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Abstract
We introduce a novel positional encoding strategy for Transformer-style models,
addressing the shortcomings of existing, often ad hoc, approaches. Our frame-
work provides a flexible mapping from the algebraic specification of a domain
to an interpretation as orthogonal operators. This design preserves the algebraic
characteristics of the source domain, ensuring that the model upholds its desired
structural properties. Our scheme can accommodate various structures, including
sequences, grids and trees, as well as their compositions. We conduct a series of
experiments to demonstrate the practical applicability of our approach. Results
suggest performance on par with or surpassing the current state-of-the-art, without
hyper-parameter optimizations or “task search” of any kind. Code is available
through https://aalto-quml.github.io/ape/.

1 Introduction
Attention-based models inheriting from the Transformer [Vaswani et al., 2017] have become ubiqui-
tous in neural computation, supplanting the go-to models of the last decade and driving a continuous
stream of breakthroughs across diverse domains. Their success is perhaps at odds with the Trans-
former’s structural lenience – its key building block, dot-product attention, is by default unable to
perceive and utilize the structure and arrangement of the input/output tokens being processed. To
address this limitation, a plethora of works have sought to endow Transformers with appropriate
inductive biases. The most common strategy is to adjust token representations via so-called positional
encodings; vector operations that hint at the structure being modeled. Nonetheless, most positional
encoding schemes to date are either empirically motivated, or tailored to specific tasks. This renders
their theoretical evaluation challenging, and hinders any prospects of a unifying framework.

In this study, we seek to fill this gap with a theory-first approach. Through the lens of group theory,
we scrutinize some of the most commonly targeted data structures, and express them by means of
inductive definitions that reveal and explicate their structural properties. Leveraging this analysis,
our modeling strategy invokes a homomorphic interpretation that maps each domain into algebraic
positional encodings (APE): attention-compatible vector operations parameterizing (subgroups of)
the orthogonal group. In the sequential context, algebraic positional encodings streamline the widely
adopted rotary encodings of Su et al. [2023], while also offering clear theoretical insights on their
success. More importantly, algebraic positional encodings naturally extend to non-sequential domains,
such as κ-ary trees and multidimensional regular grids, paving the way for a simple and elegant
methodology for interpretable and domain-general structurally-refined Transformers. We carry out
an experimental evaluation in settings that allow for reproducible and statistically sound conclusions.
Across the tasks considered, algebraic positional encodings consistently and significantly outperform
strong baselines at an aggregate level, providing initial but compelling evidence that they constitute
not just a sensible meta-theory for positional encodings, but also an actionable alternative to the
current state of the art.
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CONTRIBUTIONS & PAPER STRUCTURE

§2 BACKGROUND

We introduce the problem (§2.1) and the vocabulary of the solution (§2.2).

§3 THEORY

We provide an algebraic characterization of positions in the context of different ambient structures. We frame algebraic
positional encodings as structure-preserving semantic interpretations, and present reference implementations. Concretely:

§3.1 Sequences are an isomorphism of the free group ⟨𝟙⟩ (i.e., the integers, ℤ), and can be interpreted as a single
generator subgroup of the orthogonal group O(d).

§3.2 Rotary Positional Encodings correspond to a (quite literally) special case of this interpretation: SO(d).
§3.3 k-ary Trees are an isomorphism of the finitely generated group ⟨𝟙, 𝟚 . . . κ⟩, and can be interpreted as a finitely

generated subgroup of O(d).
§3.4 Regular Grids are the group direct sum of multiple sequences. They can be interpreted as the matrix direct sum of

their components’ interpretations.
§3.5 Extensions can be obtained in multiple directions.

§4 PRACTICE

We carry out fair and replicable experiments across all three structures analyzed, namely Sequence Transduction (§4.1),
Tree Transduction (§4.2) and Image Recognition (§4.3), and find that algebraic positional encodings consistently match or
outperform alternative schemes in the tasks considered (§4.4).

§5 RELATED WORK

We position our work in the context of the broader literature.

§6 LIMITATIONS

We close with a brief discussion of possible limitations and potential future improvements.

Table 1: A summary of this paper.

2 Background
2.1 The Problem with Dot-Product Attention
All transformer variants employ some variation of the multi-head scaled dot-product attention
mechanism of Vaswani et al. [2017]. For each attention head, the dot-product attention between
queries X ∈ ℝm×d and keys Y ∈ ℝn×d is defined as:

atn(X,Y ) := softmax(n)

(
(XΦ(q))(Y Φ(k))⊤√

d

)
Y Φ(v) (1)

In equation (1), matrices Φ(q),Φ(k),Φ(v) : ℝd×d enact linear functions, applied point-wise (broad-
casted) across all m and n entries of X and Y . The dot-product term (XΦ(q))(Y Φ(k))⊤ contains
unnormalized attention scores in the Cartesian product of queries and keys. Unmodified, dot-product
attention is permutation invariant with respect to its second argument; that is, for any arbitrary
permutation pn ∈ Sn:

atn(X,Y ) ≡ atn(X, pn(Y )) (2)

Unless one is dealing with orderless structures like multisets or fully connected graphs, this property
is generally undesirable. The lack of structural biases is typically counteracted by the component-wise
addition of unidimensional periodic signals of varying frequencies. These, however, often prove
inadequate in data-scarce domains, where extensive pretraining is impossible, and structure-rich
domains, where a sequence-of-tokens projection is too radical of a simplification.

