physical similarity between the text de-
scription and the image with object location. sim is com-
puted as the Euclidean distance between the location of
objects in the image and its description in the text. sim is
defined by

sim = ws ∗ E(ST , SI) + wl ∗ E(RT , RI) (3)

where: ws is the weight of an object physical size, and wl

is the weight of object’s physical location, normally, ws and
wl are both set equal to 0.5. E(ST , SI) is the Euclidean dis-
tance between the physical size in image SI and in the text
description ST . E(RT , RI) is RMSE between the physical
object location in the image RI and in text description RT .
The physical size of the object is determined based on the
ratio between the object size in pixels and the object size in
meters as labeled in the dataset.

When using cosine similarity as the distance metric D in
the contrastive loss function, which ranges from −1 to 1,
the margin hyperparameter is typically set to a small value,
i.e., 0.2 to 0.5.

2.3. Proposed Droad, and Dsnow

This section discusses the proposed Droad, and Dsnow.
Unlike SOTA papers in DLs and VLMs, this paper aims to
generate dynamic scene changes with the weather condi-
tions, i.e., rain, snow, and fog, and road conditions, i.e., dry,
wet, and snow. Droad (Sakaino, 2023b) is applied for fur-
ther detailed classes of segmented objects. Dscene (Sakaino,
2023b;a) is also applied to ensure snow conditions.
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Figure 2. Proposed contrastive language for pre-training in physi-
cal scale.

In Droad (Sakaino, 2023b), and Dscene (Sakaino,
2023b;a;c), Swinformer (Liu et al., 2021) is trained from
over 7500 winter road images. It is noted that since pub-
licly available annotation datasets are insufficient, various
weather and road scenes from different countries under ad-
versarial conditions have been collected and used to train.
Dsnow employs a transformer-based classifier trained on
images captured during adverse weather conditions to esti-
mate the level of snowfall. Our experts captured and labeled
all the images used in the aforementioned DL models.

2.4. Caption refinement

The caption refinement process involves utilizing a large
language model (LLM), namely GPT-4 (OpenAI, 2023),
which incorporates the segmentation outcomes from Dvls,
the physical scale from CLPP, and the captions generated by
VQA. The output of Dvls comprises semantic segmentation
along with corresponding locations and descriptions, ex-
pressed in a language-based segmentation format as a list of
{object description: bounding box of the object in pixels}.
The output of CLPP is a caption that includes details about
the physical scale, i.e., object size, distance, water level,
and visibility. VQA contributes additional descriptions that
capture the overall dynamic conditions, including adverse
weather conditions, to provide contextual information for
the LLM. The final result of caption refinement is an en-
riched caption that encompasses information about road
conditions, water levels, and relative object locations.

3. Experiments and Discussion
3.1. Refined Semantic Segmentation by Prompt

Engineering

This section denotes the proposed Dvls and how to
obtain the final refined captions using prompt engineer-
ing. The prompt for each scene is pre-defined as a list of
words, i.e., (1) car crashes: [“pedestrian”,“car”, “car crash”,
“road”, “bike”, “tree”]; (2) flooding: [“water”, “car”, “per-
son”, “tree”, “sky”]; (3) fog: [“foggy”, “mountain”, “road”,

“car”, “wet”]; (4) landslide: [“landslide”, “debris flow”,
“rocks”, “road”, “dirt”]; (5) rain: [“water”, “rain”, “um-
brella”, “road”, “person”]. Prompts for Dvls model are
selected based on the classification results from Dvlc and
the aforementioned pre-defined texts.

Figure 3 illustrates the effectiveness of our approach on
images with foggy and traffic accident scenes. (a) shows
the input images, while (c) displays the segmentation re-
sults generated by the transformer-based SOTA segmenta-
tion model, i.e., Mask2former (Cheng et al., 2022), which
shows generic classes, i.e., “sky-other-merged”, and “car”.
(b) presents improved segmentation results and achieved
prompt engineering, which provides more detailed seman-
tic segmentation results, i.e., more detail from sky-other-
merged” to “foggy” for the foggy scene and from “car” to
“car crash” for the traffic accident scene. It has been demon-
strated that prompt tuning for Dvlc is helpful for detailing
segmentation results under dynamic conditions.