2.2 Recap on Group Theory
To address this issue, we propose an algebraic treatment of positional encodings, based on principles
lent from group theory. For the sake of convenience and accessibility, we provide a brief recap of
the notions of interest here. A group G consists of a set of elements and a binary operation (_·_)
satisfying four fundamental laws:

• The group is closed under the the group operation. For all a, b in G, a · b is also in G.
• The group operation is associative. For all a, b, c in G, (a · b) · c = a · (b · c).
• The group operation has an identity element e, such that for all a in G, a · e = e · a = a.
• Each group member has an inverse. For all a in G, there exists some element a such that
aa = aa = e, where e is the identity element.

2



A group is characterized as finite or infinite depending on the number of elements it has. If all elements
of a group G can be expressed as a combination of a subset S of the group elements (combined by
means of the group operation, applied either on the elements themselves or on their inverses), we
write G = ⟨S⟩. We say that G is generated by S, and we call the elements of S the generators of G.
A group with a single generator is called cyclic.

3 The Algebra(s) of Positions
Our objective is to establish a framework that offers general and extensible semantics for positions
across various structures – what we commonly encounter in the literature as positional encodings.
Most existing proposals adopt a rather parochial stance, relying on maneuvers or heuristics tailored to
specific applications and driven, predominantly, by extensive empirical investigations. As such, they
fall short with respect to accommodating or reflecting the properties of the underlying structure. In
this work, we follow a different approach. We adopt Montague’s perspective, succinctly paraphrased
as:

“syntax is an algebra, semantics is an algebra, and meaning is a homomorphism
between them” [Janssen, 2014].

We begin by noting that “positions” do not exist in isolation, but only in the context of some underlying
ambient structure. We contend that reasonable positional encodings (semantics) may only be reliably
obtained by taking into account exactly this structure, its formation rules and properties (syntax), and
then applying an appropriate interpretation (meaning). This is not just an academic exercise: a careful
syntactic specification is a prerequisite if we aim for semantics that adhere to certain properties,
which is arguably preferable to searching for these properties in the wild.

3.1 Sequences
Syntax We start from the simplest structure, and incidentally also the most standard one: the
sequence. The full range of positions a token can occupy within a sequence coincides exactly with
the naturals, ℕ. Relative paths ℙ between any two positions can then be seen as the integers, ℤ, with
positive (resp. negative) numbers denoting forward (resp. backward) offsets. Using this insight, it is
handy to inspect how the standard inductive definition of the integers provides the building blocks for
path formation. We start with two constants: the empty path (𝟘), which relates any given point to
itself, and the unit path (𝟙), which relates any point to its immediate next. We may compose simple
paths into complex ones with the aid of a binary operation +ℙ. This already suffices to specify all
forward offsets. In order to construct backward offsets, we need a unary operation (−)ℙ, such that
− ρ denotes the inverse of ρ. We can summarize the above by the grammar:

ℙ := 𝟘 | 𝟙 | ℙ+ℙ ℙ | −ℙ (3)

For this to make sense, the operations must be coherent; that is, all ways to start from point ρ1 and
end up in point ρ2 should be equivalent, even if apparently distinct. The needed equivalences exactly
correspond to the group laws, with closure internalized by the inductive definition of (3):

(ρ1 +ℙ ρ2) +ℙ ρ3 = ρ1 +ℙ (ρ2 +ℙ ρ3) (L1)
ρ+ℙ 𝟘 = ρ = 𝟘+ ρ (L2)

ρ+ℙ (− ρ) = 𝟘 (L3)

The (unsurprising) insight here is that paths in a sequence form a free group, generated by a single
generator (𝟙) – the uniqueness of the generator exceptionally also makes the group abelian (i.e.,
commutative). For convenience, we adopt the notational shorthand 𝟙p, where:

𝟙p :=


𝟙+ℙ · · ·+ℙ 𝟙︸ ︷︷ ︸

p

p ≥ 0

(− 𝟙) +ℙ · · ·+ℙ (− 𝟙)︸ ︷︷ ︸
−p

) p < 0
(4)

Semantics The syntactic specifications of the previous paragraph impose constraints on the can-
didate semantic targets. Among these candidates, we isolate and focus on ⟨W ⟩, the subgroup of
the orthogonal group O(d) that is generated by a single orthogonal matrix W . This semantics is
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not only sound1 with respect to the structure under scrutiny, but also a familiar object in machine
learning literature [Arjovsky et al., 2016, Bernardy and Lappin, 2022, inter alia]. Note that for ⟨W ⟩,
the group axioms are obtained for free from the orthogonal group, and the additional requirement of
commutativity is again satisfied by the uniqueness of the generator.

To illustrate the correspondence between the two structures (and at risk of being pedantic), we spell out
the homomorphism ⌈.⌉, which maps paths ℙ to elements of ⟨W ⟩, and path operations to operations
on orthogonal matrices of size d. For the primitives, we have ⌈𝟘⌉ := Id and ⌈𝟙⌉ := W . Path
composition amounts to matrix multiplication, i.e., ⌈ρ1 +ℙ ρ2⌉ := ⌈ρ1⌉⌈ρ2⌉, while path inversion
corresponds to matrix transposition, i.e., ⌈− ρ⌉ := ⌈ρ⌉−1 ≡ ⌈ρ⌉⊤. The fact that orthogonal matrices
form a group under multiplication is folklore; one can easily verify that the group laws hold also for
the semantics.2

Implementation In practice, we have ⌈𝟙p⌉ 7→ W p; a norm-preserving bilinear form ℝd ×
ℝd → ℝ which can be used to mediate the dot-product between a query q and a key k offset
by a relative distance of p. The representation of all paths up to length p can thus be implemented as a
matrix collection [W 0, . . . ,W p], which can asymptotically be obtained using O(⌈log2(p)⌉) matrix
products (of exponentially larger matrices), and taking up the storage space equivalent of (pd2) floats.
Transposed, the same matrices also serve to represent backwards paths [W−p, . . . ,W 0]. Storing the
representations of all relative paths between queries and keys in a tensor T : ℝm×n×d×d, we may
then substitute the dot-product term of equation (1) for the tensor contraction:∑

α,β

XmαΦ
(q)
αβTmnβγYnδΦ

(k)
δγ (5)

Albeit transparent, this reduction strategy is computationally unappealing due to the doubly quadratic
nature of T . We can do better by noting that Tmn is (definitionally) equal to:

Tmnαβ =
∑
γ

A(X)
mγαA

(Y )
nγβ (6)

where A(X) and A(Y ) are the matrices containing representations for the absolute positions of the
entries in X and Y , respectively. Concretely, a single relative representation is built by composing
the inverted representation of the source with the representation of the target. Intuitively, each query
follows the path that takes it back to the origin, which then allows it to directly combine with each
forward-offset key; see Figure 1a for a visual example. This insight allows us to keep the memory
footprint of equation (1) unchanged, replacing expression (5) with:∑

α,β,γ,δ,ϵ

XmαΦ
(q)
αβA

(X)
mγβA

(Y )
nγδYnϵΦ

(k)
ϵδ (7)

This version decomposes the tensor contraction into two matrix multiplications, essentially transform-
ing (rotating or reflecting) the entries of X and Y independently according to their positions.

3.2 Intermezzo: Equivalence with RoPE

The story so far should be reminiscent of the rotary positional encoding scheme of Su et al. [2023,
RoPE]. Not unlike our approach, RoPE substitutes the vanilla dot-product for a position-dependent
bilinear form. Underlying the form is a d× d-dimensional matrix R with a block-diagonal structure,
where each 2×2-sized block corresponds to a rotation matrix that acts on a 2-dimensional subspace of
ℝd. These independent rotations are parameterized by a (fixed) set of base angles Θ := [θ1, . . . , θd/2].
To incorporate position-dependence, i.e., for a query/key pair at a relative distance of p, the base
angles are multiplied by p, effectively altering the rotations applied.

At first glance, rotary encodings appear to be under-parameterized, and thus strictly weaker than
orthogonal ones. However, any orthogonal matrix W ∈ O(d) admits a canonical form W = PQP⊤,
where P is an orthogonal change of basis, and Q is block-diagonal, with the 2 × 2-sized blocks
being, once again, 2−dimensional rotation matrices [Murnaghan and Wintner, 1931]3. Owing to

1It is also complete except for the odd case where W p = I for some p. In practice, this kind of periodic
behaviour does not arise randomly, and we can think of ⟨W ⟩ as being isomorphic to ℙ.

2The story is no different for W unitary, with the group structure provided by the unitary group U(d), and
path inversion interpreted as the matrix conjugate transpose.

3We alert the reader that a constructive proof of this decomposition has proven surprisingly difficult to find.
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the orthogonality of P , raising W to its pth power is equal to PQpP⊤ (i.e., it leaves the change of
basis unaffected). In turn, raising Q to its pth power is equivalent to simply multiplying the rotation
angles of its blocks by p. Finally, given the linearity of the transformations Φ(q) and Φ(k), their
compositions with P are also linear. By identifying Q with RoPE’s R, we can then see that, for any
given collection of angles Θ, APE and RoPE coincide under the substitutions:

Φ
(q)
RoPE = Φ

(q)
Q and Φ

(k)
RoPE = Φ

(k)
Q (8)

In other words, APE is practically equivalent to a trainable version of RoPE, where the rotation
angles Θ may vary and be optimized during training4.

Which of the two parameterizations is preferable is up to debate. On the one hand, APE’s formulation
is FLOP-optimized (being just matrix multiplications), and obviates the need for backpropagating
through trigonometric functions (which are periodic, non-monotonic, and prone to gradient instabili-
ties). On the other hand, RoPE’s diagonalized form gives access to a memory-efficient contraction
that does away with the matrix multiplications of expression (7) altogether; we direct the interested
reader to Su et al. [2023, Section 3.4.2] for a reference implementation5.

In either case, the equivalence between the two is confined to the sequential setup; we will now move
on to generalize our strategy to other, previously inaccessible, structures.

3.3 Trees
Syntax In the previous section, we characterized the structure of relative paths on a sequence as
the free group with one generator, and uncovered a (practically) isomorphic interpretation in the
subgroup of orthogonal matrices with a single generator. Upon closer inspection, we note that a
sequence can be viewed as a special case of the more general structure of κ-ary branching trees,
where the branching factor κ just so happens to be 1. Denoting the more general case as ℙκ, we must
first extend the set of primitives to include all branching options, 𝟙, 𝟚, . . . κ : ℙκ. Each primitive
now denotes a choice of branch (except for 𝟘, which is again the empty path). Paths now form a
free group with κ distinct generators. The presence of multiple generators means that commutativity
no longer holds; 𝟙+ℙκ

𝟚 is distinct from 𝟚+ℙκ
𝟙 (the former prescribes a descent down branch 𝟙

then branch 𝟚, whereas the latter prescribes a descent down branch 𝟚 then branch 𝟙). Inversion is as
before: for every path from each local root to some descendant down the line, there is also an inverse
path from that descendant up to its ancestor. Perhaps more interestingly, upwards and downwards
paths can be joined, allowing the precise specification of relative paths between any two nodes, even
when the two do not share a single line of descent (think nephews, aunts and all other sorts of distant
relatives, see Figure 1b for an example). Adjusting grammar (3) accordingly, we have:

ℙκ := 𝟘 | 𝟙 | 𝟚 | . . . | κ | ℙκ +ℙκ
ℙκ | −ℙκ (9)

with laws L1, L2 and L3 still in effect.