(a) (b) (c)

Figure 3. Results of segmentation by SOTA and proposed Panop-
ticCAP: (a) Original image. (b) Proposed refined semantic seg-
mentation. (c) Mask2Former (Cheng et al., 2022)

3.2. Dynamic Captions with Weather and Road
Conditions by Proposed Dsnow, Droad, and Dwater

To provide further complicated captions, this section
conducts experiments on various weather conditions with
traffic and disaster scenes. The proposed Dsnow, and Droad
are used by comparing a SOTA VL captioning model, BLIP
(Li et al., 2022c).

Figure 4 shows six scenes. As a result, road conditions by
Droad (1)-(6) are wet in blue and snow in yellow. Dsnow’s
indicators (3)-(6) present light to heavy snowfall. Dvlc rec-
ognizes overall scene objects like mountains, rivers, rocks,
sky, and trees. Therefore, the road condition and visibility
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distance have been included in the captions of Dvlc.

Table 1 shows a comparison of the refined captions and
a SOTA BLIP (Li et al., 2022c) result using six scenes of
Figure 4. The comparison results show that a refined cap-
tion is detailed about the scene by adding road conditions,
snowfall status, location of objects, and exact visibility in
meters. Besides, the caption from BLIP lacks a description.
The result has proven that the proposed method integrating
Droad, and Dsnow outperforms single VML, i.e., BLIP (Li
et al., 2022c).

Table 1. Comparison of the refined captions with BLIP caption
results.

Proposed method BLIP (Li et al., 2022c)

(1) Rocks lay on the flooding road A flooded road in the
rain

(2) Rock debris lay on the wet road, within
clear visibility

A road in the rain with
rocks and debris on

the side

(3) 15 vehicles on the wet highway, under
heavy snowfall

A snowstorm on a
highway

(4) A truck on the wet highway, snow on
the side of the highway, under heavy snowfall

A snow plow clears a
road in the snow

(5) 12 people stand on a flooded road,
and 0.5m water level (Lv2)

A group of people on
flooded road

(6) The highway under light snowfall
with the snow on the side of the road

Snow-covered road
with a fence and

a street light

(1) (2)

(3) (4)

(5) (6)

Figure 4. Results of proposed Dvls with refined and enriched cap-
tions in dynamic scenes: (1) Flooding road. (2) Landslide on the
road. (3), (4) Heavy snowfall on the highway. (5) Flooded scene
with water level, Lv2. (6) Light snowfall on the highway.

4. Ablation study
To justify the proposed PanopticCAP, many additional

experiments are ablated below.

4.1. Caption Refinement by Dvls

To show the usefulness of refined Dvls, many unseen
disaster scenes that have not been pre-trained are used to
segment with classes. As shown in Figure 5 (a), images
present disaster events. Two SOTAs of (c) MaskDINO (Li
et al., 2022a). (d) OVSeg (Liang et al., 2022) are compared.

As a result, Table 2 summarizes classes of (b) proposed
Dvls and (c), (d) two SOTAs. In (1), a track (c) or boat (d)

has been annotated, whereas the proposed Dvls have refined
to “car crash” over water (b). In (2)-(5), snow to water,
landslide to rocks, pavement to rain, and tree to strong wind
have been annotated by (b) the proposed Dvls, respectively.

Therefore, refined texts from SOTAs’ texts could enhance
original to higher semantic texts. In particular, (5) tree (c) is
normal segmentation, but strong wind (b), (d) stands for in-
tuitive weather conditions as humans may announce. When
combined with location prompts, Dvls can label segmented
objects more semantically. Therefore, it has been proven
that the proposed Dvls with texts will play an important
role in messaging heavy disaster events more clearly than
SOTAs’ texts.