Semantics The interpretation follows along the same lines as before. This time around, however,
we cannot make do with a single orthogonal matrix W – we need a collection of κ matrices, one for
each branch option. As a consequence, the semantic target is now ⟨W1,W2, . . .Wκ⟩. Note that the
target is no longer commutative (in alignment with the source).

Implementation For a tree structure of depth δ and branching factor κ, let ν denote the number
of unique absolute positions occupied (upper bound by κδ in the case of a complete tree). Their
representations can be computed in δκ steps of parallel matrix-matrix multiplications and a memory
cost of νd2, as follows. First, we can build up a collection of all unique absolute paths, each repre-
sented as a (right-padded) word of length δ from the vocabulary of primitives. Their corresponding
representations constitute a tensor of size ν × d× d, initialized as ν identity matrices. We can then
iterate across these words in parallel, one primitive per step (i.e., depth) t, selecting all words that
take the same branching direction at the current depth, and right-multiplying their representations by
the corresponding orthogonal generator. Finally, absolute paths can be composed into relative ones
using the modified dot-product attention of expression (7), just like before.

4An alternative reading is that even though orthogonal matrices are generally more expressive than rotation
matrices (allowing not just rotations but also reflections), the Transformer’s architecture makes up for RoPE’s
reduced expressivity by supplying a free change of basis through its trainable weights Φ.

5For more practical insights on initializing and parameterizing APE and translating between APE and RoPE,
please refer to Appendix A.
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3.4 Grids
The generalization from sequences to trees rests on the observation that a sequence is a tree with a
deficit of choices. An altogether different axis of generalization can be obtained by recalling that
composite groups can be constructed by joining together two or more elementary groups. Moreover,
if it just so happens that the original groups were abelian, then so is their composition; in that case,
we call the composite a group direct sum. This construction provides access to an extension from
sequences to multidimensional regular grids.

For the sake of simplicity and without loss of generality, we consider a standard instance of a two-
dimensional grid: an image. An image is a collection of pixels (or pixel patches) that inhabit a
coordinate system (h,w). Each of h and w is the product of grammar (3), inheriting all path-related
notions discussed earlier. Since ℙ is an abelian group, the coordinate system also constitutes an
abelian group ℙ2 := ℙ⊕ ℙ. The new group and inversion operations are +ℙ2 and (−)ℙ2 , and denote
the act of joining and inverting two-dimensional paths, respectively. Both are canonically defined
component-wise, on the basis of their one-dimensional counterparts:

(x, y) +ℙ2 (z, w) := (x+ℙ y, z +ℙ w) (10)
−(x, y) := (−x,− y) (11)

with 𝟘2 := (𝟘, 𝟘) as the new neutral element. Intuitively, +ℙ2 corresponds to vector addition, and
(−)ℙ2 to a reflection about the origin with respect to both axes.

Semantics The specifications above allow us to reuse the notions from Section 3.1 in order to
interpret the components and operations of ℙ2. What is left unspecified is the interpretation of the
group elements themselves; that is, we have yet to explicate what an object of ⌈ℙ⊕ ℙ⌉ looks like.
The quest is a short one; the notion of a direct sum carries over to matrices, where it is defined
as:

A⊕B :=
[
A 0
0 B

]
(12)

From this, we get the (rather straightforward) interpretation ⌈(ρ1, ρ2)⌉ 7→ ⌈ρ1⌉ ⊕ ⌈ρ2⌉.

Implementation In practice, we now split the vector space in two independent parts. The first part
is modulated by orthogonal matrices from ⟨H⟩, and the second part by orthogonal matrices from
⟨W ⟩. For a query q and a key k that reside at a relative distance of (h,w), their attention score is
computed as q(Hh ⊕Ww)k – see Figure 1c for an illustration. Each axis contributes an additive
but separable factor to the attention score, forcing the model to learn contextual alignments between
token pairs on the basis of their coordinate-wise distances. Not much else is different: we can still
compute all matrices in parallel, temporally bound by a logarithmic complexity of log2(max(h,w))
and max(h,w)(d2 )

2 storage space, given a grid of size (h,w). Subquadratic memory complexity can
once more be achieved by virtue of diagonalization, just as in the sequential case.

3.5 Variants & Extensions
The structures that we have seen so far are not the only ones that our methodology can tackle – in
fact, many other group-like structures are amenable to similar interpretations. We sketch out some
enticing examples below.

Absolute Positions Our analysis has so far focused on paths relative to positions. Fixing the point
of origin allows a straightforward simplification to absolute positions. The new structure is that of a
monoid: there’s no longer an inversion, and laws L1 and L2 only are now in effect. The framework
remains largely unchanged: one can still use subgroups of matrices to represent positions, except this
time applying them on either the queries or the keys (rather than both).

Periodic Domains Under addition, the integers form an infinite cyclic group. An interesting twist
would be to consider the positional encodings of finite cyclic groups instead. Such structures are not
uncommon; in chemistry, for instance, a benzene molecule comprises six carbon atoms arranged in
a ring. The semantics of such a structure would need to be of a matching period; that is, we would
need a generator W such that W 6 = I . Such a parameterization is straightforward; we simply need
to fix the orthogonal matrix so as to have it implement rotations at angle-multiples of π/3.
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𝟘 𝟙 𝟙2 𝟙3 𝟙4

W−1W 4 = W 3

W−4W = W−3

(a) The half-axis of absolute positions on a sequence, with a visualization of the two directions of relative paths
between points 1 and 4. In either case, the interpretation is the matrix multiplication of the inverted source
against the target.

𝟘

𝟚

𝟚𝟚𝟚𝟙

𝟙

𝟙𝟚𝟙𝟙

(W2W1)
−1W1W2

(b) The space of paths on binary branching trees, with an illustration of the relative path from 𝟚𝟙 to 𝟙𝟚. Same as
before, the interpretation is the matrix multiplication of the inverted source against the target

(𝟙3, 𝟘)

(𝟙, 𝟙3)

H−2 ⊕W 3

H2 ⊕W−3

(c) The quarter-plane of absolute positions on a 2-dimensional grid, with a visualization of the two directions of
relative paths between points (3, 0) and (1, 3). The interpretation is now a block-diagonal matrix consisting of
the blocks interpreting the path over each coordinate.

Figure 1: Example paths and their interpretations across the structures examined.

Time Series & Subsampling Our sequential case analysis assumed a dense sequence with a uniform
sampling rate. However, our strategy also applies to any series, even if sparsely sampled, as long as
the sampling rate is quantized (i.e., a multiple of some constant step). That is, positional indices (and
their representations) do not need to match the placement of tokens in the sequence.

Composite Groups The direct sum interpretation of Section 3.4 is applicable for arbitrary groups
that can be described as products, commutative or otherwise. This allows the representation of
positional encodings for several other kinds of composite structures that can be concocted using the
same principles, such as sequences of trees, trees of grids, etc.

Beyond Dot-Product Attention Throughout the previous sections, we have adopted a dot-product
formulation for the attention weight function. Nonetheless, APE can be readily integrated into any
other attention mechanism, such as linear [Katharopoulos et al., 2020], cluster [Vyas et al., 2020] and
“softmax-free” [Lu et al., 2021] variants, inter alia.

4 Experiments
To assess the viability of our approach, we conduct a series of experiments across a range of tasks,
in setups that allow for replicable and reliable comparisons with alternatives. When using APE, we
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follow Wu et al. [2021] in scaling the dot-product score between two tokens at a distance of p (i.e., p
steps away) by pc; here, we set c := 0.98. This serves to stabilize training by introducing a locality
bias (or long-distance decay) factor. For the sake of parameter compression, we share the orthogonal
matrices between the different encoder/decoder layers, but use a distinct matrix (or collection of
matrices) per head. To isolate and quantify the effect of initialization, we report results on two
different initialization strategies: one where the orthogonal operators are set to mimic RoPE rotations
(default), and one where they are set to be close to the identity (no init). Similarly, to isolate and
quantify the effect of trainability when comparing to RoPE, we report results over both fixed (frozen)
and trainable (tuned) rotation angles.

We provide an extensive account of our experimental setups in Appendix B.

4.1 Sequence Transduction
Machine Translation First, we follow Vaswani et al. [2017] in training a TransformerBASE model
on machine translation over WMT14 EN→DE [Bojar et al., 2014].

To provide a comprehensive comparison, we pit our proposed methodology against standard positional
encoding schemes from the literature: the vanilla Sinusoidal encodings of Vaswani et al. [2017], the
Absolute encodings of Gehring et al. [2017], the Relative encodings of Shaw et al. [2018] and the
Rotary encodings of Su et al. [2023]. To ensure a fair comparison, we allow all models the exact
same budgets (both memory and time).

Synthetic Tasks We further examine three standard sequence transduction tasks: sequence copying,
sequence reversal, and sequence repetition. These are meant to directly assess each model’s capacity
for algorithmic induction, in setups where explicit position-based addressing, both absolute and
relative, is required.

4.2 Tree Transduction
Next, we consider four algorithmic transduction tasks on binary branching trees: tree copying,
recursive tree rotation up to a fixpoint, algebraic reduction of C3 expressions, and self-referential tree
manipulation; see Appendix B for details.

In addition to previous sequential baselines, we compare our model to the encodings of Shiv and
Quirk [2019, Tree-SQ]. For all four tasks, we experiment with both breadth-first and depth-first
decoding.

4.3 Image Recognition
Finaly, we train a Compact Convolutional Transformer [Hassani et al., 2021] on CIFAR-10 [Krizhevsky
et al., 2009].

Typically, attention-based architectures for vision rely on additive positional encoding schemes,
applied on the image prior to it being sequentialized (row-by-row flattened). Here, we compare
fixed [Wang and Liu, 2019, Sinusoidal 2D] and parametric [Gehring et al., 2017, Absolute] variants
of the above against both the sequential and the grid-structured versions of our scheme.

4.4 Results
We repeat each experiment three times, varying the seeds used for weight initialization and optimiza-
tion, but fixing the data across repetitions. We report means and 95% CIs in Table 2. We highlight
each category’s best (in red), and underline scores where the CI spans the mean of the respective
best.

At the macro level and consistently across modalities, domain-appropriate algebraic interpretations
match or surpass strong and specialized baselines – without any hyper-parameter tuning or search.
Specifically, across the 13 setups considered, APE is the uncontested top performer in 8, ranks among
the best in 3, and falls within the confidence margin of the top performer in one. Exceptionally, in
the breadth-first version of the tree-copy task, tree algebraic encodings are surpassed by a handful
of sequential alternatives; this is no surprise, since in this case the tree structure is practically a
task-irrelevant syntactic confound. Perhaps more surprisingly, in the breadth-first version of the
tree-manipulation task, tree algebraic encodings are surpassed only by their non-initialized, sequential
version; this is likely a statistical anomaly, since one of the three repetitions resulted in an unusually
low perplexity score.
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Scheme

Task Sinusoidal Absolute Relative Rotary Algebraic
(frozen) (tuned) (/w init) (w/o init)

WMT14 EN→DE 14.57±0.12 22.09±0.11 23.15±0.03 24.03±0.06 23.92±0.20 23.93±0.10 23.84±0.10
(BLEU / ↑)

COPY 1.01±0.00 1.11±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
REPEAT 1.85±0.15 3.66±0.06 1.44±0.16 1.08±0.12 1.00±0.00 1.00±0.00 1.02±0.00
REVERSE 3.92±0.99 4.62±0.67 4.08±1.12 1.09±0.02 1.01±0.00 1.01±0.00 1.03±0.02

(PPL. / ↓)

(a) Performance results on neural machine translation and synthetic sequence transduction.