(1)

(2)

(3)

(4)

(5)

(a) (b) (c) (d)

Figure 5. Comparison of the proposed method, MaskDINO (Li
et al., 2022a), and OVSeg (Liang et al., 2022) (a) Input image.
(b) Proposed Dvls. (c) MaskDINO (Li et al., 2022a) (d) OVSeg
(Liang et al., 2022)

Table 2. Comparison of classes by SOTAs and proposed Dvls.
Image SOTA Proposed

(1) table, chair fell chairs
(2) snow, rain water
(3) rock-merged, rain landslide
(4) couch couch, broken area
(5) tree-merged, typhoon strong wind

4.2. CLPP with Different Loss Function Parameters

This section presents an experimental comparison of var-
ious parameters for the contrastive loss function (L) used in
the proposed CLPP. In this experiment, m is used from array
list values [0.2, 0.3, 0.4, 0.5]. A comparison of equation 1
and the proposed equations 2 and 3 is carried out.

Table 3 shows a comparison of the modified loss function
and the original one for the physical scale-generated caption.
The result shows that the performance of CLPP is the lowest
in RMSE when m is set to be 0.4. Therefore, it has been
reconfirmed that the selected m is optimal.
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Table 3. RMSE of different values m with/without sim.
m Modified Original
0.2 0.1985 0.2214
0.3 0.2043 0.2375
0.4 0.1894 0.2018
0.5 0.1964 0.2145

4.3. Overall Evaluation PanopticCAP

This section presents an experiment that evaluates the
final output of all eleven modules. The experiment measures
performance using the BLEU score and is conducted on
two datasets. The first dataset is publicly available and
includes the COCO Caption dataset (Chen et al., 2015)
and the Conceptual Captions dataset (Sharma et al., 2018),
both of which contain image-text pairs. The second dataset
includes two images with accompanying text descriptions
describing snowfall status, water level, and physical scale.
These collections are the Disaster dataset (1850 image-text
pairs) and the Traffic accident dataset (2130 image-text
pairs).

According to the results in Table 4, PanopticCAP does
not perform as well as Visual ChatGPT. This could be due
to the fact that the text descriptions in the public image set
do not include information about road conditions, water lev-
els, snow conditions, or visibility, whereas PanopticCAP is
capable of generating captions with these details. However,
Table 5 presents contradictory results, where PanopticCAP
outperforms Visual ChatGPT on datasets featuring disaster
or traffic accident conditions.

It has been proven that PanopticCAP can provide detailed
semantics about the physical aspects of scenes. These can
be highly useful for tasks such as traffic coordination and
rescue operations.

Table 4. Performance evaluation of proposed panopticCAP on pub-
lic image-text datasets

Dataset/Method PanopticCAP Visual
ChatGPT

COCO Caption 0.4384 0.4415
Conceptual Caption 0.4319 0.4235

Table 5. Performance evaluation of proposed panopticCAP on col-
lected datasets.

Dataset/Method PanopticCAP Visual
ChatGPT

Disaster 0.4521 0.3124
Traffic accident 0.4315 0.3254

Furthermore, a comparison was made between the com-
putational cost and memory usage of the proposed system
and SOTA methods on the same hardware device. Table 6
presents a comparison of the computational cost and mem-
ory usage for these methods.

5. Conclusion
This paper introduces PanopticCAP, a novel framework

that combines multiple DL and VLM models using effi-
cient branched structures. It is the first approach to incor-

Table 6. Computational cost and memory usage comparisons.
Perform/Model Computational cost

(second)
Memory

usage (Mb)
Proposed method 9.423 11231
Visual ChatGPT 8.123 6132

BLIP(Li et al., 2022c) 1.432 3214

porate dynamic changes in 2D image captions, including
physical scales such as object size and location, weather
conditions, water level, and road conditions. By utilizing
a 2D physics-based loss function, PanopticCAP generates
refined and enriched captions surpassing those achieved
by a contrastive loss. This framework has the potential to
provide detailed scene descriptions for various applications,
including drivers, autonomous systems, and rescue workers
relying on camera images. However, future studies should
focus on extending this understanding to 3D scenarios
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