Task/Regression

COPY ROTATE C3 TREE-OPS

Scheme breadth depth breadth depth breadth depth breadth depth
Sinusoidal 1.06±0.01 5.68±0.63 6.93±0.38 7.13±0.35 2.66±0.10 2.78±0.08 20.53±7.11 64.86±6.41
Tree-SQ 1.29±0.01 1.07±0.00 2.60±0.16 1.87±0.24 2.27±0.59 2.29±0.24 19.18±3.23 16.41±6.14
Absolute 6.64±0.12 7.02±0.17 7.77±0.15 7.24±0.20 2.77±0.21 2.79±0.22 37.78±0.72 48.91±5.83
Relative 1.01±0.00 6.12±0.06 6.00±0.25 7.72±0.28 1.70±0.07 2.43±0.04 2.36±0.02 16.86±1.27
Rotary (frozen) 1.42±0.58 2.46±0.59 4.58±0.30 4.97±1.79 1.55±0.34 2.15±0.22 2.53±0.08 33.54±9.04
Rotary (tuned) 1.00±0.00 1.70±0.05 4.07±0.34 2.60±0.11 1.08±0.02 1.90±0.22 2.55±0.05 20.87±0.33

Algebraic (seq) 1.00±0.00 1.63±0.06 2.95±0.08 2.48±0.27 1.07±0.01 1.83±0.02 2.30±0.03 20.05±0.36
w/o init 1.00±0.00 2.36±0.63 5.18±0.10 5.72±1.23 1.45±0.08 2.29±0.06 1.75±0.74 29.26±9.15

Algebraic (tree) 1.01±0.00 1.00±0.00 1.05±0.01 1.01±0.00 1.00±0.00 1.00±0.00 2.24±0.06 1.83±0.02
w/o init 1.07±0.00 1.04±0.08 1.44±0.15 1.27±0.15 1.05±0.10 1.00±0.00 2.42±0.01 1.86±0.01

(PPL. / ↓)

(b) Performance results on algorithmic tree manipulation tasks.

Epoch

Scheme ≤150 ≤300
Sinusoidal 2D 91.57±0.01 92.79±0.20
Absolute 90.86±0.19 92.68±0.39

Algebraic (seq) 92.68±0.24 94.59±0.15
w/o init 88.93±0.19 91.09±0.20

Algebraic (grid) 93.13±0.33 94.67±0.06
w/o init 92.95±0.07 94.48±0.18

(ACC. / ↑)

(c) Best-by-epoch top-1 accuracy scores on image recognition on CIFAR-10.

Table 2: Experimental results and baselines across the tasks considered.

We also note three general trends. First, initializing APE to match RoPE frequency bands at the start of
training consistently and significantly improves performance, possibly because RoPE rotary primitives
have undergone empirical tuning for stability and performance. Second, given identical initialization,
a sequential APE generally outperforms a trainable RoPE, despite their theoretical equivalence. This
might be due to the difficulty of optimizing periodic signals (i.e., RoPE’s trigonometric functions)
compared to APE’s (orthogonal) matrix multiplications. Third, a frozen RoPE performs comparably to
a randomly initialized APE in most tasks considered, suggesting that adjusting rotoreflection angles
during training is not necessarily better than adjusting rotation planes while keeping the angles
fixed. Contrary to all the above, a frozen RoPE weakly outperforms both a tunable RoPE and an
initialized APE in the neural machine translation task; likely an artifact of attention overfitting to
specific positional patterns.

5 Related Work
Dense attention is by now a foundational component of various problem- and domain-general
architectures. Combined with its structural indifference, this underscores the pressing need for
learning strategies capable of injecting structural biases directly at the representation level. As
such, positional encodings have garnered significant community attention in recent years – too
much, in fact, to permit an exhaustive enumeration here. An extensive survey and meta-review is
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provided by Dufter et al. [2022] who group and rank these works on the basis of several criteria. Our
work presents a universal, intuitive and formally grounded recipe that meets all these criteria: it is
trainable, amenable to problem-specific and data-driven tuning; reference-adjustable, allowing both
absolute and relative positional specifications; unbounded, capable of representing enumerably infinite
positions irrespective of model instantiation and/or the targeted data size; contextual, implementing a
dynamic effect that varies depending on token content; effective, consistently matching or surpassing
baselines in the tasks considered; and, finally, efficient, exhibiting generally favorable asymptotic
complexities.

We must point out that the concept of positional encodings as sequence homomorphisms has already
been hinted at, first by Wang et al. [2020] and later by Su et al. [2023], even if not explicitly
formulated as such. Despite approaching the problem from different angles, both approaches interpret
positions as multiplicative, norm-preserving (rotation-like) operations. Our proposal expands upon
these two, first in providing a proper algebraic framing of the problem, and second in extending the
interpretation from rotations around the axes to rotations and reflections about arbitrary planes. In
the case of a single generator matrix (i.e., sequences), this difference turns to be non-essential, being
practically neutralized by the Transformer’s trainable weights. This no longer holds, however, in the
case of multiple generator matrices (i.e., grids or trees), where each generator should be able to rotate
and reflect different sets of planes. In that sense, algebraic positional encodings offer an appealing
unifying perspective of a multidimensional generalization to the aforementioned rotation-based
frameworks. This sentiment is shared by Lim et al. [2023] who, in parallel to our work, similarly
advocate for positional encodings as group homomorphisms, there framed as irreducible group
representations. Modulo presentation, the two approaches are variations on a common theme; theirs
is technically concerned with post-hoc representation of symmetries and equivariances at a per-datum
scale, whereas ours focuses on the interpretation of domain signatures at the dataset scale.

More generally, algebraic manipulations are not uncommon in modern machine learning literature.
The recognition of abstract algebra as a practical tool for imposing structural well-behavedness has
led to its increased adoption as a reliable recipe for structure-informed neural architectures, largely
obsoleting the inefficient and ad-hoc augmentation routines of the past. This line of work can be
traced back to the group equivariant convolutions of Cohen and Welling [2016], which have by now
bloomed into a field of their own; see Weiler et al. [2023] for an up-to-date overview.

6 Limitations

We recognize weaknesses and limitations across three fronts. On the theoretical front, we have
limited our scope to simple inductive groups, consciously ignoring potential interpretations of more
complex constructions. We defer this to future work. On the empirical front, having to recompute
positional encodings once per batch increases a model’s temporal complexity during training. While
this is barely noticeable in sequential and grid constructions, which scale logarithmically, it becomes
evident when dealing with complete trees, which scale linearly and require explicit for-loops. On the
epistemic front, we conducted a limited set of experiments, focusing primarily on replicability and
fairness. We leave more exhaustive empirical comparisons on practical downstream tasks to future
work or interested parties.

7 Conclusion

We have presented a theoretically motivated approach towards constructing positional encodings
for a variety of structures. Without any significant modification or overhead, our methodology
can capture sequences and their (multi-dimensional as well as multi-branching) generalizations.
In doing so, it reconciles powerful but structurally oblivious models with their missing inductive
biases, permitting structure-aware architectural refinements across a range of tasks and setups (see
also Kogkalidis et al. [2024] for parallel work employing the methodology in a neurosymbolic
representation learning setup). Beyond that, our approach grants full control over how these biases are
to be implemented, while also being amenable to adjustments and extensions. Our work indicates that
generality and extensibility are not in spite of, but rather due to structural discipline and abstraction.
We perceive it as an important step towards data-efficient, general and transparent models of neural
computation.
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A Parameterizing APE

A.1 Orthogonalization
The orthogonal primitives underlying APE can be procured by matrix-exponentiating skew-symmetric
bases. Concretely, for some cyclic group ⟨C⟩:
1. Start with an upper triangular matrix A; this matrix parameterizes the entire group.
2. Obtain the skew symmetric B := A−A⊤

3. Obtain the matrix exponent C := exp(B); the resulting matrix is orthogonal, and acts as the
group’s generator.

A.2 Switching between APE and RoPE

In the commutative (direct sum of finitely many cyclic groups) case, it is possible to switch freely
between APE and RoPE. Doing so might be useful, e.g., for initializing APE, for inspecting the learned
rotoreflections post-training, or for making use of RoPE’s memory-optimized vector-multiplication
formula in a system originally trained with APE. Note that here we consider the purely real-valued
version of RoPE (and APE).

RoPE → APE To convert RoPE to APE for some collection of angles Θ := [θ1, . . . θn]:

1. Expand Θ into a rotation matrix C,

C :=


cosθ1 −sinθ1 0 0 . . .
sinθ1 cosθ1 0 0 . . .
0 0 cosθ2 −sinθ2 . . .
0 0 sinθ2 cosθ2 . . .
...

...
...

...
. . .


Note: Stop here if not interested in parameterizing C.

2. Use a solver to approximate the matrix logarithm of C, B := log(C).
3. Find a matrix A such that mse(B,A−A⊤) ≤ ϵ, e.g., using a numerical optimizer. Matrix A

can be used to parameterize the group, cf. A.1.

APE → RoPE To convert APE to RoPE for some cyclic group ⟨W ⟩:

1. Find the normal form W = PQP⊤.
2. Extract the angles in each block of Q; the resulting collection of angles is RoPE’s Θ.
3. For each attention head involved, right-compose the Transformer’s Φ(q) and Φ(k) with P .

B Experimental Setups
B.1 Machine Translation
For our machine translation experiments, we use the official dataset breakdown (including the ex-
tended evaluation set). We tokenize the training and evaluation sets with MOSES6, using the standard
pipeline: punctuation normalization → unicode normalization → language-specific tokenization.
We apply byte-pair encoding [Gage, 1994, Sennrich et al., 2016] using the subword-nmt package7.
We apply 32k merges across the source and target training corpora, without truncating the result-
ing (shared) vocabulary (of size 35 533). Our loss term is given as the cross-entropy between the
teacher-forced predictions and the ground-true labels, smoothed by 10%. We train in a distributed
environment consisting of 4 GPUs, with a batch size of 3 072 target tokens per GPU. We average
gradients and update parameters once every 2 GPU iterations (or: 8 batches). We optimize using
Adam with a learning rate dictated by the schedule prescribed by Vaswani et al. [2017]. We stop
optimizing after 150 000 parameter updates or 16 hours, whichever comes first. Throughout training,
we circularly store the 10 best checkpoints, ranked on the basis of dev set loss (evaluated once
every 500 updates). During inference, we average the 10 checkpoints into a single model, and select
hypotheses from a beam of width 4 and a length penalty of 0.6 [Wu et al., 2016]. We report BLEU
scores over the test set (newstest2014), comparing the BPE-merged and detokenized output against
the raw references using sacrebleu [Post, 2018]8.

6See https://github.com/moses-smt/mosesdecoder
7See https://github.com/rsennrich/subword-nmt.
8Signature: nrefs:1 | case:lc | eff:no | tok:13a | smooth:exp | version:2.4.2.
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Experiment/Value

Parameter NMT Transduction Image
Convolution Size – – (3,3)
Convolution Stride – – 1
Embedding Size 512 512 256
Feedforward Size (enc) 2048 512 512
Feedforward Size (dec) 2048 1024 –
Feedforward Activation ReLU ReLU GELU
# Layers (enc, dec) (6, 6) (2,2) (7, 0)
# Heads 8 8 4
Norm LayerNorm LayerNorm LayerNorm
Norm Position Post Pre Pre

Table 3: Hyperparameter setups, grouped by experiment.

B.2 Synthetic Transduction
Tree Task Descriptions The tree copy task is morally identical to its sequential version – the tree
structure (and its positional specification) is practically a confound.

In the tree rotation⋆ task, the output tree is the result of recursively right-rotating all subtrees of the
input. The task is challenging but purely structural, in the sense that its resolution requires no real
interaction between content and position.

For the algebraic expression reduction task, we consider input trees that specify a complex expression
from the cyclic group C3, and task the model with producing the result of a single reduction step (i.e.,
reducing all subtrees of depth 1 into a leaf). This time around, the model has to identify reducible
subtrees, match operators to their argument and collapse the three into a single node depending on
their content.

The tree operations task, finally, combines the aspects of the other three, requiring content-based
addressing, structure manipulation and dynamic semantics resolution. Concretely, we generate an
input tree consisting of unique nodes, and randomly select one of its subtrees as well as one of four
operators. We then construct a deeper tree, where the new root corresponds to the chosen operator, its
left branch corresponds to the numerical index of the selected subtree, and the right branch is the
original tree in its entirety. The model is then tasked with producing the correct output given this
combination of an operator, a tree, and an index. We consider four operations: extraction (i.e., return
the indexed subtree), flip-extraction (i.e., return the indexed subtree, rotated), truncation (i.e., return
the full tree with the indexed subtree removed) and a no-op (i.e., return the full tree as-is, ignoring
indexing).

Hyperparameters For all synthetic tasks, we generate disjoint train, dev and test sets of sizes 6 000,
2 000 and 2 000. We train a small Transformer model, optimizing with AdamW [Loshchilov and
Hutter, 2017] for 400 epochs and a batch size of 64, using a linear warmup – cosine decay schedule.
For the sequential tasks, we populate the datasets with words of random lengths from N (100, 10)
and a vocabulary size of 20 (to ensure token repetition and diffuse the possibility for leaning on
content-based addressing). For the tree tasks, we populate the datasets with non-uniform trees of
random depths sampled from N (7, 1). For the tree-ops task, exceptionally, we set the vocabulary
size to 128 so as to have enough unique nodes to allow content-based addressing.

When using a positional encoding scheme that requires fixing the size of the structure being modeled
(i.e., the Tree, Relative, and Absolute schemes), we fix it at approximately the maximum training size,
practically ensuring the most stringent comparison.

In all experiments, we share source and target embedding weights between both the encoder-decoder
embedding layers, and the decoder’s classification head.

B.3 Image Recognition
For our image recognition experiments, we largely rely on the setup of Hassani et al. [2021].
Concretely, we apply a small-step “tokenizing” convolution on the input image, downsample the
result with max pooling and flatten the result into a sequence. After we pass the sequence through
the encoder, we apply a global soft attention [Li et al., 2016, inter alia] (rediscovered by Hassani
et al. [2021], there dubbed “sequence pooling”) to aggregate into a single vector prior to applying
the classifier. To attain competitive scores, we apply standard CIFAR-10 data augmentations and
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more aggressive regularization: a 10% attention weight dropout, a stochastic depth of 10% for each
consecutive layer, and a weight decay of 3 · 10−2. The above settings and the hyperparameter setup
are taken without modification from Hassani et al. [2021].
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We carefully summarize our contributions and refrain from making any claims
that we cannot theoretically or empirically support.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a dedicated limitations section (§6), and openly and explicitly discuss
algorithm complexity and experimental scope in the relevant sections.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our algebraic connections make no assumptions and are fully explicit in their
presentation. The equivalence with RoPE clarifies all assumptions it makes.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the reviewers with both an extensive appendix detailing our
experimental setup, and the code used to implement our methodology and conduct our
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes – see answer above. Our training scripts are provided virtually unchanged.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see above.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We take extra care to conduct our experiments openly and transparently so as
to deliver statistically sound results and draw solid conclusions. We repeat all experiments
multiple times, and report means and 95% confidence intervals. For each experiment, we
visually mark all models that overlap with the best performer in the category.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: While we do report hardware infrastructure, we do not report memory con-
sumption or clock times. With the exception of machine translation, our experiments are
moderately cheap to run, requiring no specialized hardware other than GPU accelaration.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Checked and done.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We do, albeit briefly. We do not see possible negative implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

20

https://neurips.cc/public/EthicsGuidelines


Justification: We perceive no risks that would require safeguards of any kind.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all software libraries and datasets we use, and comply with their
licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: While we do provide reference implementations, we do not see them as assets
per se, neither do we hand them out as ready-to-use integrations.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects were involved in this study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: See above.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